Abdallah Saffidine
email: abdallah.saffidine@dauphine.fr

Tristan Cazenave
email: cazenave@lamsade.dauphine.fr

Developments on Product Propagation

Introduction

Product Propagation (PP) is a way to backup probabilistic information in a two-player game tree search [START_REF] Slagle | Experiments with a multipurpose, theoremproving heuristic program[END_REF]. It has been advocated as an alternative to minimaxing that does not exhibit the minimax pathology [START_REF] Pearl | On the nature of pathology in game searching[END_REF][START_REF] Baum | Best play for imperfect players and game tree search[END_REF][START_REF] Baum | A Bayesian approach to relevance in game playing[END_REF][START_REF] Horacek | Towards understanding conceptual differences between minimaxing and product-propagation[END_REF][START_REF] Horacek | An analysis of decision quality of minimaxing vs. product propagation[END_REF].

PP was recently proposed as an algorithm to solve games, combining ideas from Proof Number Search (PNS) and probabilistic reasoning [START_REF] Stern | Learning to solve game trees[END_REF]. In Stern's paper, PP was found to be about as performant as PNS for capturing go problems.

We conduct a more extensive study of PP, comparing it to various other paradigmatic solving algorithms and improving its memory consumption and its solving time. Doing so, we hope to establish that PP is an important algorithm for solving games that the game search practician should know about. Indeed, we exhibit multiple domains in which PP performs better than the other tested game solving algorithms.

The baseline game tree search algorithms that we use to establish PP's value are Monte Carlo Tree Search (MCTS) Solver [START_REF] Mark | Monte-Carlo tree search solver[END_REF] which was recently used to solve the game of havannah on size 4 [START_REF] Ewalds | Playing and solving Havannah[END_REF]; PNS [START_REF] Victor | Proof-Number Search[END_REF][START_REF] Van Den Herik | Proof-Number Search and its variants[END_REF][START_REF] Kishimoto | Game-tree search using proof numbers: The first twenty years[END_REF]; and αβ [START_REF] Russell | Artificial Intelligence -A Modern Approach[END_REF].

The next section deals with algorithms solving two-player games. The third section is about the Product Propagation algorithm. The fourth section details experimental results and the last section concludes.

Solving two-player games

We assume a deterministic zero-sum two-player game with two outcomes and sequential moves. Game tree search algorithms have been proposed to address games with multiple outcomes [START_REF] Cazenave | Score bounded Monte-Carlo tree search[END_REF][START_REF] Saffidine | Multiple-outcome proof number search[END_REF], multi-player games [START_REF] Sturtevant | A comparison of algorithms for multi-player games[END_REF][START_REF] Maarten | Best reply search for multiplayer games[END_REF][START_REF] Nijssen | An overview of search techniques in multi-player games[END_REF], non-deterministic games [START_REF] Hauk | Rediscovering *-minimax search[END_REF], and games with simultaneous moves [START_REF] Saffidine | Alpha-beta pruning for games with simultaneous moves[END_REF].

A generic best-first search framework is presented in Algorithm 1. To instantiate this framework, one needs to specify a type of information to associate to nodes of the explored tree as well as functions to manipulate this type: info-term, init-leaf, select-child, update.

PNS is a best-first search algorithm which expands the explored game tree in the direction of most proving nodes, that is, parts of the tree which seem easier to prove or disprove.

MCTS Solver is also a best-first search algorithm which can be cast in the mentioned framework. In MCTS [START_REF] Browne | A survey of Monte Carlo tree search methods[END_REF], the information associated to nodes is in the form of sampling statistics, and bandit-based formulas [START_REF] Kocsis | Bandit based Monte-Carlo planning[END_REF] are used to guide the search. The sampling performed at a leaf node in MCTS can take the form of games played randomly until a terminal position, but it can also be the value of a heuristical evaluation function after a few random moves [START_REF] Lorentz | Amazons discover Monte-Carlo[END_REF][START_REF] Mark | Monte Carlo tree search in lines of action[END_REF]. We denote the latter variant as MCTS-E.

Probability Search

The Product Propagation Algorithm

Product Propagation (PP) is a recently proposed algorithm to solve perfect information two-player two-outcome games based on an analogy with probabilities [START_REF] Stern | Learning to solve game trees[END_REF].

In PP, each node n is associated to a single number PPN(n) (the probability propagation number for n) such that PPN(n) ∈ [0, 1]. The PPN of a leaf corresponding to a Max win is 1 and the PPN of a Max loss is 0. PPN(n) can intuitively be understood as the likelihood of n being a Max win given the partially explored game tree. With this interpretation in mind, natural update rules can be proposed. If n is an internal Min node, then it is a win for Max if and only if all children are win for Max themselves. Thus, the probability that n is win is the joint probability that all children are win. If we assume all children are independent, then we obtain that the PPN of n is the product of the PPN of the children for Min nodes. A similar line of reasoning leads to the formula for Max nodes. To define the PPN of a non-terminal leaf l, the simplest is to assume no information is available and initiate PPN(l) to 1 2 . These principles allow to induce a PPN for every explored node in the game tree and are summed up in Table 1.

Note that this explanation is just a loose interpretation of PPN(n) and not a formal justification. Indeed, the independence assumption does not hold in practice, and in concrete games n is either a win or a loss for Max but it is not a random event. Still, the independence assumption is used because it is simple and the algorithm works well even though the assumption is usually wrong.

To be able to use the generic best first search framework, we still need to specify which leaf of the tree is to be expanded. The most straightforward ap-bfs(state q, player m) r ← new node with label m r.info

← init-leaf(r) n ← r while r is not solved do while n is not a leaf do n ← select-child(n) extend(n) n ← backpropagate(n) return r extend(node n) switch on the label of n do case terminal n.info ← info-term(n) case max foreach q in {q , q a -→ q } do n ← new node with label min n .info ← init-leaf(n) Add n as a child of n case min foreach q in {q , q a -→ q } do n ← new node with label max n .info ← init-leaf(n) Add n as a child of n backpropagate(node n) new_info ← update(n) if new_info = n.info ∨ n = r then return n else n.info ← new_info return backpropagate(n.parent)
Algorithm 1: Pseudo-code for a best-first search algorithm.

Table 1. Initial values for leaf and internal nodes in PP. C denote the set of children.

Node label PPN info-term

Max wins

1 Max loses 0 init-leaf 1 2 update Max 1 -C (1 -PPN) Min C PPN
proach is to select the child maximizing PPN when at a Max node, and to select the child minimizing PPN when at a Min node, as shown in Table 2.

Practical improvements

The mobility heuristic provides a better initialization for non-terminal leaves. Instead of setting PPN to1 /2 as described in Table 1, we use an initial value that depends on the number of legal moves and on the type of node. Let c be the number of legal moves at a leaf, the PPN of which we want to initialize. If the leaf is a Max -node, then we set

PPN = 1 -1 /2 c . If the leaf is a Min-node, then we set PPN = 1 /2 c .
In the description of best first search algorithms given in Algorithm 1, we see that new nodes are added to the memory after each iteration of the main loop in bfs. Thus, if the init-leaf procedure is very fast then the resulting algorithm will fill the memory very quickly. Earlier work on PNS provides inspiration to address this problem [START_REF] Kishimoto | Game-tree search using proof numbers: The first twenty years[END_REF]. For instance, Kishimoto proposed to turn PP into a depth-first search algorithm with a technique similar to the used in dfpn. 1 Alternatively, it is possible to adapt the PN 2 ideas to develop a PP 2 algorithm. In PP 2 , instead of initializing directly a non-terminal leaf, we call the PP algorithm on the position corresponding to that leaf with a bound on the number of nodes. The bound on the number of nodes allowed in the sub-search is set to the number of nodes that have been created so far in the main search. After a sub-search is over, the children of the root of that search are added to the tree of the main search. Thus, the PPN associated these newly added nodes is based on information gathered in the sub-search, rather than based only on an initialization heuristic.

Experimental Results

While the performance of PP as a solver has matched that of PNS in go [START_REF] Stern | Learning to solve game trees[END_REF], it has proven to be disappointing in shogi. 1 We now exhibit several domains where the PP search paradigm outperforms more classical algorithms.

In the following sets of experiments, we do not use any domain specific knowledge. We are aware that the use of such techniques would improve the solving ability of all our programs. Nevertheless, we believe that showing that a generic and non-optimized implementation of PP performs better than generic and nonoptimized implementations of PNS, MCTS, or αβ in a variety of domains provides good reason to think that the ideas underlying PP are of importance in game solving.

We have described a mobility heuristic for PP variants in Section 3.2. We also use the classical mobility heuristic for PNS variants. That is, if c is the number of legal moves at a non-terminal leaf to be initialized, then instead of setting the proof and disproof numbers to 1 and 1 respectively, we set them to 1 and c if the leaf is a max -node or to c and 1 if the leaf is a min-node.

All variants of PNS, PP, and MCTS were implemented with the best-first scheme described in Section 2. For PN 2 and PP 2 , only the number of nodes in the main search is displayed.

The game of y

The game of y was discovered independently by Claude Shannon in the 50s, and in 1970 by Schensted and Titus [26]. It is played on a triangular board with a hexagonal paving. Players take turns adding one stone of their color on empty cells of the board. A player wins when they succeed in connecting all three edges with a single connected group of stones of their color. Just as hex, y enjoys the no-draw property.

The current best evaluation function for y is the reduction evaluation function [START_REF] Van Rijswijck | Search and evaluation in Hex[END_REF]. This evaluation function naturally takes values in [0, 1] with 0 (resp. 1) corresponding to a Min (resp. Max) win.

PNS with the mobility initialization could not solve any position in less than 3 minutes in a preliminary set of about 50 positions. As a result we did not include this solver in our experiment with a larger set of positions. The experiments on y was carried out as follows. We generated 77,012 opening positions on a board of size 6. We then ran PP using the reduction evaluation function, MCTS using playouts with a random policy, and a variant of MCTS using the same reduction evaluation instead of random playouts (MCTS-E). For each solver, we recorded the total number of positions solved within 60 seconds. Then, for each solving algorithm, we computed the number of positions among those 77,012 which were solved faster by this solver than by the two other solver, as well as the number of positions which needed fewer iterations of the algorithm to be solved. The results are presented in Table 3.

We see that the PP algorithms was able to solve the highest number of positions, 77,010 positions out of 77,012 could be solved within 60 seconds. We also note that for a very large proportion of positions (68,477), PP is the fastest algorithm. However, MCTS needs fewer iterations than the other two algorithms on 35,444 positions. A possible interpretation of these results is that although iterations of MCTS are a bit more informative than iterations of PP, they take much longer. As a result, PP is better suited to situations where time is the most important constraint, while MCTS is more appropriate when memory efficiency is a bottleneck. Note that if we discard MCTS-E results, then 72,830 positions are Figure 1 displays some of these results graphically. We sampled about 150 positions of various difficulty from the set of 77,012 y positions, and plotted the time needed to solve such positions by each algorithm against the time needed by PP. We see that positions that are easy for PP are likely to be easy for both MCTS solvers, while positions hard for PP are likely to be hard for both other solvers as well.

domineering

domineering is played on a rectangular board. The first player places a vertical 2 × 1 rectangle anywhere on the board. The second player places an horizontal 2 × 1 rectangle, and the games continues like that until a player has no legal moves. The first player that has no legal moves has lost.

domineering has already been studied in previous work by game search specialists as well as combinatorial game theorists [START_REF] Breuker | Solving 8×8 domineering[END_REF][START_REF] Michael Lachmann | Who wins domineering on rectangular boards[END_REF]. 2 While these papers focusing on domineering obtain solution for relatively large boards, we have kept ourselves to a naive implementation of both the game rules and the algorithms. In particular, we do not perform any symmetry detection nor make use of combinatorial game theory techniques such as decomposition into subgames.

We presents results for the following algorithms: αβ, PNS with Transpositions (PNT) [START_REF] Schijf | Proof-number search and transpositions[END_REF], PN 2 [START_REF] Michel | Memory versus Search in Games[END_REF], PP, PP with Transpositions (PPT) and PP 2 . The PNS algorithm could not find a single solution within 10 7 node expansion when transpositions where not detected and it is thus left out.

For PNS variants the standard mobility heuristic is used to compute the proof numbers and the disproof numbers at non solved leaves. For PP variants, we used the mobility heuristic as described in Section 3.2.

Tables 4 and5 give the number of nodes and times for different algorithms solving domineering. αβ is enhanced with transposition tables, killer moves, the history heuristic and an evaluation function. We can see that on the smallest 5 × 6 board that PPT gives the best results. On the larger 6 × 6 board PPT is the best algorithm by far. On the largest 7 × 6 board, several algorithms run out of memory, and the best algorithm remains PPT which outperforms both αβ and PN 2 . In their paper, Breuker et al, have shown that the use of transposition tables and symmetries increased significantly the performance of their αβ implementation [START_REF] Breuker | Solving 8×8 domineering[END_REF]. While, our proof-of-concept implementation does not take advantage of symmetries, our results show that transpositions are of great importance in the PP paradigm as well. For standard board sizes such as 4 × 4 or 5 × 4, αβ gives the best results among the algorithms we study in this paper. We have noticed that for N × 1 boards for N ≥ 18, PPT becomes competitive. Results for a few board sizes are given in Table 6 for the number of nodes and in Table 7 for the times.

Conclusion

In this paper, we have presented how to use Product Propagation (PP) in order to solve abstract two-player games. We extended PP so as to handle transpositions and to reduce memory consumption with the PP 2 algorithm. For two of the games that have been tested (i.e., y, domineering), we found that our extensions of PP are able to better solve games than the other solving algorithms. For nogo, PP variants outperform PNS variants on all tested sizes, and PP does better than αβ on some sizes but αβ is better on standard sizes. Being a best-first search algorithm, PP is quite related to PNS and MCTS, as such, it seems natural to try and adapt ideas that proved successful for these algorithms to the Product Propagation paradigm. For instance, while PNS and PP are originally designed for two-outcome games, future work could adapt the ideas underlying Multiple-Outcome PNS [START_REF] Saffidine | Multiple-outcome proof number search[END_REF] to turn PP into an algorithm addressing more general games. Adapting more elaborate schemes for transpositions could also prove interesting [START_REF] Müller | Proof-set search[END_REF][START_REF] Kishimoto | A solution to the GHI problem for depthfirst proof-number search[END_REF][START_REF] Saffidine | UCD: Upper Confidence bound for rooted Directed acyclic graphs[END_REF].

Fig. 1 .

 1 Fig. 1. Time needed to solve various opening positions in the game of y.

Table 2 .

 2 Selection policy for PP. C denotes the set of children.

	Node label Chosen child
	Max	arg max C PPN
	Min	arg min C PPN

Table 3 .

 3 Number of positions solved by each algorithm and number of positions on which each algorithm was performing best. PP, 4180 positions are solved fastest by MCTS, 30,719 positions need fewest iterations to be solved by PP, and 46,291 need fewest iterations by

		PP MCTS MCTS-E
	Positions solved 77,010 76,434 69,298
	Solved fastest	68,477 3,645	4,878
	Fewest iterations 22,621 35,444 18,942
	solved fastest by MCTS.		

Table 4 .

 4 Number of node expansions needed to solve various sizes of domineering.

			5 × 6	6 × 6	7 × 6
	αβ	701,559 38,907,049 6,387,283,988
	PNT 1,002,277	>10 7	>10 7
	PN 2	17,236 >154,107	>511,568
	PP		101,244 5,525,608	>10 7
	PPT	27,766	528,032	4,294,785
	PP	2	3,634	24,190	145,757

Table 5 .

 5 Time (s) needed to solve various sizes of domineering.nogo is the misere version of the game of go. It was presented in the BIRS 2011 workshop on combinatorial game theory[START_REF] Chou | Revisiting Monte-Carlo tree search on a normal form game: Nogo[END_REF].3 The first player to capture has lost.We present results for the following algorithms: αβ, PNT[START_REF] Schijf | Proof-number search and transpositions[END_REF], PN 2 [5], PP, PPT and PP 2 . Again, the PNS algorithm could not find a single solution within 10 7 node expansion and is left out.

		5 × 6	6 × 6	7 × 6
	αβ 0.87	40.68	5,656
	PNT 5.92		
	PN 2 78.7 >10,660 >153,000
	PP	0.24	20.1 >35.84
	PPT 0.17	5.33	55.13
	PP 2	0.22	15.5	320.3
	4.3 nogo			

Table 6 .

 6 Number of node expansions needed to solve various sizes of nogo.

		4 × 4	18 × 1	20 × 1	22 × 1
	αβ 17,194,590 4,444,384 154,006,001 3,133,818,285
	PNT 3,575,076 2,015,179	>10 7	>10 7
	PN 2	77,010 > 22, 679 > 29, 098
	PP	>10 7 864,951 6,173,393	>10 7
	PPT 2,319,816	98,991	389,119	2,814,553
	PP 2		14,246	

Table 7 .

 7 Time (s) needed to solve various sizes of nogo.

		4 × 4 18 × 1 20 × 1 22 × 1
	αβ	33.05	10.43	361.0	7,564
	PNT	436.6	144.2 > 809	
	PN 2 27,519 > 3, 607 > 4, 583	
	PP > 338.84	21.39	156.3 > 307.55
	PPT	396.36	9.46	46.3 446.58
	PP 2		109.7		

Akihiro Kishimoto, personnal communication.

Some results can also be found on http://www.personeel.unimaas.nl/ uiterwijk/Domineering_results.html.

http://www.birs.ca/events/2011/5-day-workshops/11w5073