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Effective limit theorems for
Markov chains with a spectral gap

Benoît R. Kloeckner ∗

October 29, 2018

Applying quantitative perturbation theory for linear operators, we prove
non-asymptotic bounds for Markov chains whose transition kernel has a spec-
tral gap in an arbitrary Banach algebra of functions X . The main results
are concentration inequalities and Berry-Esseen bounds, obtained assuming
neither reversibility nor “warm start” hypothesis: the law of the first term
of the chain can be arbitrary. The spectral gap hypothesis is basically a
uniform X -ergodicity hypothesis, and when X consist in regular functions
this is weaker than uniform ergodicity. We show on a few examples how
the flexibility in the choice of function space can be used. The constants
are completely explicit and reasonable enough to make the results usable in
practice, notably in MCMC methods.

1 Introduction

General framework Let (Xk)k≥0 be a Markov chain taking value in a general state
space Ω, and let ϕ : Ω → R be a function (the “observable”). Under rather general
assumptions, there is a unique stationary measure µ0 and it can be proved that almost
surely1

1

n

n∑

k=1

ϕ(Xk) → µ0(ϕ). (1)

Then a natural question is to ask at what speed this convergence occurs. In many cases,
one can prove a Central Limit Theorem, showing that the convergence has the order
1/

√
n. But this is again an asymptotic result, and one is led to ask for non-asymptotic
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1Here and in the sequel, we write indifferently µ(f) or
∫

f dµ for the integral of f with respect to the
measure µ.
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bounds, both for the Law of Large Numbers (1) (“concentration inequalities”) and for
the CLT (“Berry-Esseen bounds”).

A word on effectivity In this paper, the emphasis will be on effective bounds, i.e.
given an explicit sample size n, one should be able to deduce from the bound that the
quantity being considered lies in some explicit interval around its limit with at least
some explicit probability. In other words, the result should be non-aymptotic and all
constants should be made explicit. The motivations for this are at least twofold.

First, in practical applications of the Markov chain Monte-Carlo (MCMC) method,
where one uses (1) to estimate the integral µ0(ϕ), effective results are needed to obtain
proven convergence of a given precision. MCMC methods are important when the mea-
sure of interest is either unknown, or difficult to sample independently (e.g. uniform
in a convex set in large dimension), but happens to be the stationary measure for an
easily simulated Markov chain. The Metropolis-Hastings algorithm for example makes
it possible to deal with an absolutely continuous measure whose density is only known
up to the normalization constant.

A second, more theoretical motivation is that the constants appearing in limit theorem
depend on a number of parameters (e.g. the mixing speed of the Markov chain, the law
of X0, etc.). When the constants are not made explicit, one may not be able to deduce
from the result how the convergence speed changes when some parameter approaches
the limit of the domain where the result is valid (e.g. when the spectral gap tends to 0).

There are many works proving concentration inequalities and (to a lesser extent)
Berry-Esseen bounds for Markov chains, under a variety of assumptions, and we will
only mention a small number of them. To explain the purpose of this article, let us
discuss briefly three directions.

Previous works (1): total variation convergence The first direction is mainly moti-
vated by MCMC; we refer to [RR+04] for a detailed introduction to the topic.

The Markov chains being considered are usually ergodic (either uniformly, which cor-
responds to a spectral gap on L∞, or geometrically); one measures difference between
probability measure using the total variation distance, and the limit theorems are typi-
cally obtained for L∞ observables ϕ (the emphasis here is not on the boundedness, but
on the lack of regularity assumption). Effective concentration inequalities have been
obtained in this setting, for example in [GO02] and [KLMM05] which we shall discuss
below. Watanabe and Hayashi [WH17] have given bounds for tail probability and ap-
plied this to hypothesis testing, but their method is restricted to finite-state spaces.
Berry-Esseen bounds have been proved in [Bol82], but effective results are less common.

Previous works (2): the spectral method The second direction grew from the “Na-
gaev method” [Nag57, Nag61], a functional approach where perturbative spectral theory
enables one to adapt the classical Fourier proofs of limit theorems, from independent
identically distributed random variable to suitable Markov chains. This approach is
described in [HH01] in a quite general setting, and is especially popular in dynamical
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systems (the statistical properties of certain dynamical systems can be studied more eas-
ily by reversing time, and considering a Markov chain jumping randomly along backward
orbits).

There, the Markov chain being considered are often not ergodic in the total variation
sense, but instead their transition kernel has a spectral gap in a space X made of
regular (e.g. Lipschitz or Hölder) functions; one sometimes say such a Markov chain
is X -ergodic. The limit theorems are then restricted to observables ϕ ∈ X , and the
speed of convergence is driven by the regularity of ϕ as much as by its magnitude. Due
to the use of perturbation theory of operator, in most cases this method has not yielded
effective results.

Note that the spectral method can be applied without regularity assumptions, taking
e.g. X = L2(µ0) or X = L∞(Ω) (or variants, see [KM12]), thus the present direction
intersects the previous one.

There are a few exceptions to the aforementioned lack of effectiveness. When X is a
Hilbert space, by symetrization of the transition kernel one can use well-known effective
perturbation results. In this way, Lezaud obtains effective concentration inequalities and
Berry-Esseen bounds [Lez98, Lez01], see also [Pau15]. Both work in L2(µ0), restricting
accordingly the Markov chains that can be considered. Second Dubois [Dub11] gave
what seems to be the first effective Berry-Esseen inequality in a dynamical context, and
we shall compare the present Berry-Esseen inequality with his. Last, Liverani [Liv01]
made very explicit the perturbation result obtained with Keller [KL99] for operators in
“strong-to-weak” norms, which might be usable to obtain concentration results.

Previous works (3): Lipschitz observables The third direction is quite recent: Joulin
and Ollivier [JO10] used ideas from optimal transportation to prove very efficiently
effective concentration results under a positive curvature hypothesis; this corresponds
to strict contraction on the space X = Lip of Lipschitz functions. Paulin [Pau16]
extended this method to the slightly more general case of a spectral gap (on the same
space). In a similar context but with different methods, Dedeker and Fan [DF15] proved
concentration near the expectation for non-linear, separately Lipschitz functionals.

This method is very appealing, but is restricted to a single, pretty restrictive function
space constraining both the Markov chains and the observables that can be considered;
we will see in examples below that being able to change the function space can be useful
to get good constants even when [JO10] can be applied. Moreover, this method seems
unable to provide higher-order limit theorem such as the CLT or Berry-Esseen bounds.

Contributions of this work The goal of this article is to combine recent effective per-
turbation results [Klo17b] with the Nagaev method to obtain effective concentration
inequalities and Berry-Esseen bounds for a wealth of Markov chains. Our main hypoth-
esis will basically be a spectral gap on some function space X , with the restriction
that we need X to be a Banach algebra (this will in particular restrict us to bounded
observables). We obtain three main results:

• a general concentration inequality (Theorem A),
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• a variant which, under a bound on the dynamical variance of (ϕ(Xk))k, gives an
optimal rate for small enough deviations (Theorem B),

• a general Berry-Esseen bound (Theorem C).

Let us give a few examples where our results apply:

• taking X = L∞(Ω), our assumptions essentially reduce to uniform ergodicity of
the Markov chain and boundedness of the observable,

• taking X = Lip(Ω), our assumptions essentially reduce to positively curved
Markov chains (in the sense of Ollivier) and bounded Lipschitz observables. This
for example applies to contracting Iterated Function Systems and backward ran-
dom walks of expanding maps. We shall see (Section 3.2) that in the toy case of
the discrete hypercube and observables with small Lipschitz constant, Theorem A
is less powerful than [JO10] but that for larger Lipschitz constants, Theorem B
can improve on [JO10],

• when Ω is a graph, we propose a functional space of functions with small “local
total variations” that yields improvement over [JO10] in some cases (Section 3.2),

• taking X = BV(I) where I is an interval, our results apply to a natural Markov
chains related to Bernoulli convolutions, allowing observables of bounded variation
such as characteristic functions of intervals (Section 3.3),

• more generally, when Ω is a domain of Rd some natural Markov chains are BV(Ω)-
ergodic and our results apply to functions of bounded variation, e.g. characteristic
functions of sets of finite perimeter – but we will not consider this case here, since
it needs a somewhat sophisticated setup,

• Another direction we do not explore here is to take X = Holα(Ω), the space of
α-Hölder functions, or in case Ω = I is an interval, X = BVp(I), the space of p-
bounded variation functions. These enable one to consider more general functions
than Lip(Ω) or respectively BV(Ω); even for Lipschitz of BV functions, using these
spaces can be useful because they tend to give regular observables a much lower
norm.

To my knowledge, no effective result was known in the setting of bounded variation
functions (and while the usual spectral method could have been used in this case, I do
not know of previous asymptotic results either) and the effective Berry-Esseen bound
seems new in most of the above cases.

Structure of the article In Section 2 we state notation and the main results. Section
3 explains briefly the aforementioned examples and compares our results with previous
ones; detailed proofs are available in a companion note [Klo18]. In Section 4 we recall
how perturbation theory can be used to prove limit theorems, and state the perturba-
tion results we need to carry out this method in a effective manner. In Section 5 we

4



prove the core estimates to be used thereafter, while Section 6 carries out the proof of
the concentration inequalities. Section 7 is devoted to the proof of the Berry-Esseen
inequality.

2 Assumptions and main results

Let Ω be a Polish metric space endowed with its Borel σ-algebra and denote by P(Ω)
the set of probability measures on Ω. We consider a transition kernel M = (mx)x∈Ω on
Ω, i.e. mx ∈ P(Ω) for each x ∈ Ω, and a Markov chain (Xk)k≥0 following the kernel M,
i.e. P(Xk+1 | Xk = x) = mx. We will only consider cases where there exist a unique
stationary measure (see Remark 2.5 below), but we do not ask the Markov chain to be
stationary: the law of X0 is arbitrary (“cold start”). In some cases of interest, the law
of each Xk will even be singular with respect to the stationary measure.

Notation. In the following, µ0 will always denote the stationary measure of M, and µ
shall denote the law of X0 (which is arbitrary).

We shall study the behavior of (Xk)k≥0 by comparing the empirical mean to the
stationary mean:

µ̂n(ϕ) :=
1

n

n∑

k=1

ϕ(Xk) vs. µ0(ϕ)

for an arbitrary “observable” ϕ ∈ X , where X is a space of functions Ω → R (or
Ω → C). Our method seems not (directly) suitable to consider more general, non-linear
functionals Φ(X1, . . . , Xn): we decompose µ̂n(ϕ) to make a power of a perturbed transfer
operator appear (see Section 4).

2.1 Assumptions

Standing assumption 2.1. In all the paper, we assume X satisfies the following:

i. its norm ‖·‖ dominates the uniform norm: ‖·‖ ≥ ‖·‖∞,

ii. X is a Banach algebra, i.e. for all f, g ∈ X we have ‖fg‖ ≤ ‖f‖‖g‖,

iii. X contains the constant functions and ‖1‖ = 1 (where 1 denotes the constant
function with value 1).

The first hypothesis ensures integrability with respect to arbitrary probability mea-
sure, which is important for cold-start Markov chains; it also implies that every probabil-
ity measure can be seen as a continuous linear form acting on X . The second hypothesis
will prove very important in our method where products abound (and can be replaced
by the more lenient ‖fg‖ ≤ C‖f‖‖g‖ up to multiplying the norm by a constant), and
the hypothesis on ‖1‖ is a mere matter of convenience and could be removed at the cost
of more complicated formulas.
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Remark 2.2. This setting may seem restrictive at first: the Banach algebra hypothesis
notably excludes Lp spaces, while classically one only makes moment assumptions on
the observable. This is quite unavoidable given that we will work with more than
one equivalence class of measures, and we want to allow cold start at a given position
(X0 ∼ δx0

). The measures mx may be singular with respect to the stationary measure
µ0, and as a matter of fact in the dynamical applications mx will be purely atomic while
µ0 will often be atomless. It may thus happen that for ϕ an Lp(µ0) observable, ϕ(Xj) is
undefined with positive probability, or is extremely large even if ϕ has small moments
with respect to µ0.

To the transition kernel M is associated an averaging operator acting on X :

L0f(x) =
∫

Ω
f(y) dmx(y).

Since each mx is a probability measure, L0 has 1 as eigenvalue, with eigenfunction 1.

Standing assumption 2.3. In all the article we assume M satisfies the following:

i. L0 acts as a bounded operator from X to itself, and its operator norm ‖L0‖ is
equal to 1.

ii. L0 is contracting with gap δ0 > 0, i.e. there is a closed hyperplane G0 ⊂ X such
that

‖L0f‖ ≤ (1 − δ0)‖f‖ ∀f ∈ G0.

The first hypothesis could be relaxed, considering operators of arbitrary norm, at the
cost of more complicated formulas.

Remark 2.4. The second hypothesis is the main one, and implies in particular that 1
is a simple isolated eigenvalue. It is a slightly stronger assumption than a spectral gap,
which can be written as

‖Ln
0 f‖ ≤ C(1 − δ0)n‖f‖ ∀f ∈ G0

for all n ∈ N and some C ≥ 1 (what we call here a contraction with gap δ0 can thus also
be called a spectral gap of size δ0 with constant 1). When L0 only has a spectral gap, all
our results still apply to the Markov chains Ym = Xn0+mk where n0 is arbitrary and k is
such that C(1−δ0)k < 1. This trick can be also used when C = 1, in cases where the gap
is small; in numerical computations, this can be especially useful when the simulation
of the random walk is much cheaper than the evaluation of the observable.

Remark 2.5. The contraction hypothesis (or a mere spectral gap) ensures that up
to scalar factors there is a unique continuous linear form φ0 acting on X such that
φ0 ◦ L0 = φ0; since any stationary measure of M satisfy this, all stationary measures
coincide on X . They might not be unique (e.g. if X contains only constants), but
since we consider the ϕ(Xk) with ϕ ∈ X , this will not matter. We will thus denote
an arbitrary stationary measure by µ0, and identify it with φ0 (observe that G0 is then
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equal to ker µ0). In most cases, X will be dense in the space of continuous function
endowed with the uniform norm, ensuring that two measures coinciding on X are equal,
and then the contraction hypothesis ensures the uniqueness of the stationary measure.

Remark 2.6. There are numerous examples where assumptions 2.1 and 2.3 are satisfied;
we will present a few of them in Section 3. Typically, X has a norm of the form
‖·‖ = ‖·‖∞ + V (·) where V is a seminorm measuring the regularity in some sense (e.g.
Lipschitz constant, α-Hölder constant, total variation, total p-variation...) and satisfying
V (fg) ≤ ‖f‖∞V (g) + V (f)‖g‖∞. This inequality ensures that X is a Banach Algebra,
and ‖1‖ = 1 holds as soon as V (1) = 0. Since averaging operators necessarily satisfy
‖L0f‖∞ ≤ ‖f‖∞, it is sufficient that L contracts V (i.e. V (L0f) ≤ θV (f) for some
θ ∈ (0, 1) and all f ∈ X ) to ensure that ‖L0‖ = 1. It can be proved that in many
cases, the contraction of V also implies the contraction of ‖·‖ in the sense of assumption
2.3 (see Lemma 2.3 of [Klo17a], and a more general version in [Klo18]). In fact, all
examples considered here are of this kind, but it seemed better to state our main results
in terms of the hypotheses we use directly in the proof. This is done at the expense
of some sharpness: indeed we could in some cases improve our constants by estimating
with more precision ‖π0‖ below (see Lemma 2.4 of [Klo17a]).

2.2 Concentration inequalities

Our first result is a concentration inequality, featuring a dichotomy between a Gaussian
regime and an exponential regime (note that we consider concentration near µ0(ϕ): in
many cases there is a purely Gaussian concentration near E[µ̂n(ϕ)], and the exponential
regime appears due to the bias µ0(ϕ) − E[µ̂n(ϕ)]).

Theorem A. For all n ≥ 1 + log 100
− log(1−δ0/13)

it holds:

Pµ

[

|µ̂n(ϕ) − µ0(ϕ)| ≥ a
]

≤







2.488 exp
(

− n
δ0

13.44δ0 + 8.324

a2

‖ϕ‖2

)

if
a

‖ϕ‖ ≤ δ0

3

2.624 exp
(

− n
0.98δ2

0

12 + 13δ0

(
a

‖ϕ‖ − 0.254δ0

))

otherwise.

See Section 3 and [Klo18] for a few sample cases where this result applies and com-
parisons with previous results. Let us stress right away that the main strength of the
present result is its broadness: we need no warm-start hypothesis, no reversibility, and
we can apply it in many functional spaces. In particular, this makes our results broader
than those of [Lez98, Lez01] which assume ergodicity. Lezaud also gets a front constant
proportional to the L2(µ0)-norm of the density of the distribution of X0 with respect to
the stationary distribution, which would be infinite in many of our cases of applicability;
even in the case of a finite state space he then gets a large front constant when X0 ∼ δx.
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The approach of Joulin and Ollivier enabled them to get rid of this constant in some
test cases, and we compare our results to theirs in Section 3.2.

The spectral method gives us access to higher-order estimates, enabling us to improve
the Gaussian regime bound as soon as we have a good control over the “dynamical
variance” (also called “asymptotic variance”) σ2(ϕ), which is the variance appearing in
the CLT for (ϕ(Xk))k≥0; setting ϕ̄ = ϕ − µ0(ϕ), the dynamical variance is defined by:

σ2(ϕ) = µ0(ϕ
2) − (µ0ϕ)2 + 2

∑

k≥1

µ0(ϕLk
0ϕ̄).

Theorem B. Whenever n ≥ 1 + log 100
− log(1−δ0/13)

, U ≥ σ2(ϕ) and a ≤ U
‖ϕ‖ log

(

1 +
δ2

0

12+13δ0

)

,

Pµ

[

|µ̂n(ϕ) − µ0(ϕ)| ≥ a
]

≤ 2.637 exp

(

−n ·
(

a2

2U
− 10(1 + δ−1

0 )2 ‖ϕ‖3a3

U3

))

.

Given an upper bound S ≥ σ2(ϕ), the right-hand side of the above inequality is minimized

for U ∈
[

max(S, a · ‖ϕ‖/ log(1 + δ2
0/(12 + 13δ0))), ∞

)

at

Umin := max
(

S,
√

a ·
√

60(1 + δ−1
0 )‖ϕ‖ 3

2 , a · ‖ϕ‖
log(1 + δ2

0/(12 + 13δ0))

)

.

By this substitution, the reader can easily get a bound only in terms of a and S.

For small enough a, one takes U = S and the positive term in the exponential is
negligible; the leading term −na2/(2S) is then exactly the best we can expect given the
bound S: since (ϕ(Xk))k satisfies a Central Limit Theorem with variance σ2(ϕ), any
better value would necessarily imply a better bound on σ2(ϕ).

Paulin [Pau15] (Theorem 3.3) obtained a similar result for stationary, reversible Markov
Chains with a spectral gap in L2; the advantage of our result is to dispense from sta-
tionarity, reversibility, and to apply to various functional spaces.

Section 3.2 contains an example where Theorem B improves crucially on Theorem A.
However bounding the dynamical variance can be difficult in general. In practice, one
could use other tools to estimate it and then apply Theorem B.

2.3 A Berry-Esseen bound

Our third main result, proven in section 7, quantifies the speed of convergence in the
Central Limit Theorem.

Theorem C. Assume σ2(ϕ) > 0 and let ϕ̃ := ϕ−µ0(ϕ)
σ(ϕ)

be the reduced centered version
of ϕ, and denote by G, Fn the distribution functions of the reduced centered normal law
and of 1√

n
(ϕ̃(X1) + · · · + ϕ̃(Xn)), respectively. For all n ≥ 1 it holds

‖Fn − G‖∞ ≤ (148 + 285δ−1
0 + 123δ−2

0 ) max{‖ϕ̃‖, ‖ϕ̃‖3}√
n

.
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The absence of a lower bound for n simply comes from the fact that for small n, the
right-hand side is greater than 1 (see Lemma 7.2) and the inequality is thus vacuously
true.

Remark 2.7. Note that σ2(ϕ) is always non-negative, as it can be rewritten as

lim
n→∞

1

n
Varµ0

( n∑

k=1

ϕ(Xk)
)

(where the µ0 subscript means that the assumption X0 ∼ µ0 is made). However, σ2(ϕ)
can vanish even when ϕ is not constant modulo µ0, as in the case of a dynamical system
when mx is supported on T −1(x) for some map T : Ω → Ω, and ϕ is a coboundary:
ϕ = g − g ◦ T for some g. One can for example see details [GKLMF15], where σ2 is
interpreted as a semi-norm. Whenever σ2(ϕ) = 0, one can use the present method to
obtain stronger non-asymptotic concentration inequalities, giving small probability to
deviations a such that a/‖ϕ‖ ≫ 1/n2/3 instead of a/‖ϕ‖ ≫ 1/

√
n.

There are numerous works on Berry-Esseen bounds. In the case of independent iden-
tically distributed random variables, the optimal constant is not yet known (the best
known constant is, to my knowledge, given by Tyurin [Tyu11]). Berry-Esseen bounds
for Markov chains go back to [Bol82], but I know only of two previous effective results,
by Dubois [Dub11] and by Lezaud [Lez01].

The scope of Dubois’ result is quite narrower than ours, as it is only written for
uniformly expanding maps of the interval and Lipschitz observables (though the method
is expected to have wider application), and our numerical constant is much better:
while the dependences on the parameters of the system are stated differently and thus
somewhat difficult to compare, Dubois has a front constant of 11460 which is quite large
for practical applications (the order of convergence being 1/

√
n, this constant has a

squared effect on the number of iterations needed to achieve a given precision).
The scope of Lezaud’s Berry-Esseen bound is also restricted, to ergodic reversible

Markov chains. Moreover he gets a front constant proportional to the L2(µ0)-norm
of the density of the distribution of X0 with respect to the stationary distribution; in
comparison, our result is insensitive to the distribution of X0.

Application to dynamical systems As is well-known, limit theorems for Markov chain
also apply in a dynamical setting (see e.g. [Gou15]). Given a k-to-one map T : Ω → Ω,
one defines the transfer operator of a potential A ∈ X by

LT,Af(x) =
∑

y∈T −1(x)

eA(y)f(y).

One says that A is normalized when LT,A1 = 1. This condition exactly means that
mx =

∑

y∈T −1(x) eA(y)δy is a probability measure for all x, making LT,A the averaging
operator of a transition kernel. We could consider more general maps T , considering a
transition kernel that is supported on its inverse branches.
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If the transfer operator has a spectral gap, then the stationary measure µ0 is unique,
and readily seen to be T -invariant. We shall denote it by µA to stress the dependence
on the potential. The corresponding stationary Markov chain (Yk)k∈N satisfies all results
presented above; but for each n, the time-reversed process defined by Xk = Yn−k (where
0 ≤ k ≤ n) satisfies Xk+1 = T (Xk): all the randomness lies in X0 = Yn. Having taken
Yn stationary makes the law of Yn, i.e. X0, independent of the choice of n. It follows:

Corollary 2.8. For all normalized A ∈ X such that LT,A is contracting with gap δ0,
for all ϕ ∈ X , Theorems A, B and C hold for the random process (Xk)k∈N defined by
X0 ∼ µA and Xk+1 = T (Xk).

In this context, spectral gap was proved in many cases under the impetus of Ruelle,
see e.g. the books [Bal00, Rue04], the recent works [BT08, CV13, CS09], and refer-
ences therein. Chazottes and Gouëzel [CG12] proved concentrations inequalities for
non-uniformly hyperbolic dynamical systems, but with a non-explicit constant.

Let me finally mention [Klo17a] (based on the same effective perturbation theory as
the present paper) and [Klo17c].

3 Examples

In this Section we briefly present some basic examples where our results apply; detailed
proofs of the claims can be found in the note [Klo18].

3.1 Chains with Doeblin’s minorization

The simplest example of a Banach Algebra of functions is L∞(Ω), the set of measurable
bounded functions, which we shall endow with the norm ‖f‖ = ‖f‖∞ + sup f − inf f .
Observe that convergence of measures in duality to L∞(Ω) is convergence in total vari-
ation. For a transition kernel M, having an averaging operator L0 with a spectral gap is
a very strong condition, called uniform ergodicity (the second term in the norm above is
designed to get this equivalence). Under the (slightly stronger) contraction hypothesis,
for any bounded measurable observable ϕ Theorem A thus yields for small enough a an
effective inequality of the form

Pµ

[

|µ̂n(ϕ) − µ0(ϕ)| ≥ a
]

≤ 2.488 exp
(

− C
na2

‖ϕ‖2
∞

δ0

)

where δ0 is the gap of the contraction of the Markov chain and C is an absolute explicit
constant. Such explicit inequalities where obtained by Glynn and Ormoneit [GO02]
and Kontoyiannis, Lastras-Montaño and Meyn [KLMM05] using the characterization of
uniform ergodicity by the Doeblin minorization condition; they obtain a non-optimal
quadratic dependency on the gap (although their results are stated with another, di-
rectly related parameter β). More recently, an effective concentration inequality with
the optimal dependency on δ0 and better constants than ours was obtained by Paulin
[Pau15] (Corollary 2.10). That result is stated in term of a certain mixing time, and
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for concentration around the expectation of µ̂n(ϕ); but it can be rephrased in term
of the gap, and the bias µ̂n(ϕ) − µ0(ϕ) can easily be bounded. Dedeker and Gouëzel
[DG15] proved concentration results (that can be made effective) under the more gen-
eral hypothesis of geometric ergodicity (they actually prove that geometric ergodicity is
characterized by a subgaussian concentration inequality).

3.2 Discrete hypercube

It is interesting to consider the same toy example as Joulin and Ollivier [JO10], the
lazy random walk on the discrete hypercube {0, 1}N : the transition kernel M chooses
uniformly a slot i ∈ {1, . . . , N} and replaces it with the result of a fair coin toss.

We consider two kind of observables: 1
N

Lipschitz maps such as the “polarization”
ρ giving the proportion of 1’s in its argument, and the characteristic function 1S of a
subset S ⊂ {0, 1}N . We shall distinguish further the case of a very regular set S =
[0] := {(0, x2, . . . , xN ) : xi ∈ {0, 1}} and the case of “scrambled” sets, i.e. such that the
dynamical variance of 1S is bounded by a constant independent of the dimension N ;
this is the case of sets such that every vertex has exactly 2pN neighbors with the same
value of 1S, where p is fixed independently of N .

We compare our results with those of Joulin and Ollivier in Table 1. In the case of
1
N

-Lipschitz observable we apply Theorem A with the weighted Lipschitz norm ‖·‖L :=
‖·‖∞ + N Lip(·); in the case of 1[0] we apply Theorem A but with the “local total
variation” norm

‖f‖W := ‖f‖∞ + sup
x∈{0,1}N

∑

y∼x

|f(y) − f(x)|

where ∼ denotes adjacency (x ∼ y whenever they differ in exactly one coordinate); in
the case of 1S with a scrambled S, we apply Theorem B with the norm ‖·‖L. One sees
that we obtain a weaker estimate in the case of ρ, but a better one in the case of 1S,
by exploiting the flexibility of our results in the choice of norm and in the possible use
of bounds on the dynamical variance. The case of scrambled sets is notable, as we get
a runtime independent of the dimension N .

1
N

-Lip maps 1[0] 1S, scrambled S

Joulin-Ollivier O
(

N + 1
a2

)

O
(

N2

a2

)

O
(

N2

a2

)

Our best result O
(

N
a2

)

O
(

N
a2

)

O
(

1
a2

)

Table 1: Runtime to ensure error below a ≪ 1 with good probability.

3.3 Bernoulli convolutions and BV observables

As a last example, let us consider the “Bernoulli convolution” of parameter λ ∈ (0, 1),
defined as the law βλ of the random variable

∑

k≥1 ǫkλk where the ǫk are independent
variables taking the value 1 with probability 1/2 and the value −1 with probability 1/2.

11



When λ < 1/2, the support of βλ is a Cantor set of zero Lebesgue measure, so that
βλ is singular (with respect to Lebesgue measure). When λ = 1/2, βλ is the uniform
measure on [−1, 1]. But when λ ∈ (1/2, 1) (which we assume from now on), the question
of the absolute continuity of βλ is very difficult, and fascinating. It was proved by Erdös
[Erd39] that if λ is the inverse of a Pisot number, then βλ is singular, and a while later
Solomyak discovered that for Lebesgue-almost all λ, βλ is absolutely continuous [Sol95].
See [PSS00] for more information on these questions.

One can realize βλ as the stationary law of the Markov transition kernel

M =
(

mx =
1

2
δT0(x) +

1

2
δT1(x)

)

x∈R

where T0(x) = λx − λ and T1(x) = λx + λ. In order to evaluate βλ(ϕ) by a MCMC
method, one cannot use the methods developed for ergodic Markov chains since, condi-
tionally to X0 = x, the law mk

x of Xk is atomic and thus singular with respect to βλ:
dTV(mk

x, βλ) = 1 for all k. The convergence only holds for observables satisfying some
regularity assumption, and it is natural to ask what regularity is needed.

Our results can deal with observables of bounded variation, a regularity which has the
great advantage over e.g. Lipschitz to include the characteristic functions of intervals.
It can be proved that some iterate of M is contracting on the space BV in the sense
of Hypothesis 2.3 (precisely, it is sufficient to iterate ℓ := ⌊1 + log 2/ log 1

λ
⌋ times).

Applying Theorem A to (Yk = Xkℓ)k≥0 and setting µ̂Y
n = 1

n

∑n
k=1 δYk

we get for any
starting distribution Y0 ∼ µ, any ϕ ∈ BV(Iλ), any positive a < ‖ϕ‖BV/3(2ℓ+1 − 1) and
any n ≥ 120 · 2ℓ:

Pµ

[

|µ̂Y
n (ϕ) − µ0(ϕ)| ≥ a

]

≤ 2.488 exp
(

− na2

‖ϕ‖2
BV(16.65 · 2ℓ + 5.12)

)

.

To the best of my knowledge, chains of this type together with BV observables could
not be handled effectively by previously known results. For example [GD12] needs
the observable to be at least C2 to have explicit estimates, and they do not give a
concentration inequality.

4 Connection with perturbation theory

To any ϕ ∈ X (sometimes called a “potential” in this role) is associated a weighted
averaging operator, called a transfer operator in the dynamical context:

Lϕf(x) =
∫

Ω
eϕ(y)f(y) dmx(y).

The classical guiding idea for the present work combines two observations. First, we
have

L2
ϕf(x0) =

∫

Ω
eϕ(x1)Lϕf(x1) dmx0

(x1) =
∫

Ω×Ω
eϕ(x1)eϕ(x2)f(x2) dmx1

(x2) dmx0
(x1)

12



and by a direct induction, denoting by dmn
x0

(x1, . . . , xn) the law of n steps of a Markov
chain following the transition M and starting at x0, we have

Ln
ϕf(x0) =

∫

Ωn
eϕ(x1)+···+ϕ(xn)f(xn) dmn

x0
(x1, . . . , xn).

In particular, applying to the function f = 1, we get

Ln
ϕ1(x0) =

∫

Ωn
eϕ(x1)+···+ϕ(xn) dmn

x0
(x1, . . . , xn) = Ex0

[

eϕ(X1)+···+ϕ(Xn)
]

where (Xk)k≥0 is a Markov chain with transitions M and the subscript on expectancy
and probabilities specify the initial distribution (x0 being short for δx0

).
It follows by linearity that if the Markov chain is started with X0 ∼ µ where µ is any

probability measure, then setting µ̂nϕ := 1
n
ϕ(X1) + · · · + 1

n
ϕ(Xn) we have

Eµ

[

exp(tµ̂nϕ)
]

=
∫

Ln
t
n

ϕ1(x) dµ(x). (2)

This makes a strong connection between the transfer operators and the behavior of µ̂nϕ.
Second, when the potential is small (e.g. t

n
ϕ with large n), the transfer operator is a

perturbation of L0, and their spectral properties will be closely related. This is the part
that has to be made quantitative to obtain effective limit theorems.

We will state the perturbation results we need after introducing some notation. The
letter L will always denote a bounded linear operator, and ‖·‖ will be used both for
the norm in X and for the operator norm. From now on it is assumed that L0 is a
contraction with gap δ0. In [Klo17b] the leading eigenvalue of L0 is denoted by λ0, an
eigenvector is denoted by u0, and an eigenform (eigenvector of L∗

0) is denoted by φ0.
Two quantities appear in the perturbation results below. The first one is the condition

number τ0 := ‖φ0‖‖u0‖
|φ0(u0)| . To define the second one, we need to introduce π0, the projection

on G0 along 〈u0〉, which here writes π0(f) = f − µ0(f), and observe that by the con-
traction hypothesis (L0 − λ0) is invertible when acting on G0 (of course a spectral gap
suffices). Then the spectral isolation is defined as

γ0 := ‖(L0 − λ0)
−1
|G0

π0‖.

We shall denote by P0 the projection on 〈u0〉 along G0, and set R0 = L0 ◦ π0. We then
have the expression

L0 = λ0P0 + R0

with P0R0 = R0P0 = 0. This decomposition will play a role below, and can be done for
all L with a spectral gap: we denote by λL, πL, PL, RL the corresponding objects for L,
and by λ, π, P, R we mean the corresponding maps L 7→ λL, etc.

Last, the notation OC(·) is the Landau notation with an explicit constant C, i.e.
f(x) = OC(g(x)) means that for all x, |f(x)| ≤ C|g(x)|.

13



Theorem 4.1 (Theorems 2.3 and 2.6 and Proposition 5.1 (viii) of [Klo17b]). All L such
that ‖L − L0‖ < 1/(6τ0γ0) have a simple isolated eigenvalue; λ, π, P, R are defined and
analytic on this ball. Given any K > 1, whenever ‖L−L0‖ ≤ (K −1)/(6Kτ0γ0) we have

λL = λ0 + Oτ0+ K−1

3

(

‖L − L0‖
)

λL = λ0 + φ0(L − L0)u0 + OKτ0γ0

(

‖L − L0‖2
)

λL = λ0 + φ0(L − L0)u0 + φ0(L − L0)S0(L − L0)u0 + O2K2τ2
0

γ2
0

(

‖L − L0‖3
)

PL = P0 + O2Kτ0γ0
(‖L − L0‖)

πL = π0 + Oτ0+ K−1

3

(‖L − L0‖)
∥
∥
∥
∥D
[

1

λ
R
]

L

∥
∥
∥
∥ ≤ 1

|λL| +
τ0 + K−1

3

|λL|2 ‖L‖ + 2Kτ0γ0.

Theorem 4.2 (Corollary 2.12 from [Klo17b]). In the case λ0 = ‖L0‖ = 1, all L such
that

‖L − L0‖ ≤ δ0(δ0 − δ)

6(1 + δ0 − δ)τ0‖π0‖
have a spectral gap of size δ below λL, with constant 1, i.e. for all f on a closed hyper-
plane, ‖Lnf‖ ≤ |λL|n(1 − δ)n‖f‖.

Since we will apply these results to the averaging operator L0, we need to evaluate
the parameters in this case.

Lemma 4.3. We have λ0 = 1, τ0 = 1, ‖π0‖ ≤ 2 and γ0 ≤ 2/δ0.

Proof. By the construction of L0, we get u0 = 1 and λ0 = 1; we mentioned that φ0 is
identified with the stationary measure µ0.

By hypothesis ‖u0‖ = 1, and ‖φ0‖ = 1 since ‖·‖ ≥ ‖·‖∞ and φ0 is a probability
measure. Then |φ0(u0)| = |µ0(1)| = 1 and it follows τ0 = 1.

Since for all f ∈ X , we have π0(f) = f − µ0(f) and ‖µ0(f)1‖ = |µ0(f)| ≤ ‖f‖∞ ≤
‖f‖, we get ‖π0‖ ≤ 2. (In general this trivial bound can hardly be improved without
more information, notably on µ0: it may be the case that µ0 is concentrated on a specific
region of the space, and then f − µ0(f) could have norm close to twice the norm of f .)

Last, from the Taylor expansion (1 − L0)−1 =
∑

k≥0 Lk
0, the contraction with gap δ0,

and the upper bound on ‖π0‖ we deduce γ0 ≤ 2/δ0.

5 Main estimates

Standing assumption 2.3 ensures that for all small enough ϕ we can apply the above
perturbation results; recall that µ0 is the stationary measure, so that for all f ∈ X we
have

∫

L0f dµ0 =
∫

f dµ0.
We will first apply Theorem 4.2 with δ = δ0/13; this is somewhat arbitrary, but the

exponential decay will be strong enough compared to other quantities that we don’t need
δ to be large. Taking it quite small allow for a larger radius where the result applies.
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As a consequence of this choice, the following smallness assumption will often be
needed:

‖ϕ‖ ≤ log
(

1 +
δ2

0

13 + 12δ0

)

. (3)

We will often use ϕ instead of Lϕ in subscripts: for example λϕ = λLϕ is the largest
eigenvalue of Lϕ, obtained by perturbation of λ0, and πϕ is linear projection on its
eigenline along the stable complement appearing in the contraction hypothesis.

Lemma 5.1. We have Lϕ(·) = L0

(
∑

j≥0
ϕj

j!
·
)

and ‖Lϕ − L0‖ ≤ e‖ϕ‖ − 1. If (3) holds,
then we have

‖Lϕ − L0‖ ≤ δ2
0

13 + 12δ0
≤ 1

25
Lϕ = L0 + O1.02(‖ϕ‖)

= L0 + L0(ϕ·) + O0.507(‖ϕ‖2)

‖πϕ‖ ≤ 2.053 = L0

(

(1 + ϕ +
1

2
ϕ2) ·

)

+ O0.169(‖ϕ‖3).

Assumption (3) is in particular sufficient to apply Theorem 4.2 with δ = δ0/13 and
Theorem 4.1 with K = 1 + 12δ0/13.

Proof. The first formula is a rephrasing of the definition of Lϕ; observe then that thanks
to the assumption that X is a Banach algebra, we have

‖Lϕ − L0‖ = ‖L0

(

(eϕ − 1) ·
)

‖ ≤ ‖L0‖
∥
∥
∥
∥

∞∑

j=1

ϕj

j!

∥
∥
∥
∥ ≤

∞∑

j=1

‖ϕ‖j

j!
≤ e‖ϕ‖ − 1.

Observing that x 7→ x2/(13 + 12x) is increasing from 0 to 1/25 as x varies from 0 to
1 completes the uniform bound of ‖Lϕ − L0‖ and gives ‖ϕ‖ ≤ log(1 + 1/25) := b. By

convexity, we deduce that e‖ϕ‖ − 1 ≤ (eb − 1)‖ϕ‖
b

≤ 1.02‖ϕ‖ and the zeroth order Taylor
formula follows.

The higher-order estimates are obtained similarly:

Lϕ = L0

(

(1 + ϕ + (eϕ − ϕ − 1)) ·
)

= L0 + L0(ϕ·) + O‖L0‖(e
ϕ − ϕ − 1)

and using the triangle inequality, the convexity of ex−x−1
x

and the bound on ϕ:

‖eϕ − ϕ − 1‖ ≤ e‖ϕ‖ − ‖ϕ‖ − 1

‖ϕ‖ ‖ϕ‖ ≤ eb − b − 1

b2
‖ϕ‖2 ≤ 0.507‖ϕ‖2.

The second order remainder is bounded by

‖eϕ − 1

2
ϕ2 − ϕ − 1‖ ≤ eb − 1

2
b2 − b − 1

b3
‖ϕ‖3 ≤ 0.169‖ϕ‖3

and finally, we have

‖πϕ‖ ≤ ‖π0‖ +
(

1 +
4δ0

13

)

‖Lϕ − L0‖ ≤ 2 +
(

1 +
4

13

) 1

25
≤ 2.053.
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Lemma 5.2. Under (3) we have

|λϕ − 1| ≤ 0.0524 λϕ = 1 + O1.334(‖ϕ‖),

λϕ = 1 + µ0(ϕ) + O2.43+2.081δ−1

0
(‖ϕ‖2)

and

λϕ = 1 + µ0(ϕ) +
1

2
µ0(ϕ

2) +
∑

k≥1

µ0(ϕLk
0(ϕ̄)) + O7.41+17.75δ−1

0
+8.49δ−2

0
(‖ϕ‖3).

Proof. With K = 1+12δ0/13 we have τ0+ K−1
3

= 1+4δ0/13 and by the Theorem 4.1, L 7→
λL has Lipschitz constant at most 1+4/13 = 17/13. We get |λϕ−λ0| ≤ 17

13
‖Lϕ−L0‖ from

which we deduce both |λϕ − 1| ≤ 17
13×25

≤ 0.0524 and |λϕ − 1| ≤ 17
13

1.02‖ϕ‖ ≤ 1.334‖ϕ‖.

Now we use the first-order Taylor formula for λ, using Kτ0γ0 ≤ 2δ−1
0 (1 + 12δ0/13) =

24
13

+ 2δ−1
0 :

λϕ = 1 + µ0

(

(Lϕ1 − L01)
)

+ O 24

13
+2δ−1

0
(‖Lϕ − L0‖2),

then using Lϕ1 − L01 = L0(ϕ) + O0.507(‖ϕ‖2) from Lemma 5.1 we get

µ0(Lϕ1 − L01) = µ0(L0(ϕ)) + O0.507(‖ϕ‖2) = µ0(ϕ) + O0.507(‖ϕ‖2).

Using ‖Lϕ − L0‖ ≤ 1.02‖ϕ‖ gives the following constant in the final O(‖ϕ‖2) of the
first-order formula:

0.507 + (1.02)2(
24

13
+ 2δ−1

0 ) ≤ 2.43 + 2.081δ−1
0 .

Then we apply the second-order Taylor formula:

λϕ = 1 + µ0(Lϕ1 − L01) + µ0

(

(Lϕ − L0)S0(Lϕ1 − L01)
)

+ O8K2δ−2

0
(‖Lϕ − L0‖3).

Using Lϕ1 − L01 = L0(ϕ + 1
2
ϕ2) + O0.169(‖ϕ‖3) from Lemma 5.1 we first get

µ0(Lϕ1 − L01) = µ0(ϕ) +
1

2
µ0(ϕ

2) + O0.169(‖ϕ‖3).

To simplify the second term, we recall that Lϕ − L0 = L0(ϕ·) + O0.507(‖ϕ‖2) and S0 =

(1 − L0)
−1π0 =

(
∑

k≥0 Lk
0

)

π0 where π0 is the projection on ker µ0 along 〈1〉, i.e. π0(f) =

f − µ0(f) =: f̄ , and has norm at most 2. We thus have (noticing that in the second line
both the main term and the remainder term belong to ker µ0):

π0(Lϕ1 − L01) = π0

(

L0(ϕ) + O0.507(‖ϕ‖2)
)

= L0(ϕ̄) + O1.014(‖ϕ‖2)

S0(Lϕ1 − L01) =
∑

k≥1

Lk
0(ϕ̄) + O1.014δ−1

0
(‖ϕ‖2).

We also have ‖S0(Lϕ1 − L01)‖ ≤ 2
δ0

‖Lϕ1 − L01‖ ≤ 2.04
δ0

‖ϕ‖ and it comes

(Lϕ − L0)S0(Lϕ1 − L01) = L0

(

ϕ
∑

k≥1

Lk
0(ϕ̄)

)

+ O1.014δ−1

0
(‖Lϕ − L0‖‖ϕ‖2)+
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+ O0.507(‖ϕ‖2‖S0(Lϕ1 − L01)‖)

= L0

(

ϕ
∑

k≥1

Lk
0(ϕ̄)

)

+ O2.07δ−1

0
(‖ϕ‖3)

µ0(Lϕ − L0)S0(Lϕ1 − L01) =
∑

k≥1

µ0(ϕLk
0(ϕ̄)) + O2.07δ−1

0
(‖ϕ‖3)

where the reversal of sum and integral is enabled by normal convergence.
Last we observe 8K2δ−2

0 = 8(12
13

+ δ−1
0 )2 ≤ 6.82 + 14.77δ−1

0 + 8δ−2
0 , and we gather all

what precedes:

λϕ = 1 + µ0(Lϕ1 − L01) + µ0

(

(Lϕ − L0)S0(Lϕ1 − L01)
)

+ O8K2δ−2

0
(‖Lϕ − L0‖3)

= 1 + µ0(ϕ) +
1

2
µ0(ϕ

2) + O0.169(‖ϕ‖3) +
∑

k≥1

µ0(ϕLk
0(ϕ̄)) + O2.07δ−1

0
(‖ϕ‖3)

+ O(6.82+14.77δ−1

0
+8δ−2

0
)1.023(‖ϕ‖3)

= 1 + µ0(ϕ) +
1

2
µ0(ϕ

2) +
∑

k≥1

µ0(ϕLk
0(ϕ̄)) + O7.41+17.75δ−1

0
+8.49δ−2

0
(‖ϕ‖3).

Under assumption (3), we know that Lϕ is contracting with gap δ0/13, and we can
write Lϕ = λϕPϕ + Rϕ where Pϕ is the projection to the eigendirection along the stable
complement and Rϕ = Lϕπϕ is the composition of the projection to the stable comple-
ment and Lϕ. Then it holds PϕRϕ = RϕPϕ = 0, so that for all n ∈ N:

Ln
ϕ = λn

ϕPϕ + Rn
ϕ.

Lemma 5.3. Under assumption (3), it holds

∥
∥
∥

(
1

λϕ

Rϕ

)n

1
∥
∥
∥ ≤ (6.388 + 4.08δ−1

0 )(1 − δ0/13)n−1‖ϕ‖

Pϕ1 = 1 + O3.77+4.08δ−1

0
(‖ϕ‖).

Proof. At any L = Lϕ where ϕ satisfies (3) we have:

∥
∥
∥D
[

1

λ
R
]

L

∥
∥
∥ ≤ 1

|λL| +
17/13

|λL|2 |L| + 2Kτ0γ0

≤ 1

0.9476
+

17

13 × 0.94762
× 1.04 +

48

13
+

4

δ0
≤ 6.263 +

4

δ0

so that

∥
∥
∥

1

λϕ
Rϕ1

∥
∥
∥ =

∥
∥
∥

1

λϕ
Rϕ1 − 1

λ0
R01

∥
∥
∥ ≤ (6.263 +

4

δ0
)‖Lϕ − L0‖‖1‖

≤ (6.388 + 4.08δ−1
0 )‖ϕ‖.
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Moreover since RL takes its values in GL where πL acts as the identity, we have ‖Rn
ϕ1‖ ≤

λn−1
ϕ (1 − δ0/13)n−1‖RL1‖ from which the first inequality follows.
Then we have Pϕ = P0 + O2Kτ0γ0

(‖Lϕ − L0‖), which yields the claimed result using
K = 1 + 12δ0/13, τ0 = 1, γ0 ≤ 2δ−1

0 and ‖Lϕ − L0‖ ≤ 1.02‖ϕ‖.

This control of Pϕ and Rϕ can be then be used to reduce the estimation of Ln
ϕ1 to the

estimation of λn
ϕ.

Corollary 5.4. Under assumptions (3) and

n ≥ 1 +
log 100

− log(1 − δ0/13)
(4)

it holds

Ln
ϕ1 = λn

ϕ

(

1 + O3.834+4.121δ−1

0
(‖ϕ‖)

)

λn
ϕ = exp

(

nµ0(ϕ) + O3.36+2.081δ−1

0
(n‖ϕ‖2)

)

λn
ϕ = exp

(

nµ0(ϕ) +
1

2
nσ2(ϕ) + O10.89+20.04δ−1

0
+8.577δ−2

0
(n‖ϕ‖3)

)

.

Proof. Assuming (3), Lemma 5.3 yields Ln
ϕ1 = λn

ϕPϕ1 + Rn
ϕ1 = λn

ϕA where

A := 1 + O3.77+4.08δ−1

0
(‖ϕ‖) + O6.388+4.08δ−1

0

((

1 − δ0

13

)n−1‖ϕ‖
)

(5)

is easily controlled if we ask (4), under which we have

A = 1 + O3.77+4.08δ−1

0

(‖ϕ‖) + O0.064+0.041δ−1

0

(‖ϕ‖) = 1 + O3.834+4.121δ−1

0

(‖ϕ‖).

The first estimate for λn
ϕ is obtained through the first-order Taylor formula. We use

the monotony and convexity of x 7→ (log(1 + x) − x)/x and set x = λϕ − 1 ∈ [−b, b] with
b = 0.0524 to evaluate log(λϕ):

∣
∣
∣
∣

log(1 + x) − x

x

∣
∣
∣
∣ ≤ log(1 − b) + b

−b
· |x|

b
≤ 0.52|x|

log(λϕ) = λϕ − 1 + O0.52(|λϕ − 1|2) = λϕ − 1 + O0.52×1.3342(‖ϕ‖2)

= λϕ − 1 + O0.926(‖ϕ‖2).

and then using λϕ = 1 + µ0(ϕ) + O2.43+2.081δ−1

0
(‖ϕ‖2) from Lemma 5.2:

λn
ϕ = exp

(

n log(λϕ)
)

= exp
(

n(λϕ − 1) + O0.926(n‖ϕ‖2)
)

= exp
(

nµ0(ϕ) + O3.36+2.081δ−1

0
(n‖ϕ‖2)

)

.

The second estimate for λn
ϕ is obtained, of course, from the second-order formula given

in Lemma 5.2:

λϕ = 1 + µ0(ϕ) +
1

2
µ0(ϕ

2) +
∑

k≥1

µ0(ϕLk
0(ϕ̄)) + O7.41+17.75δ−1

0
+8.49δ−2

0
(‖ϕ‖3).
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Here, it is somewhat tedious to use a convexity argument and we instead use the slightly
less precise Taylor formula: for x ∈ [−b, b] (where again b = 0.0524) we have

∣
∣
∣
∣

1

6

d3

dx3
log(1 + x)

∣
∣
∣
∣ ≤ 2

6(1 − 0.0524)3
≤ 0.392

so that

log(1 + x) = x − 1

2
x2 + O0.392(x3)

and therefore (using at one step |µ0(ϕ)| ≤ ‖ϕ‖):

log(λϕ) = (λϕ − 1) − 1

2
(λϕ − 1)2 + O0.392((λϕ − 1)3)

= µ0(ϕ) +
1

2
µ0(ϕ

2) +
∑

k≥1

µ0(ϕLk
0ϕ̄) + O7.41+17.75δ−1

0
+8.49δ−2

0
(‖ϕ‖3)

− 1

2

(

µ0(ϕ) + O2.43+2.081δ−1

0

(‖ϕ‖2)
)2

+ O0.392×1.3343(‖ϕ‖3)

= µ0(ϕ) +
1

2
σ2(ϕ) + O10.771+19.831δ−1

0
+8.49δ−2

0
(‖ϕ‖3)

+ O2.953+5.06δ−1

0
+2.166δ−2

0
(‖ϕ‖4).

Now assumption (3) ensures ‖ϕ‖ ≤ 0.04, so that we can combine the two error terms
into Oc(‖ϕ‖3) with c = 10.771+19.831δ−1

0 +8.49δ−2
0 +0.04(2.953+5.06δ−1

0 +2.166δ−2
0 ) ≤

10.89 + 20.04δ−1
0 + 8.577δ−2

0 .

6 Concentration inequalities

We will in this section apply Corollary 5.4 to t
n
ϕ instead of ϕ, which we can do as soon

as n is large enough with respect to t and ‖ϕ‖ in the sense that

n ≥ ‖tϕ‖
log

(

1 +
δ2

0

12+13δ0

) and n ≥ 1 +
log 100

− log(1 − δ0/13)
. (6)

(These conditions can be replaced by the stronger but simpler conditions n ≥ 26‖tϕ‖
δ2

0

and n ≥ 60
δ0

, respectively.)
Under conditions (6), we obtain our first control of the moment generating function of

the empiric mean µ̂n(ϕ) := 1
n
ϕ(X1) + · · · + 1

n
ϕ(Xn) by plugging the first-order estimate

of Corollary 5.4 in (2):

Eµ

[

exp(tµ̂n(ϕ))
]

exp(tµ0(ϕ))
= e−tµ0(ϕ)

∫

Ln
t
n

ϕ1(x) dµ(x)

=
(

1 + O3.834+4.121δ−1

0
(

t

n
‖ϕ‖)

)

exp(O3.36+2.081δ−1

0
(
t2

n
‖ϕ‖2)).
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By the classical Chernov bound, it follows that for all a, t > 0:

Pµ

[

|µ̂n(ϕ) − µ0(ϕ)| ≥ a
]

≤
(

2 + (7.668 + 8.242δ−1
0 )

t

n
‖ϕ‖

)

exp
(

− at + (3.36 + 2.081δ−1
0 )

t2

n
‖ϕ‖2)

)

. (7)

6.1 Gaussian regime

Our first concentration inequality is obtained by choosing t to optimize the argument of
the exponential in (7), i.e. taking

t =
na

2(3.36 + 2.081δ−1
0 )‖ϕ‖2

.

This choice can be made as soon as a is small enough: indeed the first condition on n
then reads

a ≤ (6.72 + 4.162δ−1
0 ) log

(

1 +
δ2

0

12 + 13δ0

)

‖ϕ‖ =: amax‖ϕ‖.

Let us find a simpler lower bound for the right-hand side:

amax ≥ (6.72 + 4.162δ−1
0 ) · 0.98

δ2
0

12 + 13δ0

≥ 6.58δ0 + 4

13δ0 + 12
δ0 ≥ δ0

3

so that a sufficient condition to make the above choice for t is

a ≤ δ0‖ϕ‖
3

. (8)

Then the argument in the exponential becomes

−at + (3.36 + 2.081δ−1
0 )

t2

n
‖ϕ‖2 ≤ − na2

(13.44 + 8.324δ−1
0 )‖ϕ‖2

and the constant in front:

2 + (7.668 + 8.242δ−1
0 )

t

n
‖ϕ‖ ≤ 2 +

(7.668 + 8.242δ−1
0 )a

(6.72 + 4.162δ−1
0 )‖ϕ‖

≤ 2 +
7.668δ2

0 + 8.242δ0

20.16δ0 + 12.486

≤ 2 +
7.668 + 8.242

20.16 + 12.486
≤ 2.488,

which is the first part of Theorem A (one can also bound the front constant in a different
way to show it can be taken close to 2 for small a).
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6.2 Exponential regime

For larger a, we obtain a result with exponential decay by taking t as large as allowed by

the first smallness condition (6), i.e. t ≃ n
‖ϕ‖ log

(

1 +
δ2

0

12+13δ0

)

. To simplify, we precisely

take the slightly smaller

t =
n

‖ϕ‖ · 0.98δ2
0

12 + 13δ0
.

Then the argument in the exponential becomes

− at + (3.36 + 2.081δ−1
0 )

t2

n
‖ϕ‖2)

= n
0.98δ2

0

12 + 13δ0

(

− a

‖ϕ‖ +
0.98(3.36δ2

0 + 2.081δ0)

12 + 13δ0

)

≤ −n
0.98δ2

0

12 + 13δ0

(
a

‖ϕ‖ − 0.254δ0

)

and the constant in front:

2 + (7.668 + 8.242δ−1
0 )

t

n
‖ϕ‖ = 2 + (7.668 + 8.242δ−1

0 )
0.98δ2

0

12 + 13δ0

= 2 +
7.515δ2

0 + 8.078δ0

12 + 13δ0

≤ 2 +
15.593

25
≤ 2.624

and we obtain the second part of Theorem A.

6.3 Second-order concentration

In the case one has a good upper bound for the dynamical variance σ2(ϕ) then the
previous concentration results can be improved by using the second-order formula in
Corollary 5.4, which yields

Eµ

[

exp(tµ̂n(ϕ))
]

exp(tµ0(ϕ))
= exp

(
t2

2n
σ2(ϕ) + O10.89+20.04δ−1

0
+8.577δ−2

0

( t3

n2
‖ϕ‖3

))

×
(

1 + O3.834+4.121δ−1

0

( t

n
‖ϕ‖

))

so that, if we know σ2(ϕ) ≤ U :

Pµ

[

|µ̂n(ϕ) − µ0(ϕ)| ≥ a
]

≤
(

2 +
(7.668 + 8.242δ−1

0 )t

n
‖ϕ‖

)

× exp
(

− at +
t2

2n
U + C

t3

n2
‖ϕ‖3

)
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where C can be any number above 10.89 + 20.04δ−1
0 + 8.577δ−2

0 . To get a compact
expression, we observe that 0.89 + 0.04δ−1

0 ≤ 0.93δ−2
0 so that

10.89 + 20.04δ−1
0 + 8.577δ−2

0 ≤ 10 + 20δ−1
0 + 9.507δ−2

0 ≤ 10(1 + δ−1
0 )2 =: C.

The choice of t can then be adapted to the circumstances; we will only explore the
choice t = an/U which is nearly optimal when a is small.

This choice can be made as soon as

a ≤ U

‖ϕ‖ log
(

1 +
δ2

0

12 + 13δ0

)

and entails the following upper bound for the front constant:

2 + (7.668 + 8.242δ−1
0 )

δ2
0

12 + 13δ0
≤ 2 +

7.668 + 8.242

12 + 13
≤ 2.637.

Meanwhile, the exponent becomes

−at +
t2

2n
U + C

t3

n2
‖ϕ‖3 = −a2n

2U
+

C‖ϕ‖3a3n

U3

yielding Theorem B.

7 Berry-Esseen bounds

In this section, we use the second-order Taylor formula for the leading eigenvalue to
prove effective Berry-Esseen bounds. The method we use is the one proposed by Feller
[Fel66], which does not yield the best constant in the IID case, but is quite easily adapted
to the Markov or dynamical case as observed in [CP90].

The starting point is a “smoothing” argument that allows to translate the proximity
of characteristic functions into a proximity of distribution functions.

Proposition 7.1 ([Fel66]). Let F, G be the distribution functions and φ, γ be the char-
acteristic functions of real random variables with vanishing expectation. Assume G is
differentiable and ‖G′‖∞ ≤ m; then for all T > 0:

‖F − G‖∞ ≤ 1

π

∫ T

−T

∣
∣
∣
∣

φ(t) − γ(t)

t

∣
∣
∣
∣ dt +

24m

πT
.

We set G(T ) = (2π)− 1

2

∫ T
−∞ e− t2

2 dt the reduced normal distribution function (so that

‖G′‖∞ = (2π)− 1

2 ) and γ(t) = e− t2

2 , and apply the above estimate to the distribution
function Fn of the random variable Yn = 1√

n
(ϕ̃(X1) + · · · + ϕ̃(Xn)), where here ϕ̃ is the

fully normalized version of ϕ:

ϕ̃ =
ϕ − µ0(ϕ)

σ(ϕ)
where σ2(ϕ) = µ0(ϕ

2) − (µ0ϕ)2 + 2
∑

k≥1

µ0

(

ϕLk
0(ϕ̄)

)

,
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assuming σ2(ϕ) > 0 and with ϕ̄ := ϕ − µ0(ϕ). The point is then to use the spectral
method to obtain an expression of the characteristic function φn of Yn close to the
expression of γ.

We start by showing that the norm of a normalized potential is bounded away from
zero.

Lemma 7.2. We have ‖ϕ̃‖ ≥
√

δ0/2.

Proof. We have σ2(ϕ) = σ2(ϕ̄) ≤ ‖ϕ̄2‖∞ + 2
∑

k≥1‖ϕ̄‖∞(1 − δ0)k‖ϕ̄‖ ≤ ‖ϕ̄‖2
(

2
δ0

− 1
)

.

Using σ2(ϕ̃) = 1 we get ‖ϕ̃‖ ≥
(

2
δ0

− 1
)− 1

2 and the result follows.

This has a first interesting consequence: if assumption (4) is not satisfied, we have
in particular n ≤ 60/δ0 and Lemma 7.2 implies that in the conclusion of Theorem C
the right-hand side is (much) larger than 1, making the conclusion vacuously true (the
left-hand side is always less than 1). It follows that we only need to consider the case
when (4) is satisfied even though we did not include it in the hypotheses. For the same
reason, we can and do assume n ≥ 10 000.

To apply the estimates from Section 5 to it√
n
ϕ̃, it is therefore sufficient to have

√
n ≥ ‖tϕ̃‖

log
(

1 +
δ2

0

13+12δ0

) . (9)

Lemma 7.3. Under assumption (9) we have

φn(t) = λn
it√

n
ϕ̃

(

1 + O3.668+4.121δ−1

0
(‖ t√

n
ϕ̃‖
)

λn
it√

n
ϕ̃ = exp

(

− t2

2
+ O10.89+20.04δ−1

0
+8.577δ−2

0
(

1√
n

‖tϕ̃‖3)
)

.

Proof. Applying formula (2) to it√
n
ϕ̃, we obtain the following expression for the charac-

teristic function (where µ is the law of X0):

φn(t) =
∫

L it√
n

ϕ̃1(x) dµ(x) = λn
it√

n
ϕ̃

( ∫

P it√
n

ϕ̃1 dµ +
∫ [

R/λ
]n

it√
n

ϕ̃
1 dµ

)

︸ ︷︷ ︸

=:A

Corollary 5.4 gives the claimed expression for λn
it√

n
ϕ̃

and

A =
∫

P it√
n

ϕ̃1 dµ + λ−n
it√

n
ϕ̃

∫

Rn
it√

n
ϕ̃1 dµ = 1 + O3.668+4.121δ−1

0

(‖ t√
n

ϕ̃‖).
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Lemma 7.4. Under assumption (9), for any α ∈ (0, 0.5), if

√
n ≥ 10.89 + 20.04δ−1

0 + 8.577δ−2
0

0.5 − α
|t|‖ϕ̃‖3 (10)

then

|φn(t) − γ(t)| ≤ 1.32ne−0.9999αt2
∣
∣
∣φn(t)

1

n − γ(t)
1

n

∣
∣
∣. (11)

Proof. Following Feller [Fel66], we use that for all a, b, c with |a|, |b| ≤ c and all n ∈ N:

|an − bn| ≤ n|a − b|cn−1. (12)

We take a = φn(t)
1

n , b = γ(t)
1

n and c an upper bound which we will now choose. Feller

takes c = e− t2

4n , but we need two adaptations and take c = 1.32
1

n e−α t2

n where α ∈ (0, 0.5)

will be optimized later on. We already have γ(t)
1

n = e− t2

2n ≤ c and need to ensure the
same bound for φn. We have

φn(t)
1

n ≤ e− t2

2n exp
(

(10.89 + 20.04δ−1
0 + 8.577δ−2

0 )(
1

n3/2
‖tϕ̃‖3)

)

A
1

n

where, using ‖ t√
n
ϕ̃‖ ≤ δ2

0

13+12δ0
,

A ≤ 1 + (3.834 + 4.121δ−1
0 )‖ t√

n
ϕ̃‖ ≤ 1.32.

To ensure φn(t)
1

n ≤ c, it is therefore sufficient that

(10.89 + 20.04δ−1
0 + 8.577δ−2

0 )(
1√
n

‖tϕ̃‖3) ≤ (0.5 − α)t2,

i.e. Condition (10) suffices. Using n ≥ 10 000 to bound (n − 1)/n by 0.9999 in (12), we
then obtain (11).

Lemma 7.5. Under assumption (9) we have

∣
∣
∣φn(t)

1

n − γ(t)
1

n

∣
∣
∣ ≤ f‖tϕ̃‖3 + g‖tϕ̃‖

n3/2
+

t4

8n2

with f = 7.41 + 17.75δ−1
0 + 8.49δ−2

0 and g = 4.036 + 4.338δ−1
0

Proof. We follow Feller again and write

∣
∣
∣φn(t)

1

n − γ(t)
1

n

∣
∣
∣ ≤

∣
∣
∣
∣λ it√

n
ϕ̃A

1

n − 1 +
t2

2n

∣
∣
∣
∣+

∣
∣
∣
∣e

− t2

2n − 1 +
t2

2n

∣
∣
∣
∣. (13)

where A is defined in the proof of Lemma 7.3. Since for all x ∈ [0, +∞[ we have
0 ≤ e−x − 1 + x ≤ 1

2
x2, the second summand is bounded above by t4

8n2 . To deal with the
first summand we start by a finer evaluation of A:

A
1

n = (1 + O3.834+4.121δ−1

0
(‖ t√

n
ϕ̃‖))

1

n ≤ exp
( 1

n3/2
(3.834 + 4.121δ−1

0 )‖tϕ̃‖)
)

.
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By our assumptions the argument of the exponential is not greater than

1

n
(3.834 + 4.121δ−1

0 ) log
(

1 +
δ2

0

13 + 12δ0

)

≤ 1

10 000

3.834δ2
0 + 4.121δ0

13 + 12δ0
≤ 0.0001.

Using e0.0001 ≤ 1.00011, for all ε ∈ [0, 0.0001] we have exp(ε) ≤ 1 + 1.00011ε so that:

A
1

n ≤ 1 +
3.835 + 4.122δ−1

0

n3/2
‖tϕ̃‖.

Using Lemma 5.2, definition of σ2 and normalization of ϕ̃, we have:

λ it√
n

ϕ̃ = 1 − t2

2n
+ O7.41+17.75δ−1

0
+8.49δ−2

0

(

‖ t√
n

ϕ̃‖3
)

.

The lower order terms simplify in the first summand of (13) and we obtain

∣
∣
∣φn(t)

1

n − γ(t)
1

n

∣
∣
∣

≤
∣
∣
∣
∣O7.41+17.75δ−1

0
+8.49δ−2

0
(‖ t√

n
ϕ̃‖3) + λ it√

n
ϕ̃

3.835 + 4.122δ−1
0

n3/2
‖tϕ̃‖

∣
∣
∣
∣+

t4

8n2

≤ f‖tϕ̃‖3 + g‖tϕ̃‖
n3/2

+
t4

8n2

(using g ≥ 1.0524(3.835 + 4.122δ−1
0 )).

For all T > 0 such that the above conditions (9) and (10) hold for all t ∈ [−T, T ], we
have by Proposition 7.1 and Lemmas 7.4, 7.5:

‖Fn − G‖∞ ≤ 1

π

∫ T

−T

∣
∣
∣
∣

φ(t) − γ(t)

t

∣
∣
∣
∣ dt +

24m

πT

≤ 2.64

π

∫ T

0

n

t
e−0.9999αt2

∣
∣
∣φn(t)

1

n − γ(t)
1

n

∣
∣
∣ dt +

3.048

T

≤ 2.64

π
√

n

∫ ∞

0
e−0.9999αt2

(

f‖ϕ̃‖3t2 + g‖ϕ̃‖ + ht3
)

dt +
3.048

T

where f , g are defined in Lemma 7.5 and, using n ≥ 10 000, h = 0.00125. We want to
take T as large as possible to lower the last term, but we need to ensure conditions (9)
and (10), i.e.:

T ≤
√

n

‖ϕ̃‖ log
(

1 +
δ2

0

13 + 12δ0

)

and T ≤
√

n

‖ϕ̃‖3

(0.5 − α)

10.89 + 20.04δ−1
0 + 8.577δ−2

0

We could use here the lower bound on ‖ϕ̃‖ to replace the left condition by a condition
of the same form as the right one, but this would be too strong when ‖ϕ̃‖ is far from
the bound. We will make a choice which will be better when ‖ϕ̃‖ is of the order of 1,
by replacing the above conditions by the more stringent

T ≤
√

n

max{‖ϕ̃‖, ‖ϕ̃‖3} min
{

log
(

1 +
δ2

0

13 + 12δ0

)

,
(0.5 − α)

10.89 + 20.04δ−1
0 + 8.577δ−2

0

}

.
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In the min, the first term is larger than 0.98δ2
0/(13 + 12δ0) which is easily seen to be

larger than the second term for all δ0. We thus take

T =

√
n(0.5 − α)

max{‖ϕ̃‖, ‖ϕ̃‖3}
(

10.89 + 20.04δ−1
0 + 8.577δ−2

0

)

and we obtain

‖Fn − G‖∞ ≤ 2.64

π
√

n

∫ +∞

0
e−0.9999αt2

(

f‖ϕ̃‖3t2 + g‖ϕ̃‖ + ht3
)

dt

+
(33.193 + 61.082δ−1

0 + 26.082δ−2
0 ) max{‖ϕ̃‖, ‖ϕ̃‖3}

(0.5 − α)
√

n
.

Setting α′ = 0.9999α, we have for each d = 0, 2, 3:

∫ +∞

0
e−α′t2

td dt = α′− d+1

2

∫ +∞

0
e−t2

td dt =
1

2
α′− d+1

2 Γ
(

d + 1

2

)

and thus:

‖Fn − G‖∞ ≤ 1.32

π
√

n

(

fα′− 3

2

√
π

2
‖ϕ̃‖3 + gα′− 1

2
√

π‖ϕ̃‖ + hα′−2
)

+
(33.193 + 61.082δ−1

0 + 26.082δ−2
0 ) max{‖ϕ̃‖, ‖ϕ̃‖3}

(0.5 − α)
√

n
.

We will now choose α, by comparing the two most troublesome coefficients in the small
δ0 regime; these coefficients are 0.66f√

π(0.9999α)3/2 , which is close to 3.162δ−2
0 α−3/2 (making us

want to take α large), and
(33.193+61.082δ−1

0
+26.082δ−2

0
)

0.5−α
which is close to 26.082δ−2

0 /(0.5 − α)
(and makes us want to take α small). Optimizing the sum of these coefficients leads us
to take α = 0.195. We then get

‖Fn − G‖∞ ≤ 1√
n

(

(32.05 + 76.77δ−1
0 + 36.72δ−2

0 )‖ϕ̃‖3 + (6.81 + 7.32δ−1
0 )‖ϕ̃‖

+ 0.02 + (108.83 + 200.27δ−1
0 + 85.52δ−2

0 ) max{‖ϕ̃‖, ‖ϕ̃‖3}
)

≤ 1√
n

(

0.02 + (148 + 284.36δ−1
0 + 123δ−2

0 ) max{‖ϕ̃‖, ‖ϕ̃‖3}
)

which yields Theorem C after using Lemma 7.2 to get 0.02 ≤ 0.03‖ϕ̃‖δ−1
0 .
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