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Remarks on the operator-norm convergence
of the Trotter product formula

Hagen Neidhardt, Artur Stephan and Valentin A. Zagrebnov

Abstract. We revise the operator-norm convergence of the Trotter prod-
uct formula for a pair {A,B} of generators of semigroups on a Banach
space. Operator-norm convergence holds true if the dominating oper-
ator A generates a holomorphic contraction semigroup and B is a A-
infinitesimally small generator of a contraction semigroup, in particular,
if B is a bounded operator. Inspired by studies of evolution semigroups
it is shown in the present paper that the operator-norm convergence
generally fails even for bounded operators B if A is not a holomorphic
generator. Moreover, it is shown that operator norm convergence of the
Trotter product formula can be arbitrary slow.

Keywords. Semigroups, bounded perturbations, Trotter product for-
mula, Darboux-Riemann sums, operator-norm convergence.

1. Introduction and main results

Recall that the product formula

e−τC = lim
n→∞

(
e−τA/ne−τB/n

)n
, τ ≥ 0,

was established by S. Lie (in 1875) for matrices where C := A+B. The proof
is based on the telescopic representation(
e−τA/ne−τB/n

)n − e−τC
=
n−1∑
k=0

(
e−τA/ne−τB/n

)n−1−k (
e−τA/ne−τB/n − e−τC/n

)
e−kτC/n ,

(1.1)

n ∈ N, and expansion

e−τX = I − τX +O(τ2), τ −→ 0,

for a matrix X in the operator-norm topology ‖ · ‖. Indeed, using this expan-
sion one obtains the estimate:

‖e−τA/ne−τB/n − e−τC/n‖ = O((τ/n)2).
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Then from (1.1) we get the existence of a constant c0 > 0 such that the
following estimate holds∥∥(e−τA/ne−τB/n)n − e−τC‖

≤ c0
τ2

n2

n−1∑
k=0

eτ
n−1−k
n τ‖A‖eτ

n−1−k
n τ‖B‖eτ

k
n‖C‖ .

Since ‖C‖ ≤ ‖A‖+ ‖B‖, one obtains inequality∥∥(e−τA/ne−τB/n)n − e−τC‖
≤ c0

τ2

n2

n−1∑
k=0

eτ
n−1
n (‖A‖+‖B‖) ≤ c0

τ2

n
eτ(‖A‖+‖B‖) ,

which yields that

sup
τ∈[0,T ]

∥∥(e−τA/ne−τB/n)n − e−τC‖ = O(1/n) , (1.2)

as n → ∞ for any T > 0. Note that this proof carries through verbatim for
bounded operators A and B on Banach spaces.

H. Trotter [7] has extended this result to unbounded operators A and B
on Banach spaces, but in the strong operator topology. He proved that if A
and B are generators of contractions semigroups on a separable Banach space
such that the algebraic sum A+B is a densely defined closable operator and
the closure C = A+B is a generator of a contraction semigroup, then

e−τC = s- lim
n→∞

(
e−τA/ne−τB/n

)n
, (1.3)

uniformly in τ ∈ [0, T ] for any T > 0. It is obvious that this result holds if B
is a bounded operator.

Considering the Trotter product formula on a Hilbert space T. Kato has
shown in [4] that for non-negative operators A and B the Trotter formula

(1.3) holds in the strong operator topology if dom(
√
A) ∩ dom(

√
B) is dense

in the Hilbert space and C = A+̇B is the form-sum of operators A and B.
Later on it was shown in [3] that the relation (1.2) holds if the algebraic
sum C = A+B is already a self-adjoint operator. Therefore, (1.2) is valid in
particular, if B is a bounded self-adjoint operator.

The historically first result concerning the operator-norm convergence of
the Trotter formula in a Banach space is due to [1]. Since the concept of self-
adjointness is missing for Banach spaces it was assumed that the dominating
operator A is a generator of a contraction holomorphic semigroup and B is
a generator of a contraction semigroup. In Theorem 3.6 of [1] it was shown
that if 0 ∈ ρ(A) and if there is a α ∈ [0, 1) such that dom(Aα) ⊆ dom(B)
and dom(A∗) ⊆ dom(B∗), then for any T > 0 one has

sup
τ∈[0,T ]

∥∥(e−τA/ne−τB/n)n − e−τC‖ = O(ln(n)/n1−α) . (1.4)

Note that the assumption 0 ∈ ρ(A) was made for simplicity and that the
assumption dom(Aα) ⊆ dom(B) yields that the operator B is infinitesimally
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small with respect to A. Taking into account [5, Corollary IX.2.5] one gets
that the well-defined algebraic sum C = A+B is a generator of a contraction
holomorphic semigroup. By Theorem 3.6 of [1] the convergence rate (1.4)
improves if B is a bounded operator, i.e. α = 0. Then for any T > 0 one gets

sup
τ∈[0,T ]

∥∥(e−τA/ne−τB/n)n − e−τC‖ = O((ln(n))2/n) .

Summarizing, the question arises whether the Trotter product formula
converges in the operator-norm if A is a generator of a contraction (but not
holomorphic) semigroup and B is a bounded operator? The aim of the present
paper is to give an answer to this question for a certain class of generators.

It turns out that an appropriate class for that is the class of generators of
evolution semigroups. To proceed further we need the notion of a propagator,
or a solution operator [6].

A strongly continuous map U(·, ·) : ∆ −→ B(X), where ∆ := {(t, s) :
0 < s ≤ t ≤ T} and B(X) is the set of bounded operators on the separable
Banach space X, is called a propagator if the conditions

(i) sup
(t,s)∈∆

‖U(t, s)‖B(X) <∞ ,

(ii) U(t, s) = U(t, r)U(r, s), 0 < s ≤ r ≤ t ≤ T ,

are satisfied. Let us consider the Banach space Lp(I, X), I := [0, T ], p ∈
[1,∞). The operator K is an evolution generator of the evolution semigroup
{e−τK}τ≥0 if there is a propagator such that the representation

(e−τKf)(t) = U(t, t− τ)χI(t− τ)f(t− τ), f ∈ Lp(I, X) , (1.5)

holds for a.e. t ∈ I and τ ≥ 0 [6]. Since e−τKf = 0 for τ ≥ T , the evolution
generator K can never be a generator of a holomorphic semigroup.

A simple example of an evolution generator is the differentiation oper-
ator:

(D0f)(t) := ∂tf(t),

f ∈ dom(D0) := {f ∈ H1,p(I, X) : f(0) = 0}.
(1.6)

Then by (1.6) one obviously gets the contraction shift semigroup:

(e−τD0f)(t) = χI(t− τ)f(t− τ), f ∈ Lp(I, X), (1.7)

for a.e. t ∈ I and τ ≥ 0. Hence, (1.5) implies that the corresponding prop-
agator of the non-holomorphic evolution semigroup {e−τD0}τ≥0 is given by
UD0

(t, s) = I, (t, s) ∈ ∆.

Note that in [6] we considered the operator K0 := D0 +A, where A
is the multiplication operator induced by a generator A of a holomorphic
contraction semigroup on X. More precisely

(Af)(t) := Af(t), and (e−τAf)(t) = e−τAf(t) ,

f ∈ dom(A) := {f ∈ Lp(I, X) : Af(·) ∈ Lp(I, X)} .
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Then the perturbation of the shift semigroup (1.7) by A corresponds to the
semigroup with generator K0. One easily checks that K0 is an evolution gen-
erator of a contraction semigroup on Lp(I, X) that is never holomorphic.
Indeed, since the generators D0 and A commute, the representation (1.5) for
evolution semigroup {e−τK0}τ≥0 takes the form:

(e−τK0f)(t) = e−τAχI(t− τ)f(t− τ), f ∈ Lp(I, X) ,

for a.e. t ∈ I and τ ≥ 0 with propagator U0(t, s) = e−(t−s)A . Therefore,
again e−τK0f = 0 for τ ≥ T .

Furthermore, if B(·) is a strongly measurable family of generators of
contraction semigroups on X, i.e. B(·) : I −→ G(1, 0) (see [4], Ch.IX, §1.4),
then the induced multiplication operator B :

(Bf)(t) := B(t)f(t) , (1.8)

f ∈ dom(B) :=

{
f ∈ Lp(I, X) :

f(t) ∈ dom(B(t)) for a.e. t ∈ I
B(t)f(t) ∈ Lp(I, X)

}
,

is a generator of a contraction semigroup on Lp(I, X).
In [6] it was assumed that {B(t)}t∈I is a strongly measurable family of

generators of contraction semigroups and that A is a generator of a bounded
holomorphic semigroup with 0 ∈ ρ(A) for simplicity. Moreover, we supposed
that the following conditions are satisfied:

(i) dom(Aα) ⊆ dom(B(t)) for a.e. t ∈ I and some α ∈ (0, 1) such that

ess sup
t∈I

‖B(t)A−α‖B(X) <∞ ;

(ii) dom(A∗) ⊆ dom(B(t)∗) for a.e. t ∈ I such that

ess sup
t∈I

‖B(t)∗(A−1)∗‖B(X) <∞ ;

(iii) there is a β ∈ (α, 1) and Lβ > 0 such that

‖A−1(B(t)−B(s))A−α‖B(X) ≤ Lβ |t− s|β , t, s ∈ I. (1.9)

Under these assumptions it turns out that K := K0 +B is a generator of
a contraction evolution semigroup, i.e there is a propagator {U(t, s)}(t,s)∈∆

such that the representation (1.5) is valid. Moreover, we prove in [6] the
Trotter product formula converges in the operator norm with convergence
rate O(1/nβ−α):

sup
τ≥0

∥∥∥(e−τK0/ne−τB/n
)n
− e−τK

∥∥∥
B(Lp(I,X))

= O(1/nβ−α) .

We comment that if B(·) : I −→ B(X) is a Hölder continuous function
with Hölder exponent β ∈ (0, 1), then the assumptions (i)-(iii) are satisfied
for any α ∈ (0, β). Then our results [6] yield that

sup
τ≥0

∥∥∥(e−τK0/ne−τB/n
)n
− e−τK

∥∥∥
B(Lp(I,X))

= O(1/nγ) , (1.10)

holds for any γ ∈ (0, β). Moreover, in this case the perturbation of the shift
semigroup (1.7) by a bounded generator (1.8) gives an evolution semigroup
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with generator D0 + B. Then as a corollary of (1.10) for A = 0, we get the
Trotter product estimate

sup
τ≥0

∥∥∥(e−τD0/ne−τB/n
)n
− e−τ(D0+B)

∥∥∥
B(Lp(I,X))

= O(1/nγ) . (1.11)

The aim of our note is to show that the convergence rate (1.11) is close
to the optimal one. To this end we consider the simple case, when X = C
and we put for simplicity I := [0, 1].

The main results of this paper can be summarized as follows:
If the operator B is equal to the multiplication operator Q induced by a
bounded measurable function q(·) : I −→ C in Lp(I), then one can verify
that the condition (1.9) is equivalent to q(·) ∈ C0,β(I), see definition below.
In this case the convergence rate is

sup
τ≥0

∥∥∥e−τ(D0+Q) −
(
e−τD0/ne−τQ/n

)n∥∥∥
B(Lp(I,X))

= O(1/nβ) . (1.12)

This result remains true if q(·) is Lipschitz continuous, i.e. β = 1. But if q(·)
is only continuous, then

sup
τ≥0

∥∥∥e−τ(D0+Q) −
(
e−τD0/ne−τQ/n

)n∥∥∥
B(Lp(I,X))

= o(1) . (1.13)

Moreover, for any convergent to zero sequence δn > 0, n ∈ N, there exists a
continuous function q(·) such that

sup
τ≥0

∥∥∥e−τ(D0+Q) −
(
e−τD0/ne−τQ/n

)n∥∥∥
B(Lp(I,X))

= ω(δn) , (1.14)

where the Landau symbol ω(·) is defined below.

Finally, there is an example of a bounded measurable function q(·) such
that

lim sup
n→∞

sup
τ≥0

∥∥∥e−τ(D0+Q) −
(
e−τD0/ne−τQ/n

)n∥∥∥
B(Lp(I,X))

> 0 . (1.15)

Hence, in contrast to the holomorphic case, when the dominating operator is
a generator of a holomorphic semigroup (1.4), the Trotter product formula
(1.15) with dominating generatorD0, may not converge in the operator-norm.

The paper is organized as follows. In Section 2 we reformulate the con-
vergence of the Trotter product formula in terms of the corresponding evo-
lutions semigroups. In Section 3 we prove the results (1.12)-(1.15).

We conclude this section by few remarks concerning notation used in
this paper.

1. We use a definition of the generator C of a semigroup (1.3), which differs
from the standard one by a minus [5].
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2. Furthermore, we widely use the so-called Landau symbols:

g(n) = O(f(n))⇐⇒ lim sup
n→∞

∣∣∣∣ g(n)

f(n)

∣∣∣∣ <∞ ,

g(n) = o(f(n))⇐⇒ lim sup
n→∞

∣∣∣∣ g(n)

f(n)

∣∣∣∣ = 0 ,

g(n) = Θ(f(n))⇐⇒ 0 < lim inf
n→∞

∣∣∣∣ g(n)

f(n)

∣∣∣∣ ≤ lim sup
n→∞

∣∣∣∣ g(n)

f(n)

∣∣∣∣ <∞ ,

g(n) = ω(f(n))⇐⇒ lim sup
n→∞

∣∣∣∣ g(n)

f(n)

∣∣∣∣ =∞ .

3. We use the notation C0,β(I) = {f : I → C : there is some K >
0 such that |f(x)− f(y)| ≤ K|x− y|β} for β ∈ (0, 1].

2. Trotter product formula and evolution semigroups

Below we consider the Banach space Lp(I, X) for I := [0, T ], p ∈ [1,∞).
Recall that semigroup {U(τ)}τ≥0, on the Banach space Lp(I, X) is called an
evolution semigroup if there is a propagator {U(t, s)}(t,s)∈∆ such that the
representation (1.5) holds.

Let K0 be the generator of an evolution semigroup {U0(τ)}τ≥0 and let
B be a multiplication operator induced by a measurable family {B(t)}t∈I of
generators of contraction semigroups. Note that in this case the multiplication
operator B (1.8) is a generator of a contraction semigroup (e−τ Bf)(t) =
e−τ B(t)f(t), on the Banach space Lp(I, X). Since {U0(τ)}τ≥0 is an evolution
semigroup, then by definition (1.5) there is a propagator {U0(t, s)}(t,s)∈∆

such that the representation

(U0(τ)f)(t) = U0(t, t− τ)χI(t− τ)f(t− τ), f ∈ Lp(I, X),

is valid for a.e. t ∈ I and τ ≥ 0. Then we define

Gj(t, s;n) := U0(s+ j (t−s)
n , s+ (j − 1) (t−s)

n )e−
(t−s)
n B

(
s+(j−1)

(t−s)
n

)
where j ∈ {1, 2, . . . , n}, n ∈ N, (t, s) ∈ ∆, and we set

Vn(t, s) :=

n←∏
j=1

Gj(t, s;n), n ∈ N, (t, s) ∈ ∆,

where the product is increasingly ordered in j from the right to the left. Then
a straightforward computation shows that the representation((

e−τK0/ne−τB/n
)n

f
)

(t) = Vn(t, t− τ)χI(t− τ)f(t− τ) , (2.1)

f ∈ Lp(I, X), holds for each τ ≥ 0 and a.e. t ∈ I.

Proposition 2.1. Let K and K0 be generators of evolution semigroups on the
Banach space Lp(I, X) for some p ∈ [1,∞). Further, let {B(t) ∈ G(1, 0)}t∈I
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be a strongly measurable family of generators of contraction on X semigroups.
Then

sup
τ≥0

∥∥∥e−τK − (e−τK0/ne−τB/n
)n∥∥∥

B(Lp(I,X))
(2.2)

= ess sup
(t,s)∈∆

‖U(t, s)− Vn(t, s)‖B(X), n ∈ N.

Proof. Let {L(τ)}τ≥0 be the left-shift semigroup on the Banach space X =
Lp(I, X):

(L(τ)f)(t) = χI(t+ τ)f(t+ τ), f ∈ Lp(I, X).

Using that we get(
L(τ)

(
e−τK −

(
e−τ/nK0e−τB/n

)n)
f
)

(t)

= {U(t+ τ, t)− Vn(t+ τ, t)}χI(t+ τ)f(t) ,

for τ ≥ 0 and a.e. t ∈ I. It turns out that for each n ∈ N the opera-

tor L(τ)
(
e−τK −

(
e−τ/nK0e−τB/n

)n)
is a multiplication operator induced

by {(U(t+ τ, t)− Vn(t+ τ, t))χI(t+ τ)}t∈I . Therefore,∥∥∥L(τ)
(
e−τK −

(
e−τK0/ne−τB/n

)n)∥∥∥
B(X)

= ess sup
t∈I

‖U(t+ τ, t)− Vn(t+ τ, t)‖B(X)χI(t+ τ) ,

for each τ ≥ 0. Note that one has

sup
τ≥0

∥∥∥L(τ)
(
e−τK −

(
e−τK0/ne−τB/n

)n)∥∥∥
B(X)

= ess sup
τ≥0

∥∥∥L(τ)
(
e−τK −

(
e−τK0/ne−τB/n

)n)∥∥∥
B(X)

.

This is based on the fact that if F (·) : R+ −→ B(X) is strongly continuous,
then supτ≥0 ‖F (τ)‖B(X) = ess supτ≥0 ‖F (τ)‖B(X). Hence, we find

sup
τ≥0

∥∥∥L(τ)
(
e−τK −

(
e−τK0/ne−τB/n

)n)∥∥∥
B(X)

= ess sup
τ≥0

ess sup
t∈I

‖U(t+ τ, t)− Vn(t+ τ, t))‖B(X)χI(t+ τ).

Further, if Φ(·, ·) : R+ × I −→ B(X) is a strongly measurable function, then

ess sup
(τ,t)∈R+×I

‖Φ(τ, t)‖B(X) = ess sup
τ≥0

ess sup
t∈I

‖Φ(τ, t)‖B(X).

Then, taking into account two last equalities, one obtains

sup
τ≥0

∥∥∥L(τ)
(
e−τK −

(
e−τK0/ne−τB/n

)n)∥∥∥
B(X)

= ess sup
(τ,t)∈R+×I

‖U(t+ τ, t)− Vn(t+ τ, t)‖B(X)χI(t+ τ) =

= ess sup
(t,s)∈∆

‖U(t, s)− Vn(t, s)‖B(X) ,

that proves (2.2) �
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3. Bounded perturbations of the shift semigroup generator

3.1. Basic facts

We study bounded perturbations of the evolution generator D0 (1.6). To do
this aim we consider I = [0, 1], X = C and we denote by Lp(I) the Banach
space Lp(I,C).

For t ∈ I, let q : t 7→ q(t) ∈ L∞(I). Then, q induces a bounded
multiplication operator Q on the Banach space Lp(I):

(Qf)(t) = q(t)f(t), f ∈ Lp(I).

For simplicity we assume that q ≥ 0. ThenQ generates on Lp(I) a contraction
semigroup {e−τQ}τ≥0. Since generator Q is bounded, the closed operator
A := D0 +Q, with domain dom(A) = dom(D0), is generator of a semigroup
on Lp(I). By [7], the Trotter product formula in the strong topology follows
immediately (

e−τD0/ne−τQ/n
)n

f → e−τ(D0+Q)f, f ∈ Lp(I), (3.1)

uniformly in τ ∈ [0, T ] on bounded time intervals.
Following [2, §5], we define on X = C a family of bounded operators

{V (t)}t∈I by

V (t) := e−
∫ t
0
dsq(s) .

Note that for almost every t ∈ I these operators are positive. Then V −1(t)
exists and it has the form

V −1(t) = e
∫ t
0
dsq(s).

The operator families {V (t)}t∈I and {V −1(t)}t∈I induce two bounded mul-
tiplication operators V and V−1 on Lp(I), respectively. Then invertibility
implies that V V−1 = V−1 V = Id|Lp . Using the operator V one easily verifies
that D0 +Q is similar to D0, i.e. one has

V−1(D0 +Q)V = D0, or D0 +Q = VD0V−1 .

Hence, the semigroup generated on Lp(I) by D0 +Q gets the explicit form:(
e−τ(D0+Q)f

)
(t) =

(
Ve−τD0V−1f

)
(t) = (3.2)

= e−
∫ t
t−τ q(y)dyf(t− τ)χI(t− τ) .

Since by (1.5) the propagator U(t, s) that corresponds to evolution semigroup
(3.2) is defined by(

e−τ(D0+Q)
)
f(t) = U(t, t− τ)f(t− τ)χI(t− τ) ,

we deduce that it is equal to U(t, s) = e−
∫ t
s
dy q(y).

Now we study the corresponding Trotter product formula. For a fixed
τ ≥ 0 and n ∈ N, we define approximation Vn by((

e−τD0/ne−τQ/n
)n

f
)

(t) =: Vn(t, t− τ)χI(t− τ)f(t− τ) .
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Then by straightforward calculations, similar to (2.1), one finds that

Vn(t, s) = e−
t−s
n

∑n−1
k=0 q(s+k

t−s
n ), (t, s) ∈ ∆ .

Proposition 3.1. Let q ∈ L∞(I) be non-negative. Then

sup
τ≥0

∥∥∥e−τ(D0+Q) −
(
e−τD0/ne−τQ/n

)n∥∥∥
B(Lp(I))

= Θ

(
ess sup
(t,s)∈∆

∣∣∣ ∫ t

s

q(y)dy − t− s
n

n−1∑
k=0

q(s+ k t−sn )
∣∣∣)

as n→∞, where Θ is the Landau symbol defined in Section 1.

Proof. First, by Proposition 2.1 and by U(t, s) = e−
∫ t
s
dy q(y) we obtain

sup
τ≥0

∥∥∥e−τ(D0+Q) −
(
e−τD0/ne−τQ/n

)n∥∥∥
B(Lp(I))

(3.3)

= ess sup
(t,s)∈∆

∣∣∣∣e− ∫ t
s
dy q(y) − e−

t−s
n

∑n−1
k=0 q(s+k

t−s
n )

∣∣∣∣ .
Then, using the inequality

e−max{x,y}|x− y| ≤ |e−x − e−y| ≤ |x− y|, 0 ≤ x, y ,
for 0 ≤ s < t ≤ 1 one finds the estimates

e−‖q‖L∞Rn(t, s; q) ≤
∣∣∣e− ∫ t

s
dy q(y) − e−

t−s
n

∑n−1
k=0 q(s+k

t−s
n )
∣∣∣ ≤ Rn(t, s; q) ,

where

Rn(t, s, q) :=
∣∣∣ ∫ t

s

dy q(y)− t− s
n

n−1∑
k=0

q(s+ k t−sn )
∣∣∣ , (t, s) ∈ ∆ . (3.4)

Hence, for the left-hand side of (3.3) we get the estimate

e−‖q‖L∞Rn(q) ≤ sup
τ≥0

∥∥∥e−τ(D0+Q) −
(
e−τD0/ne−τQ/n

)n∥∥∥
B(Lp)

≤ Rn(q) ,

where Rn(q) := ess sup(t,s)∈∆Rn(t, s; q), n ∈ N. These estimates together
with definition of Θ prove the assertion. �

Note that by virtue of (3.4) and Proposition 3.1 the operator-norm con-
vergence rate of the Trotter product formula for the pair {D0, Q} coincides
with the convergence rate of the integral Darboux-Riemann sum approxima-
tion of the Lebesgue integral.

3.2. Examples

First we consider the case of a real Hölder-continuous function q ∈ C0,β(I).

Theorem 3.2. If q ∈ C0,β(I) is non-negative, then

sup
τ≥0

∥∥∥e−τ(D0+Q) −
(
e−τD0/ne−τQ/n

)n∥∥∥ = O(1/nβ) ,

as n→∞.
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Proof. One has∫ t

s

dy q(y)− t− s
n

n−1∑
k

q(s+ k
n (t− s))

=

n−1∑
k=0

∫ k+1
n (t−s)

k
n (t−s)

dy
(
q(s+ y)− q(s+ k

n (t− s))
)
,

which yields the estimate∣∣∣ ∫ t

s

dy q(y)− t− s
n

n−1∑
k

q(s+ k
n (t− s))

∣∣∣
≤
n−1∑
k=0

∫ k+1
n (t−s)

k
n (t−s)

dy
∣∣q(s+ y)− q(s+ k

n (t− s))
∣∣ .

Since q ∈ C0,β(I), there is a constant Lβ > 0 such that for y ∈ [ kn (t −
s), k+1

n (t− s)] one has∣∣q(s+ y)− q(s+ k
n (t− s)

∣∣ ≤ Lβ |y − k
n (t− s)|β ≤ Lβ

(t− s)β

nβ
.

Hence, we find∣∣∣ ∫ t

s

q(y)dy − t− s
n

n−1∑
k

q(s+ k
n (t− s))

∣∣∣ ≤ Lβ (t− s)1+β

nβ
≤ Lβ

1

nβ
,

which proves

ess sup
(t,s)∈∆

∣∣∣ ∫ t

s

q(y)dy − t− s
n

n−1∑
k

q(s+ k
n (t− s))

∣∣∣ = O

(
1

nβ

)
.

Applying now Proposition 3.1 one completes the proof. �

It is a natural question: what happens, when q is only continuous?

Theorem 3.3. If q : I → C is continuous and non-negative, then∥∥∥e−τ(D0+Q) −
(
e−τD0/ne−τQ/n

)n∥∥∥ = o(1) , (3.5)

as n→∞.

Proof. Since q(·) is continuous, then for any ε > 0 there is δ > 0 such that
for |y−x| < δ we have |q(y)− q(x)| < ε, y, x ∈ I. Therefore, if 1/n < δ, then
for y ∈ ( kn (t− s), k+1

n (t− s)) we have

|q(s+ y)− q(s+ k
n (t− s))| < ε, (t, s) ∈ ∆ .

Hence, ∣∣∣ ∫ t

s

q(y)dy − t− s
n

n−1∑
k

q(s+ k
n (t− s))

∣∣∣ ≤ ε(t− s) ≤ ε ,
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which yields

ess sup
(t,s)∈∆

∣∣∣ ∫ t

s

q(y)dy − t− s
n

n−1∑
k

q(s+ k
n (t− s))

∣∣∣ = o(1) .

Now it remains only to apply Proposition 3.1. �

We comment that for a general continuous q one can say nothing about
the convergence rate. Indeed, it can be shown that in (3.5) the convergence
to zero can be arbitrary slow.

Theorem 3.4. Let δn > 0 be a sequence with δn → 0 as n → ∞. Then there
exists a continuous function q : I = [0, 1]→ R such that

sup
τ≥0

∥∥∥e−τ(D0+Q) −
(
e−τD0/ne−τQ/n

)n∥∥∥
B(Lp(I))

= ω(δn) (3.6)

as n→∞, where ω is the Landau symbol defined in Section 1.

Proof. Taking into account Theorem 6 of [8], we find that for any sequence
{δn}n∈N, δn > 0 satisfying limn→∞ δn = 0 there exists a continuous function
f(·) : [0, 2π] −→ R such that∣∣∣∣∣

∫ 2π

0

f(x) dx− 2π

n

n∑
k=1

f(2kπ/n)

∣∣∣∣∣ = ω(δn) ,

as n → ∞. Setting q(y) := f(2π(1 − y)), y ∈ [0, 1], we get a continuous
function q(·) : [0, 1] −→ R, such that∣∣∣∣∣

∫ 1

0

q(y)dy − 1

n

n−1∑
k=0

q(k/n)

∣∣∣∣∣ = ω(δn) .

Because q(·) is continuous we find

ess sup
(t,s)∈∆

∣∣∣ ∫ t

s

q(y) dy − t− s
n

n−1∑
n=0

q(s+ k t−sn )
∣∣∣

≥
∣∣∣ ∫ 1

0

q(y) dy − 1

n

n−1∑
k=0

q(k/n)
∣∣∣ ,

which yields

ess sup
(t,s)∈∆

∣∣∣ ∫ t

s

q(y) dy − t− s
n

n−1∑
n=0

q(s+ k t−sn )
∣∣∣ = ω(δn) .

Applying now Proposition 3.1 we prove (3.6). �

Our final comment concerns the case when q is only measurable. Then
it can happen that the Trotter product formula for that pair {D0, Q} does
not converge in the operator-norm topology.
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Theorem 3.5. There is a non-negative function q ∈ L∞([0, 1]) such that

lim sup
n→∞

sup
τ≥0

∥∥∥e−τ(D0+Q) −
(
e−τD0/ne−τQ/n

)n∥∥∥
B(Lp(I))

> 0 . (3.7)

Proof. Let us introduce the open intervals

∆0,n := (0, 1
22n+2 ),

∆k,n := (tk,n − 1
22n+2 , tk,n + 1

22n+2 ), k = 1, 2, . . . , 2n − 1,

∆2n,n := (1− 1
22n+2 , 1),

n ∈ N, where

tk,n =
k

2n
, k = 0, . . . , n, n ∈ N.

Notice that t0,n = 0 and t2n,n = 1. One easily checks that the intervals ∆k,n,
k = 0, . . . , 2n, are mutually disjoint. We introduce the open sets

On =

2n⋃
k=0

∆k,n ⊆ I, n ∈ N.

and

O =
⋃
n∈N
On ⊆ I.

Then it is clear that

|On| =
1

2n+1
, n ∈ N, and |O| ≤ 1

2
.

Therefore, the Lebesgue measure of the closed set C := I \ O ⊆ I can be
estimated by

|C| ≥ 1

2
.

Using the characteristic function χC(·) of the set C we define

q(t) := χC(t), t ∈ I .
The function q(·) is measurable and it satisfies 0 ≤ q(t) ≤ 1, t ∈ I.

Let ε ∈ (0, 1). We choose s ∈ (0, ε) and t ∈ (1− ε, 1) and we set

ξk,n(t, s) := s+ k
t− s
2n

, k = 0, . . . , 2n − 1, n ∈ N, (t, s) ∈ ∆.

Note that ξk,n(t, s) ∈ (0, 1), k = 0, . . . , 2n − 1, n ∈ N. Moreover, we have

tk,n − ξk,n(t, s) = k
1

2n
− s− k t− s

2n
= k

1− t+ s

2n
− s ,

which leads to the estimate

|tk,n − ξk,n(t, s)| ≤ ε( k

2n−1
+ 1), k = 0, . . . , 2n − 1, n ∈ N .

Hence

|tk,n − ξk,n(t, s)| ≤ 3ε, k = 0, . . . , 2n − 1, n ∈ N.
Let εn := 1/(3 · 22n+2) for n ∈ N. Then we get that ξk,n(t, s) ∈ ∆k,n for
k = 0, . . . , 2n − 1, n ∈ N, s ∈ (0, εn) and for t ∈ (1− εn, 1).
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Now let

Sn(t, s; q) :=
t− s
n

n−1∑
k=0

q(s+ k t−sn ), n ∈ N, (t, s) ∈ ∆ .

We consider

S2n(t, s; q) =
t− s
n

2n−1∑
k=0

q(s+ k t−s2n ) =
t− s
n

2n−1∑
k=0

q(ξk,n(t, s)),

n ∈ N, (t, s) ∈ ∆. If s ∈ (0, εn) and t ∈ (1 − εn, 1), then S2n(t, s; q) = 0,
n ∈ N and ∣∣∣∣∫ t

s

q(y) dy − S2n(t, s; q)

∣∣∣∣ =

∫ t

s

q(y)dy, n ∈ N,

for s ∈ (0, εn) and t ∈ (1− εn, 1). In particular, this yields

ess sup
(t,s)∈∆

∣∣∣∣∫ t

s

q(y)dy − S2n(t, s; q)

∣∣∣∣ ≥ ess sup
(t,s)∈∆

∫ t

s

q(y)dy ≥
∫
I
χC(y)dy ≥ 1

2
.

Hence, we obtain

lim sup
n→∞

ess sup
(t,s)∈∆

∣∣∣∣∫ t

s

q(y)dy − S2n(t, s; q)

∣∣∣∣ ≥ 1

2
,

and applying Proposition 3.1 we finish the prove of (3.7). �

We note that Theorem 3.5 does not exclude the convergence of the
Trotter product formula for the pair {D0, Q} in the strong operator topology.
Examples of this dichotomy are known for the Trotter-Kato product formula
in Hilbert spaces [3]. By virtue of (3.1) and (3.7), Theorem 3.5 yields an
example of this dichotomy in Banach spaces.
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Aix-Marseille Université, CNRS, Centrale Marseille, I2M,
Marseille, France
e-mail: valentin.zagrebnov@univ-amu.fr


