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Abstract

We formulate a notion of doubly reflected BSDE in the case where the barriers

ξ and ζ do not satisfy any regularity assumption. Under a technical assumption (a

Mokobodzki-type condition), we show existence and uniqueness of the solution. In

the case where ξ and −ζ are assumed to be right-uppersemicontinuous, the solution is

characterized in terms of the value of a corresponding E
f -Dynkin game, i.e. a game

problem over stopping times with (non-linear) f -expectation, where f is the driver of

the doubly reflected BSDE. In the general case where the barriers do not satisfy any

regularity assumptions, the solution of the doubly reflected BSDE is related to the

value of "an extension" of the previous non-linear game problem over a larger set of

"stopping strategies" than the set of stopping times. This characterization is then used

to establish a comparison result and a priori estimates with universal constants.

Key words : Doubly reflected BSDEs, backward stochastic differential equations, Dynkin

game, saddle points, f -expectation, nonlinear expectation, game option.

AMS 1991 subject classifications : 93E20, 60J60, 47N10.

1 Introduction

Backward stochastic differential equations (BSDEs) have been introduced in the case of a

linear driver in [3], and then generalized to the non-linear case by Pardoux and Peng [34].
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The theory of BSDEs provides a useful tool for the study of financial problems such as the

pricing of European options among others (cf., e.g., [13] and [14]). When the driver f is non-

linear, a BSDE induces a useful family of non-linear operators, first introduced in [14] under

the name of non linear pricing system, and later called f -evaluation (also, f -expectation)

and denoted by E
f (cf. [35]). Reflected BSDEs (RBSDEs) are a variant of BSDEs in which

the solution is constrained to be greater than or equal to a given process called obstacle.
RBSDEs have been introduced in [12] in the case of a Brownian filtration and a continuous

obstacle, and links with (non-linear) optimal stopping problems with f -expectations have

been given in [14]. RBSDEs have been generalized to the case of a not necessarily continuous

obstacle and/or a larger filtration than the Brownian one by several authors [22], [5], [28],

[16], [29], [38]. In all these works, the obstacle has been assumed to be right-continuous.

The paper [19] is the first to study RBSDEs beyond the right-continuous case: there, we

work under the assumption that the obstacle is only right-uppersemicontinuous. In [20], we

address the case where the obstacle does not satisfy any regularity assumption. Existence

and uniqueness of the solution in the irregular case is also shown in [31] (in the Brownian

framework) by using a different approach. In [19] and [20], links with optimal stopping

problems with f -expectations are also provided.

Doubly reflected BSDEs (DRBSDEs) have been introduced by Cvitanic and Karatzas

in [6] in the case of continuous barriers and a Brownian filtration. The solutions of such

equations are constrained to stay between two adapted processes ξ and ζ , called barriers,
with ξ ≤ ζ and ξT = ζT . In the case of non-continuous barriers and/or a larger filtration,

DRBSDEs have been studied by several authors, cf. [2], [24], [26], [27], [25], [5], [17], [29],

[9]. In all of the above-mentioned works on DRBSDEs, the barriers are assumed to be at

least right-continuous.

In the first part of the present paper, we formulate a notion of doubly RBSDEs in the

case where the barriers do not satisfy any regularity assumption. We show existence and

uniqueness of the solution of these equations. To this purpose, we first consider the case

where the driver does not depend on the solution, and is thus given by an adapted process

(ft). We show that in this particular case, the solution of the DRBSDE can be written in

terms of the difference of the solutions of a coupled system of two reflected BSDEs. Using

some results from our previous work [20], we show that this system (and hence the Doubly

Reflected BSDE) admits a solution if and only if the so-called Mokobodzki’s condition holds

(assuming the existence of two strong supermartingales whose difference is between ξ and ζ).

We then provide a priori estimates for our doubly RBSDEs, by using Gal’chouk-Lenglart’s

formula (cf. Corollary A.2 in [19]). From these estimates, we derive the uniqueness of the
solution of the doubly RBSDE associated with driver process (ft). We then solve the case of

a general Lipschitz driver f by using the a priori estimates and Banach fixed point theorem.

In the second part of the paper, we focus on links between the solution of the doubly

reflected BSDE with irregular barriers from the first part and some related two-stopper-

game problems.

Let us first recall the "classical" Dynkin game problem which has been largely studied (cf.,
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e.g., [1] for general results).

Let T0 denote the set of all stopping times valued in [0, T ], where T > 0. For each pair

(τ, σ) ∈ T0 ×T0, the terminal time of the game is given by τ ∧ σ and the terminal payoff, or

reward, of the game (at time τ ∧ σ) is given by

I(τ, σ) := ξτ1{τ≤σ} + ζσ1{σ<τ}. (1.1)

The criterion is defined as the (linear) expectation of the pay-off, that is,

E [I(τ, σ)]. (1.2)

It is well-known that, if ξ and −ζ are right-uppersemicontinuous and satisfy Mokobodzki’s

condition, this classical Dynkin game has a (common) value, that is, the following equality

holds:

inf
σ∈T0

sup
τ∈T0

E [I(τ, σ)] = sup
τ∈T0

inf
σ∈T0

E [I(τ, σ)]. (1.3)

Moreover, under the additional assumptions that ξ and −ζ are left-uppersemicontinuous

along stopping times and ξt < ζt, t < T , there exists a saddle point (cf. [1], [32])1. Further-

more, when the processes ξ and ζ are right-continuous, the (common) value of the classical

Dynkin game is equal to the solution at time 0 of the doubly reflected BSDE with driver

equal to 0 and barriers (ξ, ζ) (cf. [6],[27],[33]).

In the second part of the present paper, we consider the following generalization of the

classical Dynkin game problem: For each pair (τ, σ) ∈ T0 × T0, the criterion is defined by

E
f

0,τ∧σ
[I(τ, σ)], (1.4)

where E
f
0,τ∧σ(·) denotes the f -expectation at time 0 when the terminal time is τ ∧ σ. We

refer to this generalized game problem as Ef -Dynkin game 2. This non-linear game problem

has been introduced in [9] in the case where ξ and ζ are right-continuous under the name

of generalized Dynkin game, the term generalized referring to the presence of a (non-linear)

f -expectation in place of the "classical" linear expectation.

In the second part of the paper, we generalize the results of [9] beyond the right-continuity

assumption on ξ and ζ . By using results from the first part of the present paper, combined

with some arguments from [9], we show that if ξ and −ζ are right-uppersemicontinuous and

satisfy Mokobodzki’s condition, there exists a (common) value function for the E
f -Dynkin

game, that is

inf
σ∈T0

sup
τ∈T0

E
f

0,τ∧σ
[I(τ, σ)] = sup

τ∈T0

inf
σ∈T0

E
f

0,τ∧σ
[I(τ, σ)]. (1.5)

and this common value is equal to the solution at time 0 of the doubly reflected BSDE with

driver f and barriers (ξ, ζ) from the first part of the paper. Moreover, under the additional

1Actually, the strict separability condition on ξ and ζ is not necessary to ensure the existence of a saddle

point (cf. Remark 3.8 in [9]). Note also that when ξ and ζ do not satisfy any regularity assumption, there

does not necessarily exist a value for the Dynkin game, that is, the equality (1.3) does not necessarily hold.
2Note that this game problem is related to the pricing of game options in imperfect market models (cf.

the end of Section 4 for more explanations).
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assumption that ξ and −ζ are left-uppersemicontinuous along stopping times, we prove that

there exists a saddle point for the E
f -Dynkin game. Let us note that in the particular case

when f = 0, our results on existence of a common value and on existence of saddle points

correspond to the results from the literature on classical Dynkin games recalled above.

In the final part of the paper, we turn to the interpretation of our Doubly RBSDE in

terms of a two-stopper-game in the general case where ξ and ζ do not satisfy any regularity

assumption. This is technically a more difficult problem. Indeed, even in the simplest case

where f = 0, we know from the litterature on classical Dynkin games (cf. e.g. [1]) that the

game on stopping times with payoff (1.2) does not even (a priori) admit a common value,

that is, the equality (1.3) does not necessarily hold; this is true, a fortiori, for the E
f -Dynkin

game (with non-linear f). In order to interpret the solution of the doubly reflected BSDE

with irregular barriers (ξ, ζ) we formulate "an extension" of the previous E
f -Dynkin game

problem over a larger set of "stopping strategies" than the set of stopping times T0. We

show that this extended game has a common value which coincides with the solution of our

general DRBSDE with irregular barriers. Using this result, we prove a comparison theorem

and a priori estimates with universal constants for DRBSDEs with irregular barriers.

The remainder of the paper is organized as follows: In Section 2, we introduce the

notation. In Section 3, we recall some useful results on reflected BSDEs with an irregular

obstacle from [19] and [20]. In Section 4, we provide first results on doubly reflected BSDEs

associated with a Lipschitz driver and barriers (ξ, ζ) which do not satisfy any regularity

assumption; in particular, we show existence and uniqueness of the solution of this equation.

Section 5 is dedicated to the interpretation of the solution in terms of a two-stopper game

problem, first in the case when ξ and −ζ are right-uppersemicontinuous, then in the cae

where they do not satisfy any regularity assumption. In Section 6, we provide a comparison

theorem and a priori estimates with universal constants for our doubly reflected BSDEs

with irregular barriers. The Appendix contains some of the proofs.

2 Preliminaries

Let T > 0 be a fixed positive real number. Let (E, E ) be a measurable space equipped

with a σ-finite positive measure ν. Let (Ω,F , P ) be a probability space equipped with a

one-dimensional Brownian motion W and with an independent Poisson random measure

N(dt, de) with compensator dt ⊗ ν(de). We denote by Ñ(dt, de) the compensated process,

i.e. Ñ(dt, de) := N(dt, de)− dt⊗ ν(de). Let IF = {Ft : t ∈ [0, T ]} be the (complete) natural

filtration associated with W and N . For t ∈ [0, T ], we denote by Tt the set of stopping times

τ such that P (t ≤ τ ≤ T ) = 1. More generally, for a given stopping time ν ∈ T0, we denote

by Tν the set of stopping times τ such that P (ν ≤ τ ≤ T ) = 1.

We use the following notation:

• P (resp. O) is the predictable (resp. optional) σ-algebra on Ω× [0, T ].
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• B(R) (resp. B(R2)) is the Borel σ-algebra on R (resp. R
2).

• L2(FT ) is the set of random variables which are FT -measurable and square-integrable.

• L2
ν is the set of (E ,B(R))-measurable functions ℓ : E → R such that ‖ℓ‖2ν :=

∫

E
|ℓ(e)|2ν(de) < ∞. For ℓ ∈ L2

ν , k ∈ L2
ν , we define 〈ℓ, k 〉ν :=

∫

E
ℓ(e)k (e)ν(de).

• B(L2
ν) is the Borel σ-algebra on L2

ν .

• IH2 is the set of R-valued predictable processes φ with ‖φ‖2
IH2 := E

[

∫ T

0
|φt|

2dt
]

< ∞.

• IH2
ν is the set of R-valued processes l : (ω, t, e) ∈ (Ω× [0, T ]×E) 7→ lt(ω, e) which are

predictable, that is (P⊗E ,B(R))-measurable, and such that ‖l‖2
IH2

ν
:= E

[

∫ T

0
‖lt‖

2
ν dt

]

<

∞.

As in [19], we denote by S2 the vector space of R-valued optional (not necessarily cadlag)

processes φ such that |||φ|||2S2 := E[ess supτ∈T0 |φτ |
2] < ∞. By Proposition 2.1 in [19], the

mapping |||·|||S2 is a norm on the space S2, and S2 endowed with this norm is a Banach

space.

We will also use the following notation:

Let β > 0. For φ ∈ IH2, ‖φ‖2β := E[
∫ T

0
eβs φ2

sds]. We note that on the space IH2 the norms

‖·‖β and ‖·‖IH2 are equivalent. For l ∈ IH2
ν , ‖l‖

2
ν,β := E[

∫ T

0
eβs ‖ls‖

2
νds]. On the space IH2

ν the

norms ‖ ·‖ν,β and ‖ ·‖IH2
ν

are equivalent. For φ ∈ S2, we define |||φ|||2β := E[ess supτ∈T0 e
βτ φ2

τ ].

We note that |||·|||β is a norm on S2 equivalent to the norm |||·|||S2.

Remark 2.1 By a slight abuse of notation, we shall also write ‖φ‖2IH2 (resp. ‖φ‖2β) for

E
[

∫ T

0
|φt|

2dt
]

(resp. E
[

∫ T

0
eβt |φt|

2dt
]

) in the case of a progressively measurable real-valued

process φ.

Definition 2.1 (Driver, Lipschitz driver) A function f is said to be a driver if

• f : Ω× [0, T ]×R
2 × L2

ν → R

(ω, t, y, z, k ) 7→ f(ω, t, y, z, k ) is P ⊗ B(R2)⊗ B(L2
ν)− measurable,

• E[
∫ T

0
f(t, 0, 0, 0)2dt] < +∞.

A driver f is called a Lipschitz driver if moreover there exists a constant K ≥ 0 such that
dP ⊗ dt-a.e. , for each (y1, z1, k1) ∈ R

2 × L2
ν , (y2, z2, k2) ∈ R

2 × L2
ν ,

|f(ω, t, y1, z1, k1)− f(ω, t, y2, z2, k2)| ≤ K(|y1 − y2|+ |z1 − z2|+ ‖k1 − k2‖ν).

We recall the following definition from [9].
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Definition 2.2 Let A = (At)0≤t≤T and A′ = (A′
t)0≤t≤T be two real-valued optional non-

decreasing cadlag processes with A0 = 0, A′
0 = 0 and E[AT ] < ∞ and E[A′

T ] < ∞. We say
that the random measures dAt and dA′

t are mutually singular, and we write dAt ⊥ dA′
t, if

there exists D ∈ O such that:

E[

∫ T

0

1DcdAt] = E[

∫ T

0

1DdA
′
t] = 0, (2.6)

which can also be written as
∫ T

0
1Dc

t
dAt =

∫ T

0
1Dt

dA′
t = 0 a.s. , where for each t ∈ [0, T ], Dt

is the section at time t of D, that is, Dt := {ω ∈ Ω , (ω, t) ∈ D}.

Remark 2.2 Let A and A′ be such that dA and dA′ are mutually singular in the sense of
the above definition. If A and A′ are moreover predictable, there exists D ∈ P satisfying
the above property (2.6).

For real-valued random variables X and Xn, n ∈ IN , the notation "Xn ↑ X" stands for

"the sequence (Xn) is nondecreasing and converges to X a.s.".

For a ladlag process φ, we denote by φt+ and φt− the right-hand and left-hand limit of φ at

t. We denote by ∆+φt := φt+−φt the size of the right jump of φ at t, and by ∆φt := φt−φt−

the size of the left jump of φ at t.

Definition 2.3 Let τ ∈ T0. An optional process (φt) is said to be right upper-semicontinuous

(r.u.s.c.) (resp. left upper-semicontinuous (l.u.s.c.)) along stopping times at the stopping
time τ if for all nonincreasing (resp. nondecreasing) sequence of stopping times (τn) such
that τn ↓ τ (resp. τn ↑ τ) a.s. , φτ ≥ lim supn→∞ φτn a.s.. The process (φt) is said to be
r.u.s.c. (resp. l.u.s.c.) along stopping times if it is r.u.s.c. (resp. l.u.s.c.) along stopping
times at each τ ∈ T0. The right- (resp. left-) continuity property of an optional process (φt)

along stopping times at a stopping time τ is defined similarly.

Remark 2.3 If the process (φt) has left limits, (φt) is l.u.s.c. (resp. left-continuous) along
stopping times if and only if for each predictable stopping time τ ∈ T0, φτ− ≤ φτ (resp.
φτ− = φτ) a.s.

For the easing of the presentation, we define the relation ≥ for processes in S2 as follows:

for φ, φ′ ∈ S2, we write φ ≤ φ′, if φt ≤ φ′
t for all t ∈ [0, T ] a.s. Similarly, we define the

relations ≤ and = on S2.

3 Reflected BSDE whose obstacle is irregular

Let T > 0 be a fixed terminal time. Let f be a driver. Let ξ = (ξt)t∈[0,T ] be a left-limited

process in S2. A process ξ satisfying the previous properties will be called a barrier, or an

obstacle.
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Remark 3.4 Let us note that in the following definitions and results we can relax the as-
sumption of existence of left limits for the obstacle ξ. All the results still hold true provided
we replace the process (ξt−)t∈]0,T ] by the process (lim sups↑t,s<t ξs)t∈]0,T ], known as the left
upper-semicontinuous envelope of ξ. We recall that the left upper-semicontinuous envelope
of ξ is a predictable process (cf. [7, Thm. 90, page 225]).

Definition 3.1 A process (X, π, l, A, C) is said to be a solution to the reflected BSDE with
parameters (f, ξ), where f is a driver and ξ is an obstacle, if

(X, π, l, A, C) ∈ S2 × IH2 × IH2
ν × S2 × S2and a.s. for all t ∈ [0, T ]

Xt = ξT +

∫ T

t

f(s,Xs, πs, ls)ds−

∫ T

t

πsdWs −

∫ T

t

∫

E

ls(e)Ñ(ds, de) + AT − At + CT− − Ct−,

(3.7)

Xt ≥ ξt for all t ∈ [0, T ] a.s., (3.8)

A is a nondecreasing right-continuous predictable process with A0 = 0 and such that
∫ T

0

1{Xt>ξt}dA
c
t = 0 a.s. and (Xτ− − ξτ−)(A

d
τ − Ad

τ−) = 0 a.s. for all predictable τ ∈ T0,

(3.9)

C is a nondecreasing right-continuous adapted purely discontinuous process with C0− = 0

and such that (Xτ − ξτ)(Cτ − Cτ−) = 0 a.s. for all τ ∈ T0. (3.10)

Here Ac denotes the continuous part of the process A and Ad its discontinuous part.

The following result has been proved in [20] (Theorem 4.3):

Theorem 3.2 (Existence and uniqueness of the solution of the RBSDE) Let ξ be
a left-limited process in S2 and let f be a Lipschitz driver. The RBSDE with parameters
(f, ξ) from Definition 3.1 admits a unique solution (X, π, l, A, C) ∈ S2×IH2×IH2

ν ×S2×S2.

The following operator will be frequently used in the sequel.

Definition 3.3 (Operator induced by an RBSDE) For a process (φt) ∈ S2, we denote
by Ref [φ] the first component of the solution to the Reflected BSDE with (lower) barrier φ

and with driver 0.

Remark 3.5 Note that by Theorem 3.2, together with Remark 3.4 the operator Ref : φ 7→

Ref [φ] is well-defined on S2.

There are close links between the operator Ref and the notion of strong supermartingale

(cf. hereafter).

Definition 3.4 (Strong supermartingale) An optional process φ. = (φt) belonging to S2

is said to be a strong supermartingale if for all θ, θ′ ∈ T0 such that θ ≥ θ′ a.s., E[φθ | Fθ′] ≤

φθ′ a.s.
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Remark 3.6 We recall that a strong supermartingale in S2 is necessarily r.u.s.c. (cf., e.g.,
Remark A.16 in [19]).

We give some useful properties of the operator Ref in the following two lemmas.

Lemma 3.5 The operator Ref : S2 → S2 satisfies the following properties:

1. The operator Ref is nondecreasing, that is, for ξ, ξ′ ∈ S2 such that ξ ≤ ξ′ we have
Ref [ξ] ≤ Ref [ξ′].

2. If ξ ∈ S2 is a strong supermartingale, then Ref [ξ] = ξ.

3. For each ξ ∈ S2, Ref [ξ] is a strong supermartingale and satisfies Ref [ξ] ≥ ξ.

The proof of the above result can be found in [20, Lemma 4.5.].

Lemma 3.6 Let (ξn) be a sequence of processes belonging to S2, supposed to be nondecreas-
ing, i.e., such that for each n ∈ IN , ξn ≤ ξn+1. Let ξ := limn→+∞ ξn. If ξ ∈ S2, then have
Ref [ξ] = limn→+∞Ref [ξn].

Proof. As the operator Ref is nondecreasing, the sequence (Ref [ξn]) is nondecreasing.

Let X := limn→+∞Ref [ξn]. Again, due to the nondecreasingness of the operator Ref ,

we have Ref [ξ0] ≤ Ref [ξn] ≤ Ref [ξ], for all n ∈ IN . By letting n go to +∞, we get

Ref [ξ0] ≤ X and

X ≤ Ref [ξ]. (3.11)

In particular, we have X ∈ S2. Let us now show that X ≥ Ref [ξ]. By definition of Ref [ξn]

as the solution of the reflected BSDE with obstacle ξn, we have Ref [ξn] ≥ ξn, for all n ∈ IN .

By letting n go to +∞, we get X ≥ ξ. Hence,

Ref [X ] ≥ Ref [ξ]. (3.12)

We note now that for each n ∈ IN , Ref [ξn] is a strong supermartingale (cf. Lemma 3.5).

It follows that X is a strong supermartingale as the nondecreasing limit of a sequence of

strong supermartingales (cf. Lemma 7.2 in the Appendix). Hence, X = Ref [X ] (cf. Lemma

3.5, second assertion). By (3.12), we thus have X ≥ Ref [ξ], which, using (3.11), implies

X = Ref [ξ]. �

Remark 3.7 Note that this result cannot be derived from estimates on reflected BSDEs
since we do not necessarily have that |||ξ − ξn|||S2 tends to 0.
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4 Doubly Reflected BSDE whose obstacles are irregular

4.1 Definition and first properties

Let T > 0 be a fixed terminal time (as before). Let f be a driver. Let ξ = (ξt)t∈[0,T ] and

ζ = (ζt)t∈[0,T ] be two left-limited processes in S2 such that ξt ≤ ζt, 0 ≤ t ≤ T, a.s. and

ξT = ζT a.s. A pair of processes (ξ, ζ) satisfying the previous properties will be called a pair
of admissible barriers, or a pair of admissible obstacles.

Remark 4.8 Let us note that in the following definitions and results we can relax the as-
sumption of existence of left limits for the processes ξ and ζ. All the results still hold true
provided we replace the process (ξt−)t∈]0,T ] by the process (lim sups↑t,s<t ξs)t∈]0,T ] and the pro-
cess (ζt−)t∈]0,T ] by the process (lim infs↑t,s<t ζs)t∈]0,T ].

Definition 4.1 A process (Y, Z, k, A, C,A′, C ′) is said to be a solution to the doubly re-
flected BSDE with parameters (f, ξ, ζ), where f is a driver and (ξ, ζ) is a pair of admissible
obstacles, if

(Y, Z, k, A, C,A′, C ′) ∈ S2 × IH2 × IH2
ν × (S2)2 × (S2)2and a.s. for all t ∈ [0, T ]

Yt = ξT +

∫ T

t

f(s, Ys, Zs, ks)ds−

∫ T

t

ZsdWs −

∫ T

t

∫

E

ks(e)Ñ(ds, de)+

+ AT − At − (A′
T −A′

t) + CT− − Ct− − (C ′
T− − C ′

t−), (4.13)

ξt ≤ Yt ≤ ζt, for all t ∈ [0, T ] a.s., (4.14)

A and A′ are nondecreasing right-continuous predictable processes with A0 = A′
0 = 0,

∫ T

0

1{Yt−>ξt−}dAt = 0 a.s. and
∫ T

0

1{Yt−<ζt−}dA
′
t = 0 a.s. (4.15)

C and C ′ are nondecreasing right-continuous adapted purely discontinuous processes with

C0− = C ′
0− = 0,

(Yτ − ξτ )(Cτ − Cτ−) = 0 and (Yτ − ζτ )(C
′
τ − C ′

τ−) = 0 a.s. for all τ ∈ T0, (4.16)

dAt ⊥ dA′
t and dCt ⊥ dC ′

t. (4.17)

Equations (4.15) and (4.16) are referred to as minimality conditions or Skorokhod conditions.

Let us note that if (Y, Z, k, A, C,A′, C ′) satisfies the above definition, then the process

Y has left and right limits.

Remark 4.9 When A and A′ (resp. C and C ′) are not required to be mutually singular, they
can simultaneously increase on {ξt− = ζt−} (resp. on {ξt = ζt}). The constraints dAt ⊥ dA′

t

and dCt ⊥ dC ′
t will allow us to obtain the uniqueness of the nondecreasing processes A, A′,

C and C ′ without the strict separability condition ξ < ζ.
We note also that, due to Eq. (4.13), we have ∆Ct − ∆C ′

t = −(Yt+ − Yt) = −∆+Yt.
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This, together with the condition dCt ⊥ dC ′
t gives ∆Ct = (Yt+ − Yt)

− for all t a.s., and
∆C ′

t = (Yt+ − Yt)
+ for all t a.s. On the other hand, since in our framework the filtration

is quasi-left-continuous, martingales have only totally inaccessible jumps. Hence, for each
predictable τ ∈ T0, ∆Ad

τ −∆A
′d
τ = −∆Yτ (cf. Eq. (4.13)). This, together with the condition

dAt ⊥ dA′
t, ensures that for each predictable τ ∈ T0, ∆Ad

τ = (∆Yτ )
− and ∆A

′d
τ = (∆Yτ )

+ a.s.
We note also that Y can jump (on the left) at totally inaccessible stopping times; these jumps
of Y come from the jumps of the stochastic integral with respect to Ñ in (4.13).

Proposition 4.1 Let f be a driver and (ξ, ζ) be a pair of admissible obstacles.
Let (Y, Z, k, A, C,A′, C ′) be a solution to the doubly reflected BSDE with parameters (f, ξ, ζ).
If ξ (resp. ζ) is right-continuous, then C = 0 (resp. C ′ = 0).
If ξ (resp. −ζ) is l.u.s.c. along stopping times, then the process A (resp. A′) is continuous.

Proof. Suppose that ξ is right-continuous. Let τ ∈ T0. We show ∆Cτ = 0 a.s. By the

previous Remark 4.9, we have ∆Cτ = (Yτ+ − Yτ )
− a.s. Since C satisfies the Skorokhod

condition (4.16), we have

∆Cτ = 1{Yτ=ξτ}(Yτ+ − Yτ )
− = 1{Yτ=ξτ}(Yτ+ − ξτ)

− = 1{Yτ=ξτ}(Yτ+ − ξτ+)
− a.s.,

where the last equality follows from the right-continuity of ξ. Since Y ≥ ξ, we derive that

∆Cτ = 0 a.s. This equality being true for all τ ∈ T0, it follows that C = 0. Similarly, it can

be shown that if ζ is right-continuous, then C ′ = 0.

Let us show the second assertion. Suppose that ξ is l.u.s.c. along stopping times. Let

τ ∈ T0 be a predictable stopping time. We show ∆Aτ = 0 a.s. By the previous Remark 4.9,

we have ∆Aτ = (∆Yτ )
− a.s. Since A satisfies the Skorokhod condition (4.15), we have

∆Aτ = 1{Y
τ−

=ξ
τ−

}(Yτ− − Yτ )
+ = 1{Y

τ−
=ξ

τ−
}(ξτ− − Yτ )

+ ≤ 1{Y
τ−

=ξ
τ−

}(ξτ − Yτ)
+ a.s.,

The (last) inequality in the above computation follows from the inequality ξτ− ≤ ξτ a.s.,

which is due to the assumption of l.u.s.c. of ξ (cf. Remark 2.3). Since ξ ≤ Y , we derive

∆Aτ ≤ 0 a.s. , which implies that ∆Aτ = 0 a.s. This equality being true for every predictable

stopping time τ ∈ T0, it follows that A is continuous. Similarly, it can be shown that if −ζ

is l.u.s.c. along stopping times, then A′ is continuous. �

Remark 4.10 (Right-continuous case) It follows from the first assertion in the above
proposition that if ξ and ζ are right-continuous, then C = C ′ = 0. In this case, our
Definition 4.1 corresponds to the one given in the literature on DRBSDEs (cf. e.g. [9]).

Let (Y, Z, k, A, C,A′, C ′) ∈ S2 × IH2 × IH2
ν × (S2)2 × (S2)2 be a solution to the DRB-

SDE associated with driver f and with a pair of admissible barriers (ξ, ζ). By taking the

conditional expectation with respect to Ft in the equality (4.13), we derive that

Y = Ht −H ′
t (4.18)
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where H and H ′ are the two nonnegative strong supermartingales given by

Ht := E[ξ+T +

∫ T

t

f+(s, Ys, Zs, ks)ds+ AT − At + CT− − Ct− | Ft];

H ′
t := E[ξ−T +

∫ T

t

f−(s, Ys, Zs, ks)ds+ A′
T − A′

t + C ′
T− − C ′

t− | Ft].

Since ξ ≤ Y ≤ ζ , we have ξ ≤ H−H ′ ≤ ζ , which ensures that the following condition holds:

Definition 4.2 (Mokobodzki’s condition) Let (ξ, ζ) ∈ S2 × S2 be a pair of admissible

barriers. We say that the pair (ξ, ζ) satisfies Mokobodzki’s condition if there exist two
nonnegative strong supermartingales H and H ′ in S2 such that:

ξt ≤ Ht −H ′
t ≤ ζt 0 ≤ t ≤ T a.s. (4.19)

Remark 4.11 The above reasoning gives us that Mokobodzki’s condition is a necessary con-
dition for the existence of a solution to the DRBSDE.

4.2 The case when f does not depend on the solution

Let us now investigate the question of existence and uniqueness of the solution to the DRB-

SDE defined above in the case where the driver f does not depend on y, z, and k .

4.2.1 Equivalent formulation

We first show that the existence of a solution to the DRBSDE is equivalent to the existence

of a solution to a coupled system of reflected BSDEs.

Let (Y, Z, k, A, C,A′, C ′) ∈ S2 × IH2× IH2
ν × (S2)2× (S2)2 be a solution to the DRBSDE

associated with driver f(ω, t) and with a pair of admissible barriers (ξ, ζ).

Let Ỹt := Yt − E[ξT +
∫ T

t
f(s)ds | Ft], for all t ∈ [0, T ]. From this definition, together with

Eq. (4.13), we get

Ỹt = X
f
t −X

′f
t for all t ∈ [0, T ] a.s.,

where the processes Xf and X
′f are defined by

X
f
t := E[AT −At+CT−−Ct− | Ft] and X

′f
t := E[A′

T −A′
t+C ′

T−−C ′
t− | Ft], for all t ∈ [0, T ].

(4.20)

Remark 4.12 Note that Xf and X
′f are two nonnegative (r.u.s.c.) strong supermartingales

in S2 such that Xf
T = X

′f
T = 0 a.s.

By the martingale representation theorem, there exist (π, l) , (π′, l′) ∈ IH2 × IH2
ν such that

X
f
t = −

∫ T

t

πsdWs −

∫ T

t

∫

E

ls(e)Ñ(ds, de) + AT −At + CT− − Ct−; (4.21)
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X
′f
t = −

∫ T

t

π′
sdWs −

∫ T

t

∫

E

l′s(e)Ñ(ds, de) + A′
T − A′

t + C ′
T− − C ′

t−. (4.22)

We introduce the following optional processes:

ξ̃
f
t := ξt −E[ξT +

∫ T

t

f(s)ds|Ft], ζ̃
f
t := ζt −E[ζT +

∫ T

t

f(s)ds|Ft], 0 ≤ t ≤ T. (4.23)

Remark 4.13 Note that ξ̃ and ζ̃ satisfy ξ̃
f
T = ζ̃

f
T = 0 a.s. We also have ξ̃f ∈ S2 and ζ̃f

∈ S2. Indeed, |ξ̃ft | ≤ |ξt|+ E[U |Ft], where U := |ξT |+
∫ T

0
|f(s)|ds. Now, since ξ ∈ S2 and

f ∈ H
2, we have U ∈ L2. Thus, by Lemma 7.1, the martingale (E[U | Ft]) belongs to S2,

which implies that ξ̃f ∈ S2. Similarly, it can be shown that ζ̃f ∈ S2.

From ξ ≤ Y ≤ ζ and the definitions of Ỹ , ξ̃
f
t , ζ̃

f
t , we derive ξ̃f ≤ Ỹ ≤ ζ̃f ; since

Ỹt = X
f
t −X

′f
t , we have X

f
t ≥ X

′f
t + ξ̃

f
t and X

′f
t ≥ X

f
t − ζ̃

f
t .

Note that Y − ξ = Ỹ − ξ̃f = Xf − X
′f − ξ̃f . The Skorokhod condition (4.16) satisfied

by C can thus be written: ∆Cτ (X
f
τ − X

′f
τ − ξ̃fτ ) = 0 a.s. We also have {Yt− > ξt−} =

{Xf
t− > X

′f
t− + ξ̃

f
t−}. Hence, the Skorokhod condition (4.15) satisfied by A can be written:

∫ T

0
1
{Xf

t−>X
′f
t−+ξ̃

f
t−}

dAt = 0 a.s. It follows that (Xf , π, l, A, C) is the solution of the reflected

BSDE associated with driver 0 and obstacle (X
′f + ξ̃f)I[0,T )

3.

By similar arguments we get that (X
′f , π′, l′, A′, C ′) is the solution of the reflected BSDE

associated with driver 0 and obstacle (Xf − ζ̃f)I[0,T ).

With the notation of Definition 3.3, we have thus shown that

Xf = Ref [(X
′f + ξ̃f)I[0,T )]; X

′f = Ref [(Xf − ζ̃f)I[0,T )]. (4.24)

We conclude that the existence of a solution to the DRBSDE with parameters (f, ξ, ζ) (where

f is a driver process) implies the existence of a solution to the coupled system of RBSDEs

(4.24). We will see in the following proposition that the converse statement also holds true.

Proposition 4.3 The DRBSDE associated with driver process f = (ft) ∈ IH2 and with
a pair of admissible barriers (ξ, ζ) has a solution if and only if there exist two processes
X· ∈ S2 and X

′

· ∈ S2 satisfying the coupled system of RBSDEs:

X = Ref [(X
′

+ ξ̃f)I[0,T )]; X
′

= Ref [(X − ζ̃f)I[0,T )]. (4.25)

In this case, the optional process Y defined by

Yt := Xt −X
′

t + E[ξT +

∫ T

t

f(s)ds|Ft], 0 ≤ t ≤ T, a.s. (4.26)

gives the first component of a solution to the DRBSDE.

3We note that X
′f + ξ̃f ∈ S2 (due to Remarks 4.12 and 4.13). Hence, (X

′f + ξ̃f )I[0,T ) is an admissible

obstacle for RBSDEs.
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Proof. The "only if part" of the first assertion has been proved above. Let us prove the "if

part" of the first statement, together with the second statement. Let X· ∈ S2 and X
′

· ∈ S2 be

two processes satisfying the coupled system (4.25). Let (π, l, A, C) (resp. (π′, l′, A′, C ′)) be

the vector of the remaining components of the solution to the RBSDE whose first component

is X (resp. whose first component is X
′

). We note that equations (4.21) and (4.22) hold for

X and X
′

(in place of Xf and X
′f ). We define the optional process Y as in (4.26).

Since by assumption X and X
′

belong to S2, it follows that X and X
′

are real-valued,

which implies that the process Y is well- defined. From (4.26) and the property XT = X
′

T = 0

a.s., we get YT = ξT a.s. From the system (4.25) we get Xt ≥ X
′

t + ξ̃
f
t and X

′

t ≥ Xt − ζ̃
f
t for

all t ∈ [0, T ] a.s. By using the definitions of ξ̃f , ζ̃f and Y , we derive that ξt ≤ Yt ≤ ζt for

all t ∈ [0, T ] a.s.

Moreover, the processes A,C (resp. A′, C ′) satisfy the Skorokhod conditions for RBSDEs.

More precisely, for A and C we have: for all τ ∈ T0, ∆+Cτ = 1{Xτ=X
′

τ+ξ̃
f
τ }
∆+Cτ a.s.; for

all predictable τ ∈ T0, ∆Aτ = 1{X
τ−

=X
′

τ−
+ξ̃

f

τ−
}∆Aτ a.s.; and

∫ T

0
1{Xt>X

′

t+ξ̃
f
t }
dAc

t = 0 a.s.

Similar conditions hold for A′ and C ′.

Now, by using the definitions of ξ̃f and Y , we get {Xτ = X
′

τ + ξ̃fτ } = {Yτ = ξτ},

{Xτ− = X
′

τ−+ξ̃
f
τ−} = {Yτ− = ξτ−} and {Xt > X

′

t+ξ̃
f
t }= {Yt > ξt}. Combining this with the

previous observation gives ∆Cτ = 1{Yτ=ξτ}∆Cτ a.s. for all τ ∈ T0 and
∫ T

0
1{Yt−>ξt−}dAt = 0

a.s.

By applying the same arguments to A′ and C ′, we get ∆C ′
τ = 1{Yτ=ζτ}∆C ′

τ a.s. for all

τ ∈ T0 and
∫ T

0
1{Yt−<ζt−}dA

′
t = 0 a.s.

We now note that the process (E[ξT +
∫ T

t
f(s)ds|Ft])t∈[0,T ] (which appears in the definition

of Y ) corresponds to the first component of the solution to the (non-reflected) BSDE with

terminal condition ξT and driver f . Hence, there exist π ∈ H
2 and l ∈ H

2
ν such that

E[ξT +
∫ T

t
f(s)ds|Ft] = ξT +

∫ T

t
f(s)ds−

∫ T

t
πdWs−

∫ T

t

∫

E
ls(e)Ñ(ds, de). From this, together

with the definition of Y and equations (4.21) and (4.22) for X and X
′

, we obtain

Yt = ξT +

∫ T

t

f(s)ds−

∫ T

t

ZsdWs −

∫ T

t

∫

E

ks(e)Ñ(ds, de) + αT − αt + γT− − γt−,

where Z := π − π′ + π, k := l − l′ + l, α := A−A
′

and γ := C − C ′.

If dAt ⊥ dA′
t and dCt ⊥ dC ′

t, then (Y, Z, k, A, C,A′, C ′) is a solution to the doubly reflected

BSDE with parameters (f, ξ, ζ), which gives the desired result.

Otherwise, by the canonical decomposition of RCLL processes with integrable variation (cf.

Proposition 7.3), there exist two nondecreasing right-continuous predictable (resp. optional)

processes B and B′ (resp. D and D′) belonging to S2 such that α = B−B′ (resp. γ = D−D′)

with dBt ⊥ dB′
t (resp. dDt ⊥ dD′

t). Moreover, dBt << dAt, dB
′
t << dA′

t, dDt << dCt and

dD′
t<<dC ′

t.

Hence, since
∫ T

0
1{Y

t−
>ξ

t−
}dAt = 0 a.s. , we get

∫ T

0
1{Y

t−
>ξ

t−
}dBt = 0 a.s. Similarly, we obtain

∫ T

0
1{Y

t−
<ζ

t−
}dB

′
t = 0 a.s. Moreover, since dDt<<dCt, the process D is purely discontinuous

and ∆Dτ = 1{Yτ=ξτ}∆Dτ a.s. for all τ ∈ T0. Similarly, D′ is purely discontinuous and

∆D′
τ = 1{Yτ=ζτ}∆D′

τ a.s. for all τ ∈ T0. The nondecreasing RCLL processes D,D′ are thus

13



purely discontinuous and satisfy the Skorokhod condition (4.16). The nondecreasing RCLL

processes B,B′ satisfy the Skorokhod condition (4.15). The process (Y, Z, k, B,D,B′, D′) is

thus a solution to the doubly reflected BSDE with parameters (f, ξ, ζ). �

4.2.2 Solving the system of coupled RBSDEs under Mokobodzki’s condition

4.2.3 Existence of a (minimal) solution of the coupled system of RBSDEs

We now show the existence of a solution to the system (4.25) under Mokobodzki’s condition.

To do that, we use Picard’s iterations.

We set X 0 = 0 and X
′0 = 0, and we define recursively, for each n ∈ N, the processes:

X n+1 := Ref [(X
′n + ξ̃f)1[0,T [] ; X

′n+1 := Ref [(X n − ζ̃f)1[0,T [] (4.27)

We see, by induction, that the processes X n and X
′n are well-defined; moreover, X n and

X
′n are strong supermartingales in S2. For the sake of simplicity, we have omitted the

dependence on f in the notation for X n and X
′n.

Proposition 4.2 Assume that the admissible pair (ξ, ζ) satisfies Mokobodzki’s condition.
The sequences of optional processes (X n

· )n∈N and (X
′n
· )n∈N defined above are nondecreasing.

The limit processes
X f

· := lim
n→+∞

X n
· and X

′f
· := lim

n→+∞
X

′n
· (4.28)

are nonnegative strong supermartingales in S2 satisfying the system (4.25) of coupled RBS-
DEs. Moreover, X f

· ,X
′f
· are the smallest processes in S2 satisfying system (4.25).

The processes X f ,X
′f are also characterized as the minimal strong supermartingales in S2

satisfying the inequalities ξ̃f ≤ X f −X
′f ≤ ζ̃f .

Proof. We first show that X n ≥ 0 and X
′n ≥ 0, for all n ∈ IN . By definition, X

′n
T = X n

T =

0. Since ξ̃fT = ζ̃
f
T = 0, it follows that (X

′n+ξ̃f)1[0,T [ = X
′n+ξ̃f and (X n−ζ̃f )1[0,T [ = X n−ζ̃f .

Moreover, since X n is a strong supermartingale, we have X n
θ ≥ E[X n

T |Fθ] = 0 a.s. for all

θ ∈ T0, which implies that X n ≥ 0. 4 Similarly, we see that X
′n ≥ 0.

We prove recursively that (X n)n∈N and (X
′n)n∈N are nondecreasing sequences of pro-

cesses. We have X 1 ≥ 0 = X 0 and X
′1 ≥ 0 = X

′0. Suppose that X n ≥ X n−1 and

X
′n ≥ X

′n−1. The induction hypothesis and the nondecreasingness of the operator Ref (cf.

Lemma 3.5) give

Ref [X ′n + ξ̃f ] ≥ Ref [X
′n−1 + ξ̃f ] ; Ref [X n − ζ̃f ] ≥ Ref [X n−1 − ζ̃f ]. (4.29)

Hence, X n+1 ≥ X n and X
′n+1 ≥ X

′n, which is the desired result.

4Recall that, by a result of the general theory of processes, if φ ∈ S2 and φ′ ∈ S2 are such that φθ ≤ φ′
θ

a.s. for all θ ∈ T0, then φ ≤ φ′.
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We now define two processes Hf and H
′f as follows:

{

H
f
t := Ht + E[ξ−T |Ft] + E[

∫ T

t
f−(s)ds|Ft];

H
′f
t := H ′

t + E[ξ+T |Ft] + E[
∫ T

t
f+(s)ds|Ft],

where H and H ′ come from Mokobodzki’s condition for (ξ, ζ) (cf. Eq. (4.19)). We note that

Hf and H
′f are nonnegative strong supermartingales in S2. From Mokobodzki’s condition,

we get

ξ̃f ≤ Hf −H
′f ≤ ζ̃f . (4.30)

We prove recursively that X n ≤ Hf and X
′n ≤ H

′f , for all n ∈ N. Note first that

X 0 = 0 ≤ Hf and X
′0 = 0 ≤ H

′f . Suppose now that X n ≤ Hf and X
′n ≤ H

′f . From this,

together with (4.30), we get X
′n ≤ H

′f ≤ Hf − ξ̃f , which implies X
′n + ξ̃f ≤ Hf . Since the

operator Ref is non decreasing, we derive X n+1 = Ref [X
′n + ξ̃f ] ≤ Ref [Hf ]. Since Hf is

a strong supermartingale, the second assertion of Lemma 3.5 gives Ref [Hf ] = Hf . Hence,

X n+1 ≤ Hf . Similarly, we show X
′n+1 ≤ H

′f . The desired conclusion follows.

By definition, we have X f = lim ↑ X n and X
′f = lim ↑ X

′n. The processes X f and X
′f

are optional (valued in [0,+∞]) as the limit of sequences of optional (nonnegative) processes.

Since for all n ∈ N, X n
T = X

′n
T = 0 a.s. , we have X f

T = X
′f
T = 0 a.s. Moreover, since for all

n ∈ N, 0 ≤ X n ≤ Hf and 0 ≤ X
′n ≤ H

′f , we obtain 0 ≤ X f ≤ Hf and 0 ≤ X
′f ≤ H

′f . As

Hf , H
′f ∈ S2, it follows that X f and X ′f belong to S2.

Moreover, X f and X
′f are strong supermartingales as limits of nondecreasing sequences

of strong supermartingales (cf. Lemma 7.2).

It remains to show that X f and X
′f are solutions of the system (4.25). Since X

′n
T = ξ̃

f
T =

0, by (4.27), we have for all n ∈ IN ,

X n+1 := Ref [X
′n + ξ̃f ]. (4.31)

Note that the sequence (X
′n + ξ̃f)n∈IN is non decreasing and converges to X

′f + ξ̃f . By

Lemma 3.6, we thus derive that limn→+∞Ref [X
′n+ ξ̃f ] = Ref [X

′f + ξ̃f ]. Hence, by letting

n tend to +∞ in (4.31), we get X f = Ref [X
′f + ξ̃f ]. Similarly, it can be shown that

X
′f = Ref [X f − ζ̃f ]. Since X f

T = X
′f
T = 0 a.s. , it follows that X f and X

′f are solutions of

the system (4.25).

Note now that X f , X
′f satisfy the inequalities ξ̃f ≤ X f −X

′f ≤ ζ̃f . Moreover, they are

the minimal nonnegative strong supermartingales in S2 satisfying these inequalities. Indeed,

if H,H
′

are nonnegative strong supermartingales in S2 satisfying ξ̃f ≤ H −H
′

≤ ζ̃f , then,

using the same arguments as above, we derive that X f ≤ H and X
′f ≤ H

′

.

From this minimality property, it follows that (X f ,X
′f) is also characterized as the

minimal solution of the system (4.25) of coupled RBSDEs.

�

In the following theorem we summarize some of the properties established so far.
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Theorem 4.4 Let f = (ft) ∈ IH2 be a driver process. Let (ξ, ζ) be a pair of admissible
barriers. The following assertions are equivalent:

(i) The pair (ξ, ζ) satisfies Mokobodzki’s condition.

(ii) The system (4.25) of coupled RBSDEs admits a solution.

(iii) The DRBSDE (4.13) with driver process f has a solution.

Proof. The implication (i) ⇒ (ii) has been just proved (by using Picard’s iterations). The

equivalence between (ii) and (iii) has been established in Proposition 4.3. We have noticed

that the implication (iii) ⇒ (i) holds (in the general case of a Lipschitz driver f) in Remark

4.11. �

4.2.4 Uniqueness of the solution

Let us now investigate the question of uniqueness of the solution to the DRBSDE with driver

process f ∈ IH2. To this purpose, we first state a lemma which will be used in the sequel.

Lemma 4.5 (A priori estimates) Let (Y, Z, k, A, C,A′, C ′) ∈ S2 × IH2 × IH2
ν × (S2)2 ×

(S2)2 (resp. (Ȳ , Z̄, k̄, Ā, C̄, Ā′, C̄ ′) ∈ S2 × IH2 × IH2
ν × (S2)2 × (S2)2) be a solution to the

DRBSDE associated with driver process f ∈ IH2 (resp. f̄ ∈ IH2) and with a pair of admissible
obstacles (ξ, ζ). There exists c > 0 such that for all ε > 0, for all β ≥ 1

ε2
we have

‖k − k̄‖2ν,β ≤ ε2‖f − f̄‖2β ; ‖Z − Z̄‖2β ≤ ε2‖f − f̄‖2β ;

|||Y − Ȳ |||
2

β ≤ 4ε2(1 + 6c2)‖f − f̄‖2β. (4.32)

Proof. Let β > 0 and ε > 0 be such that β ≥ 1
ε2

. We set Ỹ := Y − Ȳ , Z̃ := Z − Z̄, Ã :=

A− Ā, Ã′ := A′− Ā′, C̃ := C− C̄ , C̃ ′ := C ′− C̄ ′, k̃ := k− k̄, and f̃(ω, t) := f(ω, t)− f̄(ω, t).

We note that ỸT = ξT − ξT = 0; moreover, for all τ ∈ T0,

Ỹτ =

∫ T

τ

f̃(t)dt−

∫ T

τ

Z̃tdWt−

∫ T

τ

∫

E

k̃t(e)Ñ(dt, de)+ÃT−Ãτ+C̃T−−C̃τ−−(Ã′
T−Ã′

τ )−C̃ ′
T−−C̃ ′

τ− a.s.

Thus we see that Ỹ is an optional strong semimartingale in the vocabulary of [18] with

decomposition Ỹ = Ỹ0 +M + αt + γt, where Mt :=
∫ t

0
Z̃sdWs +

∫ t

0

∫

E
k̃s(e)Ñ(ds, de), αt :=

−
∫ t

0
f̃(s)ds − Ãt + Ã′

t and γt := −C̃t− + C̃ ′
t− (cf., e.g., Theorem A.3. and Corollary A.2

in [19]). Applying Gal’chouk-Lenglart’s formula (cf. Corollary A.2 in [19]) to eβt Ỹ 2
t gives:
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almost surely, for all t ∈ [0, T ],

eβT Ỹ 2
T = eβt Ỹ 2

t +

∫

]t,T ]

β eβs(Ỹs)
2ds− 2

∫

]t,T ]

eβs Ỹs−f̃(s)ds− 2

∫

]t,T ]

eβs Ỹs−dÃs

+ 2

∫

]t,T ]

eβs Ỹs−dÃ
′
s + 2

∫

]t,T ]

eβs Ỹs−Z̃sdWs + 2

∫

]t,T ]

eβs
∫

E

Ỹs−k̃s(e)Ñ(ds, de)

+

∫

]t,T ]

eβs Z̃2
sds+

∑

t<s≤T

eβs(Ỹs − Ỹs−)
2 −

∫

[t,T [

2 eβs Ỹsd(C̃)s+ +

∫

[t,T [

2 eβs Ỹsd(C̃
′)s+

+
∑

t≤s<T

eβs(Ỹs+ − Ỹs)
2.

Thus, we get (recall that ỸT = 0): almost surely, for all t ∈ [0, T ],

eβt Ỹ 2
t +

∫

]t,T ]

eβs Z̃2
sds = −

∫

]t,T ]

β eβs(Ỹs)
2ds+ 2

∫

]t,T ]

eβs Ỹsf̃(s)ds+ 2

∫

]t,T ]

eβs Ỹs−dÃs

− 2

∫

]t,T ]

eβs Ỹs−dÃ
′
s − 2

∫

]t,T ]

eβs Ỹs−Z̃sdWs

− 2

∫

]t,T ]

eβs
∫

E

Ỹs−k̃s(e)Ñ(ds, de)−
∑

t<s≤T

eβs(Ỹs − Ỹs−)
2

+ 2

∫

[t,T [

eβs ỸsdC̃s − 2

∫

[t,T [

eβs ỸsdC̃
′
s −

∑

t≤s<T

eβs(Ỹs+ − Ỹs)
2.

(4.33)

We give hereafter an upper bound for some of the terms appearing on the right-hand side

(r.h.s. for short) of the above equality.

Let us first consider the sum of the first and the second term on the r.h.s. of

equality (4.33). By applying the inequality 2ab ≤ (a
ε
)2 + ε2b2, valid for all (a, b) ∈ R

2, we

get: a.s. for all t ∈ [0, T ],

−

∫

]t,T ]

β eβs(Ỹs)
2ds+ 2

∫

]t,T ]

eβs Ỹsf̃(s)ds ≤ (
1

ε2
− β)

∫

]t,T ]

eβs(Ỹs)
2ds+ ε2

∫

]t,T ]

eβs f̃ 2(s)ds.

As β ≥ 1
ε2

, we have ( 1
ε2
− β)

∫

]t,T ]
eβs(Ỹs)

2ds ≤ 0, for all t ∈ [0, T ] a.s.

For the third term (resp. the fourth term) on the r.h.s. of (4.33) it can be shown

that, a.s. for all t ∈ [0, T ], +2
∫

]t,T ]
eβs Ỹs−dÃs ≤ 0 (resp. −2

∫

]t,T ]
eβs Ỹs−dÃ

′
s ≤ 0) The proof

uses property (4.15) of the definition of the DRBSDE and the properties Y ≥ ξ, Ȳ ≥ ξ

(resp. Y ≤ ζ , Ȳ ≤ ζ) ; the details are similar to those in the case of RBSDE (with one lower

obstacle) (cf., for instance, the proof of Lemma 3.2 in [19]).

For the eighth and the ninth terms on the r.h.s. of (4.33) we show that, a.s. for all

t ∈ [0, T ], +2
∫

[t,T [
eβs ỸsdC̃s ≤ 0 and −2

∫

[t,T [
eβs ỸsdC̃

′
s ≤ 0. These inequalities are based

on property (4.16) of the DRBSDE, on the non-decreasingness of (almost all trajectories

of) C, C̄, C ′ and C̄ ′, and on the inequalities Y ≥ ξ, Ȳ ≥ ξ, Y ≤ ζ , Ȳ ≤ ζ . The details,

which are similar to those of the proof of Lemma 3.2 in [19], are left to the reader. The
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above observations, together with equation (4.33), lead to the following inequality: a.s., for

all t ∈ [0, T ],

eβt Ỹ 2
t +

∫

]t,T ]

eβs Z̃2
sds ≤ ε2

∫

]t,T ]

eβs f̃ 2(s)ds− 2

∫

]t,T ]

eβs Ỹs−Z̃sdWs

− 2

∫

]t,T ]

eβs
∫

E

Ỹs−k̃s(e)Ñ(ds, de)−
∑

t<s≤T

eβs(Ỹs − Ỹs−)
2.

(4.34)

Note that we have:
∫

]t,T ]

eβs ||k̃s||
2
νds−

∑

t<s≤T

eβs(Ỹs − Ỹs−)
2 =

∫

]t,T ]

eβs ||k̃s||
2
νds−

∫

]t,T ]

eβs
∫

E

k̃2
s(e)N(ds, de)

−
∑

t<s≤T

eβs(∆Ã′
s −∆Ãs)

2

≤ −

∫

]t,T ]

eβs
∫

E

k̃2
s(e)Ñ(ds, de).

where, in order to obtain the equality, we have used the fact that the processes A, Ā, A′, and

Ā′ jump only at predictable stopping times, and N(·, de) jumps only at totally inaccessible

stopping times (cf. also Remark 4.9).

By adding the term
∫

]t,T ]
eβs ||k̃s||

2
νds on both sides of inequality (4.34) and by using the

above computation, we derive that almost surely, for all t ∈ [0, T ],

eβt Ỹ 2
t +

∫

]t,T ]

eβs Z̃2
sds+

∫

]t,T ]

eβs ||k̃s||
2
νds ≤ ε2

∫

]t,T ]

eβs f̃ 2(s)ds− 2

∫

]t,T ]

eβs Ỹs−Z̃sdWs

−

∫

]t,T ]

eβs
∫

E

(2Ỹs−k̃s(e) + k̃2
s(e))Ñ(ds, de).

(4.35)

From here, using (4.34) and (4.35), we conclude by following exactly the same arguments as

in the proof of Lemma 3.2. in [19]. �

We prove below the uniqueness of the solution to the DRBSDE associated with the driver

process f = (ft) and with the admissible pair of barriers (ξ, ζ) satisfying Mokobodzki’s

condition.

Theorem 4.6 Let (ξ, ζ) be an admissible pair of barriers satisfying Mokobodzki’s condition.
Let f = (ft) ∈ IH2 be a driver process. There exists a unique solution to the DRBSDE
(4.13) associated with parameters (ξ, ζ, f).

Proof. Theorem 4.4 yields the existence of a solution. It remains to show the uniqueness.

Let (Y, Z, k, A, C,A′, C ′) be a solution of the DRBSDE associated with the driver process

(f(t)) and the barriers ξ and ζ . By the a priori estimates (cf. Lemma 4.5), we derive

the uniqueness of (Y, Z, k). By Remark 4.9, we have ∆Ct = (Yt+ − Yt)
− for all t a.s. and

∆C ′
t = (Yt+ − Yt)

+ for all t a.s. , which implies the uniqueness of the purely discontinuous
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processes C and C ′. Moreover, since (Y, Z, k, A, C,A′, C ′) satisfies the equation (4.13), it

follows that the process A−A′ can be expressed in terms of Y, C, C ′, the integral of the driver

process (ft) with respect to the Lebesgue measure, and the stochastic integrals of Z and k

with respect to W and Ñ , respectively, which yields the uniqueness of the finite variation

process A−A′. Now, since dAt ⊥ dA′
t, the nondecreasing processes A and A′ correspond to

the (unique) canonical decomposition of this finite variation process, which ends the proof.

�

Using Proposition 4.2 together with the uniqueness property of the solution of the DRB-

SDE (4.13) associated with driver process f = (ft), we derive that the limit processes X f

and X
′f defined by (4.28) can be written in terms of the solution of this DRBSDE.

Remark 4.14 (Identification of X f and X
′f) Let X f and X

′f be the strong supermartin-
gales defined by (4.28). We have a.s.

X f
t = E[AT −At+CT−−Ct− | Ft] and X

′f
t = E[A′

T −A′
t+C ′

T−−C ′
t− | Ft], for all t ∈ [0, T ],

where A,C,A′ and C ′ are the four last coordinates of the solution of the DRBSDE (4.13)

associated with barriers ξ and ζ, and driver process f . More details on this property are
provided in the Appendix.

4.3 The case of a general Lipschitz driver f(t, y, z, k )

We now prove the existence and uniqueness of the solution to the DRBSDE from Definition

4.1 in the case of a general Lipschitz driver.

Theorem 4.7 (Existence and uniqueness of the solution) Let (ξ, ζ) be a pair of ad-
missible barriers satisfying Mokobodzki’s condition and let f be a Lipschitz driver. The DRB-
SDE with parameters (f, ξ, ζ) from Definition 4.1 admits a unique solution (Y, Z, k, A, C,A′, C ′) ∈

S2 × IH2 × IH2
ν × (S2)2 × (S2)2.

Proof. For each β > 0, we denote by B2
β the space S2 × IH2 × IH2

ν which we equip

with the norm ‖(·, ·, ·)‖B2
β

defined by ‖(Y, Z, k)‖2
B2
β

:= |||Y |||2β + ‖Z‖2β + ‖k‖2ν,β, for (Y, Z, k) ∈

S2×IH2×IH2
ν . Since (IH2, ‖ ·‖β), (IH

2
ν , ‖ ·‖ν,β), and (S2, ||| · |||β) are Banach spaces, it follows

that (B2
β , ‖ · ‖Bβ

) is a Banach space.

We define a mapping Φ from B2
β into itself as follows: for a given (y, z, l) ∈ B2

β , we

set Φ(y, z, l) := (Y, Z, k), where Y, Z, k are the first three components of the solution

(Y, Z, k, A, C,A′, C ′) to the DRBSDE associated with driver f(s) := f(s, ys, zs, ls) and with

the pair of admissible barriers (ξ, ζ). The mapping Φ is well-defined by Theorem 4.6.

Using the estimates provided in Lemma 4.5 and following the same arguments as in the

proof of Theorem 3.4 in [19], we derive that for a suitable choice of the parameter β > 0 the

mapping Φ is a contraction from the Banach space B2
β into itself.
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By the Banach fixed-point theorem, we get that Φ has a unique fixed point in B2
β , denoted

by (Y, Z, k), that is, such that (Y, Z, k) = φ(Y, Z, k). By definition of the mapping Φ, the pro-

cess (Y, Z, k) is thus equal to the first three components of the solution (Y, Z, k, A, C,A′, C ′)

to the DRBSDE associated with the driver process g(ω, t) := f(ω, t, Yt(ω), Zt(ω), kt(ω)) and

with the pair of barriers (ξ, ζ). It follows that (Y, Z, k, A, C,A′, C ′) is the unique solution to

the DRBSDE with parameters (f, ξ, ζ).

�

5 Doubly reflected BSDEs with irregular barriers and

E
f
-Dynkin games with irregular rewards

The purpose of this section is to connect our DRBSDE with irregular barriers to a zero-

sum game problem between two "stoppers" whose pay-offs are irregular and are assessed by

non-linear f -expectations.

In the "classical" case where f ≡ 0 (or, more generally, where f is a given process (ft)

∈ H
2), this topic has been first studied in [6] in the case of continuous barriers, and in [22]

and [23] in the case of right-continuous barriers. The case of right-continuous barriers and

a general Lipschitz driver f has been studied in [9].

The following assumption holds in the sequel.

Assumption 5.1 Assume that dP ⊗ dt-a.s for each (y, z, k1, k2) ∈ R
2 × (L2

ν)
2,

f(t, y, z, k1)− f(t, y, z, k2) ≥ 〈γy,z,k1,k2
t , k1 − k2〉ν ,

with γ : [0, T ]× Ω× R
2 × (L2

ν)
2 → L2

ν ; (ω, t, y, z, k1, k2) 7→ γ
y,z,k1,k2
t (ω, .)

P ⊗ B(R2)⊗ B((L2
ν)

2)-measurable and satisfying the inequalities

γ
y,z,k1,k2
t (e) ≥ −1 and ‖γy,z,k1,k2

t ‖ν ≤ C, (5.36)

for each (y, z, k1, k2) ∈ R
2× (L2

ν)
2, respectively dP ⊗dt⊗dν(e)-a.s. and dP ⊗dt-a.s. (where

C is a positive constant).

Assumption 5.1 ensures the non decreasing property of Ef by the comparison theorem for

BSDEs with jumps (cf. Theorem 4.2 in [37]).

5.1 The case where ξ and −ζ are right-uppersemicontinuous

In this subsection we focus on the case where the barriers ξ and −ζ are assumed to be right-
uppersemicontinuous(r.u.s.c.). We interpret the solution of our Doubly Reflected BSDE in

terms of the value process of a suitably defined zero-sum game problem on stopping times
with (non-linear) f -expectations.
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Let ξ ∈ S2 and ζ ∈ S2 be two optional processes (which are not necessarily non negative).

We consider a game problem with two players where each of the players’ strategy is a

stopping time in T0 and the players payoffs are defined in terms of the given processes ξ and

ζ . More precisely, if the first agent chooses τ ∈ T0 as his/her strategy and the second agent

chooses σ ∈ T0, then, at time τ ∧σ (when the game ends), the pay-off (or reward) is I(τ, σ),

where

I(τ, σ) := ξτ1τ≤σ + ζσ1σ<τ . (5.37)

The associated criterion (from time 0 perspective) is defined as the f -evaluation of the pay-

off, that is, by E
f

0,τ∧σ
[I(τ, σ)]. The first agent aims at choosing a stopping time τ ∈ T0

which maximizes the criterion. The second agent has the antagonistic objective of choosing

a strategy σ ∈ T0 which minimizes the criterion.

As is usual in stochastic control, we embed the above (game) problem in a dynamic

setting, by considering the game from time θ onwards, where θ runs through T0. From the
perspective of time θ (where θ ∈ T0 is given), the first agent aims at choosing a strategy

τ ∈ Tθ such that E
f

θ,τ∧σ
[I(τ, σ)] be maximal. The second agent has the antagonistic objective

of choosing σ ∈ Tθ such that E
f

θ,τ∧σ
[I(τ, σ)] be minimal.

The following notions will be used in the sequel:

Definition 5.1 Let θ ∈ T0.

• The upper value V (θ) and the lower value V (θ) of the game at time θ are the random
variables defined respectively by

V (θ) := ess inf
σ∈Tθ

ess sup
τ∈Tθ

E
f

θ,τ∧σ
[I(τ, σ)]; V (θ) := ess sup

τ∈Tθ

ess inf
σ∈Tθ

E
f

θ,τ∧σ
[I(τ, σ)]. (5.38)

• We say that there exists a value for the game at time θ if V (θ) = V (θ) a.s.

• A pair (τ̂ , σ̂) ∈ T 2
θ is called a saddle point at time θ for the game if for all (τ, σ) ∈ T 2

θ

we have
E

f

θ,τ∧σ̂
[I(τ, σ̂)] ≤ E

f

θ,τ̂∧σ̂
[I(τ̂ , σ̂)] ≤ E

f

θ,τ̂∧σ
[I(τ̂ , σ)] a.s.

• Let ε > 0. A pair (τ̂ , σ̂) ∈ T 2
θ is called an ε-saddle point at time θ for the game if for

all (τ, σ) ∈ T 2
θ we have

E
f

θ,τ∧σ̂
[I(τ, σ̂)]− ε ≤ E

f

θ,τ̂∧σ̂
[I(τ̂ , σ̂)] ≤ E

f

θ,τ̂∧σ
[I(τ̂ , σ)] + ε a.s.

Remark 5.15 The inequality V (θ) ≤ V (θ) a.s. is trivially true. It is also trivially true that
the existence of a saddle point for the game at time θ ∈ T0 implies the existence of a value
for the game at time θ.

As mentioned in the introduction, in the case where the processes ξ and ζ are RCLL, we

recover a game problem which appears in [9] under the name of generalized Dynkin game. In

the case f = 0, we have E
0

θ,τ∧σ
[I(τ, σ)] = E [I(τ, σ) | Fθ], and, in this case, our game problem

corresponds to the classical Dynkin game (cf., e.g., [1]).

We also recall the following definition:
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Definition 5.2 Let Y ∈ S2. The process Y is said to be a strong E
f

-supermartingale (resp
E

f

-submartingale), if E
f

σ,τ
[Yτ ] ≤ Yσ (resp. E

f

σ,τ [Yτ ] ≥ Yσ) a.s. on σ ≤ τ , for all σ, τ ∈ T0.

Remark 5.16 Recall that Y is r.u.s.c. (cf. e.g. Lemma 5.1 in [19]).

Let Y be the first component of the solution to the DRBSDE with parameters (f, ξ, ζ) from

Definition 4.1. For each θ ∈ T0 and each ε > 0, we define the stopping times τ εθ and σε
θ by

τ εθ := inf{t ≥ θ, Yt ≤ ξt + ε}; σε
θ := inf{t ≥ θ, Yt ≥ ζt − ε}. (5.39)

We first prove the following lemma.

Lemma 5.3 Assume that ξ and −ζ are r.u.s.c. The following assertions hold:

1. We have
Yτε

θ
≤ ξτε

θ
+ ε and Yσε

θ
≥ ζσε

θ
− ε a.s. (5.40)

2. The process (Yt, θ ≤ t ≤ τ εθ ) is a strong E
f

-submartingale and the process (Yt, θ ≤ t ≤

σε
θ) is a strong E

f

-supermartingale.

Proof. We first prove that Yτε
θ

≤ ξτε
θ
+ ε a.s. By way of contradiction, we suppose

P (Yτε
θ
> ξτε

θ
+ ε) > 0. By the Skorokhod conditions, we have ∆Cτε

θ
= Cτε

θ
− C(τε

θ
)− = 0 on

the set {Yτε
θ
> ξτε

θ
+ ε}. On the other hand, due to Remark 4.9, ∆Cτε

θ
= Yτε

θ
− Y(τε

θ
)+. Thus,

Yτε
θ
= Y(τε

θ
)+ on the set {Yτε

θ
> ξτε

θ
+ ε}. Hence,

Y(τε
θ
)+ > ξτε

θ
+ ε on the set {Yτε

θ
> ξτε

θ
+ ε}. (5.41)

We will obtain a contradiction with this statement. Let us fix ω ∈ Ω. By definition of τ εθ (ω),

there exists a non-increasing sequence (tn) = (tn(ω)) ↓ τ εθ (ω) such that Ytn(ω) ≤ ξtn(ω) + ε,

for all n ∈ IN . Hence, lim supn→∞ Ytn(ω) ≤ lim supn→∞ ξtn(ω) + ε. As the process ξ is

r.u.s.c. , we have lim supn→∞ ξtn(ω) ≤ ξτε
θ
(ω). On the other hand, as (tn(ω)) ↓ τ εθ (ω), we

have lim supn→∞ Ytn(ω) = Y(τε
θ
)+(ω). Thus, Y(τε

θ
)+(ω) ≤ ξτε

θ
(ω) + ε, which is in contradiction

with (5.41). We conclude that Yτε
θ
≤ ξτε

θ
+ ε a.s. By similar arguments, using the l.u.s.c.

property of ζ , we can show that Yσε
θ
≥ ζσε

θ
− ε a.s. The proof of the first statement is thus

complete.

Let us now prove that the process (Yt, θ ≤ t ≤ τ εθ ) is a strong E
f

-submartingale. By

definition of τ εθ , we have Yt > ξt + ε on [θ, τ εθ [ a.s. Hence, Ac is constant on [θ, τ εθ [ a.s. (cf.

Skorokhod conditions); by continuity of the process Ac, Ac is constant on the closed interval

[θ, τ εθ ], a.s. Also, the process Ad is constant on [θ, τ εθ [, a.s. (cf. Skorokhod conditions).

Moreover, Y(τε
θ
)− ≥ ξ(τε

θ
)− + ε a.s. , which implies that ∆Ad

τε
θ
= 0 a.s. Finally, for a.e. ω ∈ Ω,

for all t ∈ [θ(ω), τ εθ (ω)[, ∆Ct(ω) = Ct(ω) − Ct−(ω) = 0; we deduce that for a.e. ω ∈ Ω,

(Ct−(ω)) is constant on [θ(ω), τ εθ (ω)[, and even on the closed interval [θ(ω), τ εθ (ω)], since the

trajectories of (Ct−) are left-continuous. Thus, the process (At + Ct−) is constant on [θ, τ εθ ]

a.s. By Proposition A.4 in [19], we derive that the process (Yt, θ ≤ t ≤ τ εθ ) is a strong

E
f

-submartingale. By similar arguments, one can show that (Yt, θ ≤ t ≤ σε
θ) is a strong

E
f

-supermartingale, which ends the proof of the second statement. �
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Remark 5.17 We see from the proof that the second point of the above lemma is true
without any regularity assumptions on ξ and ζ.

Using the above lemma, we show that the game problem defined above has a value, we

characterize the value of the game in terms of the (first component of the) solution of the

DRBSDE (4.13), and we also show the existence of ε-saddle points.

Theorem 5.4 (Existence and characterization of the value function) Let f be a Lip-
schitz driver satisfying Assumption (5.1). Let (ξ, ζ) be an admissible pair of barriers satis-
fying Mokobodzki’s condition and such that ξ and −ζ are r.u.s.c. Let (Y, Z, k, A,A′, C, C ′)

be the solution of the DRBSDE (4.13). There exists a common value function for the gen-
eralized Dynkin game (5.38), and for each stopping time θ ∈ T0, we have

Yθ = V (θ) = V (θ) a.s. (5.42)

Let θ ∈ T0 and let ε > 0. For each (τ, σ) ∈ T 2
θ , the stopping times τ εθ and σε

θ, defined by
(5.39), satisfy the inequalities:

E
f

θ,τ∧σε
θ

[I(τ, σε
θ)]− Lε ≤ Yθ ≤ E

f

θ,τε
θ
∧σ
[I(τ εθ , σ)] + Lε a.s. , (5.43)

where L is a positive constant which only depends on the Lipschitz constant K of f and on
the terminal time T . In other terms, the pair (τ εθ , σ

ε
θ) is an Lε-saddle point at time θ for

the generalized Dynkin game (5.38).

Proof. Let θ ∈ T0 and let ε > 0. Let us show that (τ εθ , σ
ε
θ) satisfies the inequalities (5.43).

By Lemma 5.3, the process (Yt, θ ≤ t ≤ τ εθ ) is a strong E
f

-submartingale. We thus get

Yθ ≤ E
f

θ,τε
θ
∧σ
[Yτε

θ
∧σ] a.s. (5.44)

Now, since Yτε
θ
≤ ξτε

θ
+ ε (cf. Lemma 5.3) and Y ≤ ζ , we have:

Yτε
θ
∧σ ≤ (ξτε

θ
+ ε)1τε

θ
≤σ + ζσ1σ<τε

θ
≤ I(τ εθ , σ) + ε a.s.

where the last inequality follows from the definition of I(τ εθ , σ). By using the inequality

(5.44) and the nondecreasingness of E
f

, we derive

Yθ ≤ E
f

θ,τε
θ
∧σ
[I(τ εθ , σ) + ε] ≤ E

f

θ,τε
θ
∧σ
[I(τ εθ , σ)] + Lε a.s. , (5.45)

where the last inequality follows from an estimate on BSDEs (cf. Proposition A.4 in [37]).

Using similar arguments, it can be shown that Yθ ≥ E
f

θ,τ∧σε
θ

[I(τ, σε
θ)] − Lε a.s , which,

together with (5.45), leads to the desired inequalities (5.43).

Now, since inequality (5.45) holds for all σ ∈ Tθ, it follows that

Yθ ≤ ess inf
σ∈Tθ

E
f

θ,τε
θ
∧σ
[I(τ εθ , σ)] + Lε ≤ ess sup

τ∈Tθ

ess inf
σ∈Tθ

E
f

θ,τ∧σ
[I(τ, σ)] + Lε a.s.
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From this, together with the definition of V (θ) (cf. (5.38)), we obtain Yθ ≤ V (θ) + Lε a.s.

Similarly, we show that V (θ)−Lε ≤ Yθ a.s. for all ε > 0. We thus get V (θ) ≤ Yθ ≤ V (θ)

a.s. This, together with the inequality V (θ) ≤ V (θ) a.s. , yields V (θ) = Yθ = V (θ) a.s. The

proof is thus complete. �

We will now show the existence of saddle points under an additional regularity assump-

tion on the barriers. Let (Y, Z, k, A,A′, C, C ′) be the solution of the DRBSDE (4.13). For

each θ ∈ T0, we introduce the following stopping times:

τ ∗θ := inf{t ≥ S, Yt = ξt}; σ∗
θ := inf{t ≥ S, Yt = ζt}, (5.46)

and

τ θ := inf{t ≥ S, At > Aθ or Ct− > Cθ−}; σθ := inf{t ≥ S, A′
t > A′

θ or C ′
t− > C ′

θ−}.

(5.47)

Theorem 5.5 (Existence of saddle points) Let the assumptions of the previous theorem
hold. We assume moreover that ξ and −ζ are l.u.s.c. along stopping times. Then, for each
θ ∈ T0, the pairs of stopping times (τ ∗θ , σ

∗
θ) and (τ θ, σθ), defined by (5.46) and (5.47), are

saddle points at time θ for the generalized Dynkin game.

Proof. The proof of the theorem is given in the Appendix. �

Classical Dynkin game with irregular rewards Let (ξ, ζ) be an admissible pair of

barriers satisfying Mokobodzki’s condition and such that ξ and −ζ are r.u.s.c. (as above).

We consider the particular case where f ≡ 0. Let θ ∈ T0. For τ ∈ Tθ and σ ∈ Tθ, it holds

E
0

θ,τ∧σ
[I(τ, σ)] = E [I(τ, σ) | Fθ]. The upper and lower values at time θ are then given by

V (θ) := ess inf
σ∈Tθ

ess sup
τ∈Tθ

E [I(τ, σ) | Fθ]; V (θ) := ess sup
τ∈Tθ

ess inf
σ∈Tθ

E [I(τ, σ) | Fθ], (5.48)

We thus recover the classical Dynkin game on stopping times (with linear expectations)

recalled in the introduction (cf., e.g., [4] and [1]). In [1], it has been shown that this

classical Dynkin game has a value. From our Theorems 5.4 and 5.5, we derive the following

infinitesimal characterization of the value of this game:

Corollary 5.1 There exists a process Y ∈ S2 which aggregates the common value function,
i.e., Y is such that for all θ ∈ T0, Yθ = V (θ) = V (θ) a.s. Moreover, the process Y is equal to
the first component of the solution (Y, Z, k, A,A′, C, C ′) of the DRBSDE (4.13) associated
with driver f = 0 and with barriers ξ and ζ.

If, moreover, ξ and −ζ are l.u.s.c. along stopping times, then for each θ ∈ T0, the pairs
of stopping times (τ ∗θ , σ

∗
θ) and (τ θ, σθ), defined by (5.46) and (5.47), are saddle points at

time θ for the Dynkin game (5.48).
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Game options In this paragraph, we briefly discuss how the results of this section can be

applied to the problem of pricing of game options in some market models with imperfections.

We recall that a game option is a financial instrument which gives the buyer the right to
exercise at any stopping time τ ∈ T and the seller the right to cancel at any stopping time

σ ∈ T . If the buyer exercises at time τ before the seller cancels, then the seller pays to the

buyer the amount ξτ ; if the seller cancels at time σ before the buyer exercises, the seller pays

to the buyer the amount ζσ at the cancellation time σ. The difference ζ− ξ ≥ 0 corresponds

to a penalty which the seller pays to the buyer in the case of an early cancellation of the

contract. Thus, if the seller chooses a cancellation time σ and the buyer chooses an exercise

time τ , the former pays to the latter the payoff I(τ, σ) (defined in (1.1)) at time τ ∧ σ. In

the seminal paper [15], Kifer relates the problem of pricing of game options in a frictionless

complete market model to the theory of "classical" Dynkin games (with " classical" linear

expectations). Since Kifer’s work [15], it is well-known that if the market model is complete

and if the processes ξ and ζ are right-continuous and satisfy Mokobodzki’s condition, then

the price of the game option (up to a discount factor) is equal to the common value of the

classical Dynkin game from equation (1.3), where the expectation is taken under the unique

martingale measure of the model. Let us also recall that, in a complete market model, the

expectation under the unique martingale measure corresponds (up to discounting) to the

pricing functional for European-type options.

In market models with imperfections however, pricing rules for European-type options are

in general no longer linear (cf, e.g. the notion of non linear pricing system introduced in

[14] or the notion of pricing rule introduced in [30]). In a large class of market models with

imperfections, European options can be priced via an f -expectation/evaluation, where f is a

nonlinear driver in which the imperfections are encoded (cf. [14] where also several concrete

examples of imperfections are provided). In such a framework, the problem of pricing of

game options has been considered in [10]: when ξ and ζ are right-continuous and satisfy

Mokobodzki’s condition, the common value of the E
f -Dynkin game from equation (1.5) is

shown to be equal to the "seller’s price" of the game option (cf. Theorem 3.12 in [10]).

Using Theorem 5.4 and Proposition 4.1 of the present paper, we can show that the result of

[10] can be generalized to the case where the assumption of right-continuity is replaced by

the weaker assumption of right-uppersemicontinuity of ξ and −ζ .

5.2 The general irregular case

In this subsection (ξ, ζ) is an admissible pair of barriers satisfying Mokobodzki’s condition.

Contrary to the previous subsection, here we do not make any regularity assumptions on the

pair (ξ, ζ). In this general case, we will interpret the DRBSDE with a pair of obstacles (ξ, ζ)

in terms of the value of "an extension" of the zero-sum game of the previous subsection over

a larger set of "stopping strategies" than the set of stopping times T0. To this purpose we

introduce the following notion of stopping system.
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Definition 5.1 Let τ ∈ T0 be a stopping time (in the usual sense). Let H be a set in Fτ .
Let Hc denote its complement in Ω. The pair ρ = (τ,H) is called a stopping system if
Hc ∩ {τ = T} = ∅.

By taking H = Ω in the above definition, we see that the notion of a stopping system

generalizes that of a stopping time (in the usual sense).

Remark 5.6 A stopping system is an example of divided stopping time (from the French
"temps d’arrêt divisé") in the sense of [11] or [1].

We will also use the following notation: for two stopping systems ρ = (τ,H) and

ρ′ = (τ ′, H ′), we write {ρ ≤ ρ′} for the set {τ ≤ τ ′}. The set {ρ < ρ′} is defined simi-

larly. We denote by S0 the set of all stopping systems; for a stopping time θ ∈ T0, we denote

by Sθ the set of stopping systems ρ = (τ,H) such that θ ≤ ρ (i.e. such that θ ≤ τ).

For an optional right-limited process φ and a stopping system ρ = (τ,H), we define φρ

by

φρ := φτ1H + φτ+1Hc .

In the particular case where ρ = (τ,Ω), we have φρ = φτ , so the notation is consistent.

For an optional (not necessarily right-limited) process φ and for a stopping system ρ =

(τ,H), we set

φ
u

ρ := φτ1H + φ̄τ1Hc and φ
l

ρ := φτ1H + φ
τ
1Hc ,

where (φ̄t) (resp. (φ
t
)) denotes the right upper- (resp. right lower-) semicontinuous envelope

of the process φ, defined by φ̄t := lim sups↓t,s>t ξs (resp. φ
t
:= lim infs↓t,s>t ξs), for all t ∈ [0, T [

(cf., e.g., [11, page 133]). The process φ̄ (resp. (φ
t
)) is progressive and right upper- (resp.

right lower-) semicontinuous.

Note that when φ is right-limited, we have φ
u

ρ = φ
l

ρ = φρ.

Moreover, in the particular case where ρ = (τ,Ω), we have φ
u

ρ = φ
l

ρ = φτ , so the notation is

consistent.

With the help of the above definitions and notation we formulate an extension of the zero-

sum game problem from Subsection 5.1 where the set of "stopping strategies" of the agents

is the set of stopping systems. More precisely, for two stopping systems ρ = (τ,H) ∈ S0 and

δ = (σ,G) ∈ S0, we define the pay-off I(ρ, δ) by

I(ρ, δ) := ξ
u

ρ1ρ≤δ + ζ
l

δ1δ<ρ. (5.49)

We note that, by definition, I(ρ, δ) is an Fτ∧σ-measurable random variable. As in the

previous subsection, the pay-off is assessed by an f -expectation, where f is a Lipschitz

driver. Let θ ∈ T0 be a stopping time. The upper and lower value of the game at time θ are

defined by:

V (θ) := ess inf
δ=(σ,G)∈Sθ

ess sup
ρ=(τ,H)∈Sθ

E
f

θ,τ∧σ
[I(ρ, δ)]; V (θ) := ess sup

ρ=(τ,H)∈Sθ

ess inf
δ=(σ,G)∈Sθ

E
f

θ,τ∧σ
[I(ρ, δ)].

(5.50)
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The other definitions from Definition 5.1 are generalized to the above framework in a

similar manner, by replacing the set of stopping times Tθ by the set of stopping systems

Sθ. We will refer to this game problem as "extended" E
f -Dynkin game (over the set of

stopping systems). We will show that the "extended" E
f -Dynkin game defined above has

a value V (θ), that is, we have V (θ) = V (θ) = V (θ) a.s., and that this (common) value

coincides with the first component of the solution (at time θ) to the DRBSDE with driver

f and obstacles (ξ, ζ); we also show the existence of ε-optimal stopping systems.

Let us give some definitions. For each θ ∈ T0 and each ε > 0, we define the sets

Aε := {(ω, t) ∈ Ω× [0, T ] : Yt ≤ ξt + ε} Bε := {(ω, t) ∈ Ω× [0, T ] : Yt ≥ ζt − ε}.

We recall that the stopping times τ εθ and σε
θ have been defined as the débuts after θ of the

sets Aε and Bε (cf. Eq. (5.39)). We now set

Hε := {ω ∈ Ω : (ω, τ εθ (ω)) ∈ Aε} Gε := {ω ∈ Ω : (ω, σε
θ(ω)) ∈ Bε}

and we define the stopping systems

ρεθ := (τ εθ , H
ε) and δεθ := (σε

θ , G
ε). (5.51)

The following lemma uses an additional piece of notation.

For an optional right-limited process φ, we set

φρ∧∧δ := φρ1ρ≤δ + φδ1δ<ρ.

Remark 5.18 For general stopping systems, the above notation is not symmetric (i.e. the
equality φρ∧∧δ = φδ∧∧ρ is not necessarily true). In the particular case where ρ = (τ,Ω) and
δ = (σ,Ω) (i.e. the particular case of stopping times), we have φρ∧∧δ = φτ∧σ, where τ ∧ σ

is the usual notation for the minimum of the two stopping times τ and σ, and we have the
equality φρ∧∧δ = φτ∧σ = φσ∧τ = φδ∧∧ρ.

Lemma 5.7 The following assertions hold:

1. We have
Yρε

θ
≤ ξ

u

ρε
θ
+ ε and Yδε

θ
≥ ζ

l

δε
θ
− ε a.s. (5.52)

2. For all stopping systems ρ = (τ,H) and δ = (σ,G), we have

E
f

θ,τε
θ
∧σ[Yρε

θ
∧∧δ] ≥ Yθ and E

f

θ,σε
θ
∧σ[Yδε

θ
∧∧ρ] ≤ Yθ

Proof. Let us prove the first point. On the set Hε, we have Yρε
θ
= Yτε

θ
≤ ξτε

θ
+ ε = ξ

u

ρε
θ
+ ε,

where we have used the definitions of ρεθ, Yρε
θ
, ξ

u

ρε
θ

and Hε. On the complement Hε,c, we have:

Yρε
θ
= Yτε

θ
+ and ξ

u

ρε
θ
= ξ̄τε

θ
. (5.53)
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On the other hand, by definitions of τ εθ and of Hε,c, for a.e. ω ∈ Ω, there exists a de-

creasing sequence (tn) := (tn(ω)) such that tn(ω) ↓↓ τ εθ (ω) and Ytn ≤ ξtn + ε, for all

n ∈ IN . Hence, lim supn→∞ Ytn(ω) ≤ lim supn→∞ ξtn(ω) + ε. Now, be definition of ξ̄, we

have lim supn→∞ ξtn(ω) ≤ ξ̄τε
θ
(ω). On the other hand, we have lim supn→∞ Ytn(ω) = Yτε

θ
+(ω).

Hence, Yτε
θ
+(ω) ≤ ξ̄τε

θ
(ω) + ε. This inequality, together with (5.53) gives that Yρε

θ
≤ ξ

u

ρε
θ
+ ε

a.s. on Hε,c. We thus derive the desired result, namely Yρε
θ
≤ ξ

u

ρε
θ
+ ε a.s. on Ω.

Let us prove the second inequality. On the set Gε, we have Yδε
θ
= Yσε

θ
≥ ζσε

θ
−ε = ζ

l

δε
θ
−ε,

where we have used the definitions of δεθ, Yδε
θ
, ζ

l

δε
θ

and Gε. On the complement Gε,c, we have

Yδε
θ
= Yσε

θ
+ and ζ

l

δε
θ
= ζ

σε
θ

. (5.54)

Now, for a.e. ω ∈ Ω, there exists a decreasing sequence (tn) := (tn(ω)) such that

tn(ω) ↓↓ σε
θ(ω) and Ytn(ω) ≥ ζtn(ω)− ε, for all n ∈ IN . Hence,

lim inf
n→∞

Ytn(ω) ≥ lim inf
n→∞

ζtn(ω)− ε. (5.55)

Now, lim infn→∞ Ytn(ω) = Yσε
θ
+(ω). Moreover, by definition of ζ, we have

lim infn→∞ ζtn(ω) ≥ ζ
σε
θ

(ω). Hence, by (5.55), we get Yσε
θ
+(ω) ≥ ζ

σε
θ

(ω) − ε. Using (5.54),

we derive that on Gε,c, Yδε
θ
≥ ζ

l

δε
θ
− ε a.s. We have thus shown that Yδε

θ
≥ ζ

l

δε
θ
− ε a.s. on Ω.

Let us prove now the first inequality of the second point. We have

Yρε
θ
∧∧δ = Yρε

θ
1ρε

θ
≤δ + Yδ1δ<ρε

θ
= Yρε

θ
1τε

θ
≤σ + Yδ1σ<τε

θ
.

For the first term, we have Yρε
θ
= Yτε

θ
1Hε + Yτε

θ
+1Hε,c . Now, on Hε,c, we have Yτε

θ
> ξτε

θ
+ ε.

The Skorokhod condition thus gives ∆Cτε
θ
= 0. This, together with Remark 4.9, gives

(Yτε
θ
+ − Yτε

θ
)− = 0. Hence, Yτε

θ
+ ≥ Yτε

θ
on Hε,c. Hence, Yρε

θ
≥ Yτε

θ
. For the second

term, we have Yδ1σ<τε
θ
= (Yσ1H + Yσ+1Hc)1σ<τε

θ
. By using the fact that Y is a strong

E
f -submartingale on [θ, τ εθ ] (cf. Lemma 5.3 and Remark 5.17), we have Yσ+ ≥ Yσ on

{σ < τ εθ }. Hence, (Yσ1H + Yσ+1Hc)1σ<τε
θ
≥ Yσ1σ<τε

θ
. By combining the two terms, we

get Yρε
θ
∧∧δ ≥ Yτε

θ
1τε

θ
≤σ + Yσ1σ<τε

θ
= Yτε

θ
∧σ. Using this and the nondecreasingness of E

f

θ,τε
θ
∧σ[·],

we obtain E
f

θ,τε
θ
∧σ[Yρε

θ
∧∧δ] ≥ E

f

θ,τε
θ
∧σ[Yτε

θ
∧σ]. As Y is a strong E

f -submartingale on [θ, τ εθ ] (cf.

Lemma 5.3 and Remark 5.17), we get E
f

θ,τε
θ
∧σ[Yτε

θ
∧σ] ≥ Yθ, from which we conclude. �

Lemma 5.8 The following inequalities hold:

E
f

θ,τ∧σε
θ

[I(ρ, δεθ)]− Lε ≤ Yθ ≤ E
f

θ,τε
θ
∧σ
[I(ρεθ, δ)] + Lε a.s. , (5.56)

Proof. Let θ ∈ T0 and let ε > 0. Let us show that (ρεθ, δ
ε
θ) satisfies the inequalities (5.56).

By Lemma 5.7,

Yθ ≤ E
f

θ,τε
θ
∧σ
[Yρε

θ
∧∧δ] a.s. (5.57)

By definition of Yρε
θ
∧∧δ, we have

Yρε
θ
∧∧δ = Yρε

θ
1ρε

θ
≤δ + Yδ1δ<ρε

θ
a.s.
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Now, Yρε
θ
≤ ξ

u

ρε
θ
+ε (cf. Lemma 5.7). Moreover, since Y ≤ ζ and since Y is right-limited,

we have Yδ = Y
l

δ ≤ ζ
l

δ. We thus get

Yρε
θ
∧∧δ ≤ (ξ

u

ρε
θ
+ ε)1ρε

θ
≤δ + ζ

l

δ1δ<ρε
θ
≤ I(ρεθ, δ) + ε a.s.

where the last inequality follows from the definition of I(ρεθ, δ). By using the inequality

(5.57) and the nondecreasingness of E
f

, we derive

Yθ ≤ E
f

θ,τε
θ
∧σ
[I(ρεθ, δ) + ε] ≤ E

f

θ,τε
θ
∧σ
[I(ρεθ, δ)] + Lε a.s. , (5.58)

where the last inequality follows from an estimate on BSDEs (cf. Proposition A.4 in [37]).

Using similar arguments, it can be shown that Yθ ≥ E
f

θ,τ∧σε
θ

[I(ρ, δεθ)] − Lε a.s , which,

together with (5.58), leads to the desired inequalities (5.56). �

In the following theorem we show that the extended E
f -Dynkin game has a value which

coincides with the first component of the DRBSDE with irregular barriers.

Theorem 5.9 (Existence of a value and characterization) For all θ ∈ T0, we have

V (θ) = Yθ = V (θ) a.s.

Proof. Since the right-hand inequality in (5.56) holds for all δ = (σ,G) ∈ Sθ, we have

Yθ ≤ ess inf
δ=(σ,G)∈Sθ

E
f

θ,τε
θ
∧σ
[I(ρεθ, δ)] + Lε ≤ ess sup

ρ=(τ,H)∈Sθ

ess inf
δ=(σ,G)∈Sθ

E
f

θ,τ∧σ
[I(ρ, δ)] + Lε a.s.

From this, together with the definition of V (θ) (cf. (5.38)), we obtain Yθ ≤ V (θ) + Lε

a.s. Similarly, we show that V (θ) − Lε ≤ Yθ a.s. for all ε > 0. We thus get V (θ) ≤

Yθ ≤ V (θ) a.s. This, together with the inequality V (θ) ≤ V (θ) a.s. , yields V (θ) = Yθ =

V (θ) a.s. The proof is thus complete.

�

6 Two useful corollaries

Using the characterization of the solution of the nonlinear DRBSDE as the value function

of the "extended" E
f -Dynkin game (over the set of stopping systems)(cf. Theorem 5.9), we

now establish a comparison theorem and a priori estimates with universal constants (i.e.

depending only on the terminal time T and the common Lipschitz constant K).

Corollary 6.2 (Comparison theorem for DRBSDEs.) Let (ξ1, ζ1) and (ξ2, ζ2) be two
admissible pairs of barriers satisfying Mokobodzki’s condition. Let f 1, f 2 be Lipschitz drivers
satisfying Assumption 5.1. For i = 1, 2, let (Y i, Z i, ki, Ai, A

′i, C i, C
′i) be the solution of the

DRBSDE associated with driver f i and barriers ξi, ζ i.
Assume that ξ2 ≤ ξ1 and ζ2 ≤ ζ1 and f 2(t, Y 2

t , Z
2
t , k

2
t ) ≤ f 1(t, Y 2

t , Z
2
t , k

2
t ) dP ⊗ dt-a.s.

Then, we have Y 2 ≤ Y 1.
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Proof. Step 1: Let us first assume that ξ2 ≤ ξ1, ζ2 ≤ ζ1, and that f 2(t, y, z, k ) ≤

f 1(t, y, z, k ) for all (y, z, k ) ∈ R
2 × L2

ν , dP ⊗ dt-a.s. Let θ ∈ S0. For i = 1, 2 and for all

stopping systems ρ = (τ,H) ∈ Sθ, δ = (σ,G) ∈ Sθ, let E i
·,τ∧σ

[I i(ρ, δ)] be the first coordinate of

the solution of the BSDE associated with driver f i, terminal time τ∧σ and terminal condition

I i(ρ, δ) = (ξi)uρ1ρ≤δ + (ζ i)lδ1δ<ρ. Since ξ2 ≤ ξ1 and ζ2 ≤ ζ1, we have I2(ρ, δ) ≤ I1(ρ, δ) a.s.

Since, moreover f 2 ≤ f 1, the comparison theorem for BSDEs gives: for all stopping systems

ρ = (τ,H) ∈ Sθ, δ = (σ,G) ∈ Sθ, E
2
θ,τ∧σ

[I2(ρ, δ)] ≤ E
1
θ,τ∧σ

[I1(ρ, δ)] a.s. Taking the essential

supremum over ρ in Sθ and the essential infimum over δ in Sθ in this inequality, and using the

characterization of the solution of the DRBSDE with obstacles (ξ, ζ) as the value function

of the "extended" E
f -Dynkin game (cf. Theorem 5.9), we obtain:

Y 2
θ = ess inf

δ=(σ,G)∈Sθ

ess sup
ρ=(τ,H)∈Sθ

E
2
θ,τ∧σ

[I2(ρ, δ)] ≤ ess inf
δ=(σ,G)∈Sθ

ess sup
ρ=(τ,H)∈Sθ

E
1
θ,τ∧σ

[I1(ρ, δ)] = Y 1
θ a.s.

Since this inequality holds for each θ ∈ T0, we get Y 2 ≤ Y 1.

Step 2: We now place ourselves under the assumptions of the theorem (which are weaker

than those made in Step 1). Let f̃ be the process defined by f̃t := f 2(t, Y 2
t , Z

2
t , k

2
t ) −

f 1(t, Y 2
t , Z

2
t , k

2
t ), which, by assumption, is non positive. Note that (Y 2, Z2, k2) is the solu-

tion of the DRBSDE associated with barriers ξ2, ζ2 and driver f 1(t, y, z, k ) + f̃t. We have

f 1(t, y, z, k ) + f̃t ≤ f 1(t, y, z, k ) for all (y, z, k ). By Step 1 applied to the driver f 1 and the

driver f 1(t, y, z, k ) + f̃t (instead of f 2), we get Y 2 ≤ Y 1. �

Using Theorem 5.9 and Lemma 5.8, we prove the following estimates for the spread of

the solutions of two DRBSDEs with irregular barriers.

Corollary 6.3 (A priori estimates for DBBSDEs) Let (ξ1, ζ1) and (ξ2, ζ2) be two ad-
missible pairs of barriers satisfying Mokobodzki’s condition. Let f 1, f 2 be Lipschitz drivers
satisfying Assumption 5.1 with common Lipschitz constant C > 0. For i = 1, 2, let Y i be
the solution of the DRBSDE associated with driver f i and barriers ξi, ζ i.

Let Ỹ := Y 1 − Y 2, ξ̃ := ξ1 − ξ2, ζ̃ := ζ1 − ζ2. Let η, β > 0 with β ≥
3

η
+ 2C and η ≤

1

C2
.

Setting δfs := f 2(t, Y 2
s , Z

2
s , k

2
s)− f 1(t, Y 2

s , Z
2
s , k

2
s), 0 ≤ s ≤ T , for each θ ∈ T0, we have

Ỹ 2
θ ≤ eβ(T−θ)E[ess sup

τ∈Tθ

ξ̃τ
2
+ ess sup

τ∈Tθ

ζ̃τ
2
|Fθ] + ηE[

∫ T

θ

eβ(s−θ)(δfs)
2ds|Fθ] a.s. (6.59)

Proof. The proof is divided into two steps.

Step 1: For i = 1, 2 and for all stopping systems ρ = (τ,H), δ = (σ,G) ∈ Sθ, let (X i,ρ,δ,

πi,ρ,δ, li,ρ,δ) be the solution of the BSDE associated with driver f i, terminal time τ ∧ σ and

terminal condition I i(ρ, δ), where I i(ρ, δ) = (ξi)uρ1ρ≤δ +(ζ i)lδ1δ<ρ. Set X̃ρ,δ := X1,ρ,δ−X2,ρ,δ

and Ĩ(ρ, δ) := I1(ρ, δ)− I2(ρ, δ) = ((ξ1)uρ − (ξ2)uρ)1ρ≤δ + ((ζ1)lδ − (ζ2)lδ)1δ<ρ.

By an estimate on BSDEs (see Proposition A.4 in [38]), for each θ ∈ T0, we have a.s.:

(X̃τ,δ
θ )2 ≤ eβ(T−θ)E[Ĩ(ρ, δ)2 | Fθ] + ηE[

∫ T

θ

eβ(s−θ)[(f 1 − f 2)(s,X2,ρ,δ
s , π2,ρ,δ

s , l2,ρ,δs )]2ds | Fθ].

(6.60)
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From this, together with the definitions of (ξi)uρ and (ζ i)lδ, we derive

(X̃ρ,δ
θ )2 ≤ eβ(T−θ)E[ess sup

τ∈Tθ

ξ̃τ
2
+ ess sup

τ∈Tθ

ζ̃τ
2
|Fθ] + ηE[

∫ T

θ

eβ(s−θ)(f̃s)
2ds|Fθ] a.s. (6.61)

where f̃s := supy,z,k |f
1(s, y, z, k )−f 2(s, y, z, k )|. Now, by using inequality (5.56), we obtain

that for all ε > 0 and for all stopping systems ρ = (τ,H), δ = (σ,G) ∈ Sθ,

Y 1
θ − Y 2

θ ≤ X
1,ρε1,δ
θ −X

2,ρ,δε2
θ + 2Lε a.s.

Applying this inequality to ρ = ρε1, δ = δε2 we get

Y 1
θ − Y 2

θ ≤ X
1,ρε

1
,δε

2

θ −X
2,ρε

1
,δε

2

θ + 2Lε ≤ |X
1,ρε

1
,δε

2

θ −X
2,ρε

1
,δε

2

θ |+ 2Lε a.s. (6.62)

By (6.61) and (6.62), we have:

Y 1
θ − Y 2

θ ≤

√

eβ(T−θ)E[ess sup
τ∈Tθ

ξ̃τ
2
+ ess sup

τ∈Tθ

ζ̃τ
2
|Fθ] + ηE[

∫ T

θ

eβ(s−θ)(f̃s)2ds|Fθ] + 2Lε a.s.

By symmetry, the last inequality is also verified by Y 2
θ − Y 1

θ . We thus derive that

Ỹ 2
θ ≤ eβ(T−θ)E[ess sup

τ∈Tθ

ξ̃τ
2
+ ess sup

τ∈Tθ

ζ̃τ
2
|Fθ] + ηE[

∫ T

θ

eβ(s−θ)(f̃s)
2ds|Fθ] a.s. (6.63)

This result holds for all Lipschitz drivers f 1 and f 2 satisfying Assumption 5.1.

Step 2: Note that (Y 2, Z2, k2) is the solution the DRBSDE associated with barriers ξ2, ζ2

and driver f 1(t, y, z, k )+ δft. By applying the result of Step 1 to the driver f 1(t, y, z, k ) and

the driver f 1(t, y, z, k ) + δft (instead of f 2), we get the desired result. �

Remark 6.1 Such estimates on non linear DRBSDEs with universal constants seem very
difficult to show by using Gal’chouk-Lenglart’s formula. Note that up to now, no estimates
with universal constants have been shown by using Itô’s techniques in the literature even
when the barriers are continuous (see Remark 4.5 in [9] for details). This point shows the
relevance of the characterization of the solution of a non linear DRBSDE given in Theorem
5.4.

7 Appendix

Lemma 7.1 Let X ∈ L2. Let (Mt) be the right-continuous version of the conditional ex-
pectation of X, that is Mt := E[X | Ft], 0 ≤ t ≤ T . The process (Mt) belongs to S2.

Proof. Since (Mt) is right-continuous, we have ess supθ∈T0 M
2
θ = supt∈[0,T ] M

2
t a.s. By

Doob’s martingale inequalities in L2, we derive that E[ess supθ∈T0 M
2
θ ] ≤ 2E[X2] < +∞,

which ensures that (Mt) ∈ S2. �
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Lemma 7.2 Let (Y n) be a nondecreasing sequence of strong supermartingales (non neces-
sarily cad lag) such that supn |Y

n| ∈ S2. Let Y := limn→+∞ Y n. The process Y is then a
strong supermartingales (belonging to S2).

Proof. A short proof is given for the convenience of the reader. Since supn |Y
n| ∈ S2,

we have Y ∈ S2. Moreover, by the monotone convergence theorem for the conditional

expectation, we have for each θ, θ′ ∈ T0 with θ′ ≤ θ a.s. ,

E[Yθ | Fθ′] = lim
n→∞

E[Y n
θ | Fθ′] ≤ lim

n→∞
Y n
θ′ a.s.,

where the inequality follows from the strong supermartingale property of the processes Y n,

n ∈ N. Since Yθ′ = limn→∞ Y n
θ′ a.s. , we get E[Yθ | Fθ′] ≤ Yθ′ a.s. Hence, Y is a strong

supermartingale. �

We recall below the following result on RCLL adapted processes with integrable total

variation (cf. Proposition A.7 in [9]).

Proposition 7.3 Let (Ω,F , P ) be a probability space equipped with a completed right-continuous
filtration (Ft)0≤t≤T . Let α = (αt)0≤t≤T be a RCLL process with integrable total variation,
that is, E(|α|T ) < ∞, where |α|T is the total variation at time T . There exists an unique pair
(A,A′) of RCLL optional non decreasing processes with A0 = A′

0 = 0, integrable (that is such
that E(AT ) < ∞ and E(A′

T ) < ∞) and satisfying the equality α = A− A′ with dAt ⊥ dA′
t.

This decomposition is called the canonical decomposition of the process α. If E(|α|2T ) < ∞,
then AT and A′

T ∈ L2. Moreover, if (B,B′) is a pair of integrable RCLL optional non
decreasing processes with B0 = B′

0 = 0 such that α = B − B′, then dAt << dBt in the
(probabilistic) sense, that is, for each K ∈ O with

∫ T

0
1KdBt = 0 a.s. , then

∫ T

0
1KdAt = 0

a.s.
Moreover, when the process α is predictable, then A and A′ are predictable.

We now show the following result.

Lemma 7.4 Let ξ be an optional process which can be written ξt := Mt + αt + γt−, where
M a square integrable martingale, α and γ are RCLL adapted processes with α0 = γ0− = 0,
and with square integrable total variation that is, E(|α|2T ) < ∞ and E(|γ|2T ) < ∞. Then,
the process ξ can be written as the difference of two non negative square integrable strong
supermartingales.

Proof. By the above Proposition 7.3, there exists an unique pair (A,A′) of non decreasing

RCLL adapted processes such that AT and A′
T are square integrable, and α = A′ − A with

dAt ⊥ dA′
t. Similarly, there exists an unique pair (C,C ′) of non decreasing RCLL adapted

processes such that CT and C ′
T are square integrable, and γ = C ′ − C with dCt ⊥ dC ′

t.

The processes H and H ′ defined by Ht := E[ξ+T + AT − At + CT− − Ct− |Ft] and H ′
t :=

E[ξ−T +A′
T −A′

t +C ′
T− −C ′

t−|Ft] are non negative strong supermartingales belonging to S2.

Moreover, we have ξt = E[ξT + αT − αt + γT− − γt−|Ft] = Ht −H ′
t, which gives the desired

result. �
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Remark 7.5 From this lemma, we derive that if ξ and ζ are optional processes in S2 with
ζT = ξT and ξ ≤ ζ, and such that ξ (or ζ) satisfies the assumptions of Lemma 7.4, then the
pair (ξ, ζ) satisfies Mokobodzki’s condition (4.19).

Proof of the statement of Remark 4.14 Let (A,C) (resp. (A′, C ′)) be the Mertens
process associated with the strong supermartingale X f (resp. X

′f), that is satisfying

X f
t = E[AT−At+CT−−Ct− | Ft] (resp. X

′f
t = E[A′

T−A′
t+C ′

T−−C ′
t− | Ft]), for all t ∈ [0, T ].

We have to show that A,C,A′ and C ′ are equal to the four last coordinates of the solution

of the DRBSDE associated with parameters (ξ, ζ, f). To this purpose, we apply the same

arguments as those used in the proof of Proposition 4.3 to X = X f and X ′ = X
′f . Let

B, D, B′ and D′ be defined as in this proof. Set Ht := E[BT − Bt +DT− − Dt− | Ft] and

H ′
t := E[B′

T − B′
t + D′

T− − D′
t− | Ft]. Since dBt << dAt, dB

′
t << dA′

t, dDt << dCt and

dD′
t << dC ′

t, we have H ≤ X f and H ′ ≤ X
′f . Moreover, H −H ′ = X f − X

′f , which yields

that ξ̃f ≤ H −H ′ ≤ ζ̃f . By the minimality property of (X f ,X
′f) (cf. the last assertion of

Proposition 4.2), we derive that H = X f and H ′ = X
′f . Hence, B = A, B′ = A′, D = C

and D′ = C ′. By the properties of B,B′, D, and D′, we thus get dAt ⊥ dA′
t and dCt ⊥ dC ′

t.

Let now Y be defined by (4.26) with X = X f and X ′ = X
′f , and let (Z, k) be defined as

in the proof of Proposition 4.3. The process (Y, Z, k, A, C,A′, C ′) is then the solution of the

doubly reflected BSDE with parameters (f, ξ, ζ). The proof is thus complete. �

Proof of Theorem 5.5 The proof of Theorem 5.5 relies on the following lemma.

Lemma 7.6 Let f be a driver satisfying Assumption (5.1). Let (ξ, ζ) be an admissible
pair of barriers satisfying Mokobodzki’s condition and such that ξ and −ζ are r.u.s.c. Let
(Y, Z, k, A,A′, C, C ′) be the solution of the DRBSDE (4.13). Assume moreover that A (resp.
A′) is continuous. For each θ ∈ T0, the following assertions hold:

1.
Yτ∗

θ
= ξτ∗

θ
(resp. Yσ∗

θ
= ζσ∗

θ
) a.s. (7.64)

Moreover, the process (Yt, θ ≤ t ≤ τ ∗θ ) is a strong E
f

-submartingale (resp. (Yt, θ ≤

t ≤ σ∗
θ) is a strong E

f

-supermartingale).

2.
Yτθ = ξτθ (resp. Yσθ

= ζσθ
) a.s. (7.65)

Moreover, the process (Yt, θ ≤ t ≤ τ θ) is a strong E
f

-submartingale (resp. (Yt, θ ≤

t ≤ σθ) is a strong E
f

-supermartingale).

Proof. We suppose A is continuous (the case where A′ is continuous can be treated by

similar arguments). To prove the first statement we note that Yτ∗
θ
≥ ξτ∗

θ
a.s., since Y is

(the first component of) the solution to the DRBSDE with barriers ξ and ζ . We show that
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Yτ∗
θ
≤ ξτ∗

θ
a.s. by using the assumption of right-upper semicontinuity on the process ξ; the

arguments are similar to those used in the proof of part 1. of Lemma 5.3 and are left to

the reader. Moreover, by definition of τ ∗θ , we have Yt > ξt on [θ, τ ∗θ [ a.s. ; hence, the process

A is constant on [θ, τ ∗θ [ and even on the closed interval [θ, τ ∗θ ] due to the continuity. We

show that Ct− is constant on [θ, τ ∗θ ] by the same arguments as those of the proof of the first

statement of Lemma 5.3. Thus, the process (At+Ct−) is constant on [θ, τ ∗θ ]. By Proposition

A.4 in [19], we derive that the process (Yt, θ ≤ t ≤ τ ∗θ ) is a strong E
f

-submartingale, which

completes the proof of the first statement.

Let us prove the second statement. By definition of τ θ, we have Aτθ = Aθ a.s. and

Cτ
θ−

= Cθ− a.s. because (At) and (Ct−) are left-continuous. By Proposition A.4 in [19], the

process (Yt, θ ≤ t ≤ τ θ) is thus a strong E
f

-submartingale. Moreover, since the continuous

process A increases only on {Yt = ξt} and ∆Ct = 1{Yt=ξt}∆Ct, we have Yτθ = ξτθ a.s. , which

ends the proof of the second assertion. �

Remark 7.7 When A is continuous, since Aτ∗
θ
= Aθ a.s. and Cτ∗

θ−
= Cθ− a.s. , by the

definition of τ θ, we get τ ∗θ ≤ τ θ a.s. Similarly, when A′ is continuous, we have σ∗
θ ≤ σθ a.s.

Using the above lemma, we prove Theorem 5.5.

Proof of Theorem 5.5. Let θ ∈ T0. By Theorem 5.4, we have Yθ = V (θ) = V (θ) a.s.

Moreover, by Proposition 4.1, since the barriers ξ and −ζ are supposed to be l.u.s.c. along

stopping times, it follows that the non decreasing processes A and A′ are continuous. Let

τ ∈ Tθ. Let us show that

Yθ ≥ E
f

θ,τ∧σ∗

θ

[I(τ, σ∗
θ)] a.s. (7.66)

Since by Lemma 7.6 (first assertion), the process (Yt, θ ≤ t ≤ τ ∧ σ∗
θ) is a strong E

f

-

supermartingale, we get

Yθ ≥ E
f

θ,τ∧σ∗

θ

[Yτ∧σ∗

θ
] a.s. (7.67)

Since Y ≥ ξ and Yσ∗

θ
= ζσ∗

θ
a.s. (by Lemma 7.6), we also have

Yτ∧σ∗

θ
= Yτ1τ≤σ∗

θ
+ Yσ∗

θ
1σ∗

θ
<τ ≥ ξτ1τ≤σ∗

θ
+ ζσ∗

θ
1σ∗

θ
<τ = I(τ, σ∗

θ) a.s.

By inequality (7.67) and the non decreasing property of E
f

, we derive inequality (7.66).

Similarly, one can show that for each σ ∈ Tθ, we have: Yθ ≤ E
f

θ,τ∗
θ
∧σ
[I(τ ∗θ , σ)] a.s. , which

together with the inequality (7.66) implies that (τ ∗θ , σ
∗
θ) is a saddle point at time θ. Similarly,

using Lemma 7.6 (second assertion), it can be shown that (τ θ, σθ) is a saddle point at time

θ, which ends the proof. �
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