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We revise the operator-norm convergence of the Trotter product formula for a pair {A, B} of generators of semigroups on a Banach space. Operator-norm convergence holds true if the dominating operator A generates a holomorphic contraction semigroup and B is a Ainfinitesimally small generator of a contraction semigroup, in particular, if B is a bounded operator. Inspired by studies of evolution semigroups it is shown in the present paper that the operator-norm convergence generally fails even for bounded operators B if A is not a holomorphic generator. Moreover, it is shown that operator norm convergence of the Trotter product formula can be arbitrary slow.

Introduction and main results

Recall that the product formula e -τ C = lim e -τ A/n e -τ B/n n-1-k e -τ A/n e -τ B/n -e -τ C/n e -kτ C/n , (

n ∈ N, and expansion e -τ X = I -τ X + O(τ 2 ), τ -→ 0, for a matrix X in the operator-norm topology • . Indeed, using this expansion one obtains the estimate:

e -τ A/n e -τ B/n -e -τ C/n = O((τ /n) 2 ).

Then from (1.1) we get the existence of a constant c 0 > 0 such that the following estimate holds 

as n → ∞ for any T > 0. Note that this proof carries through verbatim for bounded operators A and B on Banach spaces. H. Trotter [START_REF] Hale | On the product of semi-groups of operators[END_REF] has extended this result to unbounded operators A and B on Banach spaces, but in the strong operator topology. He proved that if A and B are generators of contractions semigroups on a separable Banach space such that the algebraic sum A + B is a densely defined closable operator and the closure C = A + B is a generator of a contraction semigroup, then e -τ C = s-lim n→∞ e -τ A/n e -τ B/n n , (1.3) uniformly in τ ∈ [0, T ] for any T > 0. It is obvious that this result holds if B is a bounded operator.

Considering the Trotter product formula on a Hilbert space T. Kato has shown in [START_REF] Kato | Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups. Topics in functional analysis, Essays dedic[END_REF] that for non-negative operators A and B the Trotter formula (1.3) holds in the strong operator topology if dom( √ A) ∩ dom( √ B) is dense in the Hilbert space and C = A +B is the form-sum of operators A and B. Later on it was shown in [START_REF] Ichinose | Note on the paper: "The norm convergence of the Trotter-Kato product formula with error bound[END_REF] that the relation (1.2) holds if the algebraic sum C = A + B is already a self-adjoint operator. Therefore, (1.2) is valid in particular, if B is a bounded self-adjoint operator.

The historically first result concerning the operator-norm convergence of the Trotter formula in a Banach space is due to [START_REF] Cachia | Operator-norm convergence of the Trotter product formula for holomorphic semigroups[END_REF]. Since the concept of selfadjointness is missing for Banach spaces it was assumed that the dominating operator A is a generator of a contraction holomorphic semigroup and B is a generator of a contraction semigroup. In Theorem 3.6 of [START_REF] Cachia | Operator-norm convergence of the Trotter product formula for holomorphic semigroups[END_REF] it was shown that if 0 ∈ ρ(A) and if there is a α ∈ [0, 1) such that dom(A α ) ⊆ dom(B) and dom(A * ) ⊆ dom(B * ), then for any T > 0 one has

sup τ ∈[0,T ] e -τ A/n e -τ B/n n -e -τ C = O(ln(n)/n 1-α ) .
(1.4)

Note that the assumption 0 ∈ ρ(A) was made for simplicity and that the assumption dom(A α ) ⊆ dom(B) yields that the operator B is infinitesimally small with respect to A. Taking into account [START_REF] Kato | Perturbation theory for linear operators[END_REF]Corollary IX.2.5] one gets that the well-defined algebraic sum C = A + B is a generator of a contraction holomorphic semigroup. By Theorem 3.6 of [START_REF] Cachia | Operator-norm convergence of the Trotter product formula for holomorphic semigroups[END_REF] the convergence rate (1.4) improves if B is a bounded operator, i.e. α = 0. Then for any T > 0 one gets

sup τ ∈[0,T ] e -τ A/n e -τ B/n n -e -τ C = O((ln(n)) 2 /n) .
Summarizing, the question arises whether the Trotter product formula converges in the operator-norm if A is a generator of a contraction (but not holomorphic) semigroup and B is a bounded operator? The aim of the present paper is to give an answer to this question for a certain class of generators.

It turns out that an appropriate class for that is the class of generators of evolution semigroups. To proceed further we need the notion of a propagator, or a solution operator [START_REF] Neidhardt | Convergence rate estimates for the Trotter product approximations of solution operators for nonautonomous Cauchy problems[END_REF].

A strongly continuous map U (•, •) : ∆ -→ B(X), where ∆ := {(t, s) : 0 < s ≤ t ≤ T } and B(X) is the set of bounded operators on the separable Banach space X, is called a propagator if the conditions (i) sup

(t,s)∈∆ U (t, s) B(X) < ∞ , (ii) U (t, s) = U (t, r)U (r, s), 0 < s ≤ r ≤ t ≤ T , are satisfied. Let us consider the Banach space L p (I, X), I := [0, T ], p ∈ [1, ∞).
The operator K is an evolution generator of the evolution semigroup {e -τ K } τ ≥0 if there is a propagator such that the representation

(e -τ K f )(t) = U (t, t -τ )χ I (t -τ )f (t -τ ), f ∈ L p (I, X) , (1.5) 
holds for a.e. t ∈ I and τ ≥ 0 [START_REF] Neidhardt | Convergence rate estimates for the Trotter product approximations of solution operators for nonautonomous Cauchy problems[END_REF]. Since e -τ K f = 0 for τ ≥ T , the evolution generator K can never be a generator of a holomorphic semigroup.

A simple example of an evolution generator is the differentiation operator:

(D 0 f )(t) := ∂ t f (t), f ∈ dom(D 0 ) := {f ∈ H 1,p (I, X) : f (0) = 0}.
(1.6)

Then by (1.6) one obviously gets the contraction shift semigroup:

(e -τ D0 f )(t) = χ I (t -τ )f (t -τ ), f ∈ L p (I, X), (1.7) 
for a.e. t ∈ I and τ ≥ 0. Hence, (1.5) implies that the corresponding propagator of the non-holomorphic evolution semigroup {e -τ D0 } τ ≥0 is given by U D0 (t, s) = I, (t, s) ∈ ∆. Note that in [START_REF] Neidhardt | Convergence rate estimates for the Trotter product approximations of solution operators for nonautonomous Cauchy problems[END_REF] we considered the operator K 0 := D 0 + A, where A is the multiplication operator induced by a generator A of a holomorphic contraction semigroup on X. More precisely (Af )(t) := Af (t), and (e

-τ A f )(t) = e -τ A f (t) , f ∈ dom(A) := {f ∈ L p (I, X) : Af (•) ∈ L p (I, X)} .
Then the perturbation of the shift semigroup (1.7) by A corresponds to the semigroup with generator K 0 . One easily checks that K 0 is an evolution generator of a contraction semigroup on L p (I, X) that is never holomorphic. Indeed, since the generators D 0 and A commute, the representation (1.5) for evolution semigroup {e -τ K0 } τ ≥0 takes the form:

(e -τ K0 f )(t) = e -τ A χ I (t -τ )f (t -τ ), f ∈ L p (I, X) ,
for a.e. t ∈ I and τ ≥ 0 with propagator U 0 (t, s) = e -(t-s)A . Therefore, again e -τ K0 f = 0 for τ ≥ T .

Furthermore, if B(•) is a strongly measurable family of generators of contraction semigroups on X, i.e. B(•) : I -→ G(1, 0) (see [START_REF] Kato | Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups. Topics in functional analysis, Essays dedic[END_REF], Ch.IX, §1.4), then the induced multiplication operator B :

(Bf )(t) := B(t)f (t) , (1.8) 
f ∈ dom(B) := f ∈ L p (I, X) : f (t) ∈ dom(B(t)) for a.e. t ∈ I B(t)f (t) ∈ L p (I, X) ,
is a generator of a contraction semigroup on L p (I, X).

In [START_REF] Neidhardt | Convergence rate estimates for the Trotter product approximations of solution operators for nonautonomous Cauchy problems[END_REF] it was assumed that {B(t)} t∈I is a strongly measurable family of generators of contraction semigroups and that A is a generator of a bounded holomorphic semigroup with 0 ∈ ρ(A) for simplicity. Moreover, we supposed that the following conditions are satisfied:

(i) dom(A α ) ⊆ dom(B(t)) for a.e. t ∈ I and some α ∈ (0, 1) such that

ess sup t∈I B(t)A -α B(X) < ∞ ; (ii) dom(A * ) ⊆ dom(B(t) * ) for a.e. t ∈ I such that ess sup t∈I B(t) * (A -1 ) * B(X) < ∞ ;
(iii) there is a β ∈ (α, 1) and L β > 0 such that

A -1 (B(t) -B(s))A -α B(X) ≤ L β |t -s| β , t, s ∈ I. (1.9)
Under these assumptions it turns out that K := K 0 + B is a generator of a contraction evolution semigroup, i.e there is a propagator {U (t, s)} (t,s)∈∆ such that the representation (1.5) is valid. Moreover, we prove in [START_REF] Neidhardt | Convergence rate estimates for the Trotter product approximations of solution operators for nonautonomous Cauchy problems[END_REF] the Trotter product formula converges in the operator norm with convergence rate O(1/n β-α ):

sup τ ≥0 e -τ K0/n e -τ B/n n -e -τ K B(L p (I,X)) = O(1/n β-α ) .
We comment that if B(•) : I -→ B(X) is a Hölder continuous function with Hölder exponent β ∈ (0, 1), then the assumptions (i)-(iii) are satisfied for any α ∈ (0, β). Then our results [START_REF] Neidhardt | Convergence rate estimates for the Trotter product approximations of solution operators for nonautonomous Cauchy problems[END_REF] 

yield that sup τ ≥0 e -τ K0/n e -τ B/n n -e -τ K B(L p (I,X)) = O(1/n γ ) , (1.10) 
holds for any γ ∈ (0, β). Moreover, in this case the perturbation of the shift semigroup (1.7) by a bounded generator (1.8) gives an evolution semigroup with generator D 0 + B. Then as a corollary of (1.10) for A = 0, we get the Trotter product estimate sup τ ≥0

e -τ D0/n e -τ B/n n -e -τ (D0+B)

B(L p (I,X)) = O(1/n γ ) . (1.11)
The aim of our note is to show that the convergence rate (1.11) is close to the optimal one. To this end we consider the simple case, when X = C and we put for simplicity

I := [0, 1].
The main results of this paper can be summarized as follows: If the operator B is equal to the multiplication operator Q induced by a bounded measurable function q(•) : I -→ C in L p (I), then one can verify that the condition (1.9) is equivalent to q(•) ∈ C 0,β (I), see definition below. In this case the convergence rate is

sup τ ≥0 e -τ (D0+Q) -e -τ D0/n e -τ Q/n n B(L p (I,X)) = O(1/n β ) .
(1.12)

This result remains true if q(•) is Lipschitz continuous, i.e. β = 1. But if q(•) is only continuous, then sup τ ≥0 e -τ (D0+Q) -e -τ D0/n e -τ Q/n n B(L p (I,X)) = o(1) . (1.13) 
Moreover, for any convergent to zero sequence δ n > 0, n ∈ N, there exists a continuous function q(•) such that sup

τ ≥0 e -τ (D0+Q) -e -τ D0/n e -τ Q/n n B(L p (I,X)) = ω(δ n ) , (1.14) 
where the Landau symbol ω(•) is defined below. Finally, there is an example of a bounded measurable function q(•) such that lim sup

n→∞ sup τ ≥0 e -τ (D0+Q) -e -τ D0/n e -τ Q/n n B(L p (I,X)) > 0 .
(1.15)

Hence, in contrast to the holomorphic case, when the dominating operator is a generator of a holomorphic semigroup (1.4), the Trotter product formula (1.15) with dominating generator D 0 , may not converge in the operator-norm. The paper is organized as follows. In Section 2 we reformulate the convergence of the Trotter product formula in terms of the corresponding evolutions semigroups. In Section 3 we prove the results (1.12)-(1.15).

We conclude this section by few remarks concerning notation used in this paper.

1. We use a definition of the generator C of a semigroup (1.3), which differs from the standard one by a minus [START_REF] Kato | Perturbation theory for linear operators[END_REF].

2. Furthermore, we widely use the so-called Landau symbols:

g(n) = O(f (n)) ⇐⇒ lim sup n→∞ g(n) f (n) < ∞ , g(n) = o(f (n)) ⇐⇒ lim sup n→∞ g(n) f (n) = 0 , g(n) = Θ(f (n)) ⇐⇒ 0 < lim inf n→∞ g(n) f (n) ≤ lim sup n→∞ g(n) f (n) < ∞ , g(n) = ω(f (n)) ⇐⇒ lim sup n→∞ g(n) f (n) = ∞ .
3. We use the notation C 0,β (I) = {f : I → C : there is some

K > 0 such that |f (x) -f (y)| ≤ K|x -y| β } for β ∈ (0, 1].

Trotter product formula and evolution semigroups

Below we consider the Banach space L p (I, X) for

I := [0, T ], p ∈ [1, ∞).
Recall that semigroup {U(τ )} τ ≥0 , on the Banach space L p (I, X) is called an evolution semigroup if there is a propagator {U (t, s)} (t,s)∈∆ such that the representation (1.5) holds. Let K 0 be the generator of an evolution semigroup {U 0 (τ )} τ ≥0 and let B be a multiplication operator induced by a measurable family {B(t)} t∈I of generators of contraction semigroups. Note that in this case the multiplication operator B (1.8) is a generator of a contraction semigroup (e -τ B f )(t) = e -τ B(t) f (t), on the Banach space L p (I, X). Since {U 0 (τ )} τ ≥0 is an evolution semigroup, then by definition (1.5) there is a propagator {U 0 (t, s)} (t,s)∈∆ such that the representation

(U 0 (τ )f )(t) = U 0 (t, t -τ )χ I (t -τ )f (t -τ ), f ∈ L p (I, X),
is valid for a.e. t ∈ I and τ ≥ 0. Then we define

G j (t, s; n) := U 0 (s + j (t-s) n , s + (j -1) (t-s) n )e -(t-s) n B s+(j-1) (t-s) n
where j ∈ {1, 2, . . . , n}, n ∈ N, (t, s) ∈ ∆, and we set

V n (t, s) := n ← j=1 G j (t, s; n), n ∈ N, (t, s) ∈ ∆,
where the product is increasingly ordered in j from the right to the left. Then a straightforward computation shows that the representation

e -τ K0/n e -τ B/n n f (t) = V n (t, t -τ )χ I (t -τ )f (t -τ ) , (2.1) 
f ∈ L p (I, X), holds for each τ ≥ 0 and a.e. t ∈ I.

Proposition 2.1. Let K and K 0 be generators of evolution semigroups on the Banach space L p (I, X) for some p ∈ [1, ∞). Further, let {B(t) ∈ G(1, 0)} t∈I be a strongly measurable family of generators of contraction on X semigroups. Then

sup τ ≥0 e -τ K -e -τ K0/n e -τ B/n n B(L p (I,X)) (2.2) = ess sup (t,s)∈∆ U (t, s) -V n (t, s) B(X) , n ∈ N.
Proof. Let {L(τ )} τ ≥0 be the left-shift semigroup on the Banach space X = L p (I, X):

(L(τ )f )(t) = χ I (t + τ )f (t + τ ), f ∈ L p (I, X). Using that we get L(τ ) e -τ K -e -τ /nK0 e -τ B/n n f (t) = {U (t + τ, t) -V n (t + τ, t)} χ I (t + τ )f (t) ,
for τ ≥ 0 and a.e. t ∈ I. It turns out that for each n ∈ N the operator L(τ ) e -τ K -e -τ /nK0 e -τ B/n n is a multiplication operator induced by {(U (t + τ, t) -V n (t + τ, t))χ I (t + τ )} t∈I . Therefore,

L(τ ) e -τ K -e -τ K0/n e -τ B/n n B(X) = ess sup t∈I U (t + τ, t) -V n (t + τ, t) B(X) χ I (t + τ ) ,
for each τ ≥ 0. Note that one has . This is based on the fact that if F (•) : R + -→ B(X) is strongly continuous, then sup τ ≥0 F (τ ) B(X) = ess sup τ ≥0 F (τ ) B(X) . Hence, we find

sup τ ≥0 L(τ ) e -τ K -e -τ K0/n e -τ B/n n B(X) = ess sup τ ≥0 ess sup t∈I U (t + τ, t) -V n (t + τ, t)) B(X) χ I (t + τ ).
Further, if Φ(•, •) : R + × I -→ B(X) is a strongly measurable function, then ess sup

(τ,t)∈R+×I Φ(τ, t) B(X) = ess sup τ ≥0 ess sup t∈I Φ(τ, t) B(X) .
Then, taking into account two last equalities, one obtains

sup τ ≥0 L(τ ) e -τ K -e -τ K0/n e -τ B/n n B(X) = ess sup (τ,t)∈R+×I U (t + τ, t) -V n (t + τ, t) B(X) χ I (t + τ ) = = ess sup (t,s)∈∆ U (t, s) -V n (t, s) B(X) , that proves (2.2)
3. Bounded perturbations of the shift semigroup generator

Basic facts

We study bounded perturbations of the evolution generator D 0 (1.6). To do this aim we consider I = [0, 1], X = C and we denote by L p (I) the Banach space L p (I, C). For t ∈ I, let q : t → q(t) ∈ L ∞ (I). Then, q induces a bounded multiplication operator Q on the Banach space L p (I):

(Qf )(t) = q(t)f (t), f ∈ L p (I).
For simplicity we assume that q ≥ 0. Then Q generates on L p (I) a contraction semigroup {e -τ Q } τ ≥0 . Since generator Q is bounded, the closed operator A := D 0 + Q, with domain dom(A) = dom(D 0 ), is generator of a semigroup on L p (I). By [START_REF] Hale | On the product of semi-groups of operators[END_REF], the Trotter product formula in the strong topology follows immediately

e -τ D0/n e -τ Q/n n f → e -τ (D0+Q) f, f ∈ L p (I), (3.1) 
uniformly in τ ∈ [0, T ] on bounded time intervals. Following [2, §5], we define on X = C a family of bounded operators {V (t)} t∈I by V (t) := e -t 0 dsq(s) .

Note that for almost every t ∈ I these operators are positive. Then V -1 (t) exists and it has the form

V -1 (t) = e t 0 dsq(s) .
The operator families {V (t)} t∈I and {V -1 (t)} t∈I induce two bounded multiplication operators V and V -1 on L p (I), respectively. Then invertibility implies that V V -1 = V -1 V = Id| L p . Using the operator V one easily verifies that D 0 + Q is similar to D 0 , i.e. one has

V -1 (D 0 + Q)V = D 0 , or D 0 + Q = VD 0 V -1 .
Hence, the semigroup generated on L p (I) by D 0 + Q gets the explicit form:

e -τ (D0+Q) f (t) = Ve -τ D0 V -1 f (t) = (3.2) = e -t t-τ q(y)dy f (t -τ )χ I (t -τ ) .
Since by (1.5) the propagator U (t, s) that corresponds to evolution semigroup (3.2) is defined by

e -τ (D0+Q) f (t) = U (t, t -τ )f (t -τ )χ I (t -τ ) ,
we deduce that it is equal to U (t, s) = e -t s dy q(y) . Now we study the corresponding Trotter product formula. For a fixed τ ≥ 0 and n ∈ N, we define approximation V n by

e -τ D0/n e -τ Q/n n f (t) =: V n (t, t -τ )χ I (t -τ )f (t -τ ) .
Then by straightforward calculations, similar to (2.1), one finds that

V n (t, s) = e -t-s n n-1 k=0 q(s+k t-s n ) , (t, s) ∈ ∆ . Proposition 3.1. Let q ∈ L ∞ (I) be non-negative. Then sup τ ≥0 e -τ (D0+Q) -e -τ D0/n e -τ Q/n n B(L p (I)) = Θ ess sup (t,s)∈∆ t s q(y)dy - t -s n n-1 k=0 q(s + k t-s n )
as n → ∞, where Θ is the Landau symbol defined in Section 1.

Proof. First, by Proposition 2.1 and by U (t, s) = e -t s dy q(y) we obtain

sup τ ≥0 e -τ (D0+Q) -e -τ D0/n e -τ Q/n n B(L p (I)) (3.3) 
= ess sup

(t,s)∈∆ e -t s dy q(y) -e -t-s n n-1 k=0 q(s+k t-s n ) .
Then, using the inequality

e -max{x,y} |x -y| ≤ |e -x -e -y | ≤ |x -y|, 0 ≤ x, y , for 0 ≤ s < t ≤ 1 one finds the estimates e -q L ∞ R n (t, s; q) ≤ e -t s dy q(y) -e -t-s n n-1 k=0 q(s+k t-s n ) ≤ R n (t, s; q) ,
where

R n (t, s, q) := t s dy q(y) - t -s n n-1 k=0 q(s + k t-s n ) , (t, s) ∈ ∆ . (3.4) 
Hence, for the left-hand side of (3.3) we get the estimate

e -q L ∞ R n (q) ≤ sup τ ≥0 e -τ (D0+Q) -e -τ D0/n e -τ Q/n n B(L p ) ≤ R n (q) ,
where R n (q) := ess sup (t,s)∈∆ R n (t, s; q), n ∈ N. These estimates together with definition of Θ prove the assertion.

Note that by virtue of (3.4) and Proposition 3.1 the operator-norm convergence rate of the Trotter product formula for the pair {D 0 , Q} coincides with the convergence rate of the integral Darboux-Riemann sum approximation of the Lebesgue integral.

Examples

First we consider the case of a real Hölder-continuous function q ∈ C 0,β (I).

Theorem 3.2. If q ∈ C 0,β (I) is non-negative, then sup τ ≥0 e -τ (D0+Q) -e -τ D0/n e -τ Q/n n = O(1/n β ) ,
as n → ∞.

Proof. One has

t s dy q(y) - t -s n n-1 k q(s + k n (t -s)) = n-1 k=0 k+1 n (t-s) k n (t-s) dy q(s + y) -q(s + k n (t -s)) ,
which yields the estimate

t s dy q(y) - t -s n n-1 k q(s + k n (t -s)) ≤ n-1 k=0 k+1 n (t-s) k n (t-s)
dy q(s + y) -q(s + k n (t -s)) .

Since q ∈ C 0,β (I), there is a constant

L β > 0 such that for y ∈ [ k n (t - s), k+1 n (t -s)] one has q(s + y) -q(s + k n (t -s) ≤ L β |y -k n (t -s)| β ≤ L β (t -s) β n β .
Hence, we find

t s q(y)dy - t -s n n-1 k q(s + k n (t -s)) ≤ L β (t -s) 1+β n β ≤ L β 1 n β , which proves ess sup (t,s)∈∆ t s q(y)dy - t -s n n-1 k q(s + k n (t -s)) = O 1 n β .
Applying now Proposition 3.1 one completes the proof.

It is a natural question: what happens, when q is only continuous? Theorem 3.3. If q : I → C is continuous and non-negative, then

e -τ (D0+Q) -e -τ D0/n e -τ Q/n n = o(1) , (3.5) 
as n → ∞.

Proof. Since q(•) is continuous, then for any ε > 0 there is δ > 0 such that for |y -x| < δ we have |q(y) -q(x)| < ε, y, x ∈ I. Therefore, if 1/n < δ, then for y ∈ ( k n (t -s), k+1 n (t -s)) we have We comment that for a general continuous q one can say nothing about the convergence rate. Indeed, it can be shown that in (3.5) the convergence to zero can be arbitrary slow.

|q(s + y) -q(s + k n (t -s))| < ε, (t, s) ∈ ∆ . Hence, t s q(y)dy - t -s n n-1 k q(s + k n (t -s)) ≤ ε(t -s) ≤ ε ,
Theorem 3.4. Let δ n > 0 be a sequence with δ n → 0 as n → ∞. Then there exists a continuous function q

: I = [0, 1] → R such that sup τ ≥0 e -τ (D0+Q) -e -τ D0/n e -τ Q/n n B(L p (I)) = ω(δ n ) (3.6)
as n → ∞, where ω is the Landau symbol defined in Section 1.

Proof. Taking into account Theorem 6 of [START_REF] Walsh | Note on degree of approximation to an integral by riemann sums[END_REF], we find that for any sequence {δ n } n∈N , δ n > 0 satisfying lim n→∞ δ n = 0 there exists a continuous function

f (•) : [0, 2π] -→ R such that 2π 0 f (x) dx - 2π n n k=1 f (2kπ/n) = ω(δ n ) ,
as n → ∞. Setting q(y) := f (2π(1 -y)), y ∈ [0, 1], we get a continuous function q(•) : [0, 1] -→ R, such that

1 0 q(y)dy - 1 n n-1 k=0 q(k/n) = ω(δ n ) .
Because q(•) is continuous we find ess sup

(t,s)∈∆ t s q(y) dy - t -s n n-1 n=0 q(s + k t-s n ) ≥ 1 0 q(y) dy - 1 n n-1 k=0 q(k/n) , which yields ess sup (t,s)∈∆ t s q(y) dy - t -s n n-1 n=0 q(s + k t-s n ) = ω(δ n ) .
Applying now Proposition 3.1 we prove (3.6).

Our final comment concerns the case when q is only measurable. Then it can happen that the Trotter product formula for that pair {D 0 , Q} does not converge in the operator-norm topology. 

2n+2 ), ∆ k,n := (t k,n -1 2 2n+2 , t k,n + 1 2 2n+2 ), k = 1, 2, . . . , 2 n -1, ∆ 2 n ,n := (1 -1 2 2n+2 , 1), n ∈ N, where t k,n = k 2 n , k = 0, . . . , n, n ∈ N. 2 
Notice that t 0,n = 0 and t 2 n ,n = 1. One easily checks that the intervals ∆ k,n , k = 0, . . . , 2 n , are mutually disjoint. We introduce the open sets

O n = 2 n k=0 ∆ k,n ⊆ I, n ∈ N. and O = n∈N O n ⊆ I.
Then it is clear that Using the characteristic function χ C (•) of the set C we define q(t) := χ C (t), t ∈ I .

|O n | = 1 2 n+1 , n ∈ N,
The function q(•) is measurable and it satisfies 0 ≤ q(t) ≤ 1, t ∈ I. Let ε ∈ (0, 1). We choose s ∈ (0, ε) and t ∈ (1 -ε, 1) and we set ξ k,n (t, s) := s + k t -s 2 n , k = 0, . . . , 2 n -1, n ∈ N, (t, s) ∈ ∆. Note that ξ k,n (t, s) ∈ (0, 1), k = 0, . . . , 2 n -1, n ∈ N. Moreover, we have q(s + k t-s n ), n ∈ N, (t, s) ∈ ∆ .

t k,n -ξ k,n (t, s) = k 1 2 n -s -k t -s 2 n = k 1 -t + s 2 n -s ,
We consider S 2 n (t, s; q) = t -s n

2 n -1 k=0 q(s + k t-s 2 n ) = t -s n 2 n -1 k=0 
q(ξ k,n (t, s)), n ∈ N, (t, s) ∈ ∆. If s ∈ (0, ε n ) and t ∈ (1 -ε n , 1), then S 2 n (t, s; q) = 0, n ∈ N and t s q(y) dy -S 2 n (t, s; q) = t s q(y)dy, n ∈ N, for s ∈ (0, ε n ) and t ∈ (1 -ε n , 1). In particular, this yields ess sup q(y)dy -S 2 n (t, s; q) ≥ 1 2 , and applying Proposition 3.1 we finish the prove of (3.7).

(
We note that Theorem 3.5 does not exclude the convergence of the Trotter product formula for the pair {D 0 , Q} in the strong operator topology. Examples of this dichotomy are known for the Trotter-Kato product formula in Hilbert spaces [START_REF] Ichinose | Note on the paper: "The norm convergence of the Trotter-Kato product formula with error bound[END_REF]. By virtue of (3.1) and (3.7), Theorem 3.5 yields an example of this dichotomy in Banach spaces.

  n→∞ e -τ A/n e -τ B/n n , τ ≥ 0, was established by S. Lie (in 1875) for matrices where C := A + B. The proof is based on the telescopic representation e -τ A/n e -τ B/n n -e -τ C =

e

  -τ A/n e -τ B/n n -e -τ C Since C ≤ A + B , one obtains inequality e -τ A/n e -τ B/n n -e -τ C + B ) ≤ c 0 τ 2 n e τ ( A + B ) , which yields that sup τ ∈[0,T ] e -τ A/n e -τ B/n n -e -τ C = O(1/n) ,

B

  ) e -τ K -e -τ K0/n e -τ B/n n ) e -τ K -e -τ K0/n e -τ B/n n B(X)

  + k n (t -s)) = o(1) .Now it remains only to apply Proposition 3.1.

Theorem 3 . 5 .

 35 There is a non-negative function q ∈ L ∞ ([0, 1]) such that lim sup n→∞ sup τ ≥0 e -τ (D0+Q) -e -τ D0/n e -τ Q/n n B(L p (I)) Let us introduce the open intervals ∆ 0,n := (0, 1

and |O| ≤ 1 2 .

 2 Therefore, the Lebesgue measure of the closed set C := I \ O ⊆ I can be estimated by

  which leads to the estimate|t k,n -ξ k,n (t, s)| ≤ ε( k 2 n-1 + 1), k = 0, . . . , 2 n -1, n ∈ N . Hence |t k,n -ξ k,n (t, s)| ≤ 3ε, k = 0, . . . , 2 n -1, n ∈ N. Let ε n := 1/(3 • 2 2n+2) for n ∈ N. Then we get that ξ k,n (t, s) ∈ ∆ k,n for k = 0, . . . , 2 n -1, n ∈ N, s ∈ (0, ε n ) and for t ∈ (1 -ε n , 1).
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