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Almost homogeneous curves over an arbitrary field

Bruno Laurent ∗

Abstract

We classify the pairs (C, G) where C is a seminormal curve over an arbitrary field k
and G is a smooth connected algebraic group acting faithfully on C with a dense orbit,
and we determine the equivariant Picard group of C. We also give a partial classification
when C is no longer assumed to be seminormal.

1 Introduction
A variety which is homogeneous under the action of an algebraic group is a very symmetric
object. The study of equivariant compactifications of homogeneous varieties leads to the notion
of almost homogeneous varieties. These are the varieties with a dense orbit. For example, toric
varieties are the normal almost homogeneous varieties under the action of a torus.

In case of curves, the situation is rather nice for several reasons. First, a curve is almost
homogeneous under the action of a smooth connected algebraic group if and only if the action
is non-trivial. Moreover the complement of the dense orbit consists only of finitely many fixed
points.

Second, we have natural compactifications. More precisely, if C is a regular curve over a
field k then there exists a regular projective curve Ĉ and an open immersion C ↪→ Ĉ. Such a
curve satisfies a universal property: for any proper scheme Y over k, every morphism C → Y
extends uniquely to a morphism Ĉ → Y . In particular Ĉ is unique up to unique isomorphism.
We call it the regular completion of C and the points of Ĉ \C are called the points at infinity.

Finally, if C is a projective curve then the functor which associates with a k-scheme S the
abstract group AutS(C × S) of S-automorphisms of C × S is representable by an algebraic
group denoted by AutC (see [4, Ex. 7.1.2]).

The study of automorphisms of curves has a long story. A first step was a theorem of
Adolf Hurwitz stating that a compact Riemann surface of genus at least 2 has finitely many
automorphisms. This result was generalized several times, and in particular Maxwell Rosenlicht
gave in [17, Th. p.4] a version for smooth projective curves over an arbitrary field, in the
language of algebraic function fields in one variable. He also classified in [17, Th. p.10] the
algebraic function fields which he called “exceptional”, that is, those of genus at least 1 having
infinitely many automorphisms (fixing a given place if the genus equals 1). The link with
regular curves is standard: there is an anti-equivalence between the category of regular curves
over k and the category of algebraic function fields in one variable over k, which associates
with a curve C its function field k(C), and the closed points of C correspond to the places of
k(C). Some years after, Peter Russell gave in [19, Th. 4.2] an interpretation of Rosenlicht’s
classification in geometric terms, which we state for simplicity in case k is separably closed:
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a regular projective curve C of genus at least 1 has infinitely many automorphisms (fixing a
given closed point if the genus equals 1) if and only if C is the regular completion of a torsor
under a non-trivial form of the additive group Ga,k.

From the geometric point of view, a natural approach to classify almost homogeneous curves
is to understand the regular completions of homogeneous curves, and the behavior of the points
at infinity. Vladimir Popov thus obtained in [16, Ch. 7] a full classification of almost homo-
geneous curves over an algebraically closed field of characteristic zero, and determined their
abstract automorphism group. Our objective is to extend this result by classifying the pairs
(C,G) where C is a curve over an arbitrary field and G is a smooth connected algebraic group
acting faithfully on C with a dense orbit.

The complexity of the classification depends on the class of singularity of the curves. After
regular curves, the next class to look at is the class of seminormal curves. Roughly speaking,
these are the curves whose branches intersect as transversally as possible. They can be easily
described in the language of pinchings developed by Daniel Ferrand in [10] (see Section 3.1 and
Lemma 3.17). We obtain the following theorem.

Theorem 1.1. Let C be a seminormal curve, G is a smooth connected algebraic group and
α : G × C → C an action. The action is faithful and C is almost homogeneous if and only if
one of the following cases holds:

1. (homogeneous curves)

(a) C is a smooth projective conic and G ' AutC;
(b) C ' A1

k and G ' Ga,k o Gm,k (acting by affine transformations);
(c) G is a form of Ga,k and C is a G-torsor;
(d) G is a form of Gm,k and C is a G-torsor;
(e) C is a smooth projective curve of genus 1 and G ' Aut◦C;

2. (regular, non-homogeneous curves)

(a) C ' P1
k and G ' Ga,k o Gm,k;

(b) G is a form of Ga,k and C is the regular completion of a G-torsor;
(c) C ' A1

k or P1
k and G ' Gm,k;

(d) C is a smooth projective conic and G is the centralizer of a separable point of degree 2;

3. (seminormal, singular, non-homogeneous curves)

(a) G is a non-trivial form of Ga,k and C is obtained by pinching the point at infinity
P̃ of the regular completion of a G-torsor on a point P whose residue field κ(P ) is
a strict subextension of κ(P̃ )/k;

(b) C is obtained by pinching two k-rational points of P1
k on a k-rational point and

G ' Gm,k;
(c) C is obtained by pinching a separable point P̃ of degree 2 of a smooth projective conic

C̃ on a k-rational point, and G is the centralizer of P̃ in Aut
C̃

.

Let us notice that, since in the case 3a the curves are parameterized by subextensions of
κ(P̃ )/k, these curves can form an uncoutable family (see Remark 3.22).
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When C is not necessarily seminormal, the situation is more complex and requires to study
representations of algebraic groups. We give a classification in Sections 4.1 and 4.2, except for
almost homogeneous curves under the action of Ga,k o Gm,k or a form of Ga,k when the field
k has positive characteristic, because in this case the representations of the forms of Ga,k (and
even Ga,k itself) are not so well-understood. The full classification remains an open problem.

Another open problem is to determine the automorphism group scheme of almost homoge-
neous projective curves, especially for the curves obtained by pinching the regular completion
of a torsor under a non-trivial form of Ga,k.

For projective almost homogeneous curves under the action of an algebraic group G, one
may want to try to embed them in the projectivization of a G-module. The standard tool is
the notion of G-linearized line bundles. We describe in Proposition 5.13 the G-linearized line
bundles over a variety obtained by a pinching. We use this description to determine in Theorem
5.16 the equivariant Picard groups of the curves appearing in Theorem 1.1.

Notations and conventions. We fix a base field k and an algebraic closure k, and denote
by ks the separable closure of k in k. For all k-schemes X and S, the base change X ×k S shall
be denoted by XS; in case S = SpecK for some field extension K/k, we simply write XK .

All morphisms between k-schemes are morphisms over k. A variety over k is a separated
scheme of finite type over Spec k which is geometrically integral. A curve is a variety of
dimension 1. An algebraic group over k is a group scheme of finite type over Spec k. A
subgroup of an algebraic group is a (closed) subgroup scheme. We may consider non-smooth
groups, but all the groups acting on a variety shall be assumed smooth.

For a smooth algebraic group G, we denote by X(G) = Homks−gp(Gks ,Gm,ks) the abstract
group of characters of Gks . Let X(G)

ks
be the corresponding constant group scheme over ks

and Ĝ the étale sheaf given by Ĝ(S) =
(
Homks−sch(Sks , X(G)

ks
)
)Gal(ks/k)

for every k-scheme S.
For any Galois extension K/k we have Ĝ(SpecK) ' HomK−gp(GK ,Gm,K) and this group is
simply denoted by Ĝ(K).

Acknowledgements. I gratefully thank Michel Brion for his helpful and enlightening ideas
and suggestions. I also thank Raphaël Achet, Mohamed Benzerga and Delphine Pol for fruitful
discussions.

2 Regular almost homogeneous curves

2.1 Scheme-theoretic actions
In this section we recall some elementary facts about the actions of algebraic groups, in the
setting of schemes. We use [8] as a general reference.

Let X be a variety, G a smooth algebraic group with neutral element e and an action α :{
G×X −→ X
(g, x) 7−→ gx

. For any k-rational point x ∈ X(k) the orbit morphism αx :
{
G −→ X
g 7−→ gx

is flat and factorizes as G → Gx → X where Gx is a reduced scheme, the first morphism is
faithfully flat and the second one is an immersion. Thus Gx is a G-stable subscheme of X,
called the orbit of x (see [8, II 5.3.1]).
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For any closed subscheme Y of X, the functors NG(Y ) and CG(Y ) which associate with
each k-scheme S the abstract groups

NG(Y )(S) = {g ∈ G(S) | g induces an automorphism of YS}
= {g ∈ G(S) | ∀S ′ → S,∀y ∈ Y (S ′) ⊆ X(S ′), gy ∈ Y (S ′)}

and

CG(Y )(S) = {g ∈ G(S) | g induces the identity on YS}
= {g ∈ G(S) | ∀S ′ → S,∀y ∈ Y (S ′), gy = y}

are representable by subgroups of G, called respectively the normalizer and the centralizer of
Y (see [8, II 1.3.6]). In case Y = X, the centralizer is called the kernel of the action and is a
normal subgroup of G. In case Y is a k-rational point x, the centralizer is denoted by Gx and is
called the isotropy subgroup of x; it is also the fiber at x of αx, and αx induces an isomorphism
G/Gx ' Gx (see below for a reminder on quotients).

Similarly, the functor XG which associates with each k-scheme S the set

XG(S) = {x ∈ X(S) | the orbit morphism αx : GS → XS is trivial}
= {x ∈ X(S) | ∀S ′ → S,∀g ∈ G(S ′), gx = x}

is representable by a closed subscheme of X, called the subscheme of fixed points. Moreover
XG(k) is the set of the elements of X(k) which are fixed under the action of G(k).

One would like to define X to be homogeneous (resp. almost homogeneous) if there exists
a unique orbit (respectively a dense orbit). Since X may not have any k-rational point, a more
convenient definition can be given as follows.

Definition 2.1. The variety X is said to be homogeneous (resp. almost homogeneous) under

the action of G if the morphism γ = (α, pr2) :
{
G×X −→ X ×X
(g, x) 7−→ (gx, x) is surjective (resp.

dominant).

However, one recovers the natural definition in terms of orbits after a suitable field extension,
as shown by the following lemmas.

Lemma 2.2. Let K/k be a field extension. The following assertions are equivalent:

i) The variety X is homogeneous under the action of G.

ii) The variety XK is homogeneous under the action of GK.

iii) The action of the abstract group G(k) on the set X(k) is transitive.

iv) If there exists a K-rational point x ∈ X(K) then the orbit GKx equals XK.

Proof. The assertions i), ii) and iii) are equivalent because a morphism f : Y → Y ′ between
schemes of finite type over k is surjective if and only if fK is surjective, and also if and only if the
induced map of sets : Y (k)→ Y ′(k) is surjective (see [13, Exp. XII, Prop. 3.2]). In particular
this holds for the morphism γ. Moreover for any K-rational point x of XK the equality of
schemes GKx = XK is equivalent to the surjectivity of the orbit morphism GK → XK , to the
surjectivity of the induced map G(K) → X(K) and to the transitivity of the action of G(K)
on X(K).
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Lemma 2.3. The following assertions are equivalent:

i) The variety X is almost homogeneous under the action of G.

ii) For every field extension K/k, the variety XK is almost homogeneous under the action of
GK.

iii) There exists a field extension K/k such that the variety XK is almost homogeneous under
the action of GK.

iv) There exists an open subscheme U of X which is G-stable and homogeneous.

v) There exists a field extension K/k and a K-rational point x ∈ X(K) such that the orbit
GKx is an open subscheme of XK.

In v) the extension K/k can be chosen to be finite and separable. Furthermore, the open
subscheme U is unique, and we call it the open orbit.

Proof. Let π : XK × XK → X × X be the projection, which is an open morphism. The set-
theoretic image of the morphism γK : GK×XK → XK×XK is π−1(γ(G×X)). So γK(GK×XK)
contains a nonempty open subset of XK × XK if and only if γ(G × X) contains a nonempty
open subset of X×X. Thus it follows from Chevalley’s theorem that γ is dominant if and only
if γK is dominant (see [8, I 3.3.8]).

Assume that X is almost homogeneous. By [7, Sect. 5, p.519], there exists a finite separable
extension K/k and a point x ∈ X(K) such that the orbit GKx is open in XK . Any element γ
of Gal(K/k) induces an automorphism of XK . Then the open subscheme γ(GKx) is the orbit
of γ(x). The two open subschemes GKx and γ(GKx) must have a nonempty intersection, so
these two orbits are equal. In other words, GKx is Gal(K/k)-stable. Thus, by Galois descent,
there exists an open subscheme U of X such that UK = GKx, and this subscheme is G-stable
and homogeneous. Moreover, if U ′ is a G-stable and homogeneous open subscheme of X then
Uk and U ′

k
are two open orbits in Xk so again we have Uk = U ′

k
and U = U ′.

If X contains a G-stable and homogeneous open subscheme U then the image of γ contains
U × U so γ is dominant.

If v) is true then the orbit GKx is a GK-stable and homogeneous open subscheme of XK so
XK is almost homogeneous.

Lemma 2.4. Let G be a smooth connected algebraic group and Z a zero-dimensional reduced
scheme of finite type over k. The only action α : G× Z → Z is the trivial one.

Proof. We can assume that k is separably closed. The scheme Z is noetherian and zero-
dimensional so it is affine and its underlying topological space is a finite set endowed with the
discrete topology. For each z ∈ Z (considered as an open subscheme of Z), G× z is irreducible
so α(G × z) is irreducible too. This set contains ez = z so α(G × z) = z. Thus we have a
factorization α : G× z → z and we can assume that Z is integral. We may write Z = SpecK
for some field extension K/k. Since Z is of finite type over k, K/k is a finite extension, and
hence it is purely inseparable.

Since G is geometrically reduced, G(k) is dense in G. Then it suffices to show that the
elements of G(k) act trivially on Z. For g ∈ G(k), the automorphism of Z induced by g
corresponds to a k-automorphism of K. But K/k is purely inseparable, so the unique k-
automorphism of K is the identity.
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Remark 2.5. This result is not true in general if G is not smooth. Indeed, let k be an imperfect
field of characteristic p, a ∈ k which is not a pth power, K = k

(
a1/p

)
= k[X]/(Xp − a) and

Z = SpecK. Then Z is a zero-dimensional reduced scheme of finite type over k. However the
infinitesimal group µp acts non trivially on Z by multiplication on X.

The result is not true either in general if Z is not reduced.

Lemma 2.6. Let G be a smooth connected algebraic group, C a curve and α : G× C → C an
action. The curve C is almost homogeneous if and only if the action α is non-trivial. In this
case, the open orbit is the complement of the subscheme Z = CG of fixed points.

Proof. If C is not almost homogeneous then for x ∈ C(k), the closure of the orbit Gkx in Ck is
irreducible and cannot have dimension 1, so the orbit is trivial. Thus G acts trivially.

Assume that C is almost homogeneous. Let U = C \ Z. Then Uk is the open orbit in Ck.
Indeed, let x ∈ C(k) such that the orbit Gkx is open. By Lemma 2.4, the complement of this
orbit is the set of fixed points of C(k). So we have Uk = Gk \ Zk = Gk \ Z(k) = Gkx.

We now show how to restrict to faithful actions. First recall that if H is a subgroup of a
smooth algebraic group G then by [9, Exp. VIA, 3.2] there exists a smooth scheme of finite
type G/H, an action G × G/H → G/H and a G-equivariant morphism π : G → G/H which
is a H-torsor (where H acts on the right on G by multiplication); in particular π is faithfully
flat. If H is a normal subgroup then there exists a unique algebraic group structure on G/H
for which π is a group morphism. For every k-scheme S, the exact sequence of algebraic groups

1→ H → G→ G/H → 1

yields an exact sequence of abstract groups

1→ H(S)→ G(S)→ (G/H)(S).

The last morphism need not be surjective, but it is surjective if S = Spec k. More generally,
for any k-scheme S and g ∈ (G/H)(S) there exists a morphism S ′ → S which is faithfully flat
of finite presentation and an element g ∈ G(S ′) such that g = π(g) in (G/H)(S ′).

Lemma 2.7. Let H be the kernel of the action α. Then there exists a unique action β :

G/H × X → X such that the diagram
G×X X

G/H ×X

α

π × idX
β

commutes. Moreover the

action β is faithful, and X is homogeneous (resp. almost homogeneous) under the action of G
if and only if it is so under the action of G/H.

Proof. The argument is very standard. The morphism π × idX : G × X → G/H × X is a
H-torsor so it is a categorical quotient. Since α : G×X → X is H-invariant (where H acts on
the right on the first factor of G×X), there exists a unique morphism β such that the diagram
commutes.

Let us show that β is an action. We have to show that for every k-scheme S and every
g1 ∈ (G/H)(S), g2 ∈ (G/H)(S) and x ∈ X(S) we have g1(g2x) = (g1g2)x and π(e)x = x (where
e is the neutral element of G(S)). The second equality is obvious. Let S ′ → S be a morphism
which is faithfully flat of finite presentation and g1 ∈ G(S ′), g2 ∈ G(S ′) such that g1 = π(g1)
and g2 = π(g2) in (G/H)(S ′). Then in X(S ′) we have g1(g2x) = g1(g2x) = (g1g2)x = (g1g2)x.
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Since the map X(S) → X(S ′) is injective (because S ′ → S is an epimorphism), the equality
g1(g2x) = (g1g2)x already holds in X(S).

Let N be the kernel of the action β. We need to prove that for every k-scheme S, N(S) is
the trivial group. Let g ∈ N(S). Let S ′ → S and g ∈ (G/H)(S ′) as previously. Then for every
S ′′ → S ′ and x ∈ X(S ′′) we have gx = gx = x. So g is in the kernel of the abstract action
G(S ′) × X(S ′) → X(S ′), that is, g ∈ H(S ′). Then g = π(g) = e in (G/H)(S ′) so, as before,
g = e in (G/H)(S).

Finally, since π × idX is surjective, the morphism γ : G ×X → X ×X is surjective (resp.
dominant) if and only if so is the analogous morphism G/H ×X → X ×X.

We can also restrict to the case G is connected.

Lemma 2.8. Let G◦ be the neutral component of G. Then X is homogeneous (resp. almost
homogeneous) under the action of G if and only if it is so under the action of G◦.

Proof. We can assume that k is algebraically closed. Assume first that X is homogeneous under
the action of G. The cosets G◦g for g ∈ G(k) form an open covering of G. Pick x ∈ X(k). The
orbit morphism αx is open because it is flat. Hence the sets αx(G◦g) form an open covering
of X. Since X is irreducible, the open subsets αx(G◦) and αx(G◦g) must have a common k-
rational point. But αx(G◦)(k) and αx(G◦g)(k) are the orbits of x and gx under the abstract
group G◦(k). Then they are equal and the abstract group G◦(k) acts transitively on X(k).

Assume now that X is almost homogeneous under the action of G. By hypothesis, the
morphism γ : G × X → X × X defined in Definition 2.1 is dominant. Let us show that its
restriction γ0 to G◦ ×X is also dominant. For every irreducible component Gi of G, the right
multiplication by some gi ∈ Gi(k) induces isomorphisms G◦ ' Gi and γ(G◦ ×X) ' γ(Gi ×X).
Moreover we have

⋃
i

γ(Gi ×X) =
⋃
i

γ(Gi ×X) = γ(G×X) = X×X (the first equality holds

because there are finitely many irreducible components). Hence dim γ(G◦ ×X) = dimX ×X.
But γ(G◦ ×X) and X ×X are irreducible, so they are equal and γ0 is dominant.

The converses are trivial.

2.2 Forms of the multiplicative and additive groups
Tori are very well-known. For the one-dimensional ones, we can specialize the general results
of [1, 8.11 p.117] to get the following lemma.

Lemma 2.9. Let G be a non-trivial form of Gm,k. There exists a Galois extension K/k of
degree 2 such that GK ' Gm,K. In addition, every character of G is trivial.

Proof. Let K ′/k be a finite Galois extension such that GK′ ' Gm,K′ . The Galois group Γ′ =
Gal(K ′/k) acts on the group of characters Ĝ(K ′) = HomK′−gp(GK′ ,Gm,K′), and an element of
Ĝ(K ′) is defined over k if and only if it is Γ′-invariant. But G is not isomorphic to Gm,k so not
every character of GK′ is defined over k. Thus Γ′ acts non-trivially on Ĝ(K ′) ' Ĝm,K′(K ′) ' Z.
Then the kernel Γ of the morphism Γ′ → Aut Z ' {−1, 1} is a normal subgroup of index 2 of
Γ′. By Galois correspondence, there exists a Galois subextension K/k such that [K : k] = 2,
Gal(K ′/K) = Γ and Gal(K/k) ' Γ′/Γ. On the one hand every character of GK′ is defined
over K, so GK ' Gm,K . On the other hand, the group Γ′/Γ ' {−1, 1} acts non-trivially on
Ĝ(K) ' Z so the only (Γ′/Γ)-invariant element of Ĝ(K) is the trivial character.

There is also a geometric description of the forms of Gm,k and their torsors in terms on
conics. We first need an easy lemma about the group structures of A1

k \ {0}.
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Lemma 2.10. Up to the choice of the neutral element, the only algebraic group structure on
A1
k \ {0} is Gm,k.

Proof. Let G be an algebraic group whose underlying space is A1
k \ {0}. After a suitable

translation, we may assume that the neutral element is 1. We can also assume that k is
algebraically closed, since the multiplication map G × G → G and the usual multiplication
on Gm,k are equal if and only if they become equal after some field extension. Let x ∈ G(k).
The left multiplication by x is an automorphism of A1

k \ {0}, which corresponds to an algebra
automorphism of k[T, T−1]. Such an automorphism is given by T 7→ aT ε for some a ∈ k× and
ε ∈ {−1, 1}. The left multiplication by x maps the neutral element 1 to x, so a = x. If ε = −1
and x 6= 1 then there are fixed points (namely the square roots of x), which is impossible. Thus
ε = 1 and as expected the law is given by (x, y) 7→ xy.
Lemma 2.11. Let G be an algebraic group and C a curve. Then G is a non-trivial form of
Gm,k and C is a G-torsor if and only if there exists a smooth projective conic Ĉ, a Galois
extension K/k of degree 2 and a point P ∈ Ĉ (endowed with its structure of a reduced closed
subscheme) with residue field K such that C = Ĉ \ {P} and G is the centralizer of P in Aut

Ĉ
.

Proof. Let G be a non-trivial form of Gm,k, C a G-torsor and Ĉ the regular completion of C.
Let K/k be a Galois extension of degree 2 such that GK ' Gm,K . By Galois cohomology and
Hilbert’s theorem 90, the set of isomorphism classes of Gm,K-torsors over K is in bijection with
H1(Gal(Ks/K), K×s ) = {1} so CK ' A1

K \{0}. Since the extension K/k is separable, the curve
(Ĉ)K is regular so it is the regular completion of CK . Thus (Ĉ)K ' P1

K and the complement
of CK consists of two K-rational points. Therefore Ĉ is a smooth projective conic and Ĉ \ C
consists of 1 or 2 closed points. The residue field κ(P ) of a point P in Ĉ \C is a subextension
of K/k, and the number of points above P in (Ĉ)K is equal to the degree of κ(P )/k since this
extension is separable. Hence Ĉ \ C is either a set of two k-rational points or a unique point
P with κ(P ) = K. In the first case we have Ĉ ' P1

k, the underlying space of G is A1
k \ {0}

and so G ' Gm,k, which contradicts the hypothesis. Hence the second case holds and G is the
centralizer of P in Aut

Ĉ
since Gm,K is the centralizer of two K-rational points in AutP1

K
.

Conversely, such a G acts on the complement C of P . The curve C is a G-torsor because
it becomes so after extension to K. As before we have GK ' Gm,K . Moreover G is not
isomorphic to Gm,k, otherwise by the same argument as above we would have C ' A1 \ {0} so
the complement would be a set of two k-rational points.

The forms of Ga,k were classified by Russell in [19]. He obtained the following result.
Proposition 2.12. If C (resp. G) is a form of A1

k (resp. Ga,k) then there exists a smallest
finite field extension K/k such that CK ' A1

K (resp. GK ' Ga,K) and this extension is purely
inseparable. If k has characteristic p > 0 then the forms of Ga,k are the algebraic groups
isomorphic to a subgroup of G2

a,k given by an equation of the form

yp
n = x+ a1x

p + · · ·+ amx
pm

for some integers m ≥ 0 and n ≥ 0 and some coefficients ai in k. If G is given by such an
equation then the smallest field extension K/k such that GK ' Ga,K is K = k(ap

−n

1 , . . . , ap
−n
m ).

Furthermore, the G-torsors are the schemes isomorphic to a closed subscheme C of A2
k given

by an equation of the form
yp

n = b+ x+ a1x
p + · · ·+ amx

pm

for some coefficient b in k. The complement of C in its regular completion Ĉ is a non-smooth
point P whose residue field is a subextension of K/k.
Remark 2.13. For a form G of Ga,k, the equation above is not unique. Russell gave a formula
to decide whether two equations give isomorphic groups.
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2.3 Classification of regular almost homogeneous curves
The key result for the classification is the well-known following proposition.

Proposition 2.14. [4, Ex. 7.1.2 and 7.1.3] Let C be a smooth projective curve of genus g, Q
a closed point of C (endowed with its structure of a reduced closed subscheme) and AutC,Q the
centralizer of Q in AutC. If g > 1 (resp. g = 1) then AutC (resp. AutC,Q) is a finite étale
group.

The following lemma is a special case of a result of André Weil on birational actions. For
the sake of completeness, we give a proof based on ideas of Rosenlicht (see [18, Th. 15]). Note
that Michel Demazure gave in [7, Prop. 5] a similar statement for smooth curves.

Lemma 2.15. Let C be a regular curve, Ĉ its regular completion, G a smooth connected
algebraic group and α : G × C → C an action. The action α lifts uniquely to an action on
Ĉ. Moreover, G acts trivially on the complement Z = Ĉ \ C endowed with its structure of a
reduced closed subscheme of Ĉ.

Proof. Let α̂ : G × Ĉ 99K Ĉ be the rational action defined by α. Let U be its domain of
definition. It is an open subscheme of G × Ĉ containing G × C. In order to prove that α̂ is
defined everywhere, it is enough to show that for any (g, x) ∈ G(k) × Ĉ(k) the element gx
is defined, that is, (g, x) ∈ U(k). The scheme G × Ĉ is normal (since G is smooth and Ĉ is
normal) and Ĉ is proper over k so (G× Ĉ) \U has codimension at least 2 in G× Ĉ. Moreover
the curve (Ĉ)ks is the regular completion of Cks and (Gks × Ĉks) \Uks has codimension at least
2 in Gks × Ĉks . Thus we can assume k = ks.

The subscheme Z of Ĉ consists of finitely many closed points P1, . . . , Pr whose residue
fields are purely inseparable extensions of k. We write Z =

r⊔
i=1

Specκ(Pi). The irreducible

components Zi = G × Specκ(Pi) of G × Z have codimension 1 in G × Ĉ. So U ∩ Zi is a
nonempty open subset of Zi (otherwise Zi ⊆ (G × Ĉ) \ U and Zi would have codimension at
least 2). By [12, IV2, Prop. 2.4.2] the first projection πi : Zi → G is a homeomorphism, so

V =
r⋂
i=1

πi(U ∩ Zi) is a nonempty open subset of G such that V × Z ⊆ U . For g ∈ V (k)

and x ∈ Z(k) we have gx ∈ Z(k). Indeed if gx ∈ C(k) then g−1(gx) is defined, so we have
g−1(gx) = (g−1g)x = ex = x (and all these elements are defined), which is impossible because
g−1(gx) ∈ C(k) and x ∈ Z(k). Finally G(k) = V (k)V (k), hence for any g ∈ G(k) and x ∈ Z(k),
the element gx is defined.

Let NG(Z) be the normalizer of Z in G. Any element g ∈ G(k) yields an automorphism of
Ĉ, again denoted by g, such that the subset Z is stable. Since Z is a reduced subscheme, g
restricts to an automorphism of Z. Thus we have NG(Z)(k) = G(k). But G is geometrically
reduced so G(k) is dense in G. So NG(Z) = G, that is, the action on Ĉ restricts to an action
on Z. By Lemma 2.4, this action is trivial.

Remark 2.16. In particular, the action of G on Ĉ gives a morphism G → Aut
Ĉ

which
factorizes as G→ Aut

Ĉ,Z
, where Aut

Ĉ,Z
is the centralizer of Z in Aut

Ĉ
.

From the above results we easily deduce a list of possible homogeneous curves (which can
be found for example in [16, Prop. 7.1.2] in case k is algebraically closed).

Lemma 2.17. Let C be a smooth curve. If C is homogeneous under the action of a smooth
algebraic group then C is a form of P1

k, A1
k or A1

k \ {0}, or C is a projective curve of genus 1.

Let us remark that the converse is false. More specifically, some forms of A1
k are not

homogeneous, as shown by a counterexample mentioned without proof by Russell in [19].
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Lemma 2.18. We assume that k is imperfect. Let P be a point on P1
k such that the extension

κ(P )/k is purely inseparable of degree at least 3. We endow P with its structure of a reduced
closed subscheme of P1

k. Then C = P1
k \ {P} is a form of A1

k such that the centralizer AutP1
k
,P

of P in AutP1
k

is infinitesimal.

Proof. Since κ(P )/k is purely inseparable, there exists a unique point Pks of P1
ks above P and

we have [κ(Pks) : ks] = [κ(P ) : k]. Thus we can assume k = ks. Similarly, there exists a unique
point Pk of P1

k
above P and it is k-rational. So Ck = P1

k
\ {Pk} ' A1

k
, thus C is a form of A1

k.
An element f of AutP1

k
,P (k) is a homography fixing the closed subscheme Pk of P1

k
, which

has length [κ(P ) : k] ≥ 3, thus f is the identity. Hence AutP1
k
,P (k) is the trivial group.

We can now prove the case 1 of Theorem 1.1.
Theorem 2.19. Let C be a curve and G a smooth connected algebraic group acting faithfully
on C. The curve C is homogeneous under the action of G if and only if one of the following
cases holds:

(a) C is a smooth projective conic and G ' AutC;

(b) C ' A1
k and G ' Ga,k o Gm,k (acting by affine transformations);

(c) G is a form of Ga,k and C is a G-torsor;

(d) G is a form of Gm,k and C is a G-torsor;

(e) C is a smooth projective curve of genus 1 and G ' Aut◦C.
Proof. If C is homogeneous under the action of G then C is smooth so Ck is smooth too and
we can consider its regular completion Ĉk. By Lemmas 3.4 and 2.6, the action of Gk on Ck lifts
to an action on Ĉk, and Ck is the complement of the subscheme of fixed points Z = (Ĉk)Gk .

By Lemma 2.17, either Ĉk has genus 1 or Ĉk is isomorphic to P1
k
. In case Ĉk has genus 1,

it is a torsor under Aut◦
Ĉ
k

(after the choice of a k-rational point, Ĉk is an elliptic curve E and
we have Aut◦E = E where E acts on itself by translation). Since Gk is a subgroup of Aut◦

Ĉ
k

and dim Aut◦
Ĉ
k

= 1, we have Gk = Aut◦
Ĉ
k

and Ck = Ĉk .

We now assume Ĉk = P1
k
. Then Gk is a subgroup of AutP1

k
= PGL2,k and Z consists of 0,

1 or 2 points. If Gk is a strict subgroup of PGL2,k then, by [1, Cor. 11.6], Gk is solvable so
(up to conjugation) it is a subgroup of the standard Borel subgroup Ga,k o Gm,k. Thus if Z
is empty then Ck ' P1

k
and Gk = PGL2,k. If Z consists of 2 points then Ck ' A1

k
\ {0} and

Gk ' Gm,k. If Z consists of 1 point then Ck ' A1
k

and Gk ' Ga,k or Gk ' Ga,k o Gm,k.
The classification over k follows immediately, except in case (b). We assume Ck ' A1

k
and Gk ' Ga,k o Gm,k. Let us prove C ' A1

k. By Proposition 2.12, we can assume that
k is separably closed. Let L/k be a (purely inseparable extension) such that CL ' A1

L. As
above, we have GL ' Ga,L o Gm,L. Let T be a maximal torus of G. Then TL is a maximal
torus of GL so TL ' Gm,L. Since the extension L/k is purely inseparable, we already have
T ' Gm,k. The curve C is geometrically reduced so the subset C(k) is dense in C. If for every
y ∈ C(k) the orbit morphism T → C of y were constant then we would have CT (k) = C(k),
so the subscheme CT of fixed points would be equal to C, contradicting the faithfulness of the
action. Let y ∈ C(y) be such that the orbit morphism T → C is non-constant. Let Ĉ be
the regular completion of C. Then the orbit morphism extends to a non-constant morphism
P1
k → Ĉ. Thus Ĉ is a regular projective curve of genus 0 having k-rational points, so Ĉ ' P1

k.
Hence C is a strict open subscheme of P1

k, containing strictly T ' Gm,k. So C ' A1
k, and thus

G ' Ga,k o Gm,k.

10



Remark 2.20. We use the term “conic” as a synonym of “projective curve of arithmetic
genus 0”. Indeed, if C is a projective curve of arithmetic genus 0 then it is smooth, and the
anticanonical bundle ω⊗−1

C is very ample and yields a closed immersion C ↪→ P2
k such that C is

given by a homogeneous equation of degree 2. Let q be the corresponding quadratic form. Then
we have AutC ' PO(q) and it is a form of PGL2,k.

The case 2 of Theorem 1.1 is a direct consequence.
Corollary 2.21. Let C be a regular curve, G is a smooth connected algebraic group and α :
G× C → C an action. The action is faithful and C is almost homogeneous if and only if one
of the following cases holds:

(a) C ' P1
k and G ' Ga,k o Gm,k;

(b) G is a form of Ga,k and C is the regular completion of a G-torsor;

(c) C ' A1
k or P1

k and G ' Gm,k;

(d) C is a smooth projective conic and G is the centralizer of a separable point of degree 2.
Proof. By Lemma 2.3, if C is almost homogeneous under the action of G then it contains a
G-stable open subscheme U which is a homogeneous curve. Moreover C is contained in the
regular completion of U . For the case (d), we use Lemma 2.11.

3 Seminormal almost homogeneous curves

3.1 Normalization and pinching
We shall deduce the classification of seminormal almost homogeneous curves from the case of
regular curves. In order to do so, we must link the action of a group G on a curve with the
action on the normalized curve.

We first need to recover a variety X from its normalization X̃. In case the field k is
algebraically closed and the singular locus of X is a finite set, Jean-Pierre Serre gave in [20, Ch.
IV] an explicit description by constructing the underlying space of X and its structure sheaf.
This can also be done in the more general language of “pinchings”.

The conductor C of the normalization ν : X̃ → X is the coherent sheaf of ideals defined as
the annihilator

C = AnnOXν∗OX̃/OX .

For any x ∈ X, the stalk
(
ν∗OX̃

)
x

is identified with the integral closure OX,x of OX,x and we
have

Cx = AnnOX,x
(
ν∗OX̃

)
x
/OX,x

= {a ∈ OX,x | a
(
ν∗OX̃

)
x
⊆ OX,x}.

In other words, Cx is the largest ideal of OX,x which is an ideal of OX,x, that is to say, the
conductor ideal in the classical sense.

Let i : Z → X the closed immersion defined by C and Z̃ the scheme-theoretic inverse image

of Z by ν in X̃, given by the cartesian square
Z̃ X̃

Z X

j

λ

i

ν called the conductor square. By

base change, j is a closed immersion and λ is finite and surjective.

11



Lemma 3.1. 1. The underlying space of Z is the set of non-normal points of X.

2. The morphism ν induces an isomorphism from X̃ \ Z̃ to X \ Z.

3. The morphism λ : Z̃ → Z is finite and schematically dominant.

4. The square is cocartesian in the category of locally ringed spaces.

5. For every separable extension K/k,
Z̃K X̃K

ZK XK

jK

λK

iK

νK is the conductor square of XK.

Proof. The underlying space of Z is {x ∈ X | 1 /∈ Cx} = {x ∈ X | OX,x ( OX,x}. Then X \ Z
is the normal locus of X and ν induces an isomorphism from ν−1(X \ Z) = X̃ \ Z̃ to X \ Z.
Moreover λ is finite and schematically dominant because so is ν and the square is cartesian.

The square is cocartesian if and only if for every open subscheme U of X, the square

λ−1i−1(U) ν−1(U)

i−1(U) U

j

λ

i

ν is cocartesian. The morphism ν : ν−1(U)→ U is the normalization

and i−1(U) is the closed subscheme of U defined by the conductor of ν : ν−1(U) → U . Thus
we can assume that X is affine. Let us write X = SpecA. We have X̃ = SpecA where A is
the integral closure of A. Let c = {a ∈ A | aA ⊆ A} be the conductor ideal. For any prime
ideal p ∈ SpecA, the integral closure of the localization Ap is (A)p and, since A is a A-module
of finite type, cp is the conductor ideal of (A)p in Ap. Thus C is the coherent sheaf of ideals
associated with c and we have Z = SpecA/c and Z̃ = SpecA/c. Consequently, by [10, Lemma
1.3 and Th. 5.1] the square is cocartesian.

The variety X̃K is normal and νK is the normalization. In order to prove that the diagram
obtained after the field extension to K is the conductor square, we can assume that X is affine.
Then the result is a direct consequence of [2, I 2.10, Cor. 2 p.40].

Conversely Ferrand showed that under a mild assumption the variety X is obtained by
“pinching” Z̃ onto Z. As a special case of [10, Th. 5.4 and Prop. 5.6] we have the following
result.

Proposition 3.2. Let X̃ be a k-scheme, j : Z̃ → X̃ a closed immersion and λ : Z̃ → Z a
finite and schematically dominant morphism. If every finite set of points of Z̃ is contained in
an affine open subset of X̃ then there exists a unique k-scheme X such that we have a square

Z̃ X̃

Z X

j

λ

i

ν which is cocartesian in the category of locally ringed spaces. Furthermore this

square is cartesian, ν is finite and schematically dominant, i is a closed immersion and ν
induces an isomorphism from X̃ \ Z̃ to X \ Z. We call such a square a “pinching diagram”.

If X̃ is a variety (resp. a proper variety) then so is X. Finally, if X̃ is normal then ν is
the normalization.
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Remark 3.3. i) The last part is not explicitly stated in Ferrand’s article. A detailed justifica-
tion can be found in Sean Howe’s master thesis [14].

ii) If X̃ is a curve then the condition that every finite set of points of Z̃ is contained in an
affine open subset of X̃ is automatically satisfied. In this case, Z̃ and Z are finite schemes and
Z is determined by the injective morphism λ] : O(Z)→ O(Z̃). This corresponds to the intuitive
picture: a curve has finitely many singular points and to normalize this curve one “separates”
the branches; conversely, the curve can be recovered from its normalization by gluing points
together.

An action on the variety can be lifted to an action on the normalized variety.
Lemma 3.4. Let G be a smooth algebraic group, X a variety, α : G×X → X an action and

Z̃ X̃

Z X

j

λ

i

ν the conductor square. There exists a unique action α̃ : G × X̃ → X̃ such that

ν is equivariant. Moreover the square
G× X̃ X̃

G×X X

α̃

id×ν

α

ν is cartesian and the actions α and

α̃ have the same kernel. Finally, the closed subschemes Z and Z̃ are G-stable.
Proof. The existence of the action α̃ is given in [4, Prop. 2.5.1]. The square is cartesian because

u :
{
G×X −→ G×X
(g, x) 7−→ (g, gx) is an isomorphism making the diagram

G×X G×X

X

u

α
pr2

commute (and similarly for α̃).
The smooth locus U of X and ν−1(U) are schematically dense open subschemes of X and

X̃. Thus for any k-scheme S, the open subschemes US and ν−1(U)S = (ν × idS)−1(US) are
schematically dense in XS and X̃S. They are GS-stable and the morphism ν× idS : ν−1(U)S →
US is a GS-equivariant isomorphism. Hence an element g ∈ G(S) induces the identity on XS

if and only if it induces the identity on US, if and only if it induces the identity on ν−1(U)S, if
and only if it induces the identity on X̃S. Consequently α and α̃ have the same kernel.

Let C be the conductor sheaf of ν. By [12, IV2, Prop. 6.8.5], the scheme G× X̃ is normal.
Then id×ν : G× X̃ → G×X is the normalization. It follows from [2, I.2.10, Cor. 2 p.40] that
α∗C and pr∗2 C are both equal to the conductor sheaf of id×ν. In particular they are equal as
subsheaves of OG×X (using the canonical isomorphisms α∗OX ' OG×X ' pr∗2OX). Therefore
we have α−1(Z) = G× Z as subschemes of G×X, thus Z is G-stable. Since the morphism ν
is equivariant, Z̃ is G-stable too.

Lemma 3.5. Let
Z̃ X̃

Z X

j

λ

i

ν be a pinching diagram as in Proposition 3.2. Let G be an

algebraic group and α̃ : G× X̃ → X̃ and β : G× Z → Z two actions. If the closed subscheme
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Z̃ is G-stable and λ is equivariant then there exists a unique action α : G×X → X such that
Z is G-stable under this action, the induced action on Z is β and ν is equivariant.

Proof. It follows from [14, Th. 3.11] that the square
G× Z̃ G× X̃

G× Z G×X

id×j

id×λ

id×i

id×ν is cocartesian

in the category of locally ringed spaces. Let β̃ : G × Z̃ → Z̃ be the action induced by α̃.

By assumption the diagram

G× Z̃ G× X̃

X̃

G× Z G×X

Z X

id×j

id×λ

id×i

id×ν

α̃

β

i

ν

commutes. Then there exists

a unique morphism α : G × X → X which completes it. It remains to prove that α is
action, that is to say the two composite morphisms G × G × X

id×α−−−→ G × X
α−→ X and

G × G × X
µ×id−−−→ G × X

α−→ X are equal, as well as Spec k × X
e×id−−→ G × X

α−→ X and
the second projection. This can be done in both cases by using the fact that the square
G×G× Z̃ G×G× X̃

G×G× Z G×G×X

is cocartesian and showing that the two morphisms complete

the same diagram. The details are left to the reader.

The normalization behaves well with respect to almost-homogeneity.

Lemma 3.6. Let G be a smooth connected algebraic group, X a variety,
Z̃ X̃

Z X

j

λ

i

ν the

conductor square, α : G×X → X an action and α̃ : G× X̃ → X̃ the action given by Lemma
3.4. The variety X is almost homogeneous if and only if X̃ is almost homogeneous. In this
case, if in addition X is a curve C then Z and Z̃ are contained in the subschemes CG and C̃G

of fixed points.

Proof. The morphisms γ : G ×X → X ×X and γ̃ : G × X̃ → X̃ × X̃ of Definition 2.1 make

the diagram
G× X̃ X̃ × X̃

G×X X ×X

γ̃

id×ν

γ

ν × ν commute. The morphism ν is surjective and closed,

so id×ν is surjective and ν × ν is surjective and closed. If X̃ is almost homogeneous then γ̃ is
dominant, so γ is dominant too and X is almost homogeneous.
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Conversely, assume that X is almost homogeneous. Let U be the open orbit in X, given by
Lemma 2.3. Then U is smooth so ν−1(U) ' U . Hence ν−1(U) is a G-stable and homogeneous
open subscheme of X̃, so X̃ is almost homogeneous.

Assume that X is an almost homogeneous curve C. By Lemma 2.6, U and ν−1(U) are the
complements of the subschemes of fixed points. Since Z is the singular locus of C and U is
smooth, Z is contained in C \ U . Then Z̃ = ν−1(Z) is contained in C̃ \ ν−1(U).

3.2 Seminormality
In this section we recall some properties of seminormal schemes. We use the article [21] of
Richard Swan as a general reference.

Definition 3.7. Let f : Y → X be a morphism between reduced noetherian schemes. We say
that f is a pseudo-isomorphism if f is integral and bijective and, for all y ∈ Y , the morphism
f ] : κ(f(y))→ κ(y) between the residue fields is an isomorphism.

We say that X is seminormal if every pseudo-isomorphism f : Y → X is an isomorphism.

Remark 3.8. i) In the literature, f is often called a “quasi-isomorphism” or a “subintegral
morphism”. We propose the name “pseudo-isomorphism” to avoid the confusion with the other
notions of quasi-isomorphism (such as the homological one). Moreover, the name “subintegral
morphism” can be misleading since, contrary to what it can suggest, f is indeed integral.

ii) By [12, I, Prop. 3.5.8] and [12, IV2, Prop. 2.4.5], a pseudo-isomorphism is a universal
homeomorphism.

iii) Being a pseudo-isomorphism is a local property on the target.

Normal schemes are obtained by gluing normal rings. Similarly, seminormal schemes are
obtained from seminormal rings.

Definition 3.9. [21, Lemma 2.2] Let A be a reduced noetherian ring and set

A+ = {b ∈ A | ∀p ∈ SpecA, b ∈ Ap +R(Ap) ⊆ Ap}

where A is the integral closure of A in its total ring of fractions, Ap and Ap are the localizations
by the multiplicative set A\p and R(Ap) is the Jacobson radical of Ap. The morphism SpecA+ →
SpecA is a pseudo-isomorphism and A+ is the largest subextension of A ⊆ A with this property.
The ring A is said to be seminormal if A = A+.

Being a seminormal ring is a local property.

Lemma 3.10. [21, Cor. 2.10] Let A be a reduced noetherian ring. The following assertions
are equivalent:

i) The ring A is seminormal.

ii) For every p ∈ SpecA, Ap is seminormal.

iii) For every maximal ideal m ∈ SpecA, Am is seminormal.

As an analogous of the normalization, there is a seminormalization. Its construction is
well-known and we recall it briefly.

Lemma 3.11. Let X be a reduced noetherian scheme and ν : X̃ → X the normalization.
There exists a seminormal scheme X+, a pseudo-isomorphism σ : X+ → X and a factorization
X̃ → X+ σ−→ X of ν, satisfying the following universal property:

15



for every seminormal scheme Y and every morphism f : Y → X, there is a unique
factorization Y → X+ σ−→ X of f .

The morphism σ is called the seminormalization.

Proof. If X is affine then we write X = SpecA and X+ = SpecA+. The morphism σ : X+ → X
and the factorization X̃ → X+ σ−→ X of ν are given by the inclusions A ⊆ A+ ⊆ A. More
generally, we cover X by affine open subschemes Ui = SpecAi and it follows from [21, Prop. 2.9]
that we can glue the SpecA+

i together to get a seminormal scheme X+, a pseudo-isomorphism
σ : X+ → X and a factorization X̃ → X+ σ−→ X of ν.

The universal property is given by [21, Th. 4.1] in case X and Y are affine. The general
case follows readily by taking affine open coverings.

Corollary 3.12. Let X be a reduced noetherian scheme. The following assertions are equiva-
lent:

i) The scheme X is seminormal.

ii) For every affine open subscheme U of X, the ring OX(U) is seminormal.

iii) For every x ∈ X, the ring OX,x is seminormal.

iv) Every open subscheme of X is seminormal.

v) There exists an open covering of X by seminormal schemes.

Swan proved in [21, Th. 1] that if X is an affine noetherian reduced scheme then the
pullback morphism PicX → Pic(X ×A1) is an isomorphism if and only if X is seminormal,
generalizing a result of Carlo Traverso ([22, Th. 3.6]). For non-affine schemes, we have the
following special case of [3, Lemma 3.6].

Lemma 3.13. Let X be a separated seminormal scheme. The pullback morphism PicX →
Pic(X ×A1) is an isomorphism.

The seminormalization commutes with smooth base changes.

Lemma 3.14. Let f : Y → X be a smooth morphism between noetherian reduced schemes
and σ : X+ → X the seminormalization. Then Y ×X X+ is seminormal and the projection
Y ×X X+ → Y is the seminormalization.

Proof. By Corollary 3.12, we can assume that X is affine and write X = SpecA. Let V =
SpecC be an affine open subscheme of Y contained in f−1(U). Then the result follows from
[11, Prop. 5.1].

We now state an analogue of Lemma 3.4 (see [3, Lemma 3.5]).

Corollary 3.15. Let G be a smooth algebraic group, X a variety, α : G ×X → X an action
and σ : X+ → X the seminormalization. There exists a unique action α+ : G × X+ → X+

such that σ is equivariant. Moreover the square
G×X+ X+

G×X X

α+

id×σ

α

σ is cartesian and the

actions α and α+ have the same kernel.
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3.3 Classification of seminormal almost homogeneous curves
We have the following characterization of seminormal curves, which is a consequence of the well-
known characterization [11, Cor. 2.7] of seminormal Japanese rings satisfying Serre’s condition
S2 (a reduced noetherian ring of Krull dimension 1 satisfies this condition).

Lemma 3.16. Let C be a curve and
Z̃ C̃

Z C

j

λ

i

ν the conductor square. The curve C is

seminormal if and only if Z̃ is reduced.

Proof. Let U be an affine open subscheme of C. Then
λ−1i−1(U) ν−1(U)

i−1(U) U

j

λ

i

ν is the con-

ductor square. So by Corollary 3.12, we can assume than C is affine. Then the result follows
from [11, Cor. 2.7].

In this case Z is reduced too. Therefore if a smooth connected algebraic group G acts on C
then by Lemmas 2.4 and 3.4, G acts trivially on Z and Z̃. The following lemma shows that the
converse is true, even when we consider a pinching diagram which is not the conductor square.

Lemma 3.17. Let C be a curve obtained by a pinching diagram
Z̃ C̃

Z C

j

λ

i

ν where C̃ is a

regular curve and Z̃ is a reduced finite scheme. Then C is seminormal. Moreover, if a smooth
connected algebraic group G acts on C̃ so that Z̃ is G-stable then the action on C̃ descends to
an action on C such that Z is G-stable.

Proof. Let us show that C is seminormal. The morphism ν induces an isomorphism from
C̃ \ Z̃ to C \ Z so it suffices to show that for every point P ∈ Z, the ring OC,P is semi-
normal. Since λ is schematically dominant and Z̃ is reduced, Z is a reduced finite scheme.
Let U be an affine open subscheme of C containing P but no other point of Z. The square

λ−1(Specκ(P )) ν−1(U)

Specκ(P ) U

j

λ

i

ν is still a pinching diagram. Thus we can assume that C is affine

and Z = Specκ(P ).
We write C = SpecA and C̃ = SpecA where A is the integral closure of A. The point P

corresponds to a maximal ideal m of A and the points of Z̃ to the maximal ideals m1, . . . ,mr

of A above m. Then Z = SpecA/m and Z̃ =
r∐
i=1

SpecA/mi = SpecA/(m1 · · ·mr). By [10,

Lemma 1.3], we have m1 · · ·mr = m. In other words, the maximal ideal mAm of OC,P is the
Jacobson radical of its integral closure OC,P . Since the only prime ideals of OC,P are (0) and
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mAm (because OC,P is an integral local ring of Krull dimension 1), it follows immediately from
the definition of O+

C,P that OC,P is seminormal.
By Lemma 2.4, G acts trivially on Z and Z̃. Hence by Lemma 3.5, the action of G on C̃

descends to an action on C.

A consequence of Lemma 3.17 is that the property of being a seminormal almost homo-
geneous curve descends by separable field extensions. To see this, we first need the following
particular case of [6, Lemma C.4.1 p.649].

Lemma 3.18. Let G be an algebraic group. There exists a largest smooth subgroup Gsm of G.
Moreover, for every separable field extension K/k, we have Gsm(K) = G(K) and (GK)sm =
(Gsm)K.

Proposition 3.19. Let C be a seminormal curve and K/k a separable field extension. If CK
is almost homogeneous under the action of a smooth connected algebraic group then so is C.

Proof. Let G be a smooth connected algebraic group over K acting on CK such that CK is

almost homogeneous. We can assume that the action is faithful. Let
Z̃ C̃

Z C

j

λ

i

ν be the

conductor square, Ĉ the regular completion of C̃ and Z ′ = (Ĉ \ C̃) t Z̃ endowed with its
structure of a reduced closed subscheme of Ĉ. Since the extension K/k is separable, by Lemma

3.1 the diagram
Z̃K C̃K

ZK CK

is still the conductor square. Moreover ĈK is the regular

completion of C̃K and Z ′K = (ĈK \ C̃K) t Z̃K is reduced. By Lemmas 2.15 and 3.4, the action
of G on CK lifts to an action on ĈK such that Z ′K is fixed. In other words, up to isomorphism,
G is a subgroup of the centralizer Aut

ĈK ,Z
′
K

of Z ′K in Aut
ĈK

. In addition G is smooth, so by
Lemma 3.18, it is a subgroup of (Aut

ĈK ,Z
′
K

)sm. Then C̃K is almost homogeneous under the
action of (Aut

ĈK ,Z
′
K

)sm. We have (Aut
ĈK ,Z

′
K

)sm = ((Aut
Ĉ,Z′

)sm)K so C̃ is almost homogeneous
under the action of (Aut

Ĉ,Z′
)sm. By definition, this group acts trivially on Z̃ so, by Lemma 3.5,

the action on C̃ descends to an action on C and C is almost homogeneous. Finally, by Lemma
2.8, C is almost homogeneous under the action of the neutral component of (Aut

Ĉ,Z′
)sm.

Remark 3.20. i) Proposition 3.19 does not extend to inseparable extensions, even for smooth
curves. Indeed by Lemma 2.18 there exists a curve C and a purely inseparable extension K/k
such that CK ' A1

K and every action of a smooth connected algebraic group on C is trivial.

ii) With the notations of the proof, the largest smooth connected group acting faithfully on C
is the neutral component of (Aut

Ĉ,Z′
)sm.

We deduce the classification of seminormal almost homogeneous curves, which is the case 3
of Theorem 1.1.

Theorem 3.21. Let C be a singular seminormal curve, G is a smooth connected algebraic
group and α : G × C → C an action. The action is faithful and C is almost homogeneous if
and only if one of the following cases holds:
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(a) G is a non-trivial form of Ga,k and C is obtained by pinching the point at infinity P̃ of
the regular completion of a G-torsor on a point P whose residue field κ(P ) is a strict
subextension of κ(P̃ )/k;

(b) C is obtained by pinching two k-rational points of P1
k on a k-rational point and G ' Gm,k;

(c) C is obtained by pinching a separable point P̃ of degree 2 of a smooth projective conic C̃
on a k-rational point, and G is the centralizer of P̃ in Aut

C̃
.

Proof. Let ν : C̃ → C be the normalization. By Lemmas 3.6 and 3.17, C is almost homogeneous
if and only if C̃ is almost homogeneous, and C is obtained by pinching a set of fixed points of C̃
endowed with its structure of a reduced closed subscheme. The different possible pairs (C̃, G)
are given by Corollary 2.21.

We cannot have C̃ = P1
k and G = Ga,koGm,k or G = Ga,k because we would have to pinch

the k-rational point ∞ onto a k-rational point, then ν would be a pseudo-isomorphism, so ν
would be an isomorphism and C would be regular. The other cases are similar.
Remark 3.22. i) Let G be a non-trivial form of Ga,k, C̃ the regular completion of a G-torsor,
P̃ the point at infinity, K1 and K2 strict subextensions of κ(P̃ )/k, and C1 and C2 the curves

obtained by the pinching diagrams
Specκ(P̃ ) C̃

SpecK1 C1

j

λ1

i1

ν1 and
Specκ(P̃ ) C̃

SpecK2 C2

j

λ2

i2

ν2 . These

diagrams are the conductor squares. If there exists an isomorphism ψ : C1 → C2 then, by the
universal property of normalization, ψ can be lifted to an automorphism ψ̃ of C̃. Then ψ̃ induces
an automorphism of κ(P̃ ) mapping K1 to K2. But the extension κ(P̃ )/k is purely inseparable,
so the unique automorphism of κ(P̃ ) is the identity and we must have K1 = K2. Therefore,
distinct subextensions yield distinct curves.

ii) The family of seminormal curves which are almost homogeneous under the action of a non-
trivial form of Ga,k can be very large, as shown by the following example.
Example 3.23. Set p = 2, k = F2(a, b) and consider the form G of Ga,k given by the equation
y4 = x + ax2 + b2x4 (see Proposition 2.12). We claim that the residue field of the point at
infinity of G is F2(a1/2, b1/2). For c ∈ k, k(a1/2 + cb1/2) is a subextension of F2(a1/2, b1/2)/k,
and different values of c yield pairwise non-isomorphic subextensions. As a consequence, we
have a family parameterized by k of almost homogeneous curves under the action of G which
have the same normalization.

We now prove our claim on the residue field. The scheme-theoretic closure G of G in P2
k

has homogeneous equation y4 = xz3 + ax2z2 + b2x4 and the regular completion of G is the
normalization of G. In the chart (x = 1), the equation reads y4 = z3 + az2 + b2. Set A =

k[y, z]
(y4 − z3 − az2 − b2) and B = k[y, w]

(y2 − w3 − aw − b) . Let us show that the normalization in this

chart is given by the ring morphism A→ B sending z to w2−b. First this morphism in injective
and finite. The ring B is an integral domain and has the same fraction field than A because
w = y2 − a

z
. By the Jacobian criterion, every point of SpecB is smooth except the point given

by the ideal m = (w2 − b) (which besides corresponds to the point at infinity of G). This point
is nonetheless regular because m is principal. Hence B is integrally closed and is the integral
closure of A. Thus the residue field of the point at infinity is k[y, w]/(y2 − w3 − aw − b)

(w2 − b) '

F2(a1/2, b1/2).
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4 Arbitrary curves
Popov gave a classification of almost homogeneous curves over an algebraically closed field in
[16, Ch. 7] and used the language of Serre ([20, Ch. IV]) to describe them. We extend the
result to an arbitrary field (except for almost homogeneous curves under the action of Ga,k or
Ga,k o Gm,k) by using the language of pinchings.

4.1 Almost homogeneous curves under the action of Ga,k in charac-
teristic zero

We consider the projective coordinates [t : u] on P1
k. For n ≥ 0, we denote by P1

k,n the curve
defined by the pinching diagram

Spec k[u]
(un) P1

k

Spec k P1
k,n

j

λ

i

ν

where Spec k[u]
(un) is the nth infinitesimal neighborhood of the point ∞. By Lemma 3.5 the

natural actions of Ga,k and Ga,k o Gm,k on P1
k descend to faithful actions on P1

k,n.

Theorem 4.1. We assume that k has characteristic zero. Let C be a curve and α : Ga,k×C →
C an action. The action is faithful (and C is almost homogeneous) if and only if C ' A1

k or if
there exists n ≥ 0 such that C ' P1

k,n, and the action is the natural one.

Proof. We adapt Popov’s proof of [16, Th. 1.1 p.171]. Assume that the action is faithful (so

C is almost homogeneous). Let
Z̃ C̃

Z C

j

λ

i

ν be the conductor square. Every Ga,k-torsor is

trivial so, by Theorem 1.1, we have C̃ = A1
k or C̃ = P1

k (with the natural action of Ga,k). In
the first case C̃ is homogeneous so C is homogeneous too and C = A1

k. We assume henceforth
that C̃ = P1

k. By Lemma 3.6, C is obtained by pinching a closed subscheme of P1
k supported by

the point ∞. Thus we write Z̃ = Spec k[u]
(uN) for some N ≥ 0. Then A = O(Z) is a subalgebra

of k[u]
(uN) which is Ga,k-invariant.

An element a ∈ Ga,k(k) acts on P1
k by the matrix

(
1 a
0 1

)
, that is, for a point with projective

coordinates [1 : u], we have a · [1 : u] = [1 + au : u] =
[
1 : u

1 + au

]
. We still denote by u

the image of u in k[u]
(uN) . In k[u]

(uN) , the element u

1 + au
is invertible and we have u

1 + au
=

u−au2 + · · ·+ (−1)N−2aN−2uN−1. Moreover, for 1 ≤ i ≤ N − 1, we have a ·ui = (a ·u)i. Hence
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in the basis (1, u, . . . , uN−1), the endomorphism of k[u]
(uN) induced by a has a triangular matrix

of the form 

1
0 1
... −2a . . .
... ∗ . . . . . .
... ... . . . . . . 1
0 ∗ · · · ∗ −(N − 1)a 1


The subspaces k and V = Vect(u, . . . , uN−1) of k[u]

(uN) are Ga,k-stable. We can write A =

k ⊕ (A ∩ V ). Let us notice that A ∩ V is the unique maximal ideal m of A. Then A is Ga,k-
stable if and only if m is stable. The image of Ga,k in GL(V ) is a unipotent group so, by the
Lie-Kolchin theorem, every nonzero stable subspace of V contains a stable line. But, since k
has characteristic zero, the above matrix shows that the only stable line in V in Vect(uN−1). If
m = 0 then A = k. We now assume that m is stable and nonzero. We extend uN−1 to a basis
(e1, . . . , ed, u

N−1) of m. By putting the coordinates of the ei in an echelon form, we can assume
that there exist integers n1, . . . , nd+1 and scalars bi,j ∈ k such that we have

1 ≤ n1 < . . . < nd < nd+1 = N − 1
and, for 1 ≤ i ≤ d,

ei = uni + bi,ni+1u
ni+1 + · · ·+ bi,N−2u

N−2 + bi,N−1u
N−1.

Then in the basis (1, u, . . . , uN−1) of k[u]
(uN) , the ni − 1 first coordinates of a · ei equal zero, the

nith one equals 1 and the (ni+1)th one equals (−(ni+1)a+ bi,ni+1 (which is therefore different
from bi,ni+1 if a 6= 0). Thus for the images of ei to be in m, we must have ni+1 = ni + 1. So

m = Vect(un1 , un1+1, . . . , uN−1) and A = k[un1 , un1+1, . . . , uN ]
(uN) , which conversely is Ga,k-stable.

The ideal un1 of k[u]
(uN) is also an ideal of k[un1 , un1+1, . . . , uN ]

(uN) . Hence by [10, Lemme 1.3]
the square of rings

k[un1 , un1+1, . . . , uN ]
(uN)

k[u]
(uN)

k ' k[un1 , un1+1, . . . , uN ]/(uN)
(un1)

k[u]/(uN)
(un1) ' k[u]

(un1)

is cartesian. Moreover the morphisms in this square are Ga,k-equivariant. So the corresponding

square of schemes

Spec k[u]
(un1) Z̃

Spec k Z

λ′ λ is a pinching diagram where the morphisms are Ga,k-
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equivariant. By concatenation, we get a square

Spec k[u]
(un1) P1

k

Spec k C

j′

λ′

i′

ν which is a pinching

diagram where the morphism are Ga,k-equivariant.
Remark 4.2. The set of the subsemigroups of (N,+) of the form zm(c) is countable (since
zm(c) is determined by the tuple c = (c0, . . . , cr) and the integer m). Hence, contrary to what
happened in Remark 3.22, if k has characteristic zero then the family of curves which are almost
homogeneous under the action of Ga,k is parameterized by a countable set.
Corollary 4.3. We assume that k has characteristic zero. Let C be a curve and α : Ga,k o
Gm,k × C → C an action. The action is faithful (and C is almost homogeneous) if and only if
C ' A1

k or if there exists n ≥ 0 such that C ' P1
k,n, and the action is the natural one.

Proof. We use the previous notations. It follows from Theorem 1.1 that if Ga,k o Gm,k acts
faithfully on C then we have C̃ ' A1

k or P1
k (with the natural action). The subschemes Z̃

and Z are stable under the action of Ga,k o Gm,k so they are stable under the action of the
subgroup Ga,k. Thus C is one of the curves given in Theorem 4.1. Conversely, Ga,k o Gm,k

acts faithfully on these curves.

4.2 Almost homogeneous curves under the action of a form of Gm,k

In this section we first classify the almost homogeneous curves under the action of Gm,k. Then
we use the link between the forms of Gm,k and the conics to deduce the classification of almost
homogeneous curves under the action of a form of Gm,k.

We consider again the projective coordinates [t : u] on P1
k. If z is a subsemigroup of (N,+)

containing 0 and all the integers that are large enough then there exist a unique integer m and
a unique tuple c = (c0, . . . , cp) such that 0 = c0 < . . . < cp < m− 1 and z = {c0, . . . , cp} ∪ {r ∈
N | r ≥ m}. The subsemigroup z is determined by m and c, and we denote it by zm(c).

For any subsemigroups zm(c) and zn(d) of (N,+), we denote respectively by A1
k,m(c),

P1
k,m,n(c, d) and P1

k,m,n(c, d)′ the curves defined by the pinching diagrams

Zm A1
k

Zm(c) A1
k,m(c)

Zm t Zn P1
k

Zm(c) t Zn(d) P1
k,m,n(c, d)

Spec k t Spec k P1
k,m,n(c, d)

Spec k P1
k,m,n(c, d)′

where Zm = Spec k[t]
(tm) and Zn = Spec k[u]

(un) are the mth and nth infinitesimal neighborhoods of

the points 0 and ∞, Zm(c) = Spec k[tc0 , . . . , tcp , tm]
(tm) and Zn(d) = Spec k[ud0 , . . . , udq , un]

(un) , and

Spec k t Spec k is the reduced subscheme of Zm(c) t Zn(d).
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Remark 4.4. For example, A1
k = A1

k,m(c) and P1
k = P1

k,m,n(c, d) for m = n = 0 and c = d = ∅.

Theorem 4.5. Let C be a curve. The group Gm,k acts non-trivially on C if and only if
C ' A1\{0} or if there exist subsemigroups zm(c) and zn(d) of (N,+) such that C is isomorphic
to A1

k,m(c), P1
k,m,n(c, d) or P1

k,m,n(c, d)′.

Proof. The argument is essentially the same as in the proof of Popov’s theorem [16, Th. 1.2
p.171] for A1

k,m(c) and P1
k,m,n(c, d). For P1

k,m,n(c, d)′ the argument differs from [16, Th. 1.3
p.175]; the classification of the curves in terms of conductor squares is obtained rather quickly
and then we just need to simplify the diagrams, as in the proof of Theorem 4.1.

It follows from Lemmas 3.5 and 3.6 that Gm,k acts on A1
k,m(c), P1

k,m,n(c, d) and P1
k,m,n(c, d)′.

Conversely, assume that Gm,k acts non-trivially on C. Let
Z̃ C̃

Z C

be the conductor

square. By Theorem 1.1 and Lemma 3.6, C̃ is isomorphic either to A1
k or to P1

k.
We first treat the case C̃ ' A1

k. The closed subscheme Z̃ of A1
k is supported by 0 so we

can write Z̃ = ZM = Spec k[t]
(tM) for some integer M . Then Z = SpecA for some Gm,k-invariant

subalgebra A of k[t]
(tM) . We still denote by t the image of t in k[t]

(tM) . For a ∈ Gm,k(ks) and

0 ≤ i ≤ M − 1, we have a · ti = aiti so ti is an eigenvector of weight i. Thus the ks-vector
space ks[t]

(tM) is the direct sum of stable lines for pairwise distinct weights. Hence the subspace

A ⊗k ks of ks[t](tM) is spanned by some ti’s. Since it is a subring, if it contains ti and tj then it

contains ti+j too. Thus there exists a subsemigroup zm(c) of (N,+) such that m ≤ M and

A ⊗k ks is spanned by the ti’s for i ∈ zm(c), that is, A ⊗k ks = ks[tc0 , . . . , tcp , tm, tm+1, . . .]
(tM) .

By Galois descent for vector subspaces, we consequently have A = k[tc0 , . . . , tcp , tm, tm+1, . . .]
(tM) ,

which conversely is a Gm,k-stable subalgebra of k[t]
(tM) . Finally, as in the proof of Theorem 4.1,

we can replace k[t]
(tM) and k[tc0 , . . . , tcp , tm, tm+1, . . .]

(tM) with k[t]
(tm) and k[tc0 , . . . , tcp , tm]

(tm) . Therefore

C ' A1
k,m(c).

We now assume C̃ ' P1
k. Similarly, the closed subscheme Z̃ of P1

k is supported by {0,∞}
so we can write Z̃ = ZM tZN for some integers M and N . Then Z is supported by one or two
k-rational points.

In the latter case there exist Gm,k-invariant subalgebras A and B of k[t]
(tM) and k[u]

(uN) such
that Z = SpecA t SpecB, and by the same arguments as before we get an isomorphism
C ' P1

k,m,n(c, d).

In the former case there exists a Gm,k-invariant subalgebra A of k[t]
(tM) ×

k[u]
(uN) such that

Z = SpecA. Since (ti, 0) and (0, uj) are eigenvectors of respective weights i and −j, the

subspace A⊗k ks of ks[t](tM) ×
ks[u]
(uN) is spanned by some (ti, 0)’s and (0, uj)’s with i ≥ 1 and j ≥ 1,

and a subspace of ks×ks containing ks ·(1, 1) (which is ks ·(1, 1) or the whole ks×ks). As above
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and by Galois descent for vector subspaces, there exist two subsemigroups zm(c) and zn(d) of
(N,+) such that A is equal to

Vect(tc1 , . . . , tcp , tm, tm+1, . . .)
(tM) × Vect(ud1 , . . . , udq , un, un+1, . . .)

(uN) ⊕ k · (1, 1)

or k[tc0 , . . . , tcp , tm, tm+1, . . .]
(tM) × k[ud0 , . . . , udq , un, un+1, . . .]

(uN) .

Moreover A has a unique maximal ideal, so we must have

A = Vect(tc1 , . . . , tcp , tm, tm+1, . . .)
(tM) × Vect(ud1 , . . . , udq , un, un+1, . . .)

(uN) ⊕ k · (1, 1).

By the same argument as above again, we can replace k[t]
(tM) ×

k[u]
(uN) and A with k[t]

(tm) ×
k[u]
(un)

and
A′ = Vect(tc1 , . . . , tcp , tm)

(tm) × Vect(ud1 , . . . , udq , un)
(un) ⊕ k · (1, 1).

We have a pinching diagram
Zm t Zn P1

k

SpecA′ C

. Let C ′ be the curve defined by the pinching

diagram
Zm(c) t Zn(d) P1

k,m,n(c, d)

SpecA′ C ′

. The diagram

Zm t Zn P1
k

Zm(c) t Zn(d) P1
k,m,n(c, d)

SpecA′ C ′

is commutative and the two squares are cocartesian, so the entire composed square is cocarte-
sian. By unicity of the scheme obtained by pinching, we have C ′ ' C. By [10, Lemme 1.3], the
square of rings

A′
k[tc0 , . . . , tcp , tm]

(tm) × k[ud0 , . . . , udq , un]
(un)

k k × k

is cartesian. Moreover the morphisms in this square are Gm,k-equivariant. Therefore we have

a pinching diagram
Spec k t Spec k P1

k,m,n(c, d)

Spec k C

.

Let G be a form of Gm,k. Let C̃ be a smooth projective conic and P̃ a separable point of
degree 2 of C̃ such that G is the centralizer of P̃ in Aut

C̃
(see Lemma 2.11). Let K = κ(P̃ ), Γ =

24



Gal(K/k) ' Z/2Z, zm(c) a subsemigroup of (N,+) and Ỹ the mth infinitesimal neighborhood
of P̃ (which is a G-stable closed subscheme of C̃). There exists an isomorphism C̃K ' P1

K

such that ỸK is the mth infinitesimal neighborhood of {0,∞}, that is, ỸK = (Zm)K t (Zm)K
(with the previous notations). Set Y ′ = (Zm(c))K t (Zm(c))K . The Galois action of Γ on P1

K

exchanges the two components of ỸK , as well as the two components of Y ′, and the natural
morphism λ′ : (Ỹ )K → Y ′ is Γ-equivariant. Thus, by Galois descent, there exists a unique
subalgebra A of O(Ỹ ) such that the scheme Y = SpecA satisfies YK = Y ′ and that λ′ is the
morphism deduced from the natural morphism λ : Ỹ → Y . Let C̃m(P̃ , c) and C̃m(P̃ , c)′ be the
curves defined by the pinching diagrams

Ỹ C̃

Y C̃m(P̃ , c)

and
SpecK C̃m(P̃ , c)

Spec k C̃m(P̃ , c)′

Since after field extension we still have pinching diagrams, by unicity we have C̃m(P̃ , c)K '
P1
K,m,m(c, c) and C̃m(P̃ , c)′ ' P1

K,m,m(c, c)′. We have GK ' Gm,K and the action Gm,K × Y ′ →
Y ′ is Γ-equivariant so, by Galois descent again, we have an action of G on Y such that λ is
equivariant. Hence G acts faithfully on C̃m(P̃ , c) and C̃m(P̃ , c)′.

Theorem 4.6. Let C be a curve and α : G×C → C an action. The group G acts faithfully on
C (and C is almost homogeneous) if and only if C ' C̃ \ {P̃} or if there exists a subsemigroup
zm(c) of (N,+) such that C is isomorphic to C̃m(P̃ , c) or C̃m(P̃ , c)′, and the action is the
natural one.

Proof. Assume that G acts faithfully on C. It follows from Theorem 1.1 and Lemmas 2.15

and 3.6 that C̃ is the normalization of C (with the natural action of G). Let
Z̃ C̃

Z C

be

the conductor square. Then Z̃ is supported by P̃ and Z is supported by a point P such that

κ(P ) = k or K. By Lemma 3.1, the diagram
Z̃K P1

K

ZK CK

is still the conductor square.

If κ(P ) = K then ZK is supported by two K-rational points. As in Theorem 4.5, there exist

integers M and N such that Z̃K = Spec
(
K[t]
(tM) ×

K[u]
(uN)

)
and subsemigroups zm(c) and zn(d)

of (N,+) such that ZK = Spec
(
K[tc0 , . . . , tcp , tm, tm+1, . . .]

(tM) × K[ud0 , . . . , udq , un, un+1, . . .]
(uN)

)
.

Moreover the group Γ exchanges the two components of Z̃K , as well as the two components of
ZK . Thus we must have M = N and zm(c) = zn(d). As before, the squares in

ỸK Z̃K P1
K

YK ZK CK
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are cocartesian, so the entire composed diagram is a pinching diagram. Moreover, the mor-
phisms are Γ-equivariant. Therefore, by Galois descent, we have C ' C̃m(P̃ , c).

If κ(P ) = k then ZK is supported by a K-rational point. By a similar argument, there exists
a subsemigroup zm(c) of (N,+) such that CK ' P1

K,m,m(c, c)′ and the morphisms in the pinching
diagram defining P1

K,m,m(c, c)′ are Γ-equivariant. Therefore, we have C ' C̃m(P̃ , c)′.

5 Equivariant embeddings in a projective space

5.1 Linearized line bundles and pinchings
In this section we describe the linearized line bundles on a scheme obtained by a pinching
diagram. We first recall the definition and basic properties of linearized line bundles and the
equivariant Picard group. We use [15] and [9, Exp. I, §6] as general references.

Let X be a separated scheme of finite type over k and π : L→ X a line bundle. Then Gm,k

acts on L by multiplication on the fibers.

Definition 5.1. Let G be an algebraic group and α : G×X → X an action. We say that L is
linearizable if there exists an action β : G × L → L which commutes with the action on Gm,k

and such that π is G-equivariant. The couple (L, β) is called a linearized line bundle.
A morphism of linearized line bundles is a morphism of line bundles which is G-equivariant.

For example, if X is a smooth curve then its canonical bundle ωX is naturally linearized by
the action of G on differential forms.

The linearized line bundles (L, β) can be characterized in terms of a cocycle condition for an
isomorphism between the pullback line bundles α∗L and pr∗2 L over G×X (see [15, pp.30–31]
or [9, Exp. I, Def. 6.5.1]).

Lemma 5.2. The datum of a linearized line bundle (L, β) is equivalent to the datum of a
line bundle isomorphism Φ : α∗L → pr∗2 L making the following diagram of line bundles over
G×G×X commute:

(idG×α))∗α∗L (µ× idX)∗α∗L (µ× idX)∗ pr∗2 L

(idG×α)∗ pr∗2 L pr∗23 α
∗L pr∗23 pr∗2 L

can (µ× idX)∗Φ

(idG×α)∗Φ

can pr∗23 Φ

can

Remark 5.3. i) In this setting, a morphism of linearized line bundles (L1,ΦL1) → (L2,ΦL2)

is a morphism of line bundles ϕ : L1 → L2 making the diagram
α∗L1 pr∗2 L1

α∗L2 pr∗2 L2

ΦL1

α∗ϕ

ΦL2

pr∗2 ϕ

commute.

ii) By [3, lemma 2.9], if X is reduced then L is linearizable if and only if α∗L and pr∗2 L are
isomorphic (the isomorphism need not satisfy the cocycle condition).
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iii) More generally, an arbitrary OX-module L is said to be linearizable if there exists an
isomorphism Φ : α∗L → pr∗2 L satisfying the above cocycle condition (see [9, Exp. I, Def.
6.5.1]).

If L and L′ are linearizable line bundles over X then we have isomorphisms Φ : α∗L→ pr∗2 L
and Φ′ : α∗L′ → pr∗2 L satisfying the cocycle condition. Then Φ⊗Φ′ : α∗(L⊗L′) = α∗L⊗α∗L′ →
pr∗2 L⊗ pr∗2 L′ = pr∗2(L⊗ L′) is an isomorphism satisfying the cocycle condition too, so L⊗ L′
is linearizable. Similarly L−1 is linearizable.

Definition 5.4. We denote by PicG(X) the abelian group of isomorphism classes of linearized
line bundles over X. It is called the equivariant Picard group.

The equivariant Picard group of a G-torsor over k is trivial. More generally, we have the
following result.

Lemma 5.5. [15, p.32] Let π : X → Y be a G-torsor. The pullback by f induces an isomor-
phism PicY ' PicG(X).

The linearized line bundles give equivariant embeddings in a projective space.

Lemma 5.6. [15, Prop. 1.7 p.35]Let G be an algebraic group, X a quasi-projective scheme
over k, L a very ample line bundle over X and α : G × X → X an action. The following
assertions are equivalent:

i) The line bundle L is linearizable.

ii) There exists an equivariant immersion of X in the projectivization of a finite-dimensional
G-module.

iii) There exists an action of G on a projective space Pn
k and an equivariant immersion

i : X → Pn
k such that OPn(1) is linearizable and L = i∗OPn(1).

The following result on normal schemes is well-known.

Proposition 5.7. [3, Th. 2.14] Let G be a smooth connected linear algebraic group, X a
variety and α : G×X → X an action. If X is normal then there exists an integer n ≥ 1 such
that for every line bundle L over X, L⊗n is linearizable.

We want an analogous result without the hypothesis of normality in case G is a form of Ga,k

in prime characteristic. We first need to understand the obstruction for a line bundle (over a
separated reduced scheme of finite type X) to be linearizable.

Proposition 5.8. [3, Prop. 2.10] Let G be a smooth linear algebraic group, X a separated
reduced scheme of finite type over k and α : G×X → X an action. There is an exact sequence
of abstract groups

1→ O(X)×G → O(X)× → Ĝ(X)→ PicG(X)→ Pic(X) α∗−→ Pic(G×X)/ pr∗2 Pic(X)

is exact, where PicG(X)→ Pic(X) is the forgetful morphism which associates with a linearized
line bundle (L,Φ) the line bundle L, and O(X)×G denotes the subgroup of O(X)× consisting
of G-invariant elements. In particular, if the group X(G) of characters of Gks is trivial then
the forgetful morphism PicG(X) → Pic(X) is injective (that is, a line bundle has at most one
linearization).

Proposition 5.9. We assume that k has characteristic p > 0. Let G be a form of Ga,k, X a
variety and α : G ×X → X an action. There exists an integer r ≥ 0 such that for every line
bundle L over X, L⊗pr is linearizable.
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Proof. Because of the exact sequence of Proposition 5.8, it suffices to show that the group
Pic(G×X)/ pr∗2 Pic(X) is pr-torsion.

Let us show that we can restrict to the case G = Ga,k. Let K/k be a finite purely inseparable
extension such that GK ' Ga,K (see Proposition 2.12). The degree d of this extension is a
power of p. Let us assume that there exists an integer s ≥ 0 such that the group Pic(GK ×
XK)/ pr∗2 Pic(XK) is ps-torsion. Let L be a line bundle over G × X. By hypothesis, there
exists a line bundle M over XK such that (LK)⊗ps ' pr∗2M . Taking norms, we get L⊗dps '
NK/k

(
(LK)⊗ps

)
' NK/k (pr∗2M) ' pr∗2(NK/k(M)) (see [12, II, Prop. 6.5.8]). Thus the group

Pic(G×X)/ pr∗2 Pic(X) is dps-torsion.
We now assume G = Ga,k. Let σ : X+ → X be the seminormalization. By Lemma 3.13,

the pullback morphism pr∗2 : Pic(X+) → Pic(G ×X+) is an isomorphism. Thus the following
diagram is commutative and exact in rows:

0 Pic(X) Pic(G×X) Pic(G×X)/ pr∗2 Pic(X) 0

0 Pic(X+) Pic(G×X+) 0

pr∗2

pr∗2

σ∗ (idG×σ)∗

Hence the snake lemma gives an exact sequence

ker(idG×σ)∗ → Pic(G×X)/ pr∗2 Pic(X)→ cokerσ∗.

Moreover the morphism α : G×X → X is smooth (because G is smooth) so, by Lemma 3.14,
the scheme G ×X+ is seminormal and idG×σ : G ×X+ → G ×X is the seminormalization.
Thus it follows from [3, Lemma 4.11] that there exists an integer n ≥ 0 such that ker(idG×σ)∗
and cokerσ∗ are pn-torsion. Hence Pic(G×X)/ pr∗2 Pic(X) is p2n-torsion.

Remark 5.10. i) This result is not true if k has characteristic zero. Indeed, Ga,k acts on the
cuspidal curve C obtained by pinching the point ∞ of P1

k onto Spec k[ε]/(ε2) (which can be
explicitly realized for example as the curve with homogeneous equation y3 = x2z in P2

k). By [3,
Ex. 2.16], a line bundle over C is linearizable if and only if it has degree 0.

ii) As a particular case of Proposition 5.9, if G is a non-trivial form of Ga,k then its regular
completion C can be embedded equivariantly in the projectivization of a G-module, but C is
not smooth. On the opposite, if k has characteristic zero then the closure of any orbit in the
projectivization of a Ga,k-module is smooth (see [5, Lemma 2.4]).

If
Z̃ X̃

Z X

j

λ

i

ν is a pinching diagram then Charles Weibel described the line bundles over

X in terms of line bundles over X̃ and Z.

Proposition 5.11. [23, Prop. 7.8] We have an exact sequence of abstract groups

1→ O(X)× → O(X̃)× ×O(Z)× → O(Z̃)× → PicX → Pic X̃ × PicZ → Pic Z̃

induced by pullbacks and a connecting morphism O(Z̃)× → PicX. This sequence called the
Units-Pic sequence.
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Loosely speaking, this means that, up to isomorphism, line bundles over X correspond to
line bundles over X̃ equipped with trivializations along fibers of λ.

This can be reformulated in categorical terms. For any scheme Y , we denote by DY the
category of line bundles over Y . With the functors j∗ : D

X̃
→ D

Z̃
et λ∗ : DZ → DZ̃ we can

form the fiber product category D
X̃
×D

Z̃
DZ . Its objects are the triples (L̃,M, σ) where L̃ and

M are line bundles over X̃ and Z, and σ is an isomorphism j∗L̃ ' λ∗M of line bundles over
Z. A morphism between two triples (L̃1,M1, σ1) and (L̃2,M2, σ2) is given by two morphisms
ϕ̃ : L̃1 → L̃2 and ψ : M1 →M2 such that σ2 ◦ (j∗ϕ̃) = (λ∗ψ) ◦ σ1.

Proposition 5.12. [14, Th. 3.13] The functor

T :
{
DX −→ D

X̃
×D

Z̃
DZ

L 7−→ (ν∗L, i∗L, can)

is a equivalence of categories (where can is the canonical isomorphism j∗ν∗L ' λ∗i∗L).

Let S be the quasi-inverse of T . For (L̃,M, σ) in D
X̃
×D

Z̃
DZ , the line bundle L = S(L̃,M, σ)

is determined (up to isomorphism) by the existence of isomorphisms ϕν : ν∗L → L̃ and ϕi :

i∗L→M making the diagram
j∗ν∗L j∗L̃

λ∗i∗L λ∗M

j∗ϕν

can

λ∗ϕi

σ commute.

We can do the same for linearized line bundles. Let G be a smooth connected algebraic
group. For any scheme Y which is separated and of finite type over k, and any action α :
G×Y → Y , we denote by DGY the category of linearized line bundles over Y . Let Y ′ be another
such scheme with an action α′ : G × Y ′ → Y ′ and f : Y ′ → Y an equivariant morphism. For
any (L,ΦL) in DGY , the line bundle f ∗L over Y ′ is equipped with the linearization Φf∗L given

by the diagram
α′∗f ∗L pr∗2 f ∗L

(idG×f)∗α∗L (idG×f)∗ pr∗2 L

Φf∗L

can

(idG×f)∗ΦL

can . If ϕ : L1 → L2 is a morphism of

linearized line bundles over Y then f ∗ϕ : f ∗L1 → f ∗L2 is a morphism of linearized line bundles
over Y ′. This yields a functor f ∗ : DGY → DGY ′ .

We assume that X is separated and of finite type over k (thus so are X̃, Z and Z̃). Let
α : G × X → X and α̃ : G × X̃ → X̃ be two actions such that Z and Z̃ are G-stable and ν
is G-equivariant (so λ, i and j are equivariant too). Let β : G × Z → Z and β̃ : G × Z̃ → Z̃
be the induced actions. With the functors j∗ : DG

X̃
→ DG

Z̃
et λ∗ : DGZ → DGZ̃ we can form the

fiber product category DG
X̃
×DG

Z̃

DGZ . Its objects are the tuples (L̃,Φ
L̃
,M,ΦM , σ) where (L̃,Φ

L̃
)

and (M,ΦM) are linearized line bundles over X̃ and Z, and σ is an isomorphism j∗L̃ ' λ∗M
of linearized line bundles over Z.

Proposition 5.13. The functor

TG :

 DGX −→ DG
X̃
×DG

Z̃

DGZ
(L,ΦL) 7−→ (ν∗L,Φν∗L, i

∗L,Φi∗L, can)

is a equivalence of categories (where can is the canonical isomorphism j∗ν∗L ' λ∗i∗L).
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Proof. It is immediate that the functor TG is well-defined on objects (and its definition on
morphisms is the obvious one).

By proposition 5.12, the functor TG is faithful. Let us show that it is full. Let (L1,ΦL1)
and (L2,ΦL2) be two linearized line bundles over X. A morphism TG(L1,ΦL1)→ TG(L2,ΦL2)
is given by two morphisms of linearized line bundles ϕ̃ : (ν∗L1,Φν∗L1) → (ν∗L2,Φν∗L2) and
ψ : (i∗L1,Φi∗L1) → (i∗L2,Φi∗L2) such that σ2 ◦ (j∗ϕ̃) = (λ∗ψ) ◦ σ1 (where σ1 and σ2 are the
canonical isomorphisms j∗ν∗L1 ' λ∗i∗L1 and j∗ν∗L2 ' λ∗i∗L2). By proposition 5.12, there
exists a morphism of line bundles ϕ : L1 → L2 such that ϕ̃ = ν∗ϕ and ψ = i∗ϕ. It remains
to show that ϕ is a morphism of linearized line bundles. From the definition of the pullback
linearizations Φν∗L1 and Φν∗L2 , the equality ϕ̃ = ν∗ϕ, the fact that ϕ̃ is a morphism of linearized
line bundles and the different canonical isomorphisms, it follows readily that the diagram

(idG×ν)∗α∗L1 (idG×ν)∗ pr∗2 L1

(idG×ν)∗α∗L2 (idG×ν)∗ pr∗2 L2

(idG×ν)∗ΦL1

(idG×ν)∗α∗ϕ

(idG×ν)∗ΦL2

(idG×ν)∗ pr∗2 ϕ

of line bundles over G× X̃ commutes (and similarly for the pullback by idG×i). Moreover the

square
G× Z̃ G× Z̃

G× Z G×X

id×j

id×λ

id×i

id×ν is a pinching diagram (see [14, Th. 3.11]) so we can apply

Proposition 5.12 to it. Thus the corresponding functor

T ′ : DG×X → DG×X̃ ×DG×Z̃ DG×Z

is (fully) faithful. Consequently the diagram
α∗L1 pr∗2 L1

α∗L2 pr∗2 L2

ΦL1

α∗ϕ

ΦL2

pr∗2 ϕ commutes, that is, ϕ is

a morphism of linearized line bundles.
Finally, let us show that the functor TG is essentially surjective. Let (L̃,Φ

L̃
,M,ΦM , σ) be

an object of DG
X̃
×DG

Z̃

DGZ . By Proposition 5.12 again, there exists a line bundle L over X and

isomorphisms ϕν : ν∗L → L̃ and ϕi : i∗L → M making the diagram
j∗ν∗L j∗L̃

λ∗i∗L λ∗M

j∗ϕν

can

λ∗ϕi

σ

commute. We have isomorphisms

σ1 : (id×j)∗α̃∗L̃ can−−→ β̃∗j∗L̃
β̃∗σ−−→ β̃∗λ∗M

can−−→ (id×λ)∗β∗M

σ2 : (id×j)∗ pr∗2 L̃
can−−→ pr∗2 j∗L̃

pr∗2 σ−−−→ pr∗2 λ∗M
can−−→ (id×λ)∗ pr∗2M

of line bundles over G × Z̃. Since σ : j∗L̃ → λ∗M is an isomorphism of linearized line bun-
dles, Φ

L̃
and ΦM induce an isomorphism (α̃∗L̃, β∗M,σ1) → (pr∗2 L̃, pr∗2M,σ2) in the category
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D
G×X̃×DG×Z̃DG×Z . As the functor T ′ defined above is fully faithful, there exists an isomorphism

ΦL : α∗L→ pr∗2 L such that Φ
L̃

is the composite

α̃∗L̃
α̃∗ϕ−1

ν−−−→ α̃∗ν∗L
can−−→ (id×ν)∗α∗L (id×ν)∗ΦL−−−−−−→ (id×ν)∗ pr∗2 L

can−−→ pr∗2 ν∗L
pr∗2 ϕν−−−→ pr∗2 L̃

(and similarly for ΦM). It remains to show that ΦL is a linearization, because then ϕν and ϕi
give an isomorphism TG(L,ΦL) → (L̃,Φ

L̃
,M,ΦM , σ). We have to show that ΦL satisfies the

cocycle condition, that is to say that the diagram

(idG×α))∗α∗L (µ× idX)∗α∗L (µ× idX)∗ pr∗2 L

(idG×α)∗ pr∗2 L pr∗23 α
∗L pr∗23 pr∗2 L

can (µ× idX)∗ΦL

(idG×α)∗ΦL

can pr∗23 ΦL

can

commutes. It is easily checked that the two diagrams obtained by pulling back by idG× idG×ν
and by idG× idG×i are commutative because Φ

L̃
and ΦM are linearizations. But, by the same

argument as before, the functor

DG×G×X → DG×G×X̃ ×DG×G×Z̃ DG×G×Z

is faithful. Therefore the diagram for ΦL is indeed commutative.

In turn, this equivalence of categories yields an analogue of the Units-Pic sequence.

Corollary 5.14. We have an exact sequence of abstract groups

1→ O(X)×G → O(X̃)×G ×O(Z)×G → O(Z̃)×G → PicG(X)→ PicG(X̃)×PicG(Z)→ PicG(Z̃)

induced by pullbacks and a connecting morphism δ : O(Z̃)×G → PicG(X). We call it “the
equivariant Units-Pic sequence”.

Proof. We identify O(Z̃)× with the group of automorphisms of the trivial line bundle Z̃ ×A1
k.

Then the automorphisms of (Z̃ ×A1
k, triv) (where triv is the trivial linearization) correspond

to the elements of O(Z̃)×G . The morphism δ maps σ ∈ O(Z̃)×G to the isomorphism class of
linearized line bundles over X corresponding (in view of Proposition 5.13) to the isomorphism
class of the tuple (X̃ ×A1

k, triv, Z ×A1
k, triv, σ). By construction, δ(σ) is in the kernel of the

morphism PicG(X)→ PicG(X̃)×PicG(Z). Conversely, an element (L,ΦL) ∈ ker δ corresponds
to a tuple (X̃ × A1

k, triv, Z × A1
k, triv, σ) and σ is an automorphism of (Z̃ × A1

k, triv), so
σ ∈ O(Z̃)×G and (L,ΦL) = δ(σ).

Let σ ∈ O(Z̃)×, viewed as an automorphism of (Z̃×A1
k, triv). Then σ is in ker δ if an only if

there exists an isomorphism (X̃×A1
k, triv, Z×A1

k, triv, σ)→ (X̃×A1
k, triv, Z×A1

k, triv, can).
Such an isomorphism is given by two automorphisms ϕ̃ of (X̃×A1

k, triv) and ψ of (Z×A1
k, triv)

such that can ◦ (j∗ϕ̃) = (λ∗ψ) ◦ σ. Viewing ϕ̃ and ψ as elements of O(X̃)×G and O(Z)×G , this
condition precisely means that σ is the image of (ϕ̃, ψ) by the morphism O(X̃)×G×O(Z)×G →
O(Z̃)×G . So the sequence is exact at O(Z̃)×.

The image of O(X)×G → O(X̃)×G × O(Z)×G is contained in the kernel of O(X̃)×G ×
O(Z)×G → O(Z̃)×G . Conversely, if (ϕ̃, ψ) is in the kernel then, by the Units-Pic sequence, it is
the image of an element ϕ ∈ O(X)×. The morphism idG×ν : G× X̃ → G×X is schematically
dominant so the map (idG×ν)∗ : O(G×X)× → O(G× X̃)× is injective. The images of α∗(ϕ)
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and pr∗2(ϕ) are respectively α̃∗(ϕ̃) and pr∗2(ϕ̃). Since ϕ̃ is G-invariant, we have α̃∗(ϕ̃) = pr∗2(ϕ̃),
so α∗(ϕ) = pr∗2(ϕ) and thus ϕ ∈ O(X)×G .

Let
(
(L̃,Φ

L̃
), (M,ΦM)

)
∈ PicG(X̃) × PicG(Z). Its image in PicG(Z) is trivial if and only

if we have an isomorphism of linearized line bundles (j∗L̃)(λ∗M)−1 ' Z̃ ×A1
k, (where Z̃ ×A1

k

is endowed with the trivial linearization), that is, if and only if we have an isomorphism of
linearized line bundles σ : j∗L̃→ λ∗M . Hence, by Proposition 5.13 again, the sequence is exact
at PicG(X̃)× PicG(Z).

Remark 5.15. If X is a proper variety then, since O(X) = O(X̃) = k, the equivariant Units-
Pic sequence can be simplified as

1→ O(Z̃)×G/O(Z)×G → PicG(X)→ PicG(X̃)× PicG(Z)→ PicG(Z̃).

5.2 Equivariant Picard groups of curves
We can determine the equivariant Picard group of the almost homogeneous curves classified in
Theorem 1.1.

Theorem 5.16. Let C be a seminormal curve and G a smooth connected algebraic group acting
faithfully on C.

1. (homogeneous curves)

(a) If C is a smooth projective conic and G ' AutC then PicG(C) = PicC = Z · ωC
where ωC is the canonical sheaf, so 1

2 deg : PicG(C)→ Z is an isomorphism.

(b) If C ' A1
k and G ' Ga,k oGm,k (acting by affine transformations) then PicG(C) '

Ĝ(C) ' Z.
(c) If G is a form of Ga,k or Gm,k and C is a G-torsor then PicG(C) is trivial.
(d) If C is a smooth projective curve of genus 1 and G ' Aut◦C then PicG(C) is trivial.

2. (regular, non-homogeneous curves)

(a) If C ' P1
k and G ' Ga,k o Gm,k or G ' Gm,k then we have a split exact sequence

1→ Ĝ(C) ' Z→ PicG(C)→ PicC = Z · [∞] ' Z→ 0

and the morphism PicG(C)→ Z is identified with the degree map, so PicG(C) ' Z2.
(b) If G is a form of Ga,k, C is the regular completion of a G-torsor and P is the point

at infinity then we have PicG(C) = Z · [P ] ' Z and this isomorphism is identified
with the map 1

[κ(P ) : k] deg.

(c) If C ' A1
k and G ' Gm,k then PicG(C) ' Ĝ(C) ' Z.

(d) If C is a smooth projective conic and G is the centralizer of a separable point P
of degree 2 then we have a split exact sequence 1 → Ĝ(C) → PicG(C) → PicC =
Z · [P ] ' Z→ 0 and the morphism PicG(C)→ Z is identified with 1

2 deg.

3. (seminormal, singular, non-homogeneous curves)
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(a) If G is a non-trivial form of Ga,k and C is obtained by pinching the point at infinity
P̃ of the regular completion C̃ of a G-torsor on a point P whose residue field κ(P )
is a strict subextension of κ(P̃ )/k then we have a split exact sequence

1→ κ(P̃ )×/κ(P )× → PicG(C)→ Z · [P̃ ] ' Z→ 0.

and the morphism PicG(C)→ Z is identified with 1
[κ(P̃ ) : k]

deg.

(b) If C is obtained by pinching two k-rational points of P1
k on a k-rational point and

G ' Gm,k then we have a split exact sequence

1→ (k× × k×)/k× → PicG(C)→ Ĝ(P1
k) ' Z→ 0.

(c) If C is obtained by pinching a separable point P̃ of degree 2 of a smooth projective
conic C̃ on a k-rational point P , and G is the centralizer of P̃ in Aut

C̃
then we have

PicG(C) ' κ(P̃ )×/κ(P )×.

Proof. Case 1a : The group of characters X(G) is trivial so, by Proposition 5.8, the forgetful
morphism PicG(C)→ PicC is injective. If C = P1

k and G = PGL2,k then it is well-known that
the sheaf OP1

k
(1) is not linearizable (see [15, p.33]), but the canonical sheaf ωP1

k
= OP1

k
(−2) is

linearizable. Hence PicG(C) is the subgroup of PicC generated by ωP1
k
. More generally, let C

be a smooth conic (embedded in P2
k by a closed immersion i) and G = AutC . There exists a

Galois extension K/k such that CK ' P1
K . Then the pullback morphism PicC → PicCK ' Z

is injective (its kernel consists of the forms of the trivial line bundle CK × A1
K , so by Galois

cohomology and Hilbert’s 90th theorem it is trivial) and is identified with the degree morphism.
Thus if C is not isomorphic to P1

k then there is no line bundle of degree one (otherwise C would
have a k-rational point) so PicC is generated by the canonical sheaf ωC , which is linearizable.

Case 1b : Every line bundle over C is isomorphic to the trivial bundle. By [3, Prop. 2.10],
the kernel of the forgetful morphism PicG(C) → PicC is the group Ĝ(C). Moreover, Ĝ is the
constant sheaf Z.

Cases 1c and 1d : The curve C is a G-torsor so, by Lemma 5.5, the group PicG(C) is trivial.
Case 2a : By Proposition 5.8 again, the sequence 1 → Ĝ(C) → PicG(C) → PicC is exact.

Let α : G×C → C be the standard action and P = Spec k the reduced closed subscheme of C
supported by ∞. Denote by [∞] the corresponding Weil divisor, so that PicC = Z · [∞]. We
have the exact sequence of sheaves

0→ OC(−P )→ OC → OP → 0.

Since α and pr2 are flat, and P is G-stable, we have a commutative diagram

0 α∗OC(−P ) α∗OC α∗OP 0

0 pr∗2OC(−P ) pr∗2OC pr∗2OP 0

which is exact in rows and where the vertical arrows are isomorphisms. This yields an isomor-
phism α∗OC(−P ) ' pr∗2OC(−P ). Since C is reduced, by Remark 5.3, this implies that the line
bundle corresponding to −[P ] is linearizable. Hence the forgetful morphism PicG(C) → PicC
is surjective.

Case 2b : As above, the forgetful morphism PicG(C) → PicC is injective. Let U be the
open subscheme of C which is a G-torsor, so that P is the reduced closed subscheme of C
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supported by the point C \ U . If L is a linearizable line bundle over C then its restriction L|U
is linearizable. But U is a G-torsor so PicG(U) is trivial. So L corresponds to a Weil divisor in
Z · [P ]. Conversely, by the same argument as above, the line bundle corresponding to −[P ] is
linearizable. Therefore PicG(C) = Z · [P ].

Case 2c : The argument is the same as for the case 1b.
Case 2d : The canonical divisor on C is −[P ] so PicC = Z · [P ]. Thus the morphism

PicG(C)→ PicC is surjective.

Case 3a : The curve C is obtained by the pinching diagram
Z̃ C̃

Z C

where Z =

Specκ(P ) and Z̃ = Specκ(P̃ ). By Remark 5.15, the equivariant Units-Pic sequence can be
written as

1→ O(Z̃)×/O(Z)× → PicG(C)→ PicG(C̃)× PicG(Z)→ PicG(Z̃).

Since the group of characters X(G) is trivial, it follows from Proposition 5.8 that the groups
PicG(Z) and PicG(Z̃) are trivial. Moreover by the case 2b, we have PicG(C̃) = Z · [P ].

Case 3b : We adapt the argument of [3, Ex. 2.15]. The curve C is obtained by the pinching

diagram
Z̃ P1

k

Z C

j

λ

i

ν where Z̃ = Spec k t Spec k is the reduced subscheme of P1
k supported

by {0,∞} and Z = Spec k. By Remark 5.15 again, the equivariant Units-Pic exact sequence
can be written as

1→ O(Z̃)×/O(Z)× = (k× × k×)/k× → PicG(C)→ PicG(P1
k)× PicG(Z)→ PicG(Z̃).

By Proposition 5.8 we have isomorphisms PicG(P1
k) ' Pic P1

k × Ĝ(P1
k) ' Z × Z, PicG(Z) '

Ĝ(Z) ' Z and PicG(Z̃) ' Ĝ(Z̃) ' Z × Z. Since G acts on the fibers over 0 and ∞ of a line
bundle OP1

k
(n) with respective weights n and 0, the morphism PicG(P1

k)×PicG(Z)→ PicG(Z̃)

corresponds to
{

(Z× Z)× Z −→ Z× Z
((n,m), `) 7−→ (n+m,m)− (`, `) . Its kernel is Z · ((0, 1), 1) ' Ĝ(P1

k).

Case 3c : Once more, we have the exact sequence

1→ κ(P̃ )×/κ(P )× → PicG(C)→ PicG(C̃)× PicG(Z)→ PicG(Z̃)

where Z = Spec k and Z̃ = Specκ(P̃ ). Let (L,ΦL) ∈ PicG(C) and let us show that its image
is trivial. By Proposition 5.8, we have PicG(Z) ' Ĝ(Z) = Homk−gp(G,Gm,k) = {1}. Hence
i∗(L,ΦL) is trivial, and so j∗ν∗(L,ΦL) is trivial too. The line bundle LK over CK is linearizable
so, by the case 3b, it has degree 0. So L and ν∗L have degree 0 too. Since Pic C̃ = Z · ω

C̃
,

the line bundle ν∗L is trivial. Its linearization is given by an element χ ∈ Ĝ(C̃) (and the
linearization of j∗ν∗L is given by j∗(χ)). The morphism Ĝ(Z̃)→ PicG(Z̃) is injective so j∗(χ)
is trivial. After the extension of scalars to K = κ(P̃ ), we have χK ∈ ĜK(C̃K) whose pullback
in ĜK(Z̃K) is trivial. But GK ' Gm,K so ĜK is the constant sheaf Z. Hence χK is trivial, so
χ is trivial too. Therefore the image of (L,ΦL) in PicG(C̃)× PicG(Z) is trivial.
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Remark 5.17. Since a line bundle on a projective curve is ample if and only if it has positive
degree, we have a full description of ample linearized line bundles over seminormal almost
homogeneous curves.

Corollary 5.18. Let C be a seminormal curve and G a non-trivial smooth connected algebraic
group acting faithfully on C. Then C can be embedded in the projectivization of a finite-
dimensional G-module, except in the cases 1d, 3b and 3c of Theorem 5.16, that is:

• C is a smooth projective curve of genus 1 and G ' Aut◦C;

• C is obtained by pinching two k-rational points of P1
k on a k-rational point and G ' Gm,k;

• C is obtained by pinching a separable point P̃ of degree 2 of a smooth projective conic C̃
on a k-rational point P , and G is the centralizer of P̃ in Aut

C̃
.
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