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Abstract In this study we focused on estimating the pressure partial of CO2 (pCO2) in the entire Baltic
Sea which can be considered a coastal area in its entirety. We used the self-organizing multiple linear
output (SOMLO) method to estimate the ocean surface pCO2 in the Baltic Sea from the remotely sensed
sea surface temperature, chlorophyll a, colored dissolved organic matter, net primary production, and
mixed-layer depth. Uncertainties in the estimates include sparsity of in situ data used to train the algorithms,
in particular, for some sectors and seasons. For this application we divided the Baltic Sea in four basins.
When comparing the results obtained with this division to those obtained in previous studies, we notice
a decrease in the root-mean-square error (<40 μatm) between the reconstruction of the pCO2 and their
corresponding in situ measurements, as well as an increase of the correlation coefficient (> 0.96) between
them. The outputs of this research have a horizontal resolution of 4 km and cover the 1998–2011 period.
For the first time, a climatological mean distribution of surface water pCO2 over the Baltic Sea was calculated
based on the SOMLO method with a mean pCO2 of 368.3±100 μatm, and a range of 234–514 μatm. The
seasonal variability is similar throughout the Baltic Sea, being high in winter and low in summer.

1. Introduction

The concentration of carbon dioxide (CO2) in the atmosphere is steadily increasing because of human activ-
ities such as fossil fuel burning [Stocker et al., 2013]. To understand how this is affecting the planet, several
pieces of knowledge of the CO2 system have to be investigated. Therefore, understanding how the ocean
modulates atmospheric CO2 is important because the ocean absorbs up to one third of anthropogenic CO2

emissions, according to in situ data and model output [e.g., Wanninkhof et al., 2013]. Although our grasp of the
global air-sea CO2 flux has improved in recent years, large uncertainties remain, particularly when increasing
the spatial and temporal scale. One important type of region is the coastal seas, which have been continuously
used by people and strongly influenced by industrialization. Coastal environments represent 7.6% of the total
oceanic surface area [Sverdrup et al., 1942]; they are, however, biogeochemically more dynamic and probably
more vulnerable to climate change than the open ocean. There are uncertainties as to the role of coastal
oceans in the global carbon cycle, and Tsunogai et al. [1999], supported by observations, demonstrated the
removal of a significant amount of pCO2 from the atmosphere (i.e., 55 μatm) in the shelf region of the East
China Sea. The hypothesis is that if the world continental shelf zone absorbs atmospheric CO2 at the same rate
as the East China Sea, the uptake from the atmosphere would represent 1 Pg C yr−1. Such a sink is comparable
to the open ocean sink of atmospheric CO2, which is estimated to be 1.4 Pg C yr−1 [Borges, 2011]. More recently,
Laruelle et al. [2014] demonstrated that the coastal oceans are a much smaller CO2 sink than was previously
thought, i.e., 0.2 Pg C yr−1. Whatever the responses of the open ocean to climate change, they will propa-
gate to the coastal ocean. Superimposed on this background open oceanic forcing, the coastal ocean will also
respond to changes in fluxes from the land biosphere via rivers, groundwaters, and atmospheric deposition
of major biogeochemical elements (e.g., carbon, nitrogen, phosphorous, and silica) in organic and inorganic
forms. Physical settings specific to the coastal ocean (e.g., coastal upwelling and sea ice) are also expected to
respond to climate change, probably leading to unique and local changes in carbon cycling [Frankignoulle
and Borges, 2001; Gattuso et al., 1998; Borges et al., 2005].

To address this problem, the research community that studies open ocean fluxes of CO2 has devised various
schemes for estimating surface pCO2.
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The most common scheme has been to use sea surface temperature (SST) to predict pCO2 [e.g., Lee et al., 1998;
Lefèvre and Taylor, 2002]. SST-pCO2 relationships tend to be robust in nearly all ocean regions [Lee et al., 1998]
because the two parameters usually covary closely. This is partly because of the direct thermodynamic effect
of SST on pCO2 discussed by Takahashi et al. [1993] and also because SST is a strong tracer of mixing and under
certain circumstances influences biological productivity. However, in the past decade, several authors have
reported the application of a neural network technique to basin-scale pCO2 sea analysis [Lefévre et al., 2005;
Jamet et al., 2007; Friedrich and Oschlies, 2009; Telszewski et al., 2009; Landschützer et al., 2013; Nakaoka et al.,
2013; Schuster et al., 2013], concentrating mainly on the North Atlantic Ocean.

The advent of readily available satellite-derived SST products and their obvious spatiotemporal advantages
has fueled interest in remote sensing approaches to pCO2 estimation. Stephens et al. [1995] pioneered this
approach when they used satellite SST data to predict pCO2 in the North Pacific, and similar approaches have
since been applied to the Greenland Sea gyre [Hood and Merlivat, 2001], the Sargasso Sea [Nelson et al., 2001],
the North Atlantic in winter [Olsen et al., 2003], and the Caribbean Sea [Olsen et al., 2004].

Unfortunately, pCO2-SST relationships fail in some situations, usually related to high biological activity:
Stephens et al. [1995] found that their pCO2-SST relationship did not work well in the biologically productive
northwest North Pacific, Olsen et al. [2003] found that the impact of the spring bloom on pCO2 in the Greenland
Sea was not predictable by SST, and Cosca et al. [2003] found that they could greatly improve their prediction
of pCO2 in the equatorial Pacific if biological indicators were included. These observations are particularly
important when considering coastal seas, because biological activity and other biogeochemical reactions that
modify pCO2 independently of SST occur at disproportionately high rates in such areas [Gattuso et al., 1998;
Wollast, 1998]. To circumvent this problem, some researchers have attempted to include satellite-derived
observations of ocean color in both the open ocean and coastal seas. Ono et al. [2004] were among the first to
try this approach by using chlorophyll (Chl a) derived from an early ocean color sensor in a multivariate regres-
sion with SST. In a similar study, Rangama [2005] used Chl a derived from Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) to estimate pCO2 in a region of the Southern Ocean.

The primary productivity in the upper ocean is also a key factor associated with the surface pCO2 [Ono et al.,
2004; Lohrenz and Cai, 2006]. Therefore, there is the potential to remotely sense the surface pCO2 using satellite
data based on its correlation with SST, Chl a, and other key parameters. This has resulted in the development
of empirical algorithms for satellite-derived pCO2. Various algorithms have been derived for different areas of
different spatial scales. In the North Pacific, Stephens et al. [1995] attempted to study the distribution of pCO2

using remote sensing SST data. Ono et al. [2004] then introduced Chl a as an additional regression parameter
and obtained reduced root-mean-square error (RMSE) when calculating pCO2. Sarma et al. [2006] further
developed a remote sensing algorithm for pCO2, which contained three parameters, i.e., SST, Chl a, and clima-
tological salinity (S). [Lohrenz and Cai, 2006] added colored dissolved organic matter (CDOM) as a parameter
in their remote sensing algorithm for pCO2, based on the good correlation existing between CDOM and S in
the Mississippi plume.

The Baltic Sea is a semienclosed sea in Northern Europe characterized by restricted water exchange with the
open ocean and a large inflow of river water [Meier et al., 2014]. The pCO2 displays considerable seasonal and
interannual variability in the Baltic Sea and is affected by several processes, such as air-sea gas exchange,
physical mixing, and various biological processes. Previous investigations of the Baltic Proper found large tem-
poral and spatial variability in pCO2. The amplitude of the annual pCO2 cycle varies significantly depending
on the region, ranging from 400 μatm in the northeastern Baltic Proper to 120 μatm in the transition areas
to the North Sea [Schneider and Kaitala, 2006]. The Baltic Sea has been well studied [e.g., Omstedt et al., 2004;
Hjalmarsson et al., 2008; Backer and Leppänen, 2008; Wesslander, 2011] and relatively well monitored and is
well suited to the application of new methods for monitoring coastal seas that take account of river runoff
[Bergstrom, 1994] and the importance of upwelling variability [Myrberg and Andrejev, 2003; Lehmann and
Myrberg, 2008; Norman et al., 2013]. The biogeochemical processes in the Baltic Sea marine environment are
controlled mainly by the biological production and decomposition of organic matter occurring in the context
of the regions hydrography [Siegel and Gerth, 2012]. Physical forcing controls the water transport, stratification,
temperature, and S in the Baltic Sea; these factors then influence the nutrient and carbon distribution, thereby
affecting biogeochemical processes. Monitoring the marine pCO2 distribution on monthly to interannual
timescales is therefore crucial to better understanding the carbon cycle [Wesslander, 2011]. Due to technical
as well as financial limitations, in situ measurements of marine pCO2 are sparse in space and time.
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Parard et al. [2014] used the self-organizing multiple linear output (SOMLO) [Sasse et al., 2013] method to
estimate the ocean surface pCO2 in the Baltic Sea from the remotely sensed SST, Chl a, CDOM, net primary
production (NPP), and mixed-layer depth (MLD). The outputs of this research have a horizontal resolution
of 4 km and cover the 1998–2011 period. We continue the work of Parard et al. [2014] by estimating pCO2

variability in time and space over the Baltic Sea.

The manuscript is structured in five sections. After this introduction, section 2 presents the data and method
used in this work. Section 3 presents the results divided into four subsections: section 3.1 examines the vari-
ability of pCO2 estimated using the SOMLO method, section 3.2 examines the effect of variation in parameter
forcing, section 3.3 examines coastal region variability, and section 3.4 estimates the climatology of pCO2 for
the year 2010. We conclude the article by discussing the results obtained.

2. Data and Method
2.1. pCO2 Map
To reconstruct the sea surface pCO2 concentrations, we employed the SOMLO methodology [Sasse et al., 2013]
in a similar way to that applied by Parard et al. [2014]. The SOMLO methodology combines two statistical
approaches: self-organizing maps (SOMs) [Kohonen, 1990] and linear regression.

SOMs are a subfamily of neural network algorithms used to perform multidimensional classification. A defin-
ing characteristic of SOMs is that their classes can represent a Gaussian distribution centered on the typical
profile of environmental parameters, if the training data set is highly discrete [Dreyfus, 2005]. During the train-
ing phase, the SOMLO methodology uses SOMs to discretize a data set of explanatory parameters in classes
and then locally learn a set of linear regression coefficients to infer the pCO2 for each class. When presented
with a new vector of explanatory parameters, the methodology first classifies it on the SOM map and then
uses the calculated regression coefficients to estimate the pCO2.

In this paper, we introduce three major improvements in the methodology compared with that used in the
previous study [Parard et al., 2014]: (1) we divide the Baltic Basin into four sectors, applying SOMLO separately
in each one; (2) we modify the classification process to take into account the covariance between parameters;
and (3) we determine the regression coefficients over the principal component analysis projections of
the data.
2.1.1. Division in Sectors
While the explanatory parameters considered (i.e., SST, Chl a, CDOM, NPP, and MLD) and information on
the time of year (sine and cosine) have remained constant, compared with Parard et al. [2014], we had
three sources of pCO2 data which give 1445 vectors: the Östergarnsholm site with pCO2 measurements
from 2005 to 2011 [Rutgersson et al., 2008] ; Cargo ship: this data set derives from continuous measure-
ments of the surface water pCO2 made in the Baltic Sea [Schneider and Kaitala, 2006; Schneider et al., 2009];
Swedish Meteorological and Hydrological Institute database Svenskt Havsarkiv: pH and total alkalinity (TA)
(http://www.smhi.se/klimatdata/oceanografi/havsmiljodata/marina-miljoovervakningsdata).

We added pCO2 data to the pool of potential training data from vessel measurements, 2008–2010, in the Gulf
of Bothnia shown in Löffler et al. [2012] (Figure 1) (B. Schneider, personal communication, 2014). In total, our
data set now contains 1670 vectors compared with Parard et al. [2014]. It is all the data shown in the Gulf of
Bothnia in Figure 1. The data can also be found in the Surface Ocean CO2 Atlas ([Bakker et al., 2014], SOCAT:
www.socat.info). To optimize the SOM map size for the method and to calculate the method’s performance,
we randomly sampled 90% of the complete data set for use in the training phase, keeping 10% for use in
computing the performance of the method.

The satellite data source is briefly presented here:

1. Sea surface temperature (SST): For 1998–2004 this data set consists of the monthly average SST (in ∘C) over
the zone, with a spatial resolution of 4 km, extracted from version 5.2 of the advanced very high resolu-
tion radiometer (AVHRR) Pathfinder project [Casey et al., 2010] (http://www.nodc.noaa.gov/SatelliteData/
pathfinder4km/). For 2005–2011, we use data from the Federal Maritime and Hydrographic Agency,
which processed data from AVHRR-NOAA, and data from the Group for High-Resolution Sea Surface
Temperature data set for the Baltic Sea, 2007–2011. (http://podaac.jpl.nasa.gov/dataset/DMI-L4UHfnd-
NSEABALTIC-DMI_OI).
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Figure 1. The location and quantity of available data in the Baltic Sea, 1998–2011. The color bar shows the pCO2 value
in μatm. The red lines indicate the division of the Baltic Basin into the Central Basin (CB), Gulf of Finland (GF), Gulf of
Bothnia (GB), and South Basin (SB).

2. Chlorophyll a (Chl): for 1998–2011, from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) with 4 km spa-
tial and monthly temporal resolutions and Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua)
[Casey et al., 2010].

3. Colored Dissolved Organic Matter (CDOM): the values come from MODIS-Aqua 4 km monthly average data
Morel and Gentili [2009].

4. Net primary production (NPP): for 1998–2009 the Environmental Marine Information System [Lee et al., 2005]
and for 2009–2011 uses the Vertically Generalized Production Model of Behrenfeld and Boss [2006].

5. Mixed-layer dept (MLD): monthly averages from 1998 to 2007 Burchard and Bolding [2002] and for
2008–2011 [Behrenfeld et al., 2005].

The details of theses different products are presented in Parard et al. [2014].

On studying the new data, we noticed that different geographic regions could present similar input vectors
for the chosen explanatory parameters yet present vastly different pCO2 concentrations. This suggested that
different local process were driving the pCO2 concentrations in each zone. Since these processes were not
reflected by the selected parameters, we chose to separate the data in zones and apply the method in each
data set.

Based on preexisting geographic separations, we chose to divide the Baltic Basin into four sectors: the Gulf
of Bothnia, Gulf of Finland, Central Basin, and South Basin (Figure 1). The longitudinal and latitudinal limits of
these regions are presented in Table 1.

We then trained the SOMLO methodology on the data belonging to each of these basins, reconstructing each
point using each of the four SOMs. The final pCO2 value for each point was then calculated by adding each
of the four reconstructions weighted by a coefficient, wi , inversely proportional to the square of the distance
from the point being reconstructed to the center of each zone. More specifically,

FinalpCO2
(x, y) =

4∑
i=1

wi(x, y) × pCO2(i) (1)
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Table 1. The Four Basins Boundaries

Name of Basin Latitude Longitude

Gulf of Bothnia (GB) ≥ 60.4 ∘N 16∘W ≤ longitude ≤ 26∘W

Gulf of Finland (GF) 57∘N < latitude ≤ 62∘N ≥22∘W

Central Basin (CB) 56∘N ≤ latitude ≤ 60.4∘N 13∘W ≤ longitude ≤ 22∘W

South Basin (SB) ≤56∘N All

wi(x, y) =
1

distance([x,y],[x̄i ,ȳi])∑
i=1∶4

1
distance([x,y],[x̄i ,ȳi])

(2)

where pCO2(i) is the pCO2 reconstructed using SOMLO trained over the data for each region and x̄i , ȳi are the
coordinates of the center of each region. This smoothing is essential to preserving the continuity between
the four regions.
2.1.2. Modified Best Matching Unit
The selection of the best matching class is a particularly important part of the classification process. We intro-
duced a change to the way we select the best matching class in order to favor local data correlations. When
comparing an observation with each class of the topological map, the usual approach is to compare the obser-
vation (normalized in the same way as the training data sets) with the values of the referent vector of each
class. The referent vector of each class corresponds is a vector containing the average values of the elements
belonging to that class. If we represent a normalized observation by obs = (o1, …, ok), where k corresponds
to the number of parameters classified in the SOM (minus one, i.e., the pCO2) and the referent vector of class
i by ri = (ri

1, …, ri
k), then the best matching class is found by

BMC(obs, SOM) = argmini

n∑
i=k

(

√√√√ k∑
j=1

(ri
j − oj) (3)

where n corresponds to the number of classes in the SOM.

However, when trying to reconstruct the pCO2 from other explanatory variables, we must take into account
that the classes were generated using vectors containing the pCO2. Each class represents a different dynamic
of the system, in which the explanatory parameters are connected to the pCO2 in different ways.

For each class we therefore calculated the absolute value of the covariances of the various parameters with
pCO2 and used this information to weigh our selection of the best matching class.

If we note pCOi
2cov, i.e., the vector containing the absolute value of the covariance of each parameter of the

elements captured by the ith neuron of the SOM with pCO2, then the modified way to calculate the BMC is

BMC(obs, SOM) = argmini

n∑
i=1

(

√√√√ k∑
j=1

((ri
j − oj) ∗ (1 + pCOi

2cov))2 (4)

This version of the attribution to a class has the benefit of more effectively taking into account the covariance
of the variables with the pCO2, allowing certain extreme parameter values to be more easily associated with
the areas of the SOM where the pCO2 is more correlated with these values.
2.1.3. Regression Coefficients
The regression coefficients of the linear regression component of the SOMLO method were trained, as in
Parard et al. [2014], on the data vectors belonging to the neighborhood of each class. We therefore had one
set of linear regression coefficients per class for each map. Instead of including all the explanatory parame-
ters, we chose to perform a principal component analysis [Jolliffe, 2002] of each of these training data sets.
We chose to keep the first four axes of the principal component analysis and learn the regression coefficients
for the data projections on these four axes. Before performing a reconstruction using the SOMLO method, we
now project the explanatory parameters onto the axes of the classes to which they have been attributed and
perform the regression on the scores thus obtained. This projection was used to obtain the pCO2 based on
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Figure 2. Annual pCO2 cycle (a) Monthly average of the in situ data and (b) computed based on the satellite data for
each interpolated year.

the most dominant parameters in each situation, discarding the axes describing a part of the variance that is
less impactful.

3. Results
3.1. pCO2 Map Description: Variability of pCO2

The average in situ data for the 13 years from 1998 to 2011 are shown in Figure 2a. The SOMLO method [Parard
et al., 2014] allows the estimation of monthly pCO2 maps for the entire Baltic Sea for the 13 years from 1998
to 2011, as shown in Figure 2b. As shown in Figure 1, the Baltic Sea is divided into four regions, i.e., the Gulf
of Bothnia (GB), Gulf of Finland (GF), Central Basin (CB), and Southern Basin (SB). For the reconstructed pCO2

values, the RMS values are lower and the correlation coefficients (R) are higher than those found in the previ-
ous study [Parard et al., 2014]. The pCO2 is well reproduced in each region (Table 2). The R values are good, the
lowest being observed in the Southern Basin (0.9) where the RMS is the highest (i.e., 38.5 μatm). The Gulf of
Finland has the highest R value (i.e., 0.97) and the Gulf of Bothnia the lowest RMS (19.5 μatm), the latter being
the region with the lowest data density.

In Figure 2a, which shows the average pCO2 values for each year, the seasonal variation is well reproduced
with lower values in summer and higher values in winter. The variability of the in situ data has the same order
of magnitude than the computed pCO2 with SOMLO method (Figure 2).

The atmospheric pCO2 was estimated using the method from Rutgersson et al. [2009]. From April to about
October, the pCO2 is clearly below the atmospheric pCO2, which was 362–404 μatm from 1997 to 2011
(Figures 3 and 4). Omstedt et al. [2014] attributed the low pCO2 values to CO2 consumption by biological
processes that control pCO2 from April to October dominating the effect of rising temperatures in spring
and summer that would increase pCO2. The seasonal pCO2 distribution is characterized by the two minima
observed in spring and midsummer (Figures 3 and 4), resulting from interplay between production peaks and

Table 2. RMS Values and Correlation Coefficients for the Reconstructed
pCO2 Values

Region R RMS (μatm)

Gulf of Bothnia 0.97 19.5

Gulf of Finland 0.98 25.8

Central Basin 0.96 34.0

South Basin 0.90 38.5
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Figure 3. Variability of mean pCO2 in (a) the Gulf of Bothnia and (b) the Gulf of Finland.

increasing temperatures [Omstedt et al., 2014]. The pCO2 increase after the main productive period coincides
with the deepening of the mixed-layer transporting CO2-enriched water masses to the surface. This process
causes oversaturation of the surface water relative to atmospheric CO2, so CO2 is released into the atmosphere
from November to March. This is coherent with the satellite data distribution of the input parameters, the
mixed-layer depth (MLD) being deeper and SST being higher in the spring (Figure 5a). Chl a is higher in spring
and summer (Figure 5b), and NPP is high in spring (Figure 6a), corresponding to the period of the first high
biological activity.

The mean pCO2 values are computed for each of those four basins defined separately (Figures 3 and 4), i.e., the
Gulf of Bothnia (GB), Gulf of Finland (GF), Central Basin (CB), and Southern Basin (SB) (Figure 1). The variability
is similar in all four basins, but the increase in summer is higher in the Gulf of Finland than in the other basins
(Figure 3b) and lower in the South basin (SB) than in the other basins (Figure 4b). The interannual variability
is lower in the Central Basin than in the other basins. The decrease in mean pCO2 observed in Figure 2b in
May from 2007 to 2011 is due to variability in the gulfs of Finland and Bothnia. The pCO2 variability is higher
in the gulfs of Finland and Bothnia, with standard deviations of 11.4 and 17.6 μatm, respectively, compared
with those of the South and Central Basins of 8.9 and 6.4 μatm, respectively. The Gulf of Finland and Central

Figure 4. Variability of mean pCO2 in (a) the Central Basin and (b) the South Basin.
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Figure 5. Evolution of average parameter values in each basin (the entire Baltic Sea (BS), South Basin (SB), Central Basin
(CB), Gulf of Bothnia (GB), and Gulf of Finland (GF)) for (a) SST and (b) Chl a.

Basin have nearly the same values with averages of 350.6 and 350.9 μatm, respectively, the South Basin being
slightly higher with an average of 369.6 μatm and the Gulf of Bothnia the highest with a value of 384.4 μatm.

3.2. Variation in Forcing Parameters
All parameters used to compute the pCO2 map can be used in estimating the important processes for the
entire Baltic Sea and for each basin separately. Figures 5 and 6 show the monthly averages of all parameters.
The evolution is fairly similar in all basins, but in the Gulf of Finland, the Chl a and NPP values are higher
than in the other basins, though its SST and MLD values remain in same order of magnitude as in the other
basins. CDOM, a parameter that cannot be removed when computing the pCO2 [Parard et al., 2014], has low
variability. This low CDOM variability could be due to a lack of satellite data, so the effect of CDOM on pCO2 is
likely underestimated.

Strong interannual variability in pCO2 is observed (Figure 2). The pCO2 minimum is usually observed in June
and July, but from 2007 to 2011 the minimum is observed in May (Figure 2). For 2005 and 2006, two minima
are observed in May and July. SST, Chl a, MLD, CDOM, and NPP—parameters used to construct the pCO2

map—all display interannual variability, the strongest being observed in MLD, Chl a, and NPP. The interannual
variability in MLD is very strong in winter and early spring. Chl a is stronger after 2005, representing a positive

Figure 6. Evolution of average parameter values in each basin (the entire Baltic Sea (BS), South Basin (SB), Central Basin
(CB), Gulf of Bothnia (GB), and Gulf of Finland (GF)) for (a) NPP, (b) CDOM, and (c) MLD.
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Figure 7. The difference between the coastal and open sea regions. The red scale on the right side is for the difference
in pCO2, and the blue scale on the left is for the difference in various other parameters: (a) SST, (b) Chl a, (c) NPP,
(d) CDOM, and (e) MLD.

anomaly compared with the mean yearly Chl a, but before this the anomaly is negative. The NPP interannual
variability occurs in spring and summer; the maximum observed NPP displays strong temporal variability,
which influences the variability in the pCO2 minimum observed during this period.

MLD is deeper in the Gulf of Bothnia than in the other basins, this deeper mixing explaining the higher pCO2

value. The Gulf of Finland displays a lower pCO2 value, while the difference in the Central Basin is approx-
imately 20 μatm. The Chl a and NPP values are higher in the Central Basin in spring and summer, possibly
because biological activity exerts a stronger effect than in the other basins.

MLD displays variability within each year. The highest variability is observed in the South and Central Basins,
where MLD can differ by approximately 20 m in years such as 2008 and 2000. The SST and Chl a variability is
of the same order of magnitude for each basin, indicating that these parameters are not majorly responsible
for the observed differences. NPP displays strong variability between May and October in the Gulf of Finland,
representing a positive anomaly compared with the average, so the NPP value is stronger year round than in
the Gulf of Bothnia, where NPP is below average and where lower variability is also observed. No NPP trend
is evident in the South and Central Basins, though NPP varies from approximately −5 to 5 mg m−3. CDOM
variability is stronger in the South Basin, possibly because more data are available for this area.

3.3. Coastal Variability
The pCO2 map allows us to divide the pCO2 and all other parameters between the coastal region and the open
sea. The coastal region is defined by a distance of 0.5∘ in latitude and longitude from the coast; farther than
this from the coast is defined as open sea.

Figure 7 shows that the mean pCO2 difference between the coastal region and the open sea is negative
(i.e., −10 μatm). Coastal pCO2 values are lower than open sea values in the spring and early summer. On
average, a greater difference in pCO2 is observed between February and June, when it varies between 8 and
16 μatm. The pCO2 difference between the coastal region and open sea is attributable to the difference in
forcing parameters. In November, we observed a large difference between the coastal and open sea pCO2,
with a higher value in the coastal area (Figure 7). We observed the opposite signal in CDOM and Chl a com-
pare to pCO2 variability, with higher values in the open sea than along the coast. It is logical that the Chl
a and CDOM values should be higher near the coast in winter, and this could explain the observed difference
in pCO2 between the coast and open sea.

The parameter signals differ between spring and midsummer. SST is 0.25–1∘C warmer between April and
September in the open sea than in the coastal region (Figure 7a). This causes an increase in pCO2 due to
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Figure 8. Monthly climatology of pCO2 for the January–December period.

the thermodynamic effect, and the pCO2 follows a slope of 4.23% (∘C)−1 [Takahashi et al., 1993]. The pCO2

in the coastal region is lower. Chl a is higher in the coastal region between March and October, averaging
0.7 mg m−3 with a variability range of 0.4–0.9 mg m−3. NPP is also higher near the coast with an average
of 0.4 and a variability range of 0.03–0.8 mg m−2 between March and October and a higher value between
May and September when biological activity is stronger. Chl a and NPP are the parameters responsible for
the variability in pCO2 before April. The increase in Chl a and NPP near the coast can explain the lower pCO2

value, attributable to biological consumption (Figures 7b and 7d). CDOM is lower, averaging 0.06 mg m−3

with a lower value between March and August. The within-year difference is very small, the greater difference
being observed in the Gulf of Finland (0.59 mg m−3) and the Central Basin (0.8 mg m−3). In the Gulf of Finland,
the coastal region CDOM is lower between May and August, while in the Central Basin it is lower in winter.
CDOM absorption reduces the penetration of UV light into the water column, protecting marine organisms
from exposure to harmful UV radiation while reducing the amount of visible light available for pelagic and
benthic photosynthesis [Bidigare et al., 1993]. CDOM increases with greater turbidity and lower S [Bowers et al.,
2004]. The average CDOM is slightly higher in the open sea than in the coastal region, but this cannot help to
conclude about the difference in turbidity is not significant. MLD is always deeper in the open sea (Figure 7e),
which must increase the pCO2 in this region. The biological consumption is higher in the coastal region, while
the higher MLD and higher SST explain the higher pCO2 in the open sea region.

In the Baltic Sea, upwelling happens often [Myrberg and Andrejev, 2003] between June and September. The
length scale is typically 75–100 km and the width scale 10–30 km, while the lifetime of the feature varies
between 0.5 and 10 days and the temperature difference is typically 2–4∘C. On a monthly scale, the upwelling
signature is not visible in the satellite data, so we can study this effect in the coastal region only at higher
temporal resolutions.
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3.4. Climatology of pCO2 in Baltic Sea
The climatology of pCO2 is estimated from the pCO2 map constructed from 1998 to 2011 (Figure 8), which
permits the observation of both temporal and spatial variability. We can observe spatial variability, pCO2 gen-
erally being higher in the north than the south, except in summer in the south where the value is higher than
in the central part. Some parts of the north lack data due to ice cover in winter.

The number of data is limited, which limits the validity of the method, but the results are convincing com-
pared with those of other similar studies of the Baltic Sea [e.g., Friedrich and Oschlies, 2009; Hales et al., 2012;
Landschützer et al., 2013]. In the future, increasing the number of NPP and CDOM data could improve our esti-
mates, while adding certain parameters, such as S, could permit better descriptions of the various processes
operative in each region.

4. Discussion

It remains difficult to reliably assess variations in pCO2 in the global oceans, including the marginal seas, due
primarily to the lack of sufficient spatial and temporal pCO2 field measurements in these complex regions
[Canadell, 2003]. Remote sensing with applicable algorithms could certainly be an important approach com-
plementing shipboard observations. Using this method, we provide the first estimate of pCO2 climatology in
the Baltic Sea based on satellite data. The mean pCO2 is 368.3 ± 100 μatm, with a range of 234–514 μatm.
The seasonal variability in pCO2 is strong, with the lowest pCO2 observed in summer (i.e., 282 μatm) and
the highest pCO2 observed in winter (i.e., 469 μatm). The higher value was observed in 1998, accompanied
by low variability of 97 μatm, and the lower value was observed in 2011, accompanied by higher variability
(121 μatm); however, the lowest variability (i.e., 95.7 μatm) was observed in 2003. The variability was strong
between 2009 and 2011, with higher variability observed in the North and East Basins. NPP and MLD are the
parameters having the strongest influence on the basin variability in pCO2 and are also parameters displaying
strong interannual variability.

Furthermore, separating the Baltic Basin into four regions improves the results of estimating the pCO2,
lowering the RMS (<40 μatm) and increasing the correlation coefficient (R > 0.96). One possible reason for the
difference in parameter variability between the regions is the variability in S. The Baltic Sea is characterized by
its large differences in S. From approximately 25 ppm in the Kattegat, it decreases to 8 ppm in the southern
Baltic Sea and to only 2 ppm in the northern Gulf of Bothnia and the innermost Gulf of Finland [Feistel
et al., 2010].

Beldowski et al. [2010] demonstrate that total CO2 is controlled mainly by alkalinity (AT) and by the production
and decomposition of organic matter. In oceanic surface water, changes in AT are caused mainly by evapora-
tion and precipitation and the AT/S ratio is almost constant [Lee et al., 2006]. The situation differs in the Baltic
Sea [Wesslander, 2011], where the surface water AT is controlled by the mixing of oceanic water originating
from the North Atlantic with river water containing varying amounts of AT. It was proven that surface AT dis-
tributions are controlled largely by the spatially varying riverine AT input and by mixing with the ocean water
that enters the Baltic Sea via the Kattegat. This is in agreement with some studies demonstrating that tak-
ing account of S in the North Atlantic Ocean improves the estimation of pCO2 using a method similar to ours
[Nakaoka et al., 2013]. Thomas and Schneider [1999] observed correlation between the associated changes in
dissolved inorganic carbon (DIC) and S between summer and winter. Corresponding to the increase in the
seasonal changes in S, the changes in DIC increase. In the future, adding a parameter such as S to the vector
would improve the method, allowing the use of one map for the entire basin rather than one divided into
four basins.

In the present study, NPP and MLD are important parameters when estimating the pCO2. As biological activity
is very important in summer, these parameters are more important in the coastal area than in the open ocean,
as explained by Chierici et al. [2009]. Taking account of in situ CDOM measurement improved our results,
but since the quality of the satellite CDOM measurements may be too imprecise when compared to the in
situ measurements, we chose to exclude them. The Chl a gives us information on the biological activity on
a monthly timescale, but the bloom takes place at a lower scale so we lost the information. It will be really
interesting to improve this work on a shorter temporal scale to work on processes like the coastal upwelling.
Several other studies have used a similar neural method, most of them using SST and Chl a and some-
times MLD. One study [Chang et al., 2013] estimated net community production using several data products:
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photosynthetically available radiation, particulate organic carbon, Chl a, SST, sea surface height, and MLD
(from dioxygen argon measurements). The nonlinearity of these methods present, however, the disadvantage
of not being able to provide a robust uncertainty estimation such as those provided in more linear approaches
[i.e., Omar et al., 2007]. We are therefore making the hypothesis that the errors in the predictors are such that
they still get classified in the correct class of the SOM. We plan on further exploring the uncertainty analysis
of such methods in future papers.

In comparison, existing studies performed over the North Atlantic and North Pacific are based on a minimum
of 10,000 data points (which take into account all the data from SOCAT) to a maximum of 800,000 data points
[e.g., Telszewski et al., 2009; Friedrich and Oschlies, 2009; Hales et al., 2012; Landschützer et al., 2013]. In North
Atlantic, Friedrich and Oschlies [2009] obtained an RMS error (RMSE) of 19 μatm for the year 2005. A similar
study over the entire Atlantic Ocean obtained an RMSE of 17 μatm for independent time series [Landschützer
et al., 2013]. Hales et al. [2012] obtained an RMSE of 20 μatm with a correlation coefficient of 0.81. The RMSE
obtained here was higher than that obtained in a previous study of the Atlantic Ocean, but, taking into account
the much smaller number of data available and the possibly stronger spatial pCO2 variability in the Baltic Sea
than the open ocean, the results presented here are promising. Another study in the northern South China
Sea [Jo et al., 2012] applied a neural network method with four inputs (SST, Chl a, longitude, and latitude).
Their results revealed a high correlation coefficient of 0.98 with a root-mean-square error (RMSE) of 6.9 μatm.
However, their model is trained and applied on a relatively small coastal area with less variability than the one
present in the Baltic Sea.
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