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ABSTRACT:

We consider the problem of the semantic classification of 3D LiDAR point clouds obtained from urban scenes when the training
set is limited. We propose a non-parametric segmentation model for urban scenes composed of anthropic objects of simple shapes,
partionning the scene into geometrically-homogeneous segments which size is determined by the local complexity. This segmentation
can be integrated into a conditional random field classifier (CRF) in order to capture the high-level structure of the scene. For each
cluster, this allows us to aggregate the noisy predictions of a weakly-supervised classifier to produce a higher confidence data term. We
demonstrate the improvement provided by our method over two publicly-available large-scale data sets.

1. INTRODUCTION

Automatic interpretation of large 3D point clouds acquired from
terrestrial and mobile LiDAR scanning systems has become an
important topic in the remote sensing community (Munoz et al.,
2009; Weinmann et al., 2015), yet it presents numerous techni-
cal challenges. Indeed, the high volume of data and the irregular
structure of LiDAR point clouds make assigning a semantic label
to each point a difficult endeavor. Furthermore the production of a
precise ground truth is particularly difficult and time-consuming.
However, LiDAR scans of urban scenes display some form of
regularity and a specific structure can then be exploited to im-
prove the accuracy of a noisy semantic labeling.

Foremost, the high precision of LiDAR acquisition techniques
implies that the number of points far exceeds the number of ob-
jects in a scene. Consequently, the sought semantic labeling can
be expected to display high spatial regularity. Although the method
presented in (Weinmann et al., 2015) relies on the computation of
local neighborhood, the resulting classification is not regular in
general, as observed in Figure 1b. This regularity prior has been
incorporated into context-based graphical models (Anguelov et
al., 2005; Shapovalov et al., 2010; Niemeyer et al., 2014) and
a structured regularization framework (Landrieu et al., 2017a),
significantly increasing the accuracy of input pointwise classifi-
cations.

Pre-segmentations of the point cloud have been used to model
long-range interactions and to decrease the computational burden
of the regularization. The segments obtained can then be incor-
porated into multi-scale graphical models to ensure a spatially-
regular classification. However, the existing models require set-
ting the parameters of the segments in advance, such as their max-
imum radius (Niemeyer et al., 2016; Golovinskiy et al., 2009),
the maximum number of points in each segment (Lim and Suter,
2009), or the total number of segment (Shapovalov et al., 2010).

The aim of our work is to leverage the underlying structure of the
point cloud to improve a weak classification obtained from very
few annotated points, with a segmentation that requires no preset
size parameters. We observe that the structure of urban scenes

is mostly shaped by man-made objects (roads, façades, cars...),
which are geometrically simple in general. Consequently, well-
chosen geometric features associated to their respective points
can be expected to be spatially regular. However the extent and
number of points of the segments can vary a lot depending on the
nature of the corresponding objects. We propose a formulation of
the segmentation as a structured optimization problem in order to
retrieve geometrically simple super-voxels. Unlike other preseg-
mentation approaches, our method allows the segments’ size to
be adapted to the complexity of the local geometry, as illustrated
in Figure 1c.

Following the machine-learning principle that an ensemble of
weak classifiers can perform better than a strong one (Opitz and
Maclin, 1999), a consensus prediction is obtained from the seg-
mentation by aggregating over each segment the noisy predic-
tions of its points obtained from a weakly-supervised classifier.
The structure induced by the segmentation and the consensus pre-
diction can be combined into a conditional random field formu-
lation to directly classify the segments, and reach state-of-the-art
performance from a very small number of hand-annotated points.

1.1 Related Work

Point-wise classification: Weinmann et al. (2015) propose a clas-
sification framework based on 3D geometric features derived from
local neighborhood of optimal size.

Context-based graphical models: the spatial regularity of a se-
mantic labeling can be enforced by graphical models such as ran-
dom Markov fields (Anguelov et al., 2005; Shapovalov et al.,
2010), and its discriminative counterpart, the conditional random
field (Niemeyer et al., 2014; Landrieu et al., 2017b). The unary
terms are computed by a point-wise classification with a random
forest classifier, while the pairwise terms encode the probability
of transition between the semantic classes.

Pre-segmentation approaches: A pre-segmentation of the point
cloud can be leveraged to improve the classification. Lim and
Suter (2009) propose defining each segment as a node in a multi-
scale CRF. The super-voxels are defined by a growing region



(a) Ground truth (b) Pointwise classification

(c) Geometrically homogeneous segmentation (d) Segmentation-aided regularization

Figure 1. Illustration of the different steps of our method: the pointwise, irregular classification 1b is combined with the geometrically
homogeneous segmentation 1c to obtain a smooth, objects-aware classification 1d. In Figures 1a, 1b , 1d, the semantic classes are
represented with the following color code: vegetation, façades, hardscape, acquisition artifacts, cars, roads. In Figure 1c, each segment
is represented by a random color.

method based on a predefined number of points in each pixel,
and a color homogeneity prior. In Niemeyer et al. (2016), the
segments are determined using a prior pointwise-classification.
A multi-tier CRF is then constructed containing both points and
voxels nodes. An iterative scheme is then performed, which alter-
nates between inference in the multi-tier CRF and the computa-
tion of the semantically homogeneous segments with a maximum
radius constraint. In Shapovalov et al. (2010) the presegmenta-
tion is obtained through the k-means algorithm, which requires
defining the number of clusters in the scene in advance. Fur-
thermore k-means produces isotropic clusters whose size doesn’t
adapt to the geometrical complexity of the scene. In Dohan et al.
(2015), a hierarchical segmentation is computed using the fore-
ground/background segmentation of Golovinskiy et al. (2009),
which uses a preset horizontal and vertical radius as parameters.
The segments are then hierarchically merged then classified.

1.2 Problem formulation

We consider a 3D point cloud V corresponding to a LiDAR ac-
quisition in an urban scene. Our objective is to obtain a classifica-
tion of the points in V between a finite set of semantic classes K.
We consider that we only have a small number of hand-annotated
points as a ground truth from a similar urban scene. This number
must be small enough that it can be produced by an operator in a
reasonable time, i.e. no more than a few dozen per class.

We present the consituent elements of our approach in this sec-
tion, in the order in which they are called.

Feature and graph computation: For each point, we com-
pute a vector of geometrical features, described in Section 2.1. In
Section 2.3 we present how the adjacency relationship between
points is encoded into a weighted graph.

Segmentation into geometrically homogeneous segments: The
segmentation problem is formulated as a structured optimization
problem presented in Section 3.1, and whose solution can be ap-
proximated by a greedy algorithm. In section 3.2, we describe
how the higher-level structure of the scene can be captured by a
graph obtained from the segmentation.

Contextual classification of the segments: In Section 4, we
present a CRF which derived its structure from the segmentation,
and its unary parameter from the aggregation of the noisy pre-
diction of a weakly supervised classifier. Finally, we associate
the label of the corresponding segment to each point in the point
cloud.

2. FEATURES AND GRAPH COMPUTATION

In this section, we present the descriptors chosen to represent the
local geometry of the points, and the adjacency graph capturing
the spatial structure of the point cloud.

With a view that the training set is small, and to keep the compu-
tational burden of the segmentation to a minimum, we voluntarily
limit the number of descriptors used in our pointwise classifica-
tion. We insist on the fact that the segmentation and the classifi-
cation do not necessarily use the same descriptors.

2.1 Local descriptors

In order to describe the local geometry of each point we define
four descriptors: linearity, planarity, scattering and verticality,
which we represent in Figure 2.

The features are defined from the local neighborhood of each
point of the cloud. For each neighborhood, we compute the eigen-
values λ1 ≥ λ2 ≥ λ3 of the covariance matrix of the positions



of the neighbors. The neighborhood size is chosen such that it
minimizes the eigentropy E of the vector (λ1/Λ, λ2/Λ, λ3/Λ)
with Λ =

∑3
i=1 λi, in accordance with the optimal neighbor-

hood principle advocated in Weinmann et al. (2015):

E = −
3∑

i=1

λi

Λ
log(

λi

Λ
).

As presented in Demantké et al. (2011), these eigenvalues allows
us to qualify the shape of the local neighborhood by deriving the
following vectors:

Linearity =
λ1 − λ2

λ1

Planarity =
λ2 − λ3

λ1

Scattering =
λ3

λ1
.

The linearity describes how elongated the neighborhood is, while
the planarity assesses how well it is fitted by a plane. Finally,
high-scattering values correspond to an isotropic and spherical
neighborhood. The combination of these three features is called
dimensionality.

In our experiments, the vertical extent of the optimal neighbor-
hood proved crucial for distinguishing between roads and façades,
and between poles and electric wires, as they share similar di-
mensionality. To discriminate this class, we introduce a novel
descriptor called verticality also obtained from the eigen vectors
and values defined above. Let u1, u2, u3 be the three eigenvec-
tors associated with λ1, λ2, λ3 respectively. We define the unary
vector of principal direction in R3

+ as the sum of the absolute
values of the coordinate of the eigenvectors weighted by their
eigenvalues:

[û]i ∝
3∑

j=1

λj |[uj ]i|, pour i = 1, 2, 3 et ‖û‖ = 1

We argue that the vertical component of this vector characterizes
the verticality of the neighborhood of a point. Indeed it reaches
its minimum (equal to zero) for an horizontal neighborhood, and
its maximum (equal to 1) for a linear vertical neighborhood. A
vertical planar neighborhood, such as a façade, will have an inter-
mediary value (around 0.7). This behavior is illustrated at Figure
in Figure 2.

To illustrate the weak number of features selected, we represent
their respective value and range in Figure 3.

2.2 Non-local descriptors

Although the neighborhoods’ shape of 3D points determine their
local geometry, and allows us to compute a geometrically homo-
geneous segmentation, this not sufficient for classification. Con-
sequently, we use two descriptors of the global position of points:
elevation and position with respect to the road.

Computing those descriptors first requires determining the extent
of the road with high precision. A binary road/non-road classifi-
cation is performed using only the local geometry descriptors and
a random forest classifier, which achieves very high accuracy and
a F-score over 99.5%. From this classification a simple elevation
model is computed, allowing us to associate a normalized height
with respect to the road to each 3D point.

linearity planarity scattering verticality
0
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Figure 3. Means and standard deviations of the local descriptors
in the Oakland dataset for the following classes: wires, poles,
façade, road, vegetation.

To estimate the position with respect to the road we compute the
two-dimensional α-shape (Akkiraju et al., 1995) of the points of
the road projected on the zero elevation level, as represented in
Figure 4. This allows us to compute the position with respect to
the road descriptor, equal to 1 if a point is outside the extent of
the road, 0.5 if the point is close to the edge of the α-shape with
a tolerance of 1m, and 0 otherwise.

Figure 4. α-shape of the road on our Semantic3D example. In
red, the horizontal extent of the road; in yellow, the extent of the
non-road class.

2.3 Adjacency graph

The spatial structure of a point cloud can be represented by an
unoriented graph G = (V,E), in which the nodes represent the
points of the cloud, and the edges encode their adjacency rela-
tionship. We compute the 10-nearest neighbors graph, as advo-
cated in (Niemeyer et al., 2011). Remark that this graph defines
a symmetric graph-adjacency relationship which is different from
the optimal neighborhood used in Section 2.1.

3. SEGMENTATION INTO HOMOGENEOUS
SEGMENTS

3.1 Potts energy segmentation

To each point, we associate its local geometric feature vector
fi ∈ R4 (dimensionality and verticality), and compute a piece-
wise constant approximation g? of the signal f ∈ RV×4 struc-
tured by the graph G. g? is defined as the vector of RV×4 mini-
mizing the following Potts segmentation energy:

g? = arg min
g∈R4×V

∑
i∈V

‖gi − fi‖2 + ρ
∑

(i,j)∈E

δ(gi − gj 6= 0),



(a) Dimensionality (b) Verticality

(c) Elevation (d) Position with respect to the road

Figure 2. Representation of the four local geometric descriptors as well as the two global descriptors. In (a), the dimensionality
vector [linearity, planarity, scattering] is color-coded by a proportional [red, green, blue] vector. In (b), the value of the verticality is
represented with a color map going from blue (low verticality - roads) to green/yellow (average verticality - roofs and façades) to red
(high verticality - poles). In (c), is represented the elevation with respect to the road. In (d), the position with respect to the road is
represented with the following color-code: inside the road α-shape in blue, bordering in green, and outside in red.

with δ(· 6= 0) the function of R4 : 7→ {0, 1} equal to 0 in 0
and 1 everywhere else. The first part of this energy is the fidelity
function, ensuring that the constant components of g? correspond
to homogeneous values of f . The second part is the regularizer
which adds a penalty for each edge linking two components with
different values. This penalty enforces the simplicity of the shape
of the segments. Finally ρ is the regularization strength, deter-
mining the trade off between fidelity and simplicity, and implic-
itly determining the number of clusters.

This structured optimization problem can be efficiently approxi-
mated with the greedy graph-cut based `0-cut pursuit algorithm
presented in Landrieu and Obozinski (2016). The segments are
defined as the constant connected components of the piecewise
constant signal obtained.

The benefit of this formulation is that it does not require defining
a maximum size for the segments in terms of extent or points.
Indeed large segments of similar points, such as roads or façades,
can be retrieved. On the other hand, the granularity of the seg-
ments will increase where the geometry gets more complex, as
illustrated in Figure 1c.

For the remainder of the article we denote S = (S1, · · · , Sk)
the non-overlapping segmentation of V obtained when approxi-
mately solving the optimization problem.

3.2 Segment-graph

We argue that since the segments capture the objects in the scene,
the segmentation represents its underlying high-level structure.
To obtain the relationship between objects, we construct the segment-
graph, which is defined as G = (S,E, w) in which the segments
of S are the nodes of G. E represents the adjacency relationship

Figure 5. Adjacency structure of the segment-graph. The edges
between points are represented in black , the segmentation
and the adjacency of its components in blue: .

between segments, whilew encodes the weight of their boundary,
as represented in Figure 5. We define two segments as adjacent if
there is an edge in E linking them, and w as the total weight of
the edges linking those segments:{

E = {(s, t) ∈ S2 | ∃(i, j) ∈ E ∩ (s× t)}
ws,t = |E ∩ (s× t)| , ∀(s, t) ∈ S2.

4. CONTEXTUAL CLASSIFICATION OF THE
SEGMENTS

To enforce spatial regularity, Niemeyer et al. (2014) defines the
optimal labeling ? of a point cloud as maximizing the poste-
rior distribution p(l | f ′) in a conditional random field model
structured by an adjacency graph G, with f ′ the vector of local



and global features. We denote a labeling of V by a vector of
∆(V,K) = {l ∈ {0, 1}V×K |

∑
k∈K li,k = 1,∀i ∈ V } (the

corners of the simplex) such that li,k is equal to one if the point i
of V is labelled as k ∈ K, and zero else. For a point i of V , li is
considered as a vector of RK. This allows us to define l? as the
maximizing argument of the following energy:

l? = arg max
l∈∆(V,K)

∑
i∈V

lᵀi p
i +

∑
(i,j)∈E

lᵀiMi,j lj , (1)

with pi,k = log(p(li = k | f ′i)) the entrywise logarithm of
the probability of node i being in state k, and M(i,j),(k,l) =
log(p(li = k, lj = l | f ′i , f ′j)) the entrywise logarithm of the
probability of observing the transition (k, l) at (i, j).

As advocated in Niemeyer et al. (2014), we can estimate p(li =
k | f ′i) with a random forest probabilistic classifier pRF. To
avoid infinite values, the probability pRF is smoothed by taking
a linear interpolation with the constant probability: p(k | fi) =
(1−α)pRF(k | f ′i)+α/ |K|with α = 0.01 and |K| the cardinal-
ity of the class set. The authors also advocate learning the transi-
tion probability from the difference of the features vectors. How-
ever, our weak supervision hypothesis prevents us from learning
the transitions, as it would require annotations covering the |K|2
possible combinations extensively. Furthermore the annotation
would have to be very precise along the transitions, which are of-
ten hard to distinguish in point clouds. We make the simplifying
hypothesis that M is of the following form :

M(i,j),(k,l) =

{
0 if k = l

σ else,
(2)

with σ a non-negative value, which can be determined by cross-
validation.

Leveraging the hypothesis that the segments obtained in in Sec-
tion 3.1 correspond to semantically homogeneous objects, we can
assume that the optimal labeling will be constant over each seg-
ment of S. In that regard, we propose a formulation of a CRF
structured by the segment-graph G to capture the organization of
the segments. We denote L? the labeling of S defined as:

L? = arg max
L∈∆(S,K)

∑
s∈S

Lᵀ
sP

s +
∑

(s,t)∈E

ws,tL
ᵀ
sMLᵀ

t ,

with P s
k = |s| log(p(Ls = k | {f ′i}i∈s)) the logarithm of the

probability of segment s being in state k multiplied by the car-
dinality of s. We define this probability as the average of the
probability of each point contained in the segment:

p(Ls = k | {f ′i}i∈s) =
1

|s|
∑
i∈s

p(li = k | f ′i).

Note that the influence of the data term of a segment is deter-
mined by its cardinality, since the classification of the points re-
mains the final objective. Likewise, the cost of a transition be-
tween two segments is weighted by the total weight of the edges
at their interface ws,t, and represents the magnitude of the inter-
action between those two segments.

Following the conclusions of Landrieu et al. (2017b), we ap-
proximate the labelling maximizing the log-likelihood with the
maximum-a-priori principle using the α-expansion algorithm of
Boykov et al. (2001), using the implementation of Schmidt (2007).

It is important to remark that the segment-based CRF only in-

volves the segment-graph G, which can be expected to be much
smaller than G, making inference potentially much faster.

5. NUMERICAL EXPERIMENTS

We now demonstrate advantages of our approach through numer-
ical experiments on two public data sets. First, we introduce the
data and our evaluation metric, then present the classification re-
sults compared to state-of-the-art methods.

5.1 Data

To validate our approach, we consider two publicly available data
sets.

We first consider the urban part of the Oakland benchmark intro-
duced in Munoz et al. (2009), comprised of 655.297 points ac-
quired by mobile LiDAR. Some classes have been removed from
the acquisition (i.e. cars or pedestrians) so that there are only 5
left: electric wires, poles/trunks, façcades, roads and vegetation.
We choose to exclude the tree-rich half of the set as the segmen-
tation results are not yet satifying at the trunk-tree interface.

We also consider one of the urban scenes in the Semantic3D
benchmark1, downsampled to 3.5 millions points for memory
reasons. This scene, acquired with a fixed LiDAR, contain 6
classes : road, façade, vegetation, car, acquisition artifacts and
hardscape.

For each class we hand-pick a small number of representative
points such that the discriminative nature of our features illus-
trated in Figure 3 is represented. We select 15 points per classes
for Oakland and 25 to 35 points for semantic3D, for respective
totals of 75 and 180 points.

5.2 Metric

To take into account the imbalanced distribution of each class
(roads and façades comprise up to 80% of the points), we use
the unweighted average of the F-scores to evaluate the classifica-
tion results. Consequently, a classification with decent accuracy
over all classes will have a higher score than a method with high
accuracy over some classes but poor results for others.

5.3 Competing methods

To compare the efficiency of our implementation to the state-of-
the-art we have implemented the following methods:

• Pointwise: we implemented the pointwise classification with
optimal neighborhoods of Weinmann et al. (2015), with a
random forest (Breiman, 2001) and restricting ourselves to
the five geometric features mentioned in Section 2.1.

• CRF regularization: we implemented the CRF defined in
(1) without aid from the segmentation.

1http://www.semantic3d.net/



pointwise classification CRF-regularization our method
classes precision recall FScore precision recall FScore precision rappel Fscore
wires 4.2 37.1 7.5 87.8 32.1 47.0 51.2 35.4 41.9
poles 9.0 67.7 15.9 78.6 37.7 51.0 66.1 48.3 55.8

façades 57.5 74.9 65.1 79.2 98.0 87.6 91.0 96.5 93.6
road 99.9 86.7 92.8 99.6 95.2 97.4 99.6 99.1 99.4

vegetation 85.5 82.8 84.1 93.5 93.1 93.3 95.5 94.4 95
total 51.2 69.8 53.1 87.7 71.2 75.2 80.7 74.7 77.1

Table 1. Precision, recall and FScore in % for the Oakland benchmark. The global accuracy are respectively 85.2%, 94.8% et 97.3%.
In bold, we represent the best value in each category.

pointwise classification CRF-regularization our method
classes precision recall FScore precision recall FScore precision rappel Fscore

road 98.7 96.8 97.7 97.6 99.0 98.3 97.5 98.7 98.1
vegetation 14.2 82.9 24.2 49.7 84.7 62.6 52.1 93.7 67.0

façade 99.6 88.1 93.5 99.5 97.9 98.7 99.7 98.2 98.8
hardscape 74.2 71.4 73.1 93.7 88.7 91.2 92.7 90.4 91.5
artifacts 18.3 37.5 24.6 77.9 42.1 54.7 73.8 39.3 51.3

cars 28.6 54.8 37.6 66.5 86.2 75.1 84.0 90.0 82.3
total 55.7 71.9 58.4 80.8 83.1 80.1 83.3 85.0 82.3

Table 2. Precision, recall and FScore in % for the Semantic3D benchmark. The global accuracy are respectively 88.4%, 96.9% et
97.2%. In bold, we represent the best value in each category.

5.4 Results

In Tables 1 and 2, we represent the classification results of our
method and the competing methods for both datasets. We ob-
serve that both the CRF and the presegmentation approach sig-
nificantly improve the results compared to the point-wise classi-
fication. Although the improvement in term of global accuracy
of our method compared to the CRF-regularization is limited (a
few % at best), the quality of the classification is improved signif-
icantly for some hard-to-retrieve classes such as poles, wires, and
cars. Furthermore, our method provides us with a object-level
segmentation as well.

6. CONCLUSION

In this article, we presented a classification process aided by a ge-
ometric pre-segmentation capturing the high-level organization
of an urban scene. We showed that this segmentation allowed
us to formulate a CRF to directly classify the segments, improv-
ing the results over the CRF-regularization Further developments
should focus on improving the quality of the segmentation near
loose and scattered acquisition such as foliage. Another possible
improvement would be to better exploit the context of the tran-
sition. Indeed the form of the transition matrix in (2) is too re-
strictive, as it does not take into account rules such as "the road is
below the façcade" or the "tree-trunk is more likely than foliage-
road". Although the weakly-supervised context excludes learning
the transition, it would nonetheless be beneficial to incorporate
the expertise of the operator.
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