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Effective limit theorems for

Markov chains with a spectral gap

Benoît R. Kloeckner ∗

March 28, 2017

Applying quantitative perturbation theory for linear operators, we prove
non-asymptotic limit theorems for Markov chains whose averaging operator
has a spectral gap in a suitable function space. The main results are con-
centration inequalities and Berry-Esséen bounds, with some flexibility in the
choice of the function space and no “warm start” hypothesis nor burn-in: the
law of the first term of the chain can be arbitrary. The constants are com-
pletely explicit and reasonable enough to make the results usable in practice,
notably in MCMC methods.

1 Introduction

The goal of this article is to prove effective limit theorems for some Markov chains. By
effective, it is meant that given an explicit sample size n, one should be able to deduce
from the result that the quantity being considered lies in some explicit interval with at
least some explicit probability. In other words, the result should be non-aymptotic and
all constants should be made explicit. The motivations for this are at least twofold.

First, in practical applications of the Markov chain Monte-Carlo (MCMC) method,
where one estimate an integral using samples from a Markov chain, effective results are
needed to obtain proved convergence of a given precision. MCMC methods are important
when the measure of interest is either unknown, or difficult to sample independently (e.g.
uniform in a convex set in large dimension), but happens to be the stationary measure
for an easily simulated Markov chain. The Metropolis-Hastings algorithm is a prominent
example of such an approach.

It is well-known that assuming a spectral gap (which will be our main assumption)
is sufficient to obtain most classical limit theorems, notably the Law of Large Number
and the Central Limit Theorem, and their quantitative counterparts: concentration
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inequalities and Berry-Esséen bounds. While the question of improving the constant in
the Berry-Esséen theorem for independent identically distributed random variable has
been the object of many works,1 these quantitative results are rarely made effective for
Markov chains. Since the constants tend to depend on a number of parameters, it is
not usually clear how much uniformity holds, nor what is the behavior of the constants
when parameters approach the limits of the domain of their admissible values (e.g.
when the spectral gap goes to zero). This is a second, more theoretical motivation to
look for effective results: one then obtain precise information on the dependence of the
convergence speed on the parameters.

Although effective results are scarce, many previous works have considered related
questions, and it would be a daunting task to give all relevant references. Let us consider
a few works that make good entry points in the literature. Hennion and Hervé [HH01]
give a precise and general account of the main method we shall use below, in the more
general setting of quasi-compact operators. They credit Nagaev [Nag57, Nag61] for
giving birth to this method. Joulin and Ollivier [JO10] seem to have proved the first
truly effective concentration inequalities for Markov chains, and we shall compare some
of the present results to theirs. Among the references they give, Lezaud [Lez98] is
especially relevant, as he also relies on perturbation theory (but he works with finitely
many states). Joulin and Ollivier observe that they can lift three assumptions needed
by Lezaud: reversibility, warm start (asking the law of X0 to have a density with respect
to the stationary measure), and boundedness of the observable. Below it will be shown
that the perturbation method can in fact dispense at least from the first two conditions.
Last, Dubois [Dub11] gave what seems to be the first effective Berry-Esséen inequality
in a dynamical or Markov chain context, and we shall compare the present Berry-Esséen
inequality with his.

Structure of the article. In Section 2 we state notation and the main results. Section
3 is devoted to a few examples, for which we compare our concentration inequalities
with Joulin-Ollivier’s result. In Section 4 we recall how perturbation theory can be
used to prove limit theorems, and state the perturbation results we need to carry out
this method in a effective manner. In Section 5 we prove the core estimates to be used
thereafter, while Section 6 carries out the proof of the concentration inequalities and
Section 7 proves the Berry-Esséen inequality.

2 Assumptions and main results

Let Ω be a polish metric space endowed with its Borel algebra and denote by P(Ω) the
set of probability measures on Ω. We consider a transition kernel M = (mx)x∈Ω on Ω,
i.e. mx ∈ P(Ω) for each x ∈ Ω, and a Markov chain (Xk)k≥0 following the kernel M, i.e.
P(Xk+1 | Xk = x) = mx. We do not ask the Markov chain to be stationary: the law of
X0 is arbitrary (“cold start”); in some cases of interest, the law of each Xk will even be

1To my knowledge the currently known best bound in the IID case is due to Tyurin [Tyu11].

2



singular with respect to the stationary measure.
We shall study the behavior of (Xk)k≥0 through the empirical mean

µ̂n(ϕ) :=
1

n

n∑

k=1

ϕ(Xk)

of an arbitrary “observable” ϕ ∈ X (Ω), where X (Ω) is a space of functions Ω → R (or
Ω → C).

Standing assumption 2.1. In all the paper, we assume X (Ω) satisfies the following:

i. its norm ‖·‖ dominates the uniform norm: ‖·‖ ≥ ‖·‖∞,

ii. X (Ω) is a Banach algebra, i.e. for all f, g ∈ X (Ω) we have ‖fg‖ ≤ ‖f‖‖g‖,

iii. X (Ω) contain the constant functions and ‖1‖ = 1.

The first hypothesis ensures integrability with respect to arbitrary probability mea-
sure, which is important for cold-start Markov chains; it also implies that every prob-
ability measure can be seen as a continuous linear form acting on X (Ω). The second
hypothesis will prove very important in our method where products abound (and can
be replaced by the more lenient ‖fg‖ ≤ C‖f‖‖g‖ up to multiplying the norm by a con-
stant), and the hypothesis on ‖1‖ is a mere matter of convenience and could be removed
at the cost of more complicated formulas.

Remark 2.2. This setting may seem restrictive at first: the Banach algebra hypothesis
notably excludes Lp spaces, while classically one only makes moment assumptions on
the observable. This is quite unavoidable given that we will work with more than
one equivalence class of measures, and we want to allow cold start at a given position
(X0 ∼ δx0

). The measures mx may be singular with respect to the stationary measure
µ0, and as a matter of fact in the dynamical applications mx will be purely atomic
while µ0 will often be atomless. It may thus happen that for ϕ an Lp(µ0) observable,
ϕ(Xj) is undefined with positive probability, or is extremely large even if ϕ has small
moments with respect to µ0. Our framework ensures enough regularity to prevent such
phenomenons.

To the transition kernel M is naturally associated an averaging operator acting on
X (Ω), defined by

L0f(x) =

∫

Ω

f(y) dmx(y).

Since the (mx) are probability measures, L0 has 1 as eigenvalue, with eigenfunction 1.

Standing assumption 2.3. In all the article we assume M satisfies the following:

i. L0 acts as a bounded operator from X (Ω) to itself, and its operator norm ‖L0‖ is
equal to 1.
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ii. L0 has a spectral gap with constant 1 and size δ0 > 0, i.e. there is an hyperplane
G0 such that

‖L0f‖ ≤ (1− δ0)‖f‖ ∀f ∈ G0,

The first hypothesis could be relaxed, considering operators of arbitrary norm, at the
cost of (much) more complicated formulas. The second hypothesis is the main one, and
implies that 1 is a simple isolated eigenvalue. This ensures that up to scalar factors there
is a unique continuous linear form φ0 acting on X (Ω) such that φ0 ◦ L0 = φ0; since any
stationary measure of M satisfy this, all stationary measures coincide on X (Ω). They
might not be unique (e.g. if X (Ω) contains only constants), but since we consider the
ϕ(Xk) with ϕ ∈ X (Ω), this will not matter. We will thus denote an arbitrary stationary
measure by µ0, and identify it with φ0 (observe that G0 is then equal to ker µ0). In most
cases, X (Ω) will be dense in the space of continuous function endowed with the uniform
norm, ensuring that two measures coinciding on X (Ω) are equal, and then the spectral
gap hypothesis ensures the uniqueness of the stationary measure.

Remark 2.4. There are numerous examples where assumptions 2.1 and 2.3 are satisfied;
we will discuss a few of them in Section 3. Typically, X (Ω) has a norm of the form
‖·‖ = ‖·‖∞ + V (·) where V is a seminorm measuring the regularity in some sense
(e.g. Lipschitz constant, α-Hölder constant, total variation, total p-variation...) and
satisfying V (fg) ≤ ‖f‖∞V (g) + V (f)‖g‖∞. This inequality ensure X (Ω) is a Banach
Algebra, and ‖1‖ = 1 holds as soon as V (1) = 0. Since averaging operators necessarily
satisfy ‖L0f‖∞ ≤ ‖f‖∞, it is sufficient that L contracts V (i.e. V (L0f) ≤ θV (f) for
some θ ∈ (0, 1) and all f ∈ X (ω)) to ensure that ‖L0‖ = 1. We will prove in Lemma
3.1 that in many cases, the contraction also implies a spectral gap of explicit size and
constant 1. In fact, all examples considered here are of this kind, but it seemed better
to state our main results in terms of the hypotheses we use directly in the proof.

Our first result is a concentration inequality, featuring the expected dichotomy be-
tween a Gaussian regime and an exponential regime.

Theorem 2.5. For all n ≥ 60/δ0 and all a > 0, it holds

Pµ

[

|µ̂n(ϕ)− µ0(ϕ)| ≥ a
]

≤







2.5 exp
(
− na2

‖ϕ‖2 · C1δ0
)

if
a

‖ϕ‖ ≤ δ0/3

2.7 exp
(
− na

‖ϕ‖ · C2δ
2
0

)
otherwise

and one can take C1 = 0.046 and C2 = 0.009.

Remark 2.6. In Theorem 2.5 we tried to get the cleaner and simpler possible statement,
but in fact we obtain more precise estimates, which are slightly more complicated to
state:

Pµ

[

|µ̂n(ϕ)− µ0(ϕ)| ≥ a
]

≤ 2.488 exp
(

− na2

‖ϕ‖2
δ0

13.44δ0 + 8.324

)
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in the Gaussian regime (a ≤ δ0‖ϕ‖
3

) and

Pµ

[

|µ̂n(ϕ)− µ0(ϕ)| ≥ a
]

≤ 2.624 exp
(

− n
( a

‖ϕ‖ − 0.254δ0

) 0.98δ20
12 + 13δ0

)

in the exponential regime (a > δ0‖ϕ‖
3

). Moreover the condition on n can be relaxed to

n ≥ 1 +
log 100

− log(1− δ0/13)
.

We apply this result and compare it to [JO10] on a few examples in Section 3. It
turns out that our constants are sometimes a bit disappointing, but the spectral method
gives us access to higher-order estimates, enabling us to improve the Gaussian regime
bound as soon as we have a good control over the “dynamical variance”. This quantity
is defined as

σ2(ϕ) = µ0(ϕ
2)− (µ0ϕ)

2 + 2
∑

k≥1

µ0(ϕL
k
0ϕ̄)

and is precisely the variance appearing in the CLT for (ϕ(Xk))k≥0.

Theorem 2.7. If σ2(ϕ) ≤ V , then for all a ≤ V δ20
26‖ϕ‖ and all n ≥ 60/δ0 it holds

Pµ

[
|µ̂n(ϕ)− µ0(ϕ)| ≥ a

]
≤ 2.7 exp

(

− na2

2V
+

na3‖ϕ‖3
V 3

10(1 + δ−1
0 )2

)

For small enough a, the positive term in the exponential is negligible, and the leading
term is exactly the best we can expect given the available knowledge: since (ϕ(Xk))k
satisfies a Central Limit Theorem with variance σ2(ϕ), any better value would necessarily
imply a better bound on σ2(ϕ).

Remark 2.8. Again we actually prove a more precise result: the assumption can be
replaced by

a ≤ V

‖ϕ‖ log
(

1 +
δ20

12 + 13δ0

)

and a slightly more precise conclusion can be found in Section 6.3.

We end with a Berry-Esséen bound, proved in section 7, quantifying the speed of
convergence in the Central Limit Theorem.

Theorem 2.9. Assume σ2(ϕ) > 0 and let ϕ̃ := ϕ−µ0ϕ
σ(ϕ)

be the reduced centered version
of ϕ, and denote by G,Fn the distribution functions of the reduced centered normal law
and of 1√

n
(ϕ̃(X1) + · · ·+ ϕ̃(Xn)), respectively.

For all n ≥ (60/δ0)
2 it holds

‖Fn −G‖∞ ≤ 177
(δ−1

0 + 1.13)2 max{‖ϕ̃‖, ‖ϕ̃‖3}√
n
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Remark 2.10. The hypothesis on n is pretty harmless: if ‖ϕ̃‖ ≃ ‖ϕ̃3‖ ≃ 1 then for
n ≤ (60/δ0)

2 the right hand side is much larger than 1, and the inequality is void. As
before, a slightly more precise result can be obtained (see Section 7).

Remark 2.11. Note that σ2(ϕ) is always non-negative, as it can be rewritten as

lim
n→∞

1

n
Varµ0

(
n∑

k=1

ϕ(Xk)
)

(where the µ0 subscript means that the assumption X0 ∼ µ0 is made). However, σ2(ϕ)
can vanish even when ϕ is not constant modulo µ0, as is the case in a dynamical setting
when mx is supported on T−1(x) for some map T : Ω → Ω, and ϕ is a coboundary:
ϕ = g − g ◦ T for some g. One can for example see details [GKLMF15], where σ2 is
interpreted as a semi-norm. Whenever σ2(ϕ) = 0, one can use the present method to
obtain stronger non-asymptotic concentration inequalities, giving small probability to
deviations a such that a/‖ϕ‖ ≫ 1/n2/3 instead of a/‖ϕ‖ ≫ 1/

√
n.

We know of only one previous result in the same flavor of Theorem 2.9, by Dubois
[Dub11]. However the scope of Dubois’ result is somewhat narrower than ours, as it
is only written for uniformly expanding maps of the interval and Lipschitz observables
(though the method is expected to have wider application), and our numerical constant
is much better: while the dependences on the parameters of the system are stated
differently and thus somewhat difficult to compare, Dubois has a front constant of 11460
which is quite large for practical applications (the order of convergence being 1/

√
n, this

constant has a squared effect on the number of iterations needed to achieve a given
precision).

Application to dynamical systems As is well-known, limit theorems for Markov chain
also apply in a dynamical setting; let us give some details.

Given a k-to-one map T : Ω → Ω, one defines the transfer operator of a potential
A ∈ X (Ω) by

LT,Af(x) =
∑

y∈T−1(x)

eA(y)f(y).

One says that A is normalized when LT,A1 = 1. This condition exactly means that
mx =

∑

y∈T−1(x) e
A(y)δy is a probability measure for all x, making Lϕ the averaging

operator of a transition kernel. We could consider more general maps T , considering a
transition kernel that is supported on its inverse branches.

If the transfer operator has a spectral gap, then the stationary measure µ0 is unique,
and readily seen to be T -invariant. We shall denote it by µA to stress the dependence
on the potential. The corresponding stationary Markov chain (Yk)k∈N satisfies all results
presented above; but for each n, the time-reversed process defined by Xk = Yn−k (where
0 ≤ k ≤ n) satisfies Xk+1 = T (Xk): all the randomness lies in X0 = Yn. Having taken
Yn stationary makes the law of Yn, i.e. X0, independent of the choice of n. It follows:
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Corollary 2.12. For all normalized A ∈ X (Ω) such that LT,A has a spectral gap with
constant 1 and size δ0, for all ϕ ∈ X (Ω), Theorems 2.5, 2.7 and 2.9 hold for the random
process (Xk)k∈N defined by X0 ∼ µA and Xk+1 = T (Xk).

3 Examples

Let us consider some examples to apply our estimates to. We will use several times the
following lemma which, in the spirit of Doeblin-Fortet and Lasota-Yorke, enables to turn
an exponential contraction in the “regularity part” of a functional norm into a spectral
gap.

Lemma 3.1. Consider a normed space X (Ω) of (Borel measurable, bounded) functions
Ω → R, with norm ‖·‖ = ‖·‖∞+V (·) where V is a semi-norm (usually quantifying some
regularity of the argument, such as Lip or BV).

Assume that for some constant C > 0, for all probability µ on Ω and for all f ∈ X (Ω)
such that µ(f) = 0, ‖f‖∞ ≤ CV (f).

Let L0 ∈ B(X (Ω)) and assume that for some θ ∈ (0, 1) and all f ∈ X :

‖L0f‖∞ ≤ ‖f‖∞ and V (L0f) ≤ θV (f)

and having eigenvalue 1 with an eigenprobability µ0, i.e. L∗
0µ0 = µ0.

Then L0 has a spectral gap (for the eigenvalue 1, the contraction being on the stable
space ker µ0) with constant 1, of size

δ0 =
1− θ

1 + Cθ

The condition ‖f‖∞ ≤ CV (f) is often valid in practice when Ω has finite diameter:
the condition that µ(f) = 0 implies that f vanishes (if functions in X are continuous)
or at least takes both non-positive and non-negative values, and V (f) usually bounds
the variations of f , implying a bound on its uniform norm.

Proof. Let f ∈ ker µ0; then ‖L0f‖∞ ≤ ‖f‖∞ and L0f ∈ ker µ0, so that ‖L0f‖∞ ≤
CV (L0f) ≤ CθV (f).

Denote by t ∈ [0, 1] the number such that ‖f‖∞ = t‖f‖ (and therefore V (f) =
(1 − t)‖f‖). The above two controls on ‖L0(f)‖∞ can then be written as ‖L0(f)‖∞ ≤
min

(
t, Cθ(1− t)

)
‖f‖ and using V (L0f) ≤ θV (f) again we get

‖L0(f)‖ ≤ min
(
t + θ(1− t), (C + 1)θ(1− t)

)
‖f‖

‖(L0)| kerµ0
‖ ≤ max

t∈[0,1]
min

(
t+ θ(1− t), (C + 1)θ(1− t)

)
.

The maximum is reached when t+θ(1− t) = (C+1)θ(1− t), i.e. when t = Cθ/(1+Cθ),
at which point the value in the minimum is (C + 1)θ/(Cθ+ 1) ∈ (0, 1). Therefore there
is a spectral gap with constant 1 and size 1− (C + 1)θ/(Cθ + 1), as claimed.
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3.1 Discrete hypercube

Let us start with the same base example as Joulin and Ollivier [JO10], the discrete
hypercube {0, 1}N endowed with the Hamming metric: if x = (x1, . . . , xN ) and y =
(y1, . . . , yN), then d(x, y) is the number of indexes i such that xi 6= yi. Two elements
at distance 1 are said to be adjacent, denoted by x ∼ y. Consider the random walk M

which chooses randomly uniformly a slot i ∈ {1, . . . , N} and replace it with the result
of a fair coin toss, i.e.

mx =
1

2
δx +

∑

y∼x

1

2N
δy.

Then, in the parlance of [Oll09], M is positively curved with κ = 1/N , i.e. Lip(L0f) ≤
(1− 1/N) Lip(f) for all Lipschitz function f : {0, 1}N → R.

Example 3.2. Consider the observable ϕ1 : {0, 1}N → R where ϕ1(x) is the proportion
of 1’s in the word x.

Endowing the space of Lipschitz potentials with the Lipschitz norm ‖·‖Lip = ‖·‖∞ +
N Lip(·), Lemma 3.1 applies with C = 1 so that L0 has a spectral gap on this space with
constant 1 and size δ0 = 1/(2N − 1). We have Lip(ϕ1) = 1/N and ‖ϕ1‖∞ = 1, so that
this choice yields ‖ϕ1‖Lip = 2.

For a ≤ 2
6N−3

, as soon as n ≥ 120N − 60 Theorem 6.3 (see Remark 2.6) yields

Pµ

[

|µ̂n(ϕ1)− µ0(ϕ1)| ≥ a
]

≤ 2.5 exp
(

− na2

67N + 21

)

We thus need O(N/a2) iterations to have a good convergence to the actual mean; mean-
while Joulin and Ollivier only need O(1/a2), but for concentration around the expectancy
of the empiric process, not around the expectancy with respect to the stationary mea-
sure. Without burn-in, one also needs to bound the bias, which approaches zero in
time O(N2/a) according to the bound of Joulin and Ollivier, for a total run time of
O(N2/a+1/a2). This bound has the same order as ours if a is close to the boundary of
our Gaussian window (in 1/N), but is better for smaller a.

For 1/N . a . 1, we enter our exponential regime while staying inside Joulin-Ollivier’s
Gaussian window; Theorem 6.4 (Remark 2.6) shows we need no more than O(N2/a)
iterations, while [JO10] still gives a bound of O(N2/a + 1/a2) = O(N2/a). In this
regime, the concentration around the expectancy of the empirical process appears to be
faster than the decay of bias, and our bound approximately match the bound in [JO10].

Example 3.3. Consider now the potential 1S, the indicator function for a (non-trivial)
set S. We have Lip(1S) = 1 and ‖1S‖ = 1, and in this case it is more efficient to use the
norm ‖·‖∞+Lip(·): then Lemma 3.1 holds with C = N , we get a spectral gap of size at
least δ0 = 1/N2 and 1S has norm 2. For a ≤ 2/3N2 we get from Theorem 6.3 (Remark
2.6)

Pµ

[

|µ̂n(1S)− µ0(1S)| ≥ a
]

≤ 2.5 exp
(

− na2

34N2 + 54

)
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so that we need O(N2/a2) iterations to ensure a small probability of an error larger than
a. This is the same order than the concentration time given by [JO10], but with a worse
constant (34 instead of 8).

For 1 ≫ a ≫ 2/3N2 we get from Theorem 6.4 (Remark 2.6) a bound of the order
of exp(−na/(25N4)) (neglecting the terms going to zero with N in the exponent) and
thus a need for O(N4/a) iterations. In [JO10], this regime still belongs to the Gaussian
window and they need O(N2/a2) iterations: we trade two powers of N for a power of a,
which is not a good deal.

Now, for sufficiently small a we can get a much better bound from Theorem 2.7. We
consider the case when

S = [0] := {0x2x3 · · ·xN ∈ {0, 1}N},

where the variance can be computed explicitly2 (distinguish the cases when the first
digit has been changed an odd or even number of times, and observe that at each step
the probability of changing the first digit is 1/2N):

µ0(1
2
S)− (µ01S)

2 = 1/4 and
∑

k≥1

µ0(1SL
k
01̄S) =

1

4

∑

k≥1

(N − 1

N

)k

=
N − 1

4

This gives σ2(1S) ≃ N/2.
If we use the norm ‖·‖∞+Lip(·), then condition to apply Theorem 2.7 is a . 1/48N3

(see Remark 2.8) on top of n ≥ 60N2. Under these conditions the positive term in
the exponential is of the order of na3N , negligible compared to the main term which
is −na2/N . In particular O(N/a2) iterations suffice to get a small probability for a
deviation at least a: compared to Joulin and Ollivier, we gain one power of N in this
regime (and the optimal constant 1 in the leading term of the exponent) but only for
very small values of a. Here we can play on two parameters to extend the result: the
norm and the choice of V . First, switching back to the norm ‖·‖∞ +N Lip(·) is better
here: we get δ0 ≃ 1/2N and ‖1S‖ ≃ N , and for V = σ2(1S) the allowed window is
a . 1/96N2, one power of N larger than before. The remainder term in the exponential
is still negligible compared to the leading term, which is left unchanged. We thus keep
the bound O(N/a2) on iterations, but on a larger window. If we want to consider a of
the order of 1/N , we can then take V ≃ N2 to enlarge the window, at the cost of a
weaker leading term. We still get a bound similar to the one of Joulin-Ollivier, possibly
with a smaller constant (depending on the value of a).

This choice of S might seem very specific, but for less regular S the gain should be
greater for sufficiently smaller a.

2Among sets containing half the elements, this case should be the worst one since it corresponds to the
less scrambled S, and a more scrambled S should produce smaller autocorrelations. I currently do
not know how to prove such a result, which would be a kind of discrete Levy-Gromov isoperimetric
inequality.
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3.2 Iterated Function Systems

A number of fractals are defined as the attractor of an IFS (Iterated Function System),
and natural probability measures can be constructed which are supported on the attrac-
tor. These measures are the stationary measures of certain random walks, the support
of whose empirical process can be used to get a good approximation of the attractor.

More precisely, consider a system F of K maps f1, . . . , fK : RN → R
N . Then F acts

on non-empty compact sets by F(C) := ∪kfk(C), and an attracting fixed non-empty
compact set A is called an attractor of F .

Fix a probability vector P = (p1, . . . , pK) ∈ [0, 1]K (i.e.
∑

k pk = 1) and consider the
Markov chain M = (mx)x∈RN where

mx =

K∑

k=0

pkδfk(x),

i.e. from a point x we jump to its image by one of the maps fk, chosen randomly ac-
cording to the chosen probability vector, and let X0, X1, . . . be a Markov chain following
this transition kernel, with arbitrary start X0.

Example 3.4. Assume that F is contracting, i.e. for some θ ∈ (0, 1), all x, y ∈ R
N and

all k ∈ {1, . . . , K} it holds
|fk(x)− fk(y)| ≤ θ|x− y|

where |· − ·| denotes the usual Euclidean distance (or another norm, for that matter).
Then the action of F on compact sets is a θ-contraction in the Hausdorff metric, and it
follows that there exists a unique attractor A.

It is also easily seen that the Markov chain has positive Ollivier-Ricci curvature at
least κ = 1−θ, i.e. is θ-contracting in the Wasserstein metric (it is sufficient to check this
on Dirac measures, in which case one can use the obvious coupling

∑

k pkδfk(x) ⊗ δfk(y)
between mx and my). In particular there is a unique stationary measure µP , which must
be concentrated on the attractor A.

If ϕ : RN → R is a Lipschitz observable, we can therefore use our results to estimate
the behavior of |µ̂n(ϕ)− µP (ϕ)|.

Denote by ck the unique fixed point of fk and set S = maxk,k′|ck − ck′|. Each ball
of radius S/κ centered at one of the ck is then sent into itself by each fk′, so that
A ⊂

⋂

k B(ck, S/κ). We can thus restrict to a domain Ω of some finite diameter D
(not greater than 2S/κ). Assume for simplicity that ϕ vanishes somewhere in Ω and is
1-Lipschitz, so that ‖ϕ‖∞ ≤ D. We consider here the norm ‖·‖∞ + D Lip(·), since it
gives ϕ a norm of the same order (≤ 2D) and makes it possible to apply Lemma 3.1
with C = 1, so that δ0 = (1− θ)/(1 + θ).

In the notation of [JO10], using the estimates σ(x)2 ≤ D/2 (which could arguably be
improved), nx ≥ 1, σ∞ ≤ D/2, we get V 2 = D

2(1−θ)2n
, rmax =

4
3(1−θ)

and in the Gaussian

window a ≤ rmax [JO10] tells us

Pµ

[

|µ̂n(1S)− µ0(1S)| ≥ a
]

≤ 2 exp
(

− n
a2(1− θ)2

8D

)

.
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Meanwhile, Theorem 6.3 (2.6) gives for a ≤ 2D(1−θ)
3(1+θ)

and n ≥ 60(1 + θ)/(1− θ):

Pµ

[

|µ̂n(1S)− µ0(1S)| ≥ a
]

≤ 2.5 exp
(

− n
a2(1− θ)

(88− 20θ)D2

)

.

For D fixed and θ close to 1, we gain a factor (1 − θ), but in some other regimes, such
as D large and θ away from 1, the comparison is not in our favor.

Example 3.5. In some cases we are able to dispense from the contraction hypothesis
above; for simplicity we consider only the dimension N = 1. Assume now that the family
f1, . . . , fK : [0, 1] → [0, 1] is such that:

• each fk is monotone (but they may be discontinuous),

• the convex hulls of the sets fk([0, 1]) have pairwise disjoint interiors.

We also assume that the probability vector P is non-degenerate, i.e. maxP := max{p1, . . . , pK} <
1 (otherwise the Markov chain is deterministic).

We consider the Banach space BV([0, 1]) of bounded variation functions, defined by
the norm ‖·‖BV = ‖·‖∞ + var(·, [0, 1]) where

var(ϕ, I) := sup
x0<x1<···<xp∈I

p
∑

j=1

|ϕ(xj)− ϕ(xj−1)|

(the uniform norm is usually replaced by the L1 norm, but our choice is equivalent up
to a constant, does not single out the Lebesgue measure, and ensures BV([0, 1]) is a
Banach algebra).

Then, denoting as usual by L0 the operator associated with M, we have

var(L0ϕ) = sup
0≤x0<x1<···<xp≤1

p
∑

j=1

|L0ϕ(xj)− L0ϕ(xj−1)|

≤ sup
0≤x0<x1<···<xp≤1

p
∑

j=1

K∑

k=1

pk|ϕ(fk(xj))− ϕ(fk(xj−1))|

≤ max(P )

K∑

k=1

var(ϕ, fk([0, 1]))

≤ max(P ) var(ϕ).

By classical compactness arguments, there exists at least one stationary measure µ0.
Then ker µ0 ⊂ BV([0, 1]) is an invariant hyperplane, and from Lemma 3.1 it follows that
L0 has a spectral gap of size δ0 =

1−maxP
1+maxP

. Since L∗
0 has a unique eigenform and BV([0, 1])

contains the characteristic functions of the intervals, µ0 is the unique stationary measure.
All our results above thus apply to all ϕ ∈ BV([0, 1]); note that since var(ϕ) ≤ Lip(ϕ),

they also apply to Lipschitz ϕ, even though we had to pass through another norm to

11



obtain them. If the fk where additionally θ-Lipschitz for some θ very close to 1, [JO10]
could have been used but would have given a very weak concentration speed; when the
fk are not contracting (e.g. not continuous) no concentration at all could have been
deduced from their results.

Remark 3.6. In Example 3.4, one can also consider Hölder observable by observing
that the IFS is still contracting (with ratio θα) in the distance |· − ·|α. Similarly, one
can consider p−BV observables in Example 3.5, which in particular include 1/p-Hölder
observables.

4 Connection with perturbation theory

To any ϕ ∈ X (Ω) (sometimes called a “potential” in this role) is associated a weighted
averaging operator, called a transfer operator in the dynamical context:

Lϕf(x) =

∫

Ω

eϕ(y)f(y) dmx(y).

The classical guiding idea for the present work combines two observations. First, we
have

L2
ϕf(x0) =

∫

Ω

eϕ(x1)Lϕf(x1) dmx0
(x1) =

∫

Ω×Ω

eϕ(x1)eϕ(x2)f(x2) dmx1
(x2) dmx0

(x1)

and by a direct induction, denoting by dmn
x0
(x1, . . . , xn) the law of n steps of a Markov

chain following the transition M and starting at x0, we have

Ln
ϕf(x0) =

∫

Ωn

eϕ(x1)+···+ϕ(xn)f(xn) dm
n
x0
(x1, . . . , xn).

In particular, applying to the function f = 1, we get

Ln
ϕ1(x0) =

∫

Ωn

eϕ(x1)+···+ϕ(xn) dmn
x0
(x1, . . . , xn) = Ex0

[
eϕ(X1)+···+ϕ(Xn)

]

where (Xk)k≥0 is a Markov chain with transitions M and the subscript on expectancy
and probabilities specify the initial distribution (x0 being short for δx0

).
It follows by linearity that if the Markov chain is started with X0 ∼ µ where µ is any

probability measure, then setting µ̂nϕ := 1
n
ϕ(X1) + · · ·+ 1

n
ϕ(Xn) we have

Eµ

[
exp(tµ̂nϕ)

]
=

∫

Ln
t
n
ϕ1(x) dµ(x) (1)

This makes a strong connection between the transfer operators and the behavior of µ̂nϕ.
When the potential is small (e.g. t

n
ϕ with large n), the transfer operator is a pertur-

bation of L0, and their spectral properties will be closely related. This is the part that
has to be made quantitative to obtain effective limit theorems.
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We will state the perturbation results we need after introducing some notation. The
letter L will always denote a bounded linear operator, and ‖·‖ will be used both for the
norm in X and for the operator norm. From now on it is assumed that L0 has a spectral
gap of size δ0 and constant 1. In [Klo17] the leading eigenvalue of L0 is denoted by λ0,
an eigenvector is denoted by u0, and an eigenform (eigenvector of L∗

0) is denoted by φ0

(similarly the eigenvalue of an operator L close to L0 is denoted by λL).
Two quantities appear in the perturbation results below. The first one is the condition

number τ0 :=
‖φ0‖‖u0‖
|φ0(u0)| . To define the second one, we need to introduce π0, the projection

on G0 along 〈u0〉, which here writes π0(f) = f −µ0(f), and observe that by the spectral
hypothesis (L0 − λ0) is invertible when acting on G0. Then the spectral isolation is
defined as

γ0 := ‖(L0 − λ0)
−1
|G0

π0‖.
We shall denote by P0 the projection on 〈u0〉 along G0, and set R0 = L0 ◦π0. We then

have the expression
L0 = λ0P0 + R0

with P0R0 = R0P0 = 0. This decomposition will play a role below, and can be done for
all L with a spectral gap: we denote by λL, πL,PL,RL the corresponding objects for L,
and by λ, π,P,R we mean the corresponding maps L 7→ λL, etc.

Last, the notation OC(·) is the Landau notation with an explicit constant C, i.e.
f(x) = OC(g(x)) means that for all x, |f(x)| ≤ C|g(x)|.

Theorem 4.1 (Theorems 2.3 and 2.6 and Proposition 5.1 (viii) of [Klo17]). All L such

that ‖L − L0‖ <
1

6τ0γ0
have a simple isolated eigenvalue; λ, π,P,R are defined and

analytic on this ball.

Given any K > 1, whenever ‖L− L0‖ ≤ K − 1

6Kτ0γ0
we have

λL = λ0 +Oτ0+
K−1

3

(
‖L− L0‖

)

λL = λ0 + φ0(L− L0)u0 +OKτ0γ0

(
‖L− L0‖2

)

λL = λ0 + φ0(L− L0)u0 + φ0(L− L0)S0(L− L0)u0 +O2K2τ2
0
γ2
0

(

‖L− L0‖3
)

PL = P0 +O2Kτ0γ0(‖L− L0‖)
πL = π0 +Oτ0+

K−1

3

(‖L− L0‖)
∥
∥
∥D

[1

λ
R
]

L

∥
∥
∥ ≤ 1

|λL|
+

τ0 +
K−1
3

|λL|2
‖L‖+ 2Kτ0γ0.

Theorem 4.2 (Corollaire 2.12 from [Klo17]). In the case λ0 = ‖L0‖ = 1, all L such that

‖L− L0‖ ≤ δ0(δ0 − δ)

6(1 + δ0 − δ)τ0‖π0‖

have a spectral gap of size δ below λL, with constant 1.
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Since we will apply these results to the averaging operator L0, we need to evaluate
the parameters in this case.

We have λ0 = 1, u0 = 1 and φ0 is identified with the stationary measure µ0. It first
follows that

τ0 = 1.

Indeed ‖u0‖ = 1 by hypothesis, ‖φ0‖ = 1 since ‖·‖ ≥ ‖·‖∞ and φ0 is a probability
measure, and |φ0(u0)| = |µ0(1)| = 1.

Then we have
‖π0‖ ≤ 2

since for all f ∈ X (Ω), we have π0(f) = f − µ0(f) and ‖µ0(f)1‖ = |µ0(f)| ≤ ‖f‖∞ ≤
‖f‖. In general this trivial bound can hardly be improved without more information,
notably on µ0: it may be the case that µ0 is concentrated on a specific region of the
space, and then f − µ0(f) could have norm close to twice the norm of f .

Last, from the Taylor expansion (1 − L0)
−1 =

∑

k≥0 L
k
0, the spectral gap δ0, and the

upper bound on ‖π0‖ we deduce
γ0 ≤ 2/δ0.

5 Main estimates

Standing assumption 2.3 ensures that for all small enough ϕ we can apply the above
perturbation results; recall that µ0 is the stationary measure, so that for all f ∈ X (Ω)
we have

∫
L0f dµ0 =

∫
f dµ0.

We will first apply Theorem 4.2 with δ = δ0/13; this is somewhat arbitrary, but the
exponential decay will be strong enough compared to other quantities that we don’t need
δ to be large. Taking it quite small allow for a larger radius where the result applies.

As a consequence of this choice, the following smallness assumption will often be
needed:

‖ϕ‖ ≤ log
(

1 +
δ20

13 + 12δ0

)

. (2)

We will often use ϕ instead of Lϕ in subscripts: for example λϕ is the main eigenvalue
of Lϕ and πϕ is linear projection on its eigendirection along the stable complement
appearing in the definition of the spectral gap.

Lemma 5.1. We have

Lϕ(·) = L0

(∑

j≥0

ϕj

j!
·
)

and ‖Lϕ − L0‖ ≤ e‖ϕ‖ − 1.
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If (2) holds, then we have

‖Lϕ − L0‖ ≤ δ20
13 + 12δ0

≤ 1

25

Lϕ = L0 +O1.02(‖ϕ‖)
= L0 + L0(ϕ·) +O0.507(‖ϕ‖2)

= L0

(
(1 + ϕ+

1

2
ϕ2) ·

)
+O0.169(‖ϕ‖3),

‖πϕ‖ ≤ 2.053

Assumption (2) is in particular sufficient to apply Theorem 4.2 with δ = δ0/13 and
Theorem 4.1 with K = 1 + 12δ0/13.

Proof. The first formula is a rephrasing of the definition of Lϕ; observe then that thanks
to the assumption that X (Ω) is a Banach algebra, we have

‖Lϕ − L0‖ = ‖L0

(
(eϕ − 1) ·

)
‖

≤ ‖L0‖
∥
∥
∥

∞∑

j=1

ϕj

j!

∥
∥
∥

≤
∞∑

j=1

‖ϕ‖j
j!

‖Lϕ − L0‖ ≤ e‖ϕ‖ − 1

Observing that x 7→ x2/(13 + 12x) is increasing from 0 to 1/25 as x varies from 0 to
1 completes the uniform bound of ‖Lϕ − L0‖ and gives ‖ϕ‖ ≤ log(1 + 1/25) := b. By
convexity, we deduce that

e‖ϕ‖ − 1 ≤ (eb − 1)
‖ϕ‖
b

≤ 1.02‖ϕ‖

and the zeroth order Taylor formula follow.
The higher-order estimates are obtained similarly:

Lϕ = L0

(
(1+ ϕ + (eϕ − ϕ− 1)) ·

)
= L0 + L0(ϕ·) +O‖L0‖(e

ϕ − ϕ− 1)

and using the triangle inequality, the convexity of ex−x−1
x

and the bound on ϕ:

‖eϕ − ϕ− 1‖ ≤ e‖ϕ‖ − ‖ϕ‖ − 1

‖ϕ‖ ‖ϕ‖ ≤ eb − b− 1

b2
‖ϕ‖2 ≤ 0.507‖ϕ‖2.

The second order remainder is bounded by

‖eϕ − 1

2
ϕ2 − ϕ− 1‖ ≤ eb − 1

2
b2 − b− 1

b3
‖ϕ‖3 ≤ 0.169‖ϕ‖3

and finally, we have

‖πϕ‖ ≤ ‖π0‖+
(
1 +

4δ0
13

)
‖Lϕ − L0‖ ≤ 2 +

(
1 +

4

13

) 1

25
≤ 2.053.
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Lemma 5.2. Under (2) we have

|λϕ − 1| ≤ 0.0524

λϕ = 1 +O1.334(‖ϕ‖)
λϕ = 1 + µ0(ϕ) +O2.43+2.081δ−1

0
(‖ϕ‖2)

λϕ = 1 + µ0(ϕ) +
1

2
µ0(ϕ

2) +
∑

k≥1

µ0(ϕL
k
0(ϕ̄)) +O7.41+17.75δ−1

0
+8.49δ−2

0
(‖ϕ‖3)

Proof. With K = 1 + 12δ0/13 we have τ0 +
K−1
3

= 1 + 4δ0/13 and by the Theorem 4.1,
L 7→ λL has Lipschitz constant at most 1+4/13 = 17/13. We get |λϕ−λ0| ≤ 17

13
‖Lϕ−L0‖

from which we deduce both

|λϕ − 1| ≤ 17

13× 25
≤ 0.0524

and |λϕ − 1| ≤ 17

13
1.02‖ϕ‖ ≤ 1.334‖ϕ‖

Now we use the first-order Taylor formula for λ, using Kτ0γ0 ≤ 2δ−1
0 (1 + 12δ0/13) =

24
13

+ 2δ−1
0 :

λϕ = 1 + µ0

(
(Lϕ1− L01)

)
+O 24

13
+2δ−1

0
(‖Lϕ − L0‖2),

then using Lϕ1− L01 = L0(ϕ) +O0.507(‖ϕ‖2) from Lemma 5.1 we get

µ0(Lϕ1− L01) = µ0(L0(ϕ)) +O0.507(‖ϕ‖2) = µ0(ϕ) +O0.507(‖ϕ‖2).

Using ‖Lϕ − L0‖ ≤ 1.02‖ϕ‖ gives the following constant in the final O(‖ϕ‖2) of the
first-order formula:

0.507 + (1.02)2(
24

13
+ 2δ−1

0 ) ≤ 2.43 + 2.081δ−1
0 .

Then we apply the second-order Taylor formula:

λϕ = 1 + µ0(Lϕ1− L01) + µ0

(

(Lϕ − L0)S0(Lϕ1− L01)
)

+O8K2δ−2

0
(‖Lϕ − L0‖3).

Using Lϕ1− L01 = L0(ϕ+ 1
2
ϕ2) +O0.169(‖ϕ‖3) from Lemma 5.1 we first get

µ0(Lϕ1− L01) = µ0(ϕ) +
1

2
µ0(ϕ

2) +O0.169(‖ϕ‖3).

To simplify the second term, we recall that Lϕ − L0 = L0(ϕ·) +O0.507(‖ϕ‖2) and

S0 = (1− L0)
−1π0 =

(∑

k≥0

Lk
0

)
π0
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where π0 is the projection on ker µ0 along 〈1〉, i.e. π0(f) = f − µ0(f) =: f̄ , and has
norm at most 2. We thus have (noticing that in the second line both the main term and
the remainder term belong to ker µ0):

π0(Lϕ1− L01) = π0

(
L0(ϕ) +O0.507(‖ϕ‖2)

)

= L0(ϕ̄) +O1.014(‖ϕ‖2)
S0(Lϕ1− L01) =

∑

k≥1

Lk
0(ϕ̄) +O1.014δ−1

0
(‖ϕ‖2).

We also have

‖S0(Lϕ1− L01)‖ ≤ 2

δ0
‖Lϕ1− L01‖ ≤ 2.04

δ0
‖ϕ‖.

It then comes

(Lϕ − L0)S0(Lϕ1− L01) = L0

(
ϕ
∑

k≥1

Lk
0(ϕ̄)

)
+O1.014δ−1

0
(‖Lϕ − L0‖‖ϕ‖2)

+O0.507(‖ϕ‖2‖S0(Lϕ1− L01)‖)
= L0

(
ϕ
∑

k≥1

Lk
0(ϕ̄)

)
+O2.07δ−1

0
(‖ϕ‖3)

µ0(Lϕ − L0)S0(Lϕ1− L01) =
∑

k≥1

µ0(ϕL
k
0(ϕ̄)) +O2.07δ−1

0
(‖ϕ‖3)

where the reversal of sum and integral is enabled by normal convergence.
Last, we observe

8K2δ−2
0 = 8(

12

13
+ δ−1

0 )2 ≤ 6.82 + 14.77δ−1
0 + 8δ−2

0 ,

and we gather all what precedes:

λϕ = 1 + µ0(Lϕ1− L01) + µ0

(

(Lϕ − L0)S0(Lϕ1− L01)
)

+O8K2δ−2

0
(‖Lϕ − L0‖3)

= 1 + µ0(ϕ) +
1

2
µ0(ϕ

2) +O0.169(‖ϕ‖3) +
∑

k≥1

µ0(ϕL
k
0(ϕ̄)) +O2.07δ−1

0
(‖ϕ‖3)

+O(6.82+14.77δ−1
0

+8δ−2
0

)1.023(‖ϕ‖3)

= 1 + µ0(ϕ) +
1

2
µ0(ϕ

2) +
∑

k≥1

µ0(ϕL
k
0(ϕ̄)) +O7.41+17.75δ−1

0
+8.49δ−2

0
(‖ϕ‖3)

Under assumption (2), we know that Lϕ has a spectral gap of size δ0/13 with constant
1, and we can write

Lϕ = λϕPϕ + Rϕ

where Pϕ is the projection to the eigendirection along the stable complement and Rϕ =
Lϕπϕ is the composition of the projection to the stable complement and Lϕ. Then it
holds PϕRϕ = RϕPϕ = 0, so that for all n ∈ N:

Ln
ϕ = λn

ϕPϕ + Rn
ϕ.

17



Lemma 5.3. Under assumption (2), it holds

∥
∥

( 1

λϕ
Rϕ

)n

1

∥
∥ ≤ (6.388 + 4.08δ−1

0 )(1− δ0/13)
n−1‖ϕ‖

Pϕ1 = 1 +O3.77+4.08δ−1

0
(‖ϕ‖).

Proof. At any L = Lϕ where ϕ satisfies (2) we have:

∥
∥D

[1

λ
R
]

L

∥
∥ ≤ 1

|λL|
+

17/13

|λL|2
|L|+ 2Kτ0γ0

≤ 1

0.9476
+

17

13× 0.94762
× 1.04 +

48

13
+

4

δ0

≤ 6.263 +
4

δ0

so that

∥
∥
1

λϕ

Rϕ1− 1

λ0

R01

∥
∥ ≤ (6.263 +

4

δ0
)‖Lϕ − L0‖‖1‖

∥
∥
1

λϕ

Rϕ1− 0
∥
∥ ≤ 1.02(6.263 +

4

δ0
)‖ϕ‖

∥
∥
1

λϕ

Rϕ1

∥
∥ ≤ (6.388 + 4.08δ−1

0 )‖ϕ‖.

Moreover since RL takes its values in GL where πL acts as the identity, we have

‖Rn
ϕ1‖ ≤ λn−1

ϕ (1− δ0/13)
n−1‖RL1‖

from which the first inequality follows.
Then we have Pϕ = P0 + O2Kτ0γ0(‖Lϕ − L0‖), which yields the claimed result using

K = 1 + 12δ0/13, τ0 = 1, γ0 ≤ 2δ−1
0 and ‖Lϕ − L0‖ ≤ 1.02‖ϕ‖.

This control of Pϕ and Rϕ can be then be used to reduce the estimation of Ln
ϕ1 to the

estimation of λn
ϕ.

Corollary 5.4. Under assumptions (2) and

n ≥ 1 +
log 100

− log(1− δ0/13)
(3)

it holds

Ln
ϕ1 = λn

ϕ

(
1 +O3.834+4.121δ−1

0
(‖ϕ‖)

)

λn
ϕ = exp

(
nµ0(ϕ) +O3.36+2.081δ−1

0
(n‖ϕ‖2)

)

λn
ϕ = exp

(
nµ0(ϕ) +

1

2
nσ2(ϕ) +O10.89+20.04δ−1

0
+8.577δ−2

0
(n‖ϕ‖3)

)
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Proof. Assuming (2), we first appeal to Lemma 5.3 to write:

Ln
ϕ1 = λn

ϕPϕ1+ Rn
ϕ1

= λn
ϕ

(

1+O3.77+4.08δ−1

0
(‖ϕ‖) +O6.388+4.08δ−1

0

(
(1− δ0/13)

n−1‖ϕ‖
))

(4)

The second factor of (4) is easily controlled if we ask (3), under which we have

A := 1 +O3.77+4.08δ−1

0
(‖ϕ‖) +O6.388+4.08δ−1

0

(
(1− δ0/13)

n−1‖ϕ‖
)

= 1 +O3.77+4.08δ−1

0
(‖ϕ‖) +O0.064+0.041δ−1

0
(‖ϕ‖)

= 1 +O3.834+4.121δ−1

0
(‖ϕ‖)

The first estimate for λn
ϕ is obtained through the first-order Taylor formula. We use

the monotony and convexity of x 7→ (log(1+x)−x)/x and set x = λϕ−1 ∈ [−b, b] with
b = 0.0524 to evaluate log(λϕ):

∣
∣
∣
log(1 + x)− x

x

∣
∣
∣ ≤ log(1− b) + b

−b

|x|
b

≤ 0.52|x|
log(λϕ) = log(1 + λϕ − 1)

= λϕ − 1 +O0.52(|λϕ − 1|2)
= λϕ − 1 +O0.52×1.3342(‖ϕ‖2)
= λϕ − 1 +O0.926(‖ϕ‖2).

and then using λϕ = 1 + µ0(ϕ) +O2.43+2.081δ−1

0
(‖ϕ‖2) from Lemma 5.2:

λn
ϕ = exp

(
n log(λϕ)

)

= exp
(
n(λϕ − 1) +O0.926(n‖ϕ‖2)

)

= exp
(
nµ0(ϕ) +O3.36+2.081δ−1

0
(n‖ϕ‖2)

)
.

The second estimate for λn
ϕ is obtained, of course, from the second-order formula given

in Lemma 5.2:

λϕ = 1 + µ0(ϕ) +
1

2
µ0(ϕ

2) +
∑

k≥1

µ0(ϕL
k
0(ϕ̄)) +O7.41+17.75δ−1

0
+8.49δ−2

0
(‖ϕ‖3).

Here, it is somewhat tedious to use a convexity argument and we instead use the slightly
less precise Taylor formula: for x ∈ [−b, b] (where again b = 0.0524) we have

∣
∣
∣
1

6

d3

dx3
log(1 + x)

∣
∣
∣ ≤ 2

6(1− 0.0524)3
≤ 0.392

so that

log(1 + x) = x− 1

2
x2 +O0.392(x

3)

19



and therefore (using at one step |µ0(ϕ)| ≤ ‖ϕ‖):

log(λϕ) = (λϕ − 1)− 1

2
(λϕ − 1)2 +O0.392((λϕ − 1)3)

= µ0(ϕ) +
1

2
µ0(ϕ

2) +
∑

k≥1

µ0(ϕL
k
0ϕ̄) +O7.41+17.75δ−1

0
+8.49δ−2

0
(‖ϕ‖3)

− 1

2

(
µ0(ϕ) +O2.43+2.081δ−1

0
(‖ϕ‖2)

)2
+O0.392×1.3343(‖ϕ‖3)

= µ0(ϕ) +
1

2
σ2(ϕ) +O10.771+19.831δ−1

0
+8.49δ−2

0
(‖ϕ‖3) +O2.953+5.06δ−1

0
+2.166δ−2

0
(‖ϕ‖4)

Now assumption (2) ensures ‖ϕ‖ ≤ 0.04, so that we can combine the two error terms
into Oa(‖ϕ‖3) with

a = 10.771 + 19.831δ−1
0 + 8.49δ−2

0 + 0.04(2.953 + 5.06δ−1
0 + 2.166δ−2

0 )

≤ 10.89 + 20.04δ−1
0 + 8.577δ−2

0

6 Concentration inequalities

We will in this section apply Corollary 5.4 to t
n
ϕ instead of ϕ, which we can do as soon

as n is large enough with respect to t and ‖ϕ‖ in the sense that

n ≥ ‖tϕ‖
log

(

1 +
δ2
0

12+13δ0

) and n ≥ 1 +
log 100

− log(1− δ0/13)
, (5)

Remark 6.1. The first condition can be replaced by any of the following stronger but
simpler conditions

n ≥ (13.3δ−1
0 + 12.3δ−2

0 )‖tϕ‖ or n ≥ 26
‖tϕ‖
δ20

Similarly, by an elementary function analysis the second condition can be replaced by

n ≥ 60

δ0
.

Under these conditions, we obtain our first control of the moment generating function
of the empiric mean

µ̂n(ϕ) :=
1

n
ϕ(X1) + · · ·+ 1

n
ϕ(Xn)

by plugging the first-order estimate of Corollary 5.4 in (1):

Eµ

[
exp(tµ̂n(ϕ))

]

exp(tµ0(ϕ))
= e−tµ0(ϕ)

∫

Ln
t
n
ϕ1(x) dµ(x)

=
(
1 +O3.834+4.121δ−1

0
(
t

n
‖ϕ‖)

)
exp(O3.36+2.081δ−1

0
(
t2

n
‖ϕ‖2))
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By the classical Chernov bound, it follows that for all a, t > 0:

Pµ

[
|µ̂n(ϕ)− µ0(ϕ)| ≥ a

]

≤
(
2 + (7.668 + 8.242δ−1

0 )
t

n
‖ϕ‖

)
exp

(
− at + (3.36 + 2.081δ−1

0 )
t2

n
‖ϕ‖2)

)
(6)

6.1 Gaussian regime

Our first concentration inequality is obtained by choosing t to optimize the argument of
the exponential in (6), i.e. taking

t =
na

2(3.36 + 2.081δ−1
0 )‖ϕ‖2 .

This choice can be made as soon as a is small enough: indeed the first condition on n
then reads

n ≥ na

2(3.36 + 2.081δ−1
0 ) log

(

1 +
δ2
0

12+13δ0

)

‖ϕ‖
i.e.

a ≤ (6.72 + 4.162δ−1
0 ) log

(

1 +
δ20

12 + 13δ0

)

‖ϕ‖.

Let us find a simpler lower bound for the right-hand side:

(6.72 + 4.162δ−1
0 ) log

(

1 +
δ20

12 + 13δ0

)

≥ (6.72 + 4.162δ−1
0 ) · 0.98 δ20

12 + 13δ0

≥ 6.58δ0 + 4

13δ0 + 12
δ0

≥ δ0
3

so that a sufficient condition to make the above choice for t is

a ≤ δ0‖ϕ‖
3

. (7)

Then the argument in the exponential becomes

−at + (3.36 + 2.081δ−1
0 )

t2

n
‖ϕ‖2) ≤ − na2

(13.44 + 8.324δ−1
0 )‖ϕ‖2

and the constant in front:

2 + (7.668 + 8.242δ−1
0 )

t

n
‖ϕ‖ ≤ 2 +

(7.668 + 8.242δ−1
0 )a

(6.72 + 4.162δ−1
0 )‖ϕ‖

≤ 2 +
7.668δ20 + 8.242δ0
20.16δ0 + 12.486

≤ 2 +
7.668 + 8.242

20.16 + 12.486
≤ 2.488 ≤ 2.5
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Remark 6.2. We could also have bounded the front constant in a different way to show
it can be taken close to 2 for small a:

2 + (7.668 + 8.424δ−1
0 )

t

n
‖ϕ‖ ≤ 2 +

(7.668 + 8.242δ−1
0 )a

(6.72 + 4.162δ−1
0 )‖ϕ‖

≤ 2 +
8.242

4.162

a

‖ϕ‖
≤ 2 + 2

a

‖ϕ‖

We obtain a version of the first part of Theorem 2.5.

Theorem 6.3. For all n, a such that

n ≥ 1 +
log 100

− log(1− δ0/13)
and a ≤ δ0‖ϕ‖

3

it holds

Pµ

[

|µ̂n(ϕ)− µ0(ϕ)| ≥ a
]

≤ 2.488 exp
(

− n
δ0

13.44δ0 + 8.324

a2

‖ϕ‖2
)

A simpler, less precise estimate is

Pµ

[

|µ̂n(ϕ)− µ0(ϕ)| ≥ a
]

≤ 2.5 exp
(

− n · 0.046δ0
a2

‖ϕ‖2
)

6.2 Exponential regime

For larger a, we obtain a result with exponential decay by taking t as large as allowed
by the first smallness condition (5), i.e.

t ≃ n

‖ϕ‖ log
(

1 +
δ20

12 + 13δ0

)

.

To simplify, we precisely take the slightly smaller

t =
n

‖ϕ‖ × 0.98δ20
12 + 13δ0

Then the argument in the exponential becomes

−at + (3.36 + 2.081δ−1
0 )

t2

n
‖ϕ‖2) = n

0.98δ20
12 + 13δ0

(

− a

‖ϕ‖ +
0.98(3.36δ20 + 2.081δ0)

12 + 13δ0

)

≤ −n
0.98δ20

12 + 13δ0

( a

‖ϕ‖ − 0.254δ0

)
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and the constant in front:

2 + (7.668 + 8.242δ−1
0 )

t

n
‖ϕ‖ = 2 + (7.668 + 8.242δ−1

0 )
0.98δ20

12 + 13δ0

= 2 +
7.515δ20 + 8.078δ0

12 + 13δ0

≤ 2 +
15.593

25
≤ 2.624

We obtain a version of the second part of Theorem 2.5.

Theorem 6.4. For all n, a such that

n ≥ 1 +
log 100

− log(1− δ0/13)
and a ≥ δ0‖ϕ‖

3

it holds

Pµ

[

|µ̂n(ϕ)− µ0(ϕ)| ≥ a
]

≤ 2.624 exp
(

− n
0.98δ20

12 + 13δ0

( a

‖ϕ‖ − 0.254δ0

))

.

A simpler, less precise estimate is:

Pµ

[

|µ̂n(ϕ)− µ0(ϕ)| ≥ a
]

≤ 2.7 exp
(

− n · 0.009δ20
a

‖ϕ‖
)

.

6.3 Second-order concentration

In the case one has a good upper bound for the variance

σ2(ϕ) = µ0(ϕ
2)− (µ0ϕ)

2 + 2
∑

k≥1

µ0(ϕL
k
0ϕ̄)

then the previous concentration results can be improved by using the second-order for-
mula in Corollary 5.4, which yields

Eµ

[
exp(tµ̂n(ϕ))

]

exp(tµ0(ϕ))
= exp

( t2

2n
σ2(ϕ) +O10.89+20.04δ−1

0
+8.577δ−2

0
(
t3

n2
‖ϕ‖3)

)

×
(
1 +O3.834+4.121δ−1

0
(
t

n
‖ϕ‖)

)

so that, if we know σ2(ϕ) ≤ V :

Pµ

[
|µ̂n(ϕ)−µ0(ϕ)| ≥ a

]
≤

(
2+

(7.668 + 8.242δ−1
0 )t

n
‖ϕ‖

)
exp

(
−at+

t2

2n
V+C

t3

n2
‖ϕ‖3

)

where C can be any number above 10.89 + 20.04δ−1
0 + 8.577δ−2

0 . To get a compact
expression, we observe that 0.89 + 0.04δ−1

0 ≤ 0.93δ−2
0 so that

10.89 + 20.04δ−1
0 + 8.577δ−2

0 ≤ 10 + 20δ−1
0 + 9.507δ−2

0 ≤ 10(1 + δ−1
0 )2 =: C.
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The choice of t can then be adapted to the circumstances; we will only explore the
choice t = an/V which is nearly optimal when a is small.

This choice can be made as soon as

a ≤ V

‖ϕ‖ log
(

1 +
δ20

12 + 13δ0

)

and entails the following upper bound for the front constant:

2 + (7.668 + 8.242δ−1
0 )

δ20
12 + 13δ0

≤ 2 +
7.668 + 8.242

12 + 13
≤ 2.637

Meanwhile, the exponent becomes

−at +
t2

2n
V + C

t3

n2
‖ϕ‖3 = −a2n

2V
+

C‖ϕ‖3a3n
V 3

which, given µ̂n(ϕ) satisfies the Central Limit Theorem, is nearly optimal if a ≪ V 2

2C‖ϕ‖3
and V is close to σ2(ϕ). We obtain Theorem 2.7, in the following version.

Theorem 6.5. For all n ≥ 60/δ0, if σ2(ϕ) ≤ V and

a ≤ V

‖ϕ‖ log
(

1 +
δ20

12 + 13δ0

)

then it holds

Pµ

[
|µ̂n(ϕ)− µ0(ϕ)| ≥ a

]
≤ 2.637 exp

(

− n ·
( a2

2V
− 10(1 + δ−1

0 )2
‖ϕ‖3a3
V 3

))

7 Berry-Esseen bounds

In this section, we use the second-order Taylor formula for the leading eigenvalue to
prove effective Berry-Esséen bounds. The method we use is the one proposed by Feller
[Fel66], which does not yield the best constant in the IID case, but is quite easily adapted
to the Markov or dynamical case as observed in [CP90].

The starting point is a “smoothing” argument that allows to translate the proximity
of characteristic functions into a proximity of distribution functions.

Proposition 7.1 ([Fel66]). Let F,G be the distribution functions and φ, γ be the char-
acteristic functions of real random variables with vanishing expectation. Assume G is
derivable and ‖G′‖∞ ≤ m; then for all T > 0:

‖F −G‖∞ ≤ 1

π

∫ T

−T

∣
∣
∣
φ(t)− γ(t)

t

∣
∣
∣ dt+

24m

πT
.
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We set G(T ) = (2π)−
1

2

∫ T

−∞ e−
t2

2 dt the reduced normal distribution function, so that

‖G′‖∞ = (2π)−
1

2 and γ(t) = e−
t2

2 , and apply the above estimate to the distribution
function Fn of the random variable 1√

n
(ϕ̃(X1) + · · ·+ ϕ̃(Xn)), where here ϕ̃ is the fully

normalized version of ϕ:

ϕ̃ =
ϕ− µ0(ϕ)

σ(ϕ)
where σ2(ϕ) = µ0(ϕ

2)− (µ0ϕ)
2 + 2

∑

k≥1

µ0

(
ϕLk

0(ϕ̄)
)
,

assuming σ2(ϕ) > 0 and with ϕ̄ := ϕ−µ0(ϕ). We save for later the following observation:

σ2(ϕ) = σ2(ϕ̄)

≤ ‖ϕ̄2‖∞ + 2
∑

k≥1

‖ϕ̄‖∞(1− δ0)
k‖ϕ̄‖

≤ ‖ϕ̄‖2
(
1 +

2

δ0

)

so that

‖ϕ̃‖ ≥
(
1 +

2

δ0

)− 1

2

≥
√

δ0/3

Applying formula (1) to it√
n
ϕ̃, we obtain an expression for the characteristic function

φn(t) =

∫

L it√
n
ϕ̃1(x) dµ(x)

= λn
it√
n
ϕ̃

(∫

P it√
n
ϕ̃1 dµ+

∫
[
R/λ

]n
it√
n
ϕ̃
1 dµ

)

︸ ︷︷ ︸

=:A

where µ is the law of X0. From now on, we assume

√
n ≥ ‖tϕ̃‖

log
(

1 +
δ2
0

13+12δ0

) and
√
n ≥ 1 +

log 100

− log(1− δ0/13)

to apply the estimates from Section 5. We will use later that this condition, considering
the extremal case δ0 = 1, implies n ≥ 3311.

We then get (Corollary 5.4):

A =

∫

P it√
n
ϕ̃1 dµ+ λ−n

it√
n
ϕ̃

∫

Rn
it√
n
ϕ̃
1 dµ = 1 +O3.668+4.121δ−1

0
(‖ t√

n
ϕ̃‖).

We also have from Corollary 5.4

λn
it√
n
ϕ̃
= exp

(

− t2

2
+O10.89+20.04δ−1

0
+8.577δ−2

0
(
1√
n
‖tϕ̃‖3)

)

.
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In order to bound |φn(t)− γ(t)|, following Feller [Fel66] we use that for all a, b, c such
that |a|, |b| ≤ c and all n ∈ N it holds

|an − bn| ≤ n|a− b|cn−1.

We take a = φn(t)
1

n , b = γ(t)
1

n and c an upper bound which we will now choose. Feller

takes c = e−
t2

4n , but we need two adaptations and take c = 1.32
1

n e−α t2

n where α ∈ (0, 0.5)
will be optimized later on.

We have γ(t)
1

n = e−
t2

2n ≤ c and

φn(t)
1

n ≤ e−
t2

2n exp
(
(10.89 + 20.04δ−1

0 + 8.577δ−2
0 )(

1

n3/2
‖tϕ̃‖3)

)
A

1

n

where

A ≤ 1 + (3.834 + 4.121δ−1
0 )‖ t√

n
ϕ̃‖

≤ 1 + (3.834 + 4.121δ−1
0 )

δ20
13 + 12δ0

≤ 1.32

To ensure φn(t)
1

n ≤ c, it is therefore sufficient that

(10.89 + 20.04δ−1
0 + 8.577δ−2

0 )(
1√
n
‖tϕ̃‖3) ≤ (0.5− α)t2

i.e. it is sufficient to ask

√
n ≥ 10.89 + 20.04δ−1

0 + 8.577δ−2
0

0.5− α
|t|‖ϕ̃‖3 (8)

Under this assumption, we have (using n ≥ 3311 to bound (n− 1)/n by 0.9996):

|φn(t)− γ(t)| ≤ 1.32ne−0.9996αt2
∣
∣φn(t)

1

n − γ(t)
1

n

∣
∣. (9)

Now we will bound |φn(t)
1

n − γ(t)
1

n |, starting by a finer evaluation of A:

A
1

n = (1 +O3.834+4.121δ−1

0
(‖ t√

n
ϕ̃‖)) 1

n

≤ exp
( 1

n3/2
(3.834 + 4.121δ−1

0 )‖tϕ̃‖)
)

By our assumptions the argument of the exponential is not greater than

1

n
(3.834 + 4.121δ−1

0 ) log
(

1 +
δ20

13 + 12δ0

)

≤ 1

3311

3.834δ20 + 4.121δ0
13 + 12δ0

≤ 0.0001
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and using e0.0001 ≤ 1.0002, for all ε ∈ [0, 0.0001] we have exp(ε) ≤ 1 + 1.0002ε and
therefore:

A
1

n ≤ 1 +
3.835 + 4.122δ−1

0

n3/2
‖tϕ̃‖

Now we have

∣
∣φn(t)

1

n − γ(t)
1

n

∣
∣ ≤

∣
∣
∣λ it√

n
ϕ̃(1 +

3.835 + 4.122δ−1
0

n3/2
‖tϕ̃‖)− 1 +

t2

2n

∣
∣
∣+

∣
∣
∣e−

t2

2n − 1 +
t2

2n

∣
∣
∣

Since for all x ∈ [0,+∞[ we have 0 ≤ e−x − 1 + x ≤ 1
2
x2, the second summand is

bounded above by t4

8n2 . In the first summand we use (Lemma 5.2, definition of σ2 and
normalization of ϕ̃)

λ it√
n
ϕ̃ = 1− t2

2n
+O7.41+17.75δ−1

0
+8.49δ−2

0

(
‖ t√

n
ϕ̃‖3

)
.

The lower order terms simplify and we obtain

∣
∣φn(t)

1

n − γ(t)
1

n

∣
∣ ≤

∣
∣
∣O7.41+17.75δ−1

0
+8.49δ−2

0
(‖ t√

n
ϕ̃‖3) + λ it√

n
ϕ̃

3.835 + 4.122δ−1
0

n3/2
‖tϕ̃‖

∣
∣
∣+

t4

8n2

≤ 1

n3/2

(

(7.41 + 17.75δ−1
0 + 8.49δ−2

0 )‖tϕ̃‖3

+ 1.0524(3.835 + 4.122δ−1
0 )‖tϕ̃‖

)

+
t4

8n2

≤ (7.41 + 17.75δ−1
0 + 8.49δ−2

0 )‖tϕ̃‖3 + (4.036 + 4.338δ−1
0 )‖tϕ̃‖

n3/2
+

t4

8n2

For all T > 0 such that the above conditions on n, t hold for all t ∈ [−T, T ], we have by
Proposition 7.1:

‖Fn −G‖∞ ≤ 1

π

∫ T

−T

∣
∣
∣
φ(t)− γ(t)

t

∣
∣
∣ dt+

24m

πT

≤ 2.64

π

∫ T

0

ne−0.9996αt2
∣
∣φn(t)

1

n − γ(t)
1

n

∣
∣ dt +

3.048

T

≤ 2.64

π
√
n

∫ ∞

0

e−0.9996αt2
(
d‖tϕ̃‖3 + f‖tϕ̃‖+ gt4

)
dt+

3.048

T

where d = 7.41 + 17.75δ−1
0 + 8.49δ−2

0 , f = 4.036 + 4.338δ−1
0 and, using n ≥ 3311,

g = 0.0022. We want to take T as large as possible to lower the last term, but we need
to ensure two conditions:

T ≤
√
n

‖ϕ̃‖ log
(

1 +
δ20

13 + 12δ0

)

and T ≤
√
n

‖ϕ̃‖3
(0.5− α)

10.89 + 20.04δ−1
0 + 8.577δ−2

0

We could use here the lower bound on ‖ϕ̃‖ to replace the left condition by a condition
of the same form as the right one, but this would be too strong when ‖ϕ̃‖ is far from
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the bound. We will make a choice which will be better when ‖ϕ̃‖ is of the order of 1
(recall ϕ̃ is normalized, and therefore insensitive to scaling ϕ), by replacing the above
conditions by the more stringent

T ≤
√
n

max{‖ϕ̃‖, ‖ϕ̃‖3} min
{

log
(

1 +
δ20

13 + 12δ0

)

,
(0.5− α)

10.89 + 20.04δ−1
0 + 8.577δ−2

0

}

In the min, the first term is larger than 0.98δ20/(12 + 13δ0) which is easily seen to be
larger than the second term for all δ0. We thus take

T =

√
n

max{‖ϕ̃‖, ‖ϕ̃‖3}
(0.5− α)

10.89 + 20.04δ−1
0 + 8.577δ−2

0

and we obtain

‖Fn −G‖∞ ≤ 2.64

π
√
n

∫ +∞

0

e−0.9996αt2
(
d‖ϕ̃‖3t3 + f‖ϕ̃‖t+ gt4

)
dt

+
(33.193 + 61.082δ−1

0 + 26.082δ−2
0 )max{‖ϕ̃‖, ‖ϕ̃‖3}

(0.5− α)
√
n

We have for d = 1, 3, 4:
∫ +∞

0

e−0.9996αt2 td dt = (0.9996α)−
d+1

2

∫ +∞

0

e−t2td dt.

Since
∫ +∞
0

e−t2td dt = 1
2
Γ(d+1

2
) we thus have

‖Fn −G‖∞ ≤ 1.32

π
√
n

(
d(0.9996α)−2‖ϕ̃‖3 + f(0.9996α)−1‖ϕ̃‖+ g(0.9996α)−

5

2Γ(
5

2
)
)

+
(33.193 + 61.082δ−1

0 + 26.082δ−2
0 )max{‖ϕ̃‖, ‖ϕ̃‖3}

(0.5− α)
√
n

We will now choose α, by comparing the two most troublesome coefficients 1.32a
π(0.9996α)2

,

which is close to 0.42d
α2 (and makes us want to take α large), and

(33.193+61.082δ−1

0
+26.082δ−2

0
)

0.5−α

which is somewhat close to 2.9a
0.5−α

when δ0 is small (and makes us want to take α small).
This leads us to take α = 0.2. We then get

‖Fn −G‖∞ ≤ 1√
n

(

(77.9 + 186.6δ−1
0 + 89.26δ−2

0 )‖ϕ̃‖3 + (8.49 + 9.12δ−1
0 )‖ϕ̃‖+ 0.069

+ (110.65 + 203.61δ−1
0 + 86.94δ−2

0 )max{‖ϕ̃‖, ‖ϕ̃‖3}
)

≤ 1√
n

(

(197.04 + 399.33δ−1
0 + 176.2δ−2

0 )max{‖ϕ̃‖, ‖ϕ̃‖3}+ 0.069
)

Using ‖ϕ̃‖ ≥
√

δ0/3 and since δ0 ≤ 1, we obtain 0.069 ≤ 0.36max{‖ϕ̃‖, ‖ϕ̃‖3}δ−2
0 so

that

‖Fn −G‖∞ ≤ max{‖ϕ̃‖, ‖ϕ̃‖3}√
n

(
197.04 + 399.33δ−1

0 + 176.56δ−2
0

)
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and finally

‖Fn−G‖∞ ≤ 177(δ−2
0 +2.26δ−1

0 +1.1)
max{‖ϕ̃‖, ‖ϕ̃‖3}√

n
≤ 177(δ−1

0 +1.13)2
max{‖ϕ̃‖, ‖ϕ̃‖3}√

n

which is Theorem 2.9.
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