Corrections to "A Global High-Gain Finite-Time Observer"

Tomas Ménard, Emmanuel Moulay and Wilfrid Perruquetti

Abstract-This note fix the proof of Theorem 2 in the article [START_REF] Ménard | A global high-gain finite-time observer[END_REF].

Equations from the original paper will be denoted with a star (for example (1 * )) whereas equations of the present corrected paper will be denoted without a star (for example [START_REF] Munkres | Topology[END_REF]).

I. THE ERROR

The function Ṽα used in the proof of Theorem 2 in [START_REF] Ménard | A global high-gain finite-time observer[END_REF], and derived from Theorem 10 in [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF], is not C 1 with respect to (e, α). Indeed, one has

∂ e k 1 α k-1 q ∂e k = 1 α k q e k 1 α k q -1 . (1) 
Hence, when α → 1, 1 α k q → 1 and when one of the component of e goes to zero, the limit lim (α,e)→(1,e0)

1 α k q e k 1 α k q -1
does not exist. Thus the function Ṽα cannot be used as a candidate Lyapunov function.

II. THE FIX

Let us first recall Theorem 2 from [START_REF] Ménard | A global high-gain finite-time observer[END_REF].

Theorem 1. Let us consider system (3 * ) with a bounded input u. Then there exists θ * ≥ 1 such that for all θ > θ * there exists > 0 such that system (3 * ) admits the following global finite-time observer:

       ẋ1 = x2 + k 1 ( e 1 α1 + ρe 1 ) + m j=1 g 1,j (x 1 )u j . . . ẋn = k n ( e 1
αn + ρe 1 ) + ϕ(x) + m j=1 g n,j (x)u j for all α ∈]1 -, 1[, where e 1 = x 1 -x1 , the powers α i are defined by (5 * ), the gains k i by (6 * ) and ρ = n 2 θ where S 1 is defined by (8 * ). In addition, the settling time of the error dynamics is bounded by T 1 (e 0 ) + T 2 (e 0 ) (with e 0 = x 0 -x0 ), where T 1 , T 2 are respectively given by (18 * ) and (6).

The statement of Theorem 2 in [START_REF] Ménard | A global high-gain finite-time observer[END_REF] remains correct, except for the settling time which has to be corrected.

We can define the function V 1 (e) = e T S ∞ (1)e, for e ∈ R n , where S ∞ (1) is the solution of (7 * ) for θ = 1. This choice corresponds to the linear case, that is α = 1. Proceeding as in [START_REF] Rosier | Homogeneous lyapunov function for homogeneous continuous vector field[END_REF], [START_REF] Yu | Adaptive finite-time consensus in multi-agent networks[END_REF], one can construct a candidate Lyapunov function with properties stated next.

Proposition 1. Let a ∈ C ∞ (R, R) be such that a = 0 on (-∞, 1] 1 on [2, +∞) and a ≥ 0 on R. (2) 
There exists > 0 such that for all α ∈]1 -, 1 + [, the function Vα defined as

Vα (e) = +∞ 0 1 t 3 (a • V 1 )(t r1(α) e 1 , . . . , t rn(α) e n )dt (3) 
if e ∈ R n \{0} and Vα (0) = 0 is well defined, radially unbounded, of class C 1 (R n , R), and satisfies a) Vα (δ

r(α) λ e) = λ 2
Vα (e), for all e ∈ R n and λ > 0.

b) ∇ Vα (e), Ae-F (S -1 ∞ (1)C T , e) ≤ -γ( Vα (e)) 1+α 
2 , for all e ∈ R n , where γ > 0. where F ,C and δ r(α) λ are defined in [START_REF] Ménard | A global high-gain finite-time observer[END_REF].

Proof of proposition 1. Let, α ∈]1 -1 n , +∞[, proceeding as in [START_REF] Rosier | Homogeneous lyapunov function for homogeneous continuous vector field[END_REF], one directly shows that Vα is well defined, radially unbounded, C 1 on R n , and homogeneous of degree 2 with respect to the weights r(α). Then, only point b) remains to prove. Following the same lines as in [START_REF] Rosier | Homogeneous lyapunov function for homogeneous continuous vector field[END_REF], there exists l, L > 0 such that for all e ∈ e ∈ R n | Vα (e) = 1 , one has n , +∞[. The function g is continuous, (e, t) belongs to a compact set and there exists γ 1 > 0 such that the image of g is included in ] -∞, -γ 1 [ for (e, t) ∈ {e ∈ R n , Vα (e) = 1} × {t ∈ [l, L]} and α = 1 (since it corresponds to the linear case). We can then apply Lemma 26.8 in [START_REF] Munkres | Topology[END_REF] (tube lemma) which gives the existence of > 0 such that for all (e, t, α)

∇ Vα (e), Ae-F (S -1 ∞ (1)C T , e) = L l 1 t α+2 a V 1 δ r(α) t e × ∇V 1 δ r(α) t e , Aδ
∈ {e ∈ R n , Vα (e) = 1} × {t ∈ [l, L]}×]1 -, 1 + [, g(e, t, α) ≤ -γ 1 . Then we have ∇ Vα (e), Ae -F (S -1 ∞ (1)C T , e) ≤ -γ 1 L l 1 t α+2 a V 1 δ r(α) t e dt ≤ -γ Vα (e) 2+α-1 2 (4) 
where

γ > 0 is a lower bound of γ 1 L l 1 t α+2 a V 1 δ r(α) t
e dt for (e, α) ∈ {e ∈ R n , Vα (e) = 1}×]1 -, 1 + [. Since Vα is homogeneous of degree 2 with respect to the weights r(α), inequality (4) is valid for all e ∈ R n . Now that a new candidate Lyapunov function has been defined, we explain how it will be used to correct the proof of Theorem 2 in [START_REF] Ménard | A global high-gain finite-time observer[END_REF]. Please note that part 1 of the proof is correct, then it has already been proved that every trajectory starting from e 0 ∈ R n enter the ball B . S∞(θ) (1) after time T 1 (e 0 ) = log(1/V (e 0 ))/κ(θ) (see equation (18 * )). Denote ē = ∆ θ e, where ∆ θ = diag 1 1 θ . . . 1 θ n-1 , in the remaining, we will show that for every θ ≥ θ 2 = 2 γ (M 1 + 2), there exists > 0 such that the following inequality

Vα (ē) ≤ - γ 2 θ -1 Vα (ē) 2+α-1 2 + M 1 Vα (ē) (5) 
holds for every ē ∈ B . S∞(1) (1), α ∈]1 -, 1[ , where M 1 > 0 is a constant independent of θ. This inequality replaces inequality (19 * ). Inequality (5) directly implies that the error system (11*) is finite time stable on B . S∞ (θ) [START_REF] Munkres | Topology[END_REF]. Thus, after time T 1 (e 0 ), the error enters B . S∞ (θ) (1) and after time T 1 (e 0 ) + T 2 (e 0 ) the error reaches the origin, where the settling time T 2 (e 0 ) is bounded as follows

T 2 (e 0 ) ≤ ln 1 -M1 γ 2 θ-1 Vα (e 0 ) 1-2+α-1 2 M 1 ( 2+α-1 2 -1) . ( 6 
)
The remaining of the corrected proof is very similar to the original one. The dynamics of ē is given by ė = θ Aē -F S -1 ∞ (1)C T , ē -ρS -1 ∞ (1)C T C ē +∆ θ D(x, x, u).

One has

Vα (ē) = θ W1 + W2

with W1 = ∇ Vα (ē), Aē-F (S -1 ∞ (1)C T , ē)-ρS -1 ∞ (1)C T C ē and W2 = ∇ Vα (ē), ∆ θ D(x, x, u) . Following the same lines as in [START_REF] Ménard | A global high-gain finite-time observer[END_REF], one can show that there exists θ 2 ≥ 0 such that for every θ ≥ θ 2 , there exists > 0 such that for all α ∈]1 -, 1[ inequality (5) holds true.

  (e, t, α) ∈ {e ∈ R n , Vα (e) = 1} × {t ∈ [l, L]}×]1 -1