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Abstract
Many problems in image analysis, digital processing and shape optimization are expressed as variational prob-
lems and involve the discritization of laplacians. Indeed, PDEs containing Laplace-Beltrami operator arise in
surface fairing, mesh smoothing, mesh parametrization, remeshing, feature extraction, shape matching, etc. The
discretization of the laplace-Beltrami operator has been widely studied, but essentially in the plane or on triangu-
lated meshes. In this paper, we propose a digital Laplace-Beltrami operator, which is based on the heat equation
described by [BSW08] and adapted to 2D digital curves. We give elements for proving its theoretical convergence
and present an experimental evaluation that confirms its convergence property.

Keywords: JFIG 2016, laplacians, heat equation, convo-
lution, digital surfaces

1. Introduction

Many problems in image analysis, digital processing and
shape optimization are expressed as variational problems
and involves the discritization of laplacians. Indeed, PDEs
containing Laplace-Beltrami operator arise in surface fair-
ing, mesh smoothing, mesh parametrization, remeshing,
feature extraction, shape matching, etc (see for example
[LZ08]). For instance, computing geodesics on triangulated
surfaces can be formulated from the heat diffusion equa-
tion [CWW13] or by a limit probability distribution of Dirac
measures in optimal transportation problems [SRGB14].

The subject of the laplace-Beltrami operator and its dis-
cretization has been widely studied. Some approaches rely
on the theory of exterior calculus which has been developped
in the computational mathematics and geometry processing
community, with focus on triangular meshes. Purely combi-
natory approches can be found in [GP10]. Another approach
developped in [Hir03] relies more on the relation between
the discrete structure and the continuous one. On triangular
meshes, those formulations are closely related to the famous
cotangent formula [PP93], and is equivalent to specific cases
of finite element method [LZ08].

An important objective when proposing discretizations of
the laplace-Beltrami operator is to give convergence results:
as meshes refine and tend toward the underlying manifold
under certain properties, the approximated laplace-Beltrami
operator should tends toward the usual one on the mani-
fold. On arbitrary triangular meshes, it is shown that the
computed laplace-Beltrami operator cannot recover all the
properties of the smooth manifold one [WMKG07]. Regard-

ing discrete exterior calculus, Hildebrandlt et al. [HPW06]
provided convergence results when the triangulated meshes
tend toward the continuous manifold with those properties:
Hausdorff distance tends to zero, mesh normals tend to sur-
face normals and the mesh is projected one-to-one on sur-
face. Similar proofs exist in the context of finite element
method [AFW06a, AFW06b] and for chainlet discrete cal-
culus [Har06].

In the case of triangular meshes, as the
structure becomes thinner, estimated intrin-
sic geometric informations converge toward
the real ones and can be easily injected inside
the calculus. In our case, we want to define
the Laplace-Beltrami operator on a different
geometric structure: it is called a digital sur-
face and is the border of a subset of the digital
space Zd . One can see them geometrically as unions of faces
of d-dimensional cubes. Digital surfaces can be defined as
digitizations of manifolds but such digitizations present sev-
eral difficulties: points are spaced evenly, they do not inter-
polate the smooth surface and elementary normals are not in-
formative. Therefore, in opposition to triangular meshes, one
needs to be more clever to recover geometric informations
such as normals, areas or curvature for example. Fortunately,
this topic was studied in depth in the last ten years and sev-
eral progresses were made during this period. Parameter-free
tangent and normal estimation along 2D digital curves were
established [LVdV07,dVLF07] using properties of maximal
digital straight segments. This approach was extended to 3D
curves in [PJKL12]. Further works using digital version of
integral invariants [CLL14, PWHY09] induced convergent
estimation of the normal vector field along digital surfaces
in arbitrary dimension as well as the whole curvature ten-
sor [CLL14, LCL14].
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Figure 1: Implementation of geodesic distance computation
described in [CWW13] using a discrete exterior calculus on
digital surfaces. Isocontour in white on the left staired face
of the cube shows metrics failure.

As shown on Fig.1 and Fig.5, using classical DEC opera-
tor, one cannot construct a convergent Laplace-Beltrami op-
erator in 1D even by using convergent geometric estimators.
Indeed, theoretical analysis on 2D curves shows that one
cannot expect convergence of the dicretized Laplacian using
exterior calculus toward the real Laplace-Beltrami on Rie-
mannian Manifold. Recent work [LT14] studied the close-
ness between a digital surface in a space of dimension d and
its underlying smooth manifold structure. They particulary
proved convergence of discretized integrals using convergent
estimated normals on digital surface.

In this paper, we address the problem of computing a dig-
ital Laplace-Beltrami operator en 2D digital curves by using
the work of [BSW08] based on the heat equation. We fo-
cus our study on 1D curves embedded in 2D as even in this
simple case, the discritization of the operator is not trivial.
We give elements for proving its theoretical convergence and
present an experimental evaluation that confirms its conver-
gence property.

2. Digital Surfaces

In all the paper, we assume that there is some ideal shape
M in the space with a smooth topological boundary. We re-
call the definition of the Gauss Digitization process, which
makes the link between the continuous shape and its digital
approximation:

Definition 1 Let h > 0 be the sampling grid step. The Gauss
Digitization of a shape M⊂ Rd is defined as Dh(M) :=
M∩ (hZ)d , where d is the dimension of the space.

The digitization process has therefore a very simple scheme:
it considers the discrete points of the infinite regular grid
with sample rate h and keeps only the ones inside the shape
(see Fig.2). We need also the notion of h-cube of a discrete
point: for some z∈ (hZ)d it is the closed d-dimensional axis-
aligned cube of Rd centered on z with edge length h. We de-
note it by Qh

z . The collection of all h-cubes of the discrete
points of a digitized shape is called its h-cube embedding.
Finally, we arrive at the structure on which we will do com-
putations:

Definition 2 The digitized h-boundary of M, denoted by
∂hM, is the topological boundary of the h-cube embedding
of the Gauss digitization ofM:

∂hM := ∂

( ⋃
z∈Dh(M)

Qh
z

)
.

Geometrically it is a “staircased” surface that approximates
the boundary of the continuous shapeM, and is also called
a digital surface.

We wish to prove that our digital laplacian on the dig-
itized boundary converge to the standard laplacian on the
continuous shape boundary. The convergence setup will be
the following: given an estimated operator on the digital sur-
face and a real operator on the smooth structure, we look at
pointwise convergence between those two quantities as the
grid step h tends toward zero (that is when ∂hM →

h→0
∂M in

the Hausdorff sense). More details about digital surfaces and
their relationship with the underlying manifold can be found
in [LT14].

Figure 2: Illustration of the notations used in this paper. A
smooth shapeM, its Gauss digitization Dh(M), its h-cube
embeddingQhDh(M) and its h-boundary ∂hM

3. Discretization on triangular meshes

We first describe the work of [BSW08], which proposes a
discrete laplacian for triangulated meshes. Let g0 : ∂M 7→R
be a smooth function (ie the initial temperature distribution
on ∂M). Let g : ∂M× (0,T ) 7→ R a time-dependent func-
tion which solves the partial differential equation called the
Heat Equation:

∆g =
∂

∂t
g, (1)

with inital condition g(0) := g(·,0) = g0 : ∂M 7→ R. The
function g(t) := g(·, t) is therefore the temperature distribu-
tion on M at time t. In Rd , one can find (see [Ros97] for
example) an exact solution:

g(x, t) =
1

(4πt)
d
2

∫
y∈Rd

e−
||x−y||2

4t g0(y)dy, (2)

where Ht
Rd := 1

(4πt)
d
2

e−
||x−y||2

4t is called the heat kernel. On

an arbitrary manifold, the heat kernel involves a more com-
plex construction (see [Ros97]). Fortunately, we know from
[Mol75] that on a compact subset of ∂M the real heat kernel
is not too far from the Rd one.

c© JFIG 2016.
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The very idea of [BSW08] is to make the heat equation
not a property of the laplacian but a definition by injecting
Eq.2 into Eq.1:

∆g(x,0) = lim
t→0

1
t

(∫
y∈∂M

Ht
∂M(x,y)g(y)dy− f (x)

)
(3a)

= lim
t→0

1
t

∫
y∈∂M

Ht
∂M(x,y)(g(y)−g(x))dy. (3b)

Then they give the following discretization of the lapla-
cian at a vertex w of a triangular mesh K:

Lt
Kg(w) :=

1
4πt2 ∑

p∈V
e−
||p−w||2

4t
(
g(p)−g(w)

)
A(p), (4)

where V is the set of vertices of K andA represents the mean
area of triangles that surround p. They prove a convergence
theorem under the assumption that vertices of K lie on the
underlying manifold, and some additional properties on K
(see [BSW08]).

On digital structures, we must show how to compute both
|| · || andA. The former relies on computing convergent dis-
tances in 2D, and areas in 3D which is straightforward. The
later becomes non-trivial in 3D, as one must know how to
compute distance between two points on a surface. There-
fore, as stated in the introduction, we present the discritiza-
tion of the operator on 1D curves embedded in 2D.

4. Discretization on digital curves

We describe how to discritize || · || and A from Eq.4. First,
we adapt Eq.4 onto our digital curve:

∆̃hg(ẇ) :=
1√
4πt ∑

ċi∈∂hM
e−

d̃(ċi ,ẇ)
4t

(
g(ẇ)−g(ċi)

)
µh(ċi), (5)

where ẇ and ċ are vertices (element of dimension 0 of ∂hM
as in Fig.4) on our digital curve, d̃ is the approximated dis-
tance between two vertices and µh is the elementary measure
associated to a vertex. To measure such lengths we use the
Integral Invariant normal estimator [LCL14], whose conver-
gence speed is in O(h

2
3 ). For each linel l of the digitized

boundary (a linel is an edge joining two vertices), we define
its measure µh(l) as:

µh(l) := 〈n̂(l),ne(l)〉 , (6)

where 〈·, ·〉 is the dot product, n̂ the estimated normal and
ne the trivial normal to the linel (see Fig.3). It is known (see
[CLR12]) that this measure gives a good approximation of
the real projected arclength on the curve. Then we have:

µh(ċi) =
µh(li)+µh(li+1)

2
and d̃(ċi, ẇ) = ∑

j
µh(l j), (7)

where j lies in the range of indices corresponding to the
linels between ċi and ẇ. The µh function is the digital analog
of A in Eq.4 on triangular meshes.

We state the following conjecture:

Proposition 1 As h tends toward 0, the maximum pointwise
error between the estimated laplacian described in Eq.5 and
the real Laplace-Beltrami operator on the manifold tends to-
ward 0 with a convergence speed in O(h

2
3 ), if one chooses

parameter t in Θ(h
2
3 ).

Figure 3: The length of a linel l is drawn in orange as the
result of the dot product between the estimated normal n̂ and
the elementary normal ne. It is an approximation of the pro-
jected arclength, drawn in blue.

5. Convergence results

We have implemented this digital Laplace-Beltrami opera-
tor with the DGtal library [DGt]. Input continuous smooth
shapes are given as parameterized 2D closed curves , which
are digitized using Gauss process (see an example in Fig.4).
Normal vectors along the digitized boundary are then esti-
mated. These vectors are used to compute both the length
between any two points and the measure of each point. Fi-
nally, we compare the real laplacian defined on the input
curve with our estimated laplacian (from Eq.5) on the dig-
itized curve.

We wish to confirm Prop.1. The choice of t is given by
the following conditions: it must be as close as possible to 0,
but not too close, otherwise we would fall back into a local
laplacian, and convergence would be impossible. Therefore
we choose t to be some h

2
3 for h the grid step. This choice of

t leads to a convergence in O(h
2
3 ) as shown in Fig.5.

Figure 4: An example of a 2D curve in blue and its digitiza-
tion in black with h = 0.1. Pointels are black dots, linels are
black line segments.

6. Conclusion and discussion

We derived from [BSW08] a convolutional laplacian based
on the heat equation. We showed its digitization and imple-
mentation on 2D digitized curves using Gauss process. We
have checked Prop.1 by experimentation. We did not provide
theoretical analysis, as it is still an ongoing work: the idea is
to reformulate the theorem stated in [LT14] into a local one

c© JFIG 2016.
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Figure 5: Convergence results using t = 2
3 on accelerated

flower shape. Graphs in logarithm scale are to be read from
right to left: as h tends toward 0, the error on laplacian esti-
mation decreases with speed h

2
3 .

and combine it with gaussian integration properties. Further
work will include the implementation of this laplacian on 2D
surfaces embedded in 3D as well as theoretical convergence
proofs.
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