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Abstract

Some soft magnetic materials are strongly dependent of the temper-
ature, because of their low Curie temperature. In order to predict their
behaviour in electrical devices, hysteresis models able to take into account
the temperature are needed. The Vector Play static hysteresis model is
an interesting hysteresis model that can be modified in order to take into
account the thermal behaviour. In this paper, the temperature is taken
into account in this last model through its parameters. The variations
of some parameters with temperature are mainly issued from numerical
interpolation and specific assumptions. Simulation results are compared
to measurements and discussed.

1 Introduction

The well known Jiles-Atherthon [1] and Preisach [2] hysteresis models were
widely used during the last decades to predict hysteresis loops or magnetic
losses in many cases. Despite the huge number of users of these models, very
few authors tried to take into account the temperature. For example [3] used
analytical empirical laws of variation of the Jiles-Atherthon model parameters
versus temperature to predict hysteresis loops. In [4], authors compared several
approaches (analytical [3], numerical, and mixed) to identify each parameter
variations. Concerning Preisach models, the authors of [5] used a double well
potential distribution. Both static and dynamic interactions for an ultra fine
particulate system were taken into account in order to simulate various mag-
netization processes, such as: field-cooled, zero field-cooled, thermo-remanent
magnetization, magnetic relaxation in applied field, and the major hysteresis
loop as a function of temperature. The authors of [6] assumed that the Preisach
distribution function was a factorized product of a Gaussian coercive field distri-
bution, and a Gaussian interaction field distribution both with some dispersion
coefficients. Those last two approaches are rather complicated to implement in
engineering softwares such as finite element or circuit-type (SPICE) ones.
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The vector play models (also called energy-based vector hysteresis model) are
phenomenological models of hysteresis first introduced by Bergqvist [7] which
have many desirable properties. In particular, it is intrinsically vectorial, and
provides an accurate energy balance [8]. It has been shown in [9] that the model
accuracy was strongly improved by increasing the number of cells. However a
relatively small number of internal variables was actually necessary to obtain
an accurate representation of the complex response of the material. Therefore,
a trade-off between accuracy and number of cells is always possible with this
model. This is not the case for the Jiles Atherthon model for example.

The VPM has been tested and implemented in Finite Elements by many au-
thors [9, 8, 10] and recently been improved in the case of rotating fields[11]. So
as to be useful in practical engineering applications, models must consider the ef-
fect of temperature. The same authors also proposed a method [12] where they
considered linear variations of saturation magnetization and coercive field to
take into account the temperature for permanent magnets. In a previous paper
[13], variations of some parameters of the VPM were identified thanks to differ-
ent papers in the literature [3, 14, 15]. This last approach gave mixed results.
First, the purely magnetic behaviour gave not so good results for very low ap-
plied fields (not enough accurate description in this particular region). Second,
the VPM showed no difficulties to adapt itself to the temperature dependence,
by allowing some parameters to change their values. The thermal behaviour was
qualitatively well retrieved, loops expanded or shrank themselves in function of
temperature showing the ability of the build model to qualitatively retrieve the
Hopkinson effect.

In order to improve the accuracy of the simulations of the VPM, we present
in this work recent developments on the dependence of VPM on temperature.
In our approach, no analytical (empirical) laws are used in order to predict
the thermal behaviour. Secondarily, a novel approach for identifying VPM’s
parameters is proposed.

The paper is organized as follows: the implemented VPM and the main
assumptions made to take into account the temperature are presented (section
2). The identification of VPM’s parameters is analysed in section 3. In section 4,
the results of the identification algorithm are presented on a virtual and a real
material. Discussion of obtained results and perspectives conclude the paper
(section 5).

2 The vector play model

2.1 Purely magnetic behaviour

Hysteresis in magnetic materials can be seen as defects at microscopical scale,
which pin Bloch walls and prevent them from moving under the effect of an
external magnetic field. When the magnetic energy becomes higher than the
energy barrier due to this pinning force, Bloch walls suddenly rearrange and the
energy corresponding to the jump is dissipated [7].

Basing on an analogy between pinning force and mechanical friction force,
Henrotte et al. proposed a phenomenological (macroscopic) model which is
consistent with laws of thermodynamics [8]. In this model, the applied magnetic
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Figure 1: Vector diagram of h, hre and hi for a single cell (left), and for N = 3
cells (right).

field h is decomposed in a reversible hre and irreversible hir part:

h = hre + hir

The magnetic field h is the input of the model. The reversible magnetic field
hre is computed as the weighted sum of contributions hk

re of a number N of
“cells” (in practice hir is never computed explicitly). Each cell is analogous to
a mechanical system composed of a spring and a friction slider:

hk
re =

N∑
k=1

ωkh
k
re (1)

In this sum, ωk ≥ 0 are the weights associated to cells, and must verify the
condition:

∑N
k=1 ωk = 1. The terms hk

re are the internal state of each cell.
They are upgraded as a function of the applied magnetic field h and of their
current value hk

re0 according to:

hk
re =

{
hk
re0 if ||h− hk

re0|| < χk

h− χk · h−hk
re0

||h−hk
re0||

otherwise
(2)

where χk is a parameter linked to the coercivity [13]. The relationship between
h, hre and hi is depicted in figure 1. The magnetization M is computed as a
function of the reversible magnetic field as:

M = Man(||hre||) ·
hre

||hre||
(3)

where Man(‖|hre||) is a scalar anhysteretic magnetization function. Finally, the
magnetic flux density is computed as:

b = µ0(M + h) (4)

One of the advantages of this model is that it is intrinsically vectorial. Moreover,
the number of cells is not fixed a priori, and can eventually be adjusted in such
a way to fulfill accuracy requirements.

2.2 Temperature dependent extension

All equations and principles of the model seen before remain valid, only some pa-
rameters will have their value changed. As seen in the previous section, the VPM
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is mainly governed by the anhysteretic function Man and by the χk values. For
real materials, analytical anhysteretic functions (see [8] for possible analytical
functions) always present more or less error on one or several regions (satura-
tion, saturation knee, low field region) compared to the measured anhysteretic
curve. Moreover, analytical functions also need an identification algorithm of
physical (best case) or empirical (worst case) parameters. As the temperature
will change, all anhysteretic function parameters will change as well. If some
physical parameters variations with temperature are well described in the liter-
ature (example : saturation magnetization Ms(T )), some empirical parameters
are not. For these reasons, we chose to use a specific interpolation table in order
to evaluate Man at a given temperature.

For anhysteretic magnetization Man, several major loops are measured at
different temperatures that were performed on a ring sample wound with high
temperature enameled wires (placed in an thermal enclosure) following the flux-
metric method with respect to the IEC 60404-4 standard [16]. More precisely,
the major loop is measured at several temperatures, and the anhysteretic mag-
netization Man(h, T ) is computed by considering the middle point of horizontal
lines which connect ascending and descending branches of the (major) loop. The
anhysteretic magnetization function Man(h, T ) for a generic temperature T is
obtained by interpolation. The figure 2 (left) shows the built 2D anhysteretic
magnetization Man versus the temperature T and of the applied field h. These
data are measured on the same material than the one presented in section 4.2.
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Figure 2: Left: Anhysteretic magnetization Man versus the temperature T
and of the applied field H . Right: Coercive field Hc versus temperature T .
Measurements were made on a MnZn N30 ferrite material (see section 4).

As for parameters ωk, the same property (
∑N

k=1 ωk = 1) must hold at any
temperature, we assume that in fact they don’t depend on the temperature.
However parameters χk are related to a local pinning force or a local coercive
field; therefore it is assumed here that the variations of all χk with temperature
are the same as the macroscopic coercive field Hc, which is already known with
the measurements of major loops at different temperatures (figure 2 (right)).
Now, let us suppose that all χk have been identified at room temperature (RT).
All χk at any temperature T within the range can be rescaled by applying (5).

χk(T ) =
Hc(T )

Hc(RT )
χk(RT ) (5)

In order to verify the assumptions made here, the (ωk, χ
k) parameters have
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to be identified so as to that the VPM give accurate results for any kind of
signals (low/high levels, single/multiple frequency(ies)).

3 Parameters identification

The VPM is fully characterized by the anhysteretic magnetization function
Man(h), and the N couples of parameters (ωk, χ

k) which represent each of the
N cells which compose the model. The number N of cells is a priori unknown.

The parameters ωk and χk must verify the following constraints:

ωk ≥ 0 ;

N∑
k=1

ωk = 1 (6)

χ1 = 0 ; χk ≤ χk+1 (7)

In [8], it is proposed to determine these parameters basing on the experimental
curve Hc(Hp), where Hc is the coercitive field corresponding to a minor sym-
metric closed loop, for which the peak magnetic field is Hp. The same approach
is followed in [10] and [13]. However, this approach requires a specific set of
measurements (i.e. symmetric closed loops at many peak levels), which have
to be performed purposely. Conversely, it would be interesting to explore the
possibility of being able to identify model parameters from a generic set of mea-
surements. In this work we followed this second approach. We stress that the
term “generic” does not mean that any dataset will suit, but rather that the
excitation field h(t) does not need to be a specific signal. This last point will
be discussed later.

3.1 Anhysteretic magnetization

The anhysteretic magnetization function Man(h, T ) is obtained from experimen-
tal measurements taken at different temperatures (see previous section).

3.2 Naive formulations for the identification problem

Therefore the only parameters which have to be identified are ωk and χk (at a
given temperature T ) with k spanning from 1 and the (unknown) number of cells
N . According to [13], these parameters have been fitted for a single temperature
T0 = 298 K; their variation with temperature is as described in section 2. For
sake of simplicity, let’s define the vectors Y = (ω1 . . . ωN ) and X = (χ1 . . . χN ).
For a given number of cells N , and a given dataset of experimental measurement
b(h), one possibility would be to solve the constrained optimization problem:

(ωk, χ
k) = arg min

Y,X
||b(h)− bs(h)||22

ωk ≥ 0 ;
∑N

k=1 ωk = 1
χ1 = 0 ; χk ≤ χk+1

(8)

where bs(h) is the magnetic flux density computed by the model, which clearly
depends on the set of parameters (ωk, χ

k : k = 1 . . . N). In fact, the quadratic
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term ||b(h) − bs(h)||2 could be replaced by any meaningfull cost function, for
instance: 

(ωk, χ
k) = arg min

Y,X
||Hc(Hp)−Hc,s(Hp)||22

ωk ≥ 0 ;
∑N

k=1 ωk = 1
χ1 = 0 ; χk ≤ χk+1

(9)

where Hc,s(Hp) is the simulated coercive field, which can be easily evaluated [8]
as:

Hc,s(Hp) =

∑m(Hp)
k=1 ωkχ

k∑m(Hp)
k=1 ωk

(10)

where the index m(Hp) ∈ [1;N ] is the largest integer such that χk ≤ Hp ∀k ≤
m(Hp).

3.3 Improved formulation

All these “naive” formulations are prone to several problems. One of them
is that the optimization algorithm can stagnate in a local minimum. Before
introducing better formulations, one can observe that a single cell (ω, χ) can
be replaced by two cells (ω1, χ

1) and (ω2, χ
2), provided that: ω = ω1 + ω2 and

χ = χ1 = χ2. With more generality, a single cell (ω, χ) can be replaced by a
number p of cells (ωi, χ) in the following way:

(ω, χ) ⇔ (ω1, χ) . . . (ωp, χ) provided that:

p∑
i=1

ωi = ω (11)

Keeping this observation in mind, we can reformulate the problem (8) by con-
sidering a number N of cells (ω, χk), all of which share the same value of ω = 1

N :
in this way, the constraints (6) are fulfilled by construction:

(ωk, χ
k) = arg min

X
||b(h)− bs(h)||22

ωk ≡ 1/N
χ1 = 0 ; χk ≤ χk+1

(12)

The formulation (12) can be further simplified by taking as unknown the
difference ∆χk = χk+1−χk instead of χk, which will be constrained to be non-
negative. In this way we obtain the following (nonlinear) non-negative least
squares formulation: {

∆χk = arg min
∆X
||b(h)− bs(h)||22

∆χk ≥ 0
(13)

where ∆X = (∆χ1 . . .∆χN − 1). Observe that formulation (8) has a number
2N−1 unknowns, whereas this formulation has only N−1 unknowns. However,
due to the fact that in this formulation ωk takes discrete values, in principle a
finer discretization (i.e. a higher value of N) would be required so as to achieve
comparable accuracy.

The most important improvement of formulation (13) with respect of (8) or
(9) is that constraints are much more relaxed. Moreover, due to the equivalence
property (11), the fact that in (8) ωk are free parameters may introduce many
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local minima in the cost function. This is not the case with (13) because ωk ≡
1/N is imposed. Therefore the optimization problem should be easier to solve
numerically.

The price to pay for this is that a higher number N of cells has to be consid-
ered. This point is a huge drawback in view of Finite Element implementation.
Therefore we devised an algorithm for reducing the number of cell. Namely,
our strategy is to solve (13) with a high number of cells, and then simplify the
obtained VPM by packing some cells together.

3.4 Packing cells algorithm

First of all, observe that the number of independent cells provided by formula-
tion (13) corresponds to the number of non-zero values of ∆X. In fact, two (or
more) consecutive cells corresponding to ∆χk = 0 can be packed together into
a single cell by using the same argument (11) developed beforehand, that is:

∆χk = . . . = ∆χk+p−1 = 0 ⇔


(1/N, χk)
(1/N, χk+1)

...
(1/N, χk+p)

=


(1/N, χk)
(1/N, χk)

...
(1/N, χk)

−→ (
p

N
, χk)

(14)
The main idea of the algorithm is to consider the case of a VPM composed

by an unknown, small number NT of independent cells, which is identified by
solving the problem (13). In the ideal case (no measurement noise, exact arith-
metic, etc.) the solution (∆χk) should be composed of exactly NT non-zero
terms, whatever the discretization N . However in practice this is rarely the
case. So, we are expecting that the obtained solution will be composed of at
best NT non-zero terms, and other small but non-zero terms.

In order to recover the true solution, the idea is to search the smallest non-
zero term, and to aggregate it with its bigger neighbour. Namely, assume that
∆χk is the smallest non-zero term of ∆X, and that ∆χk+1 > ∆χk−1; then the
algorithm will execute:

∆χk+1 ← ∆χk+1 + ∆χk

∆χk ← 0

This simple iteration is repeated until it is possible to simplify the VPM, that
is until two non-zero, not too small, adjacent terms can be found in the vector
∆X. At each iteration a term of ∆X is set to 0, so that this algorithm will
necessarily terminate. The pseudocode of the algorithm is listed hereafter:

1: procedure simplifyModel(∆X[1 . . . N − 1])
2: repeat
3: find I = {i ∈ [1, N − 1] : ∆χi 6= 0 ∧ max(∆χi+1, ∆χi−1) > 0}
4: if I 6= ∅ then
5: i← arg min

i∈I
(∆χi)

6: j ← arg max
j∈{i−1,i+1}

(∆χj)

7: ∆χj ← ∆χj + ∆χi

8: ∆χi ← 0
9: end if
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10: until I 6= ∅
11: end procedure

4 Results

4.1 Fake material

Before using formulation (13) to identify a real material, we performed pre-
liminary tests by using simulated measurements and validation datasets. The
fake material we simulated has an anhysteretic magnetization described by a
Langevin function:

Man(h) = Ms

(
coth

(
h

h0

)
− h0

h

)
with Ms = 4 ·105 A/m and h0 = 7 A/m, and it is modeled by a VPM composed
by only 3 cells:

(0.1, 0) − (0.3, 5) − (0.6, 15)

The data generated by using this model have been fitted with formulation (13).
So as to avoid inverse crime [17], in the generation of this synthetic data, we
simulated a Gaussian white noise η ∼ N (0, 52 mT2), and we introduced a bias
of 1% in parameters Ms and h0. The minimization algorithm used is the interior
point algorithm [18], as implemented in the function fmincon of Matlab R©. All
simulations have been repeated 100 times so as to evaluate confidence intervals
by a Monte Carlo method [19]. The result of one of these is depicted in figure 3.
The values of (χk) obtained for N = 10 are listed in table 1. The number of cells
is the number of different values of χk: for instance, for N = 10 formulation 13
provided the 4-cells simplified VPM (table 1, last column):

(0.1, 0) − (0.3, 5.064) − (0.5, 14.938) − (0.1, 15.454)

One observes that all formulations provide results which are quite close to the
reference VPM (figure 3). VPMs with different numbers of cells can be compared

by plotting χk as a function of the variable Ωk =
∑k

i=1 ωi. We performed
simulations with N spanning from 10 to 50: we found that the obtained results
are quite stable (not shown).

The simplification algorithm is very effective in reducing the number of cells.
For engineering purposes, one could mention that the computation of losses also
provide accurate results up to 5% for all fitted models.

4.2 Real material

We identified different VPMs corresponding to an Manganese Zinc N30 ferrite
material, which has been selected for its low value of Tc < 433 K. The ex-
perimental measurements used for identification and validation are depicted in
figure 4. For identification we used the formulation (13), with N spanning from
10 to 50. Datasets used for identification and validation have been measured at
298 K. The obtained values for (χk) are reported in table 2 for N = 10.

One observes that the formulation (13) provided results in good agreement
with experimental data (comparison of loops). Like in previous simulations, the
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Figure 3: Left: simulated noisy measurement and fitted VPM by using formu-
lation 13 with N = 10. Right: simulation performed on a validation dataset
with the ordinary (red) and simplified (yellow) model; in the inset is shown a
zoom of a minor asymmetrical loop.

Table 1: Values of χk (A/m) obtained from simulations (N = 10)

k eq. (13) eq. (13), simplified

1 0 0
2 4.681± 0.729 5.064
3 5.064± 0.484 5.064
4 5.409± 0.938 5.064
5 13.427± 2.148 14.938
6 14.496± 0.695 14.938
7 14.745± 0.458 14.938
8 14.938± 0.530 14.938
9 15.152± 0.658 14.938
10 15.454± 0.950 15.454

Number of cells: 10 4
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Figure 4: Left: measurement used to fit VPMs with N = 10. Right: validation
with a symetric minor loop. Red and yellow curves are the ouput generated
respectively by the ordinary (red) and simplified (yellow) VPM.

Table 2: Values of χk (A/m) obtained for a MnZn N30 ferrite (N = 10)

k eq. (13) eq. (13), simplified

1 0 0
2 0.0785 0
3 0.1506 0.2171
4 0.2171 0.2171
5 0.2789 0.2171
6 3.0845 3.0845
7 5.8032 3.0845
8 18.3351 22.4283
9 21.4755 22.4283
10 22.4283 22.4283

Number of cells: 10 4
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Figure 5: Left: estimated values of (χk) for VPMs with N = 10, 20 and 40
cells. Right: curve Hc(Hp) computed from VPMs by using (10) (lines) and
experimental measurements (+).

simplification algorithm is very effective in reducing the number of cells of the
VPM, yet ensuring a good agreement with data. Computations performed with
higher values of N provided quite similar results (figure 5 left).

We compared our approach with the one proposed in [8]. We found that
the identified VPMs are compatible with the curve Hc(Hp) for low values of
Hp (namely Hp < 60 A/m), whereas discrepancy is observed for higher values
(figure 5 right).

We tried to identify the VPM by using a major cycle only, but we obtained
a very poor result (not shown). We believe that this is due to the fact that cells
with lowest values of χk, which come to play with small loops, are the hardest
to identify. When using large loops for identification, these cells come to play
only when the field is reversed – that is for high values of the flux density, where
the sensibility of measurements is low. Therefore, it can be argued that it is
necessary to include small loops in the dataset used for identification.

4.3 Various tests of the VPM with h(t) and T

We tested the VPM with several kind of signals h and temperatures T . The set
of parameters at room temperature are those mentioned in table 2, with formu-
lation (13) simplified and the anhysteretic magnetization functions Man(h, T )
and χ(T ) that are used are those plotted in Fig 2. Figure 6 (left) shows measured
and simulated major and minor symmetric loops at room temperature showing
that the VPM is able to reproduce symmetric loops at room temperature with
different levels of applied field. Figure 6 (right) shows that the VPM can simu-
late major loops at different temperatures thanks to the method mentioned in
section 2.

As the VPM is normally able to predict loops with any kind of h(t) signals,
we tested it with the applied field defined by (15):

h(t) = Hmax (sin (ωt) + sin (3ωt)) (15)

Simulated and measured loops are compared on figure 7 for two levels of Hmax.
Simulated and measured results are in very good agreement showing that the
set of identified parameters combined to the method defined in section 2 is
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Figure 6: Left : major and minor symmetric loops at room temperature. Right
: Major loops for different temperatures. Full lines : measured values ; dotted
lines : simulated values

well adapted to predict loops with any kind of applied field waveform and any
temperature within the range of measured Man(T ), Hc(T ).
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Figure 7: Left : loops with third harmonic (Hmax = 40 A/m) at different
temperatures. Right : loops with third harmonic (Hmax = 80 A/m) at different
temperatures. Full lines : measured values ; dotted lines : simulated values

Last but not least, we wanted to know if the VPM combined to its dependent
extension was able to retrieve the Hopkinson effect [20]. Loops are simulated
at different temperatures for two applied field levels (h imposed). The tips of
each loop is used to determine the per unit magnetic permeability µr. Figure 8
(left) show µr variations with the temperature T for two levels of applied field
(Hmax = 8 A/m and Hmax = 40 A/m). When a low field (Hmax = 8 A/m) is
applied to the material, a peak of magnetic permeability µr is observed when
T is increasing just before the Curie temperature, then it drops to µr ≈ 1, at
Tc (Curie temperature). Figure 8 right), shows the evolution of some simulated
loops during the increase of T for the level Hmax = 8 A/m. The loops first
expand (T = [298, 393] K) when heating then shrink (T = 410K). Applying
a stronger field (Hmax = 20 A/m) reduces the peak level, but doesn’t change
the drop. The global physical behaviour of the Hopkinson effect is qualitatively
retrieved. Unfortunately measurements couldn’t have been done to compare to
the simulations.
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Figure 8: Left : relative permeability µr vs T . Right : minor loops at different
temperatures showing the Hopkinson effect.

5 Discussion

The main purpose of this work is to describe how Vector Play Model (VPM)
can effectively take into account the effect of temperature. In particular, it has
been shown that VPM identified at room temperature can be used to model
the behaviour of magnetic materials at any temperature, provided that few
additional measurements have been performed in the range of temperature.

To this aim, we developed formulation (13) to identify the parameters of the
VPM. Conversely to existing works [8, 10, 13], this formulation has as unknowns
only the parameters (χk), whereas ωk ≡ 1/N is fixed a priori.

As for the measurements required to identify VPMs, formulation (13) re-
quires no particular signal: the only requirement is that datasets have to be
“rich enough” for activating all cells in such a way that they can be discrimi-
nated. For instance, symmetric minor cycles will suit for this purpose, whereas
the major cycle alone will not – the reason being that cells corresponding to
small values of χk are activated for high values of the field, where the sensitivity
is the poorest: so they can be hardly identified.

We compared our approach with the approach proposed in [8]. We found
that, according to our measurements, formulation (13) provides more accurate
result, which is compatible with theHc(Hp) curve for low values ofHp. However,
it has to be said that in our work VPMs have been identified by using a cycle,
the peak excitation field of which is 45 A/m: therefore it could be reasonable
that some discrepancy may appear for higher values of Hp. This point merits
to be more deeply investigated.

It has to be remarked that this formulation is very stable with respect of the
number of cells N . The approach followed in this work is therefore to identify
VPM with a high number of cells, and then simplify it by using the proposed
(or others) algorithm, which has demonstrated to be very effective in reducing
the complexity of the model. Moreover, this algorithm can be further improved:
for instance, in the exemple discussed above it is clear that the last two cells
could be packed together to obtain a 3-cells VPM:

(0.1, 0) − (0.3, 5.064) − (0.5, 14.938) − (0.1, 15.454)︸ ︷︷ ︸
(0.6, 15.024)

By the way, this approach does not require the a priori knowledge of the number
of cells (which is needed with formulation (8)), or – said differently – it is possible
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to devise algorithms which determine the minimum number of cells which is
required to achieve an imposed accuracy.

It is shown (figures 6 and 7) that the experimentally measured loops were
very well retrieved by the VPM. This fact suggests that (at least for this ma-
terial) the assumptions made at section 2 regarding the thermal behaviour are
correct. It also points out that the χk identification protocol is a key element
in order to have a good accuracy in a large range.

Concerning the Hopkinson effect, the VPM behaves qualitatively well due,
we think to the following reasons. For low field levels, at low temperature only
the smallestχk are activated (moving). When T increase, all χk decrease and
new cells can then be activated so the relative permeability µr increase until
the material saturates. The peak of µr can then be seen as new cells that are
activated in the material as T increase. When the material is saturated, µr

decrease because the saturation magnetization decrease very rapidly as T is
close to the Curie temperature (this is due to the dependence of Man(hre, T )
on T ).

For higher field levels, all “small” χk cells are activated even at low temper-
ature. The small increase of µr is, in this case, due to the small reduction of the
large χk cells which tend to make the cells a bit more sensitive to the field. But
no new cells are activated as T increase. The decrease of µr is also due to the
saturation, but arrives at lower temperature because the field level is higher.

6 Conclusion and perspectives

In this work we propose modifications to existing VPM so as to take into account
the effect of temperature, as well as a new formulation for identifying VPM from
experiments. Conversely to existing approaches [8, 21], our approach does not
require a specific kind of measurement. Proposed formulation has been shown
to be stable, and by using a simplification algorithm can provide accurate VPMs
with a low number of cells.

Some discrepancy appeared between our results and the approach proposed
by [8], which require some more work to be elucidated. The VPM associated
with a 2D Lookuptable for Man and a rescaling of the χk thanks to the macro-
scopic coercive field Hc is now able to predict any loop for any kind of signals
h(t) for any temperature within the range. VPM has also shown its ability to
retrieve qualitatively the Hopkinson effect.

Up to now, the proposed approach has been tested successfully with a single
material: future works will be devoted to more extensive experimentation with
different materials, so as to assess (or not) the effectiveness of our model.

Possible other extensions of the VPM model, following the same approach,
may be envisaged. For example, simulate the influence of a mechanical stress on
the magnetic properties by modifying Man and χk following the same method
and assumptions than here (lookup tables and rescaling).

Another possible extension would be to simulate dynamic hysteresis. Two
separate ways can be imagined. The first one, would be to decompose the
dynamic applied field in several fields such as Bertotti’s theory [22] and to use
the VPM to compute the static part of the field Hs. To do that, the VPM has
to be inversed i.e calculate Hs(B). Another way, would be to attribute a mass
to the different cells in order to give inertia to the cells.
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