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Abstract. In this paper, starting from graph orientation problems, we
introduce some new mixed integer linear programming formulations for
the unweighted maximum cut problem. Then a new semidefinite re-
laxation is proposed and shown to be tighter than the Goemans and
Williamson’s semidefinite relaxation. Preliminary computational results
are also reported.

1 Introduction

Let G = (V ,E) be a simple undirected graph, with node set V , edge set E, and
let (we)e∈E denote nonnegative edge-weights. Given a node subset S ⊆ V , the
cut defined by S, denoted by δ(S), is the subset of edges in E having exactly
one endpoint in S, i.e. δ(S) = {ij ∈ E : |S ∩ {i, j}| = 1}. The weight of the
cut defined by S, denoted by w(δ(S)) is the sum of the weights of the edges
belonging to the cut, i.e., w(δ(S)) =

∑
e∈δ(S) we. The maximum cut problem

consists in finding a cut of maximum weight, denoted by w?, in the graph G:
max{w(δ(S)) : S ⊂ V }. The cardinality of V will be denoted by n.

The maximum cut problem is a fundamental combinatorial optimization
problem that emerges in several scientific disciplines: VLSI design [4], sparse ma-
trix computation [2], parallel programming [9], statistical physics [4], quadratic
programming [17], etc. A less known application is given by frequency assign-
ment in networks where the weight of each edge represents the interference level
between two nodes. Assuming that only two frequencies (resources) are avail-
able, assigning a frequency to each node such that the whole interference between
nodes using the same frequency is minimized is a maximum cut problem.

The maximum cut problem is known to be NP-hard [20] in general, and not
approximable within a ratio 16

17 + ε for any ε > 0 unless P = NP [18]. However,
the problem may be polynomial for some instances. We know, for example, that
the problem becomes easy when the underlying graph is weakly bipartite and the
weights are nonnegative [16]. Other polynomial cases are reviewed, e.g., in [5].

One line of research to solve this problem has consisted in the development
of (meta)heuristics, see, e.g. [6,12,27]. Another important line of research relies
on linear programming formulations of the problem. This has namely led to deep
investigations on the polyhedral structure of the cut polytope: the convex hull of
the incidence vectors of all the cuts of the graph, which has then been extensively



used, e.g., in Branch and Cut algorithms [3,5,10]. More recently, essentially since
the mid-1990’s and the breakthrough paper by Goemans and Williamson [15],
there has been a growing interest in semidefinite programming based algorithms.
Goemans and Williamson’s work presents a 0.87856-approximation algorithm for
the maximum cut problem when the edge weights are nonnegative. Their method
relies on the following semidefinite relaxation of the problem for a complete graph

(SDP0)


max 1

2

∑n
i=1

∑n
j=i+1 wij(1− yij)

s.t.
yii = 1, ∀i ∈ J1,nK,
Y � 0,
Y ∈ Sn,

where Y represents the matrix with entry yij in the ith row and jth column,
Y � 0 is the constraint that the matrix Y is positive semidefinite, and, for any
given integer n, Sn denotes the set of symmetric matrices with order n.

To improve the quality of the bound Z?SDP0 given by the formulation (SDP0) [15],
different approaches have been proposed in the literature: namely by making
use of polyhedral knowledge on the cut polytope and adding linear inequalities
[13,19], or by means of lift-and-project techniques [1,22]. Another way to im-
prove the upper bound given by the semidefinite relaxation is described in [7,8]
where some spectral techniques are used leading to polynomial-time algorithms
for some low rank weight matrices. This semidefinite approach of the problem
also led to efficient solvers such as BiqMac [25] and BiqCrunch [21].

The reader can find in [5,10] and the references therein further results about
the maximum cut problem including applications, polynomial cases, approxi-
mation algorithms, relationships with other combinatorial problems, polyhedral
studies etc.

The paper is organized as follows. We introduce some new mixed integer
linear programming formulations for the maximum cut problem based on graph
orientations (Section 2). A semidefinite programming relaxation is then pro-
posed. We show that the bound provided by this new SDP relaxation is stronger
than the bound given by the relaxation (SDP0) introduced by Goemans and
Williamson (Section 3). We also prove that the new bound is tight for complete
graphs. We then introduce further Mixed Integer Programming formulations
(Section 4). Several numerical experiments have been conducted showing the
relevance of the SDP formulation and the performances of the new Mixed Inte-
ger Programming formulations (Section 6). A conclusion follows.

2 Mixed integer linear programming formulations

In this section, we gradually introduce our new formulation for the maximum
cardinality cut problem, i.e. the maximum cut problem for the case when all the
edge-weights are equal to 1: we = 1,∀e ∈ E. For our purposes, we shall think of
the original graph G = (V ,E) as directed (consider any arbitrary orientation)
and let B ∈ {−1, 0, 1}|V |×|E| stand for its incidence matrix, i.e., the column
corresponding to the arc uv (or, equivalently, to the edge uv directed from node
u to node v), has only nonzero entries in the rows corresponding to the nodes u
and v: Bu,uv = 1 and Bv,uv = −1, respectively.



For clarity, we start introducing an auxiliary formulation. It involves two
types of variables. The first type of variables x ∈ {−1, 1}|E| describes an orien-
tation of the graph G and may be interpreted as follows. For each edge ij ∈ E
which is originally directed from node i to node j: if xij = 1 then ij is directed
from i to j (i.e., the orientation is the same as the original one) and is directed
from j to i otherwise (i.e., the edge is “reversed” with respect to the original
orientation). The other variables are binary and denoted yvk , with v ∈ V and
k ∈ J−dv, dvK, where dv denotes the degree of the node v in G. They have the
following interpretation: yvk = 1 if and only if Bvx = k, where Bv denotes the
row of B corresponding to vertex v, so that the following equation trivially holds

dv∑
k=−dv

kyvk = Bvx,∀v ∈ V . (1)

Notice that Bvx = d
(x,+)
v − d(x,−)v , where d

(x,+)
v (resp. d

(x,−)
v ) denotes the outde-

gree (resp. indegree) of the node v w.r.t. the orientation described by x.
Also, given the interpretation for the variables y, among those of the form yvk ,

for some fixed node v ∈ V , exactly one of them has value 1. Thus, the following
contraints are satisfied dv∑

k=−dv

yvk = 1, ∀v ∈ V . (2)

Then we can show the maximum cardinality cut problem may be formulated
as the mixed-integer program

(MIP1)


Z?MIP1 = 1

2 max
∑
v∈V

∑dv
k=−dv |k|y

v
k

s.t. (1), (2),
x ∈ [−1; 1]|E|,
yvk ∈ {0, 1}, ∀v ∈ V , ∀k ∈ J−dv, dvK.

Proposition 1. The optimal objective value of (MIP1) equals the maximum car-
dinality of a cut in the graph G: Z?MIP1 = w?.

Proof. First, note that it is equivalent to take x ∈ [−1; 1]|E| or x ∈ {−1; 1}|E|
since B is totally unimodular, the integrity of y implies the integrality of x.
Observe that introducing sign variables z ∈ {−1, 1}|V | with the following inter-
pretation: zv is the sign of the only k for which yvk 6= 0, (MIP1) is equivalent to
the following

max 1
2

∑
v∈V zv

∑dv
k=−dv ky

v
k

s.t. (1), (2),
yvk ∈ {0, 1}, ∀v ∈ V , ∀k ∈ J−dv, dvK,
z ∈ {−1, 1}|V |, x ∈ [−1; 1]|E|.

⇔

max 1
2

∑
v∈V zvBvx = 1

2z
tBx

s.t.
z ∈ {−1, 1}|V |, x ∈ {−1, 0, 1}|E|.

⇔

max 1
2

∑
uv∈E xuv(zv − zu) = 1

2x
tBtz

s.t.
z ∈ {−1, 1}|V |, x ∈ {−1, 1}|E|.

⇔

max 1
2

∑
uv∈E |zv − zu|

s.t.
z ∈ {−1, 1}|V |.

Noting that, for any z ∈ {−1, 1}|V |, the quantity
∑
uv∈E |zv − zu| equals twice

the number of edges in δ(S), with S = {v ∈ V : zv = 1}, the proposition follows.
ut



Remark 1. Given a cut δ(S) with maximum cardinality, we can associate to it the
following feasible solution of (MIP1): the vector x corresponds to an orientation
of all edges in the cut from S to V \ S, all other edges are not oriented (xuv =
0,∀uv ∈ E \ δ(S)), and yvk = 1 if and only if k is equal to the outdegree minus
the indegree w.r.t. the orientation given by x (ignoring edges which are not
oriented). Then, for any edge uv ∈ E which has the original orientation from u
to v (i.e. the one given by the matrix B), the following equation holds: xuv =∑du
k=1 y

u
k−
∑dv
k=1 y

v
k . From the latter we deduce (developing the expression Bvx):

dv∑
k=−dv

kyvk = Bvx =
∑
uv∈E

(
dv∑
k=1

yvk −
du∑
k=1

yuk

)
. (3)

Observe also that each vertex v is incident to at least ddv2 e edges in the

maximum cut. This implies that the variables yvk with k ∈ {1−ddv2 e, . . . , d
dv
2 e−1}

may be removed from formulation (MIP1), while Proposition 1 remains valid.

It follows that, in place of (MIP1), we may consider a formulation involving
variables of the form yvk only: replace equations (1) by (3). For each vertex v,

we only consider yvk variables for k ∈ J−dv,−ddv2 eK ∪ Jddv2 e, dvK. We therefore

denote for all v ∈ V , I−v = J−dv,−ddv2 eK, I
+
v = Jddv2 e, dvK and Iv = I−v ∪ I+v .

(MIP2)


Z?MIP2 = 1

2 max
∑
v∈V

∑
k∈Iv |k|y

v
k

s.t.∑
k∈Iv y

v
k = 1, ∀v ∈ V ,∑

k∈Iv ky
v
k =

∑
uv∈E(

∑
k∈I+v y

v
k −

∑
k∈I+u y

u
k ), ∀v ∈ V ,

yvk ∈ {0, 1}, ∀v ∈ V , ∀k ∈ Iv.

Formulation (MIP2) involves about O(|E|) variables and O(|V |) constraints.
It will be studied in a forthcoming paper. We will rather consider a strengthening
of the linear relaxation of (MIP2) through reformulation-linearization techniques.
The latter is obtained by multiplying constraints of (MIP2) and then linearizing.
Some other constraints follow from the afore mentioned interpretation of the
variables in (MIP2). So, let Y uvkl , with (u, v) ∈ V 2, (k, l) ∈ Iu × Iv, denote a
binary variable representing the product yuky

v
l . Then, given that the variables yvk

are binary and satisfy (2) we have Y uukl = 0,∀u ∈ V ,∀k 6= l. Considering then
the product of the left side of (2) with itself we deduce

∑
k∈Iv Y

vv
kk = 1. Using

other equations obtained by multiplying variables of the form yvk with equations
(2) and others obtained from (3), we can deduce from (MIP2) the following exact
formulation for the maximum cardinality cut problem.



(MIP3)



Z?
MIP3 =

1

2
max

∑
v∈V

∑
k∈Iv
|k|Y vv

kk

s.t.∑
k∈Iv

Y vv
kk = 1, ∀v ∈ V ,∑

k∈Iv
kY vv

kk =
∑

uv∈E
(
∑

k∈I+v

Y vv
kk −

∑
k∈I+u

Y uu
kk ), ∀v ∈ V ,

Y vv
kk =

∑
l∈Iu

Y vu
kl , ∀u, v ∈ V , ∀k ∈ Iv,

(dv − k)Y vv
kk =

∑
uv∈E

∑
l∈I+u

Y vu
kl , ∀v ∈ V , ∀k ∈ I+v ,

− kY vv
kk =

∑
uv∈E

∑
l∈I+u

Y vu
kl , ∀v ∈ V , ∀k ∈ I−v ,

∑
l∈Iu

lY vu
kl =

∑
uw∈E

(
∑

l∈I+w

Y vw
kl −

∑
l∈I+u

Y vu
kl ), ∀v 6= u ∈ V , ∀k ∈ Iv,

Y vu
kl = Y uv

lk , ∀u, v ∈ V , ∀(k, l) ∈ Iv × Iu,

Y vu
kl ∈ {0, 1}, ∀u, v ∈ V , ∀(k, l) ∈ Iv × Iu,

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(4g)

(4h)

Proposition 2. The optimal objective value of (MIP3) equals the maximum car-
dinality of a cut in the graph G: Z?MIP3 = w?. ut

Observe that (MIP3) was derived from (MIP2) using lifting. Other formula-
tions could be obtained using some other well-known lifting techniques such as
the one of Lassere, the Sherali-Adams technique or the lifting of Lovász-Schrijver
[26,23,28]. Since the aim of this paper is not to compare lifting techniques, we
do not elaborate more on this topic.

3 A semidefinite programming bound
Let Y denote a symmetric matrix with rows and columns indexed by all pairs
(u, k) with u ∈ V and k ∈ Iu. The entry in the row indexed by (u, k) and
column indexed by (v, l) corresponds to the variable Y uvkl . Then, let (SDP3)
denote the relaxation obtained from (MIP3) replacing the symmetry (4g) and
binary constraints (4h) by the following ones

Y −Diag(Y )Diag(Y )t � 0 (5)

Y vukl ≥ 0,∀u, v ∈ V ,∀k ∈ I−v ∪ I+v , l ∈ I−u ∪ I+u , (6)

where Diag(Y ) denotes the vector corresponding to the diagonal of Y .
We are going to prove that the semidefinite relaxation (SDP3) provides a gen-

erally better upper bound for the maximum cardinality cut problem than that
from Goemans & Williamson’s relaxation. For, consider the following semidef-
inite relaxation of a 0/1 formulation of the maximum cardinality cut problem
whose optimal objective value coincides with Z?SDP0,

(SDP4)


Z?SDP4 = max 1

2

∑
u∈V

∑
v:uv∈E (xu + xv − 2Xuv)

s.t.
Diag(X) = x,
X − xxt � 0,
x ∈ R|V |, X ∈ S|V |,



where Xuv stands for the entry of the matrix X in the row corresponding to
node u, and column corresponding to node v.

Proposition 3. The following inequality holds Z?SDP3 ≤ Z?SDP4(= Z?SDP0).

Proof. Let Y denote a feasible solution for the formulation (SDP3) and let

(X,x) ∈ R|V |×|V |×R|V | be defined as follows:Xuv :=
∑−1
k=−du

∑−1
l=−dv Y

uv
kl ,∀u, v ∈

V with u 6= v and Xvv = xv :=
∑−1
k=−dv Y

vv
kk ,∀v ∈ V .

We now show X − xxt � 0. For, let z ∈ R|V | and define z of convenient
dimension as follows: zvk = zv if k < 0 and 0 otherwise. Then, we have

ztY z =
∑
u∈V

∑−1
k=−du

∑
v∈V

∑−1
l=−dv z

u
kz
v
l Y

uv
kl

=
∑
u∈V

∑
v∈V zuzv(

∑−1
k=−du

∑−1
l=−dv Y

uv
kl )

=
∑
u∈V

∑
v∈V zuzvXuv = ztXz.

Also,

ztDiag(Y ) =
∑
v∈V

∑−1
k=−dv z

v
kY

vv
kk

=
∑
v∈V (zv

∑−1
k=−dv Y

vv
kk )

=
∑
v∈V zvxv = ztx.

It follows that zt(X − xxt)z = zt(Y −Diag(Y )Diag(Y )t)z ≥ 0, where the last
inequality follows from the feasibility of Y w.r.t. (SDP3), and thus X −xxt � 0.
So, we have shown (X,x) is a feasible solution for (SDP4).

Since Y is symmetric, the same holds for X. We now show the objective
value of (X,x) w.r.t. (SDP4), denoted ZX equals that of Y w.r.t. (SDP3).

ZX = 1
2 (
∑
u∈V

∑
v : uv∈E (xu + xv − 2Xuv))

=
∑
v∈V dvxv −

∑
u∈V

∑
uv∈E Xuv

=
∑
v∈V dv

∑−1
k=−dv Y

vv
kk −

∑
u∈V

∑
uv∈E

∑−1
k=−du

∑−1
l=−dv Y

uv
kl

=
∑
v∈V dv

∑−1
k=−dv Y

vv
kk −

∑
u∈V

∑−1
k=−du (k + du)Y uukk

= −
∑
u∈V

∑−1
k=−du kY

uu
kk

=
∑
u∈V

∑du
k=1 kY

uu
kk . ut

By Proposition 3, it follows that a randomized algorithm similar to the one by
Goemans and Williamson [15] but applied to an optimal solution Y of (SDP3)
has the same approximation ratio. To be more precise, let Z ∈ R|V |×|V | denote
the matrix with entries Zuv = 4(Xuv−xuxv)+(2xu−1)(2xv−1), where Xuv :=∑−1
k=−du

∑−1
l=−dv Y

uv
kl ,∀u, v ∈ V with u 6= v and Xvv = xv :=

∑−1
k=−dv Y

vv
kk ,∀v ∈

V . It can be checked that Z is a feasible solution for the formulation (SDP0)
with the same objective value as Y . Then, let H ∈ Rm×|V | (for some m ≤ |V |)
denote a matrix such that Z = HtH and let r denote a vector which is randomly
generated according to a uniform distribution on the unit sphere in Rm. The cut
returned by the algorithm is then δ(S) with S := {v ∈ V : rthv ≥ 0}, where hv
stands for the column of H corresponding to node v ∈ V .

The new bound is exact (i.e., equal to the maximum cardinality of a cut) for
some graph classes. For space limitation reasons, we will only consider the case
of complete graphs. We already know that the bound provided by relaxation



(SDP0) is exact for even complete graphs (Kn with n even). This does not hold
for odd complete graphs. We prove that the bound given by (SDP3) is exact for
all complete graphs.

Proposition 4. For a complete graph, the optimal objective value of (SDP3) is
exact: Z?SDP3 = w?.

Proof. See Appendix A.

In fact the proof of Proposition 4 implies implies that the linear relaxation of
(MIP3) is exact. Details about this linear relaxation will follow in an extended
version of the paper.

4 Further mixed integer linear programming formulations

In this section, we present three new exact formulations for the unweighted
maximum cardinality cut problem with interesting computational performances.
The first one stems from (MIP2) using the fact that for all v ∈ V ,

∑
k∈I−v y

v
k =

1 −
∑
k∈I+v y

v
k deleting all the variables yvk where k is negative. We obtain the

following exact formulation.

(MIP5)



Z?MIP5 = max
∑
v∈V

∑
k∈I+v ky

v
k

s.t.∑
k∈I+v y

v
k ≤ 1, ∀v ∈ V ,∑

uv∈E(
∑
k∈I+v y

v
k −

∑
k∈I+u y

u
k ) ≤

∑
k∈I+v ky

v
k − d

dv
2 e(1−

∑
k∈I+v y

v
k), ∀v ∈ V ,∑

uv∈E(
∑
k∈I+v y

v
k −

∑
k∈I+u y

u
k ) ≥

∑
k∈I+v ky

v
k − dv(1−

∑
k∈I+v y

v
k), ∀v ∈ V ,

yvk ∈ {0, 1}, ∀v ∈ V ,∀k ∈ I+v .

It involves about half as many variables as (MIP2) and has generally better
performance, detailed results can be found in section 6. In order to further reduce
the number of variables for an exact formulation, we can aggregate the variables
yvk with k ∈ I+v for a vertex v to form a variable xv equal to

∑
k∈I+v y

v
k . For doing

so, we need another variable zv equal to
∑
k∈I+v ky

v
k in order to keep the infor-

mation about the difference between the outdegree and indegree of v important
for the objective function. We thus obtain the following exact formulation.

(MIP6)


Z?MIP6 = max

∑
v∈V z

v

s.t.
ddv2 e+ bdv2 cx

v − zv ≤
∑
uv∈E x

u ≤ dv − zv, ∀v ∈ V ,
ddv2 ex

v ≤ zv ≤ dvxv, ∀v ∈ V ,
x ∈ {0, 1}V , z ∈ RV .

(MIP6) involves 2|V | variables, half of which are integer variables and its per-
formance is better than that of (MIP5) for many instances (see Section 6). This
formulation can also be obtained using the linearization technique of Glover [14]
applied to the standard quadratic program modeling the maximum cut problem.
One can also propose a third formulation somewhat in between (MIP5), i.e. no
aggregation of variables, and (MIP6), i.e. total aggregation of the variables for
each vertex. To do so, we partition the interval I+v for each vertex v ∈ V . Let



α > 1, we parametrize such a partition with α defining the following sequences
for each v ∈ V av1 = ddv2 e,

avi = 1 + bvi−1, for i > 1,
bvi = min(bα ∗ avi c, dv),

and compute kv, the smallest integer such that bvkv = dv. Then similarly to the
formulations (MIP1), (MIP2) and (MIP3), we take a variable yvk for each vertex
v ∈ V and each k ∈ J1, kvK whose interpretation is the following: yvk = 1 if and
only if zv ∈ Javk, bvkK. We therefore obtain the following exact formulation for all
α > 1.

(MIP7[α])



Z?MIP7 = max
∑
v∈V z

v

s.t.
ddv2 e+ bdv2 cx

v − zv ≤
∑
uv∈E x

u ≤ dv − zv, ∀v ∈ V ,∑kv
k=1 y

v
k = xv, ∀v ∈ V ,∑kv

k=1 a
v
ky
v
k ≤ zv ≤

∑kv
k=1 b

v
ky
v
k , ∀v ∈ V ,

x ∈ [0, 1]V , yv ∈ {0, 1}kv , ∀v ∈ V , z ∈ RV .

For the purpose of comparing performances, we now give a basic exact formu-
lation for the unweighted maximum cut problem based on the triangle inequal-
ities. It involves one variable xi,j for each unordered pair of vertices {i, j} ⊂ V
(i 6= j). Hence O(n2) variables and O(n3) constraints.

(MIP8)


max

∑
ij∈E xi,j

s.t.
xi,j + xj,k + xi,k ≤ 2, ∀{i, j, k} ⊂ V , |{i, j, k}| = 3,
xi,j + xj,k − xi,k ≥ 0, ∀(i, j, k) ∈ V 3, |{i, j, k}| = 3,
xi,j ∈ {0, 1}, ∀{i, j} ⊂ V , i 6= j.

5 Preliminary computational experiments

Some numerical experiments have been conducted to evaluate the quality of the
new SDP bound. For each problem instance, we report w? (the maximum cardi-
nality of a cut), Z?SDP0 (the optimal objective value of (SDP0)) and Z?SDP3 (the
optimal objective value of (SDP3)). We also mention some results related to the
Mixed integer Programming formulations of the previous Section reporting the
running time of (MIP2), (MIP5), (MIP6), (MIP7[1.5]), (MIP7[1.3]), (MIP7[1.1])
and (MIP8) for each instance.

The algorithms used for these computations were written in C/C++ calling
COIN-OR’s CSDP library to solve the semidefinite programs and IBM’s ILOG
CPLEX optimizer c© for the linear and mixed integer programs; all have been
performed with a processor 1.9GHzx4, 15.6GB RAM. In order to further the
relevance of our comparison, we also give for each instance the running time
(BC) of the semi-definite based solver BiqCrunch [21] compiled in Python and
run on the same machine as the mixed integer programs.

The graph instances used for the computations are denoted as follows:

• Kn: the complete graph with n vertices,



• Wn: the wheel graph with n vertices (i.e. n− 1 spokes),

• Pe, Co, Oc, Do and Ic: the Petersen graph, the Coxeter graph, the octa-
hedron, the dodecahedron and the icosahedron respectively. (Information
about the platonic graphs can be found in [24]),

• Cn: the cycle graph with n vertices,

• Gt2n1,n2
: the 2-dimensional toroidal grid graph, i.e. the cartesian product of

two cycles Cn1
• Cn2

,

• Gtkn : the n-dimensional toroidal grid graph of length k, i.e. the cartesian
product •ni=1Ck,

• Rn,d: a randomly generated graph with n vertices and density d: d = 200|E|
n(n−1) ,

• Pn,D: a randomly generated planar graph with n vertices and proportion of

edges with respect to a maximum planar graph D: D = 100|E|
3(n−2) .

The random graphs were generated using rudy, a machine-independent graph
generator by Giovanni Rinaldi.

Let us start with the results related to the new SDP bound. The first set of
instances considered consists of two basic graph classes : odd complete graphs
and wheel graphs. One can see that Z?SDP3 = w? for complete graphs as shown in
Proposition 4. The bound seems to be exact for wheels (according to numerical
experiments). We report in Table 2 results obtained on some well-known graphs:
the Petersen graph, the Coxeter graph, the octahedron, the dodecahedron and
the icosahedron, along with some toroidal grid graphs. The results reported in
Table 3 were computed from randomly generated graphs.

The preliminary computational results from Tables 1-3 not only confirm the
inequality proved in Proposition 3, but clearly point out that the quality of the
new bound presented in the previous Sections is sometimes significatively better
than that of Goemans and Williamsons relaxation.

Let us now look at the running times of the Formulations (MIP8), (MIP2),
(MIP5), (MIP6), (MIP7[1.5]), (MIP7[1.3]) and (MIP7[1.1]) and of the solver (BC)
on several bigger instances found in Table 4. For the entries marked “>900”, the
running time exceeded 900s and the process was therefore interrupted and for
the entries marked “-”, the memory of the machine was full and the process was
therefore interrupted. First, one can see that the new formulations introduced in
Section 4 perform much better than the classical triangular formulation (MIP8)
for all the studied graph families except the general random graphs, and on all
of these instances, there is one of our formulation that performs better than
BiqCrunch does. More specifically, we can see that (MIP5) has generally better
performance than (MIP2) and that for some instances, (MIP5) is drastically
better than (MIP6), and for others, it is the other way around. Interestingly,
we observe that being (MIP7) somewhat in between (MIP5) and (MIP6), there
exists for almost each graph instance a value of α for which (MIP7[α]) has the
shortest computing time. Practically, (MIP7[1.1]) seems to be the most robust
of them.

6 Conclusion

Starting from graph orientation, we have seen that the maximum cut problem
can be modeled in several new ways. By lifting, one can get some bounds that



are stronger than the standard semidefinite bound of [15]. The bounds are even
exact for some graph classes. Several new mixed integer programming formula-
tions have been obtained using discretization and aggregation techniques. The
performance of these formulations compares to and is often better than the
performance of the BiqCrunch solver on many graph families, it can even be
improved if we strengthen the formulations either by adding valid inequalities
or using other lifting techniques. Also the new formulations we introduced here
for the unweighted maximum cut problem may lead to similar formulations for
the weighted case. This will be part of a forthcoming paper.

Table 1. Computational results of (SDP3) for complete graphs and wheel graphs

Instance K5 K7 K11 W5 W8 W10 W12 W15 W17 W20 W22 W25

w? 6 12 30 6 10 13 16 21 24 28 31 36
Z?

SDP3 6 12 30 6 10 13 16 21 24 28 31 36
Z?

SDP0 6.25 12.25 30.25 6.25 10.614 13.809 16.979 21.875 25 29.566 32.703 37.5

Table 2. Computational results of (SDP3) for special graph classes

Instance Pe Co Oc Do Ic C3 C5 C7 C9 C11 C13 C15

w? 12 36 8 24 20 2 4 6 8 10 12 14
Z?

SDP3 12 36.167 9 25 21 2 4 6.125 8.25 10.383 12.463 14.523
Z?

SDP0 12.5 37.9 9 26.18 21.708 2.25 4.523 6.653 8.729 10.777 12.811 14.836

Instance C17 C19 C21 C23 C25 G
t2
3,3 G

t2
3,4 G

t2
3,5 G

t2
4,5 G

t2
5,5 G

t3
3

w? 16 18 20 22 24 12 20 22 36 40 54
Z?

SDP3 16.58 18.621 20.653 22.685 24.709 13.5 20 23.639 36 44.168 60
Z?

SDP0 16.855 18.87 20.883 22.893 24.901 13.5 21 24.818 38.09 45.225 60.75

Table 3. Computational results of (SDP3) for randomly generated graphs

Instance R5,8 R10,9 R10,14 R10,18 R10,23 R10,27 R10,34 R10,36 R15,21 R15,32 R15,42

w? 6 8 12 14 17 19 22 23 17 24 30
Z?

SDP3 6 8 12 14 17 19 22 23 17 24.236 30.381
Z?

SDP0 6.25 8.25 12.585 14.399 17.603 19.962 22.676 23.346 18.006 25.357 31.569

Instance R15,53 R20,19 R20,38 R20,57 R30,44 P5,7 P5,9 P10,10 P10,12 P10,18 P10,24

w? 36 16 29 43 37 5 6 8 10 13 16
Z?

SDP3 36.567 16 29.202 43 37.31 5 6 8 10 13 16
Z?

SDP0 37.39 16.679 30.682 44.757 39.005 5.432 6.25 8.409 10.715 13.932 16.992

Instance P20,11 P20,16 P20,27 P20,41 P20,54 P25,35 P25,52 P25,69 P30,8 P30,17 P30,42

w? 9 15 21 30 36 28 39 46 7 15 33
Z?

SDP3 9 15 21 30 36.207 28.091 39 46.446 7 15 33.037
Z?

SDP0 9.25 15.25 22.495 31.289 38.131 29.705 40.614 48.468 7.25 15.25 34.412
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Appendix A Proof of Proposition 4

Since Z?SDP0 is exact for even complete graphs, Z?SDP3 is also exact by Proposi-
tion 3.
Let us now consider odd complete graphs. Let Y be an optimal solution of
(SDP3). Let π be any permutation of the set of vertices. By symmetry of the

complete graph, the solution defined by Y
π(u)π(v)
kl = Y uvkl is obviously still an

optimal solution of (SDP3). By considering the set of all permutations Πn (the
symmetric group), and combining all solutions, we still get an optimal solu-

tion (by linearity) Z where Zuvkl = 1
|Πn|

∑
π∈Πn

Y
π(u)π(v)
kl . Since we consider

all permutations, Zuvkl does not depend on u and v. In other words, there are
numbers f(k, l) and g(k) such that Zuvkl = f(k, l) if u 6= v and Zuukk = g(k),
k, l = n−1

2 , · · · ,n− 1.
Let us build another solution Z ′ of (SDP3) as follows: Z ′uvkl = Zuv(−k)(−l). By

symmetry of complete graphs, Z ′ is also an optimal solution of (SDP3). Then,
Z ′′ = 1

2 (Z + Z ′) is also optimal. Observe that Z”uvkl = Z”uv(−k)(−l). This implies

that we can assume that g(k) = g(−k) and f(k, l) = f(−k,−l).
Moreover, constraints (4a) lead to∑

k∈Jn−1
2 ,n−1K∪J1−n, 1−n

2 K

g(k) = 1 = 2
∑

k∈Jn−1
2 ,n−1K

g(k). (7)

From (4c), we deduce that∑
l∈Jn−1

2 ,n−1K∪J1−n, 1−n
2 K

f(k, l) = g(k), ∀k ∈ J
n− 1

2
,n−1K∪ J1− n,

1− n
2

K. (8)

Using equalities (4d), we can also write that

kg(k) = (n− 1)
∑

l∈J1−n, 1−n
2 K

f(k, l), ∀k ∈ J
n− 1

2
,n− 1K. (9)

Considering (4f) for a positive k, we obtain
∑
l∈Jn−1

2 ,n−1K∪J1−n, 1−n
2 K lf(k, l) =

−
∑
l∈J1−n, 1−n

2 K f(k, l), which is equivalent to

∑
l∈J1−n, 1−n

2 K

−(l + 1)f(k, l) =
∑

l∈Jn−1
2 ,n−1K

lf(k, l), ∀k ∈ J
n− 1

2
,n− 1K. (10)

Combining (8) and (9), we deduce that

(n− 1− k)
∑

l∈J1−n, 1−n
2 K

f(k, l) = k
∑

l∈Jn−1
2 ,n−1K

f(k, l), ∀k ∈ J
n− 1

2
,n− 1K. (11)

Observe that (11) implies that when k = n − 1 then f(n − 1, l) = 0 for l ∈
Jn−12 ,n − 1K. By (10), we get that f(n − 1, l) = 0 for l ∈ J1− n, 1−n

2 K. We can
then assume in the rest of the proof that k < n− 1.



Observe that the left side of (10) satisfies∑
l∈J1−n, 1−n

2 K−(l + 1)f(k, l) ≥ n−3
2

∑
l∈J1−n, 1−n

2 K f(k, l)

= n−3
2

k
n−1−k

∑
l∈Jn−1

2 ,n−1K f(k, l)

where the last equality is induced by (11). Let kmax be the largest k such that
f(k, l) 6= 0 for some l. We already know that kmax ≤ n − 2. The right side
of (10) necessarily satisfies

∑
l∈Jn−1

2 ,n−1K lf(k, l) ≤ kmax
∑
l∈Jn−1

2 ,n−1K f(k, l).

Combining the two previous inequalities together with (10), we obtain

(kmax − n− 3

2

k

n− 1− k
)

∑
l∈Jn−1

2 ,n−1K

f(k, l) ≥ 0, ∀k ∈ J
n− 1

2
, kmaxK. (12)

By considering the case k = kmax in (12), the sum
∑
l∈Jn−1

2 ,n−1K f(kmax, l)

is strictly positive, leading to kmax − n−3
2

kmax

n−1−kmax ≥ 0. In other words, we

necessarily have kmax ≤ n+1
2 . This implies that g(k) = 0 and f(k, l) = 0 if either

k > n+1
2 or k < −n+1

2 (we use here the fact that g(k) = g(−k) and (8)).

Writing (10) and (11) for k = n−1
2 and k = n+1

2 , we get the next 4 equations.

(n − 3)[f(
n + 1

2
,
−1 − n

2
) + f(

n + 1

2
,
1 − n

2
)] = (n + 1)[f(

n + 1

2
,
n + 1

2
) + f(

n + 1

2
,
n − 1

2
)] (13)

(n − 1)f(
n + 1

2
,
−1 − n

2
) + (n − 3)f(

n + 1

2
,
1 − n

2
) = (n + 1)f(

n + 1

2
,
n + 1

2
) + (n − 1)f(

n + 1

2
,
n − 1

2
) (14)

f(
n − 1

2
,
−1 − n

2
) + f(

n − 1

2
,
1 − n

2
) = f(

n − 1

2
,
n + 1

2
) + f(

n − 1

2
,
n − 1

2
) (15)

(n − 1)f(
n − 1

2
,
−1 − n

2
) + (n − 3)f(

n − 1

2
,
1 − n

2
) = (n + 1)f(

n − 1

2
,
n + 1

2
) + (n − 1)f(

n − 1

2
,
n − 1

2
) (16)

Substracting (13) from (14) leads to f(n+1
2 , n−12 ) = −f(n+1

2 , −1−n2 ). By non-

negativity of the f values, we deduce that f(n+1
2 , n−12 ) = f(n+1

2 , −1−n2 ) = 0

and f(n+1
2 , 1−n

2 ) = n+1
n−3f(n+1

2 , n+1
2 ). Substracting (n− 1)×(15) from (16) leads

in a similar way to f(n−12 , 1−n
2 ) = f(n−12 , n+1

2 ) = 0 and f(n−12 , −1−n2 ) =

f(n−12 , n−12 ).
Using (9) and the previous observations we get that:

g(
n+ 1

2
) = 2

n− 1

n+ 1
f(
n+ 1

2
,

1− n
2

) and g(
n− 1

2
) = 2f(

n− 1

2
,
−n− 1

2
).

Using the fact that f(n+1
2 , 1−n

2 ) = f(n−12 , −n−12 ) and g(n+1
2 ) + g(n−12 ) = 1

2 ,

one can deduce that f(n−12 , −n−12 ) = n+1
8n . Consequently, g(n+1

2 ) = n−1
4n and

g(n−12 ) = n+1
4n .

Remember that Z?SDP3 = 1
2

∑
v∈V

∑
k|k|Y vvkk =

∑
v∈V

∑
k>0kY

vv
kk , leading to

Z?SDP3 = n
(
n+1
2 g(n+1

2 ) + n−1
2 g(n−12 )

)
= n2−1

4 , and ending the proof. ut


