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Bounded single-peaked width and proportional
representation1

Denis Cornaz, Lucie Galand and Olivier Spanjaard

Abstract

This paper is devoted to the proportional representation (PR) problem when the preferences
are clustered single-peaked. PR is a “multi-winner” election problem, that we study in Cham-
berlin and Courant’s scheme [6]. We define clustered single-peakedness as a form of single-
peakedness with respect to clusters of candidates, i.e. subsets of candidates that are consecu-
tive (in arbitrary order) in the preferences of all voters. We show that the PR problem becomes
polynomial when the size of the largest cluster of candidates (width) is bounded. Furthermore,
we establish the polynomiality of determining the single-peaked width of a preference profile
(minimum width for a partition of candidates into clusters compatible with clustered single-
peakedness) when the preferences are narcissistic (i.e., every candidate is the most preferred
one for some voter).

1 Introduction
Social choice theory deals with making collective choices on the basis of the individual preference
relations of a set of agents (or voters) over a set of alternatives (or candidates). In this field, an
active stream of research deals with “multi-winner” elections, where one aims at electing a subset
of candidates rather than a single candidate. This occurs for instance when electing an assembly. In
such situation, a combinatorial difficulty arises: while there are only m possible outputs of a single-
winner election with m candidates, there are

(
m
κ

)
possible assemblies of κ representatives. This

difficulty is often overcome by organizing κ single-winner elections over κ subelectorates. With
this way of partitioning the election, it may nevertheless happen that the elected assembly fails to
represent minorities [4]: assume that the representatives of a party are in second position for the
κ single-winner elections, then the party will have no representative in the assembly. Proportional
representation aims at tackling this issue by performing a single multi-winner election ensuring that
collectively the voters are satisfied enough by at least one elected candidate. This can be achieved
for instance by using Chamberlin and Courant’s scheme [6], where one elects a subset of κ candi-
dates minimizing a misrepresentation score. The effective computation of such winning subsets of
candidates has been studied by several authors.

Procaccia et al. have shown that the problem is NP-hard in the general case, but polynomial for
a fixed κ [12]. Lu and Boutilier provided a polynomial approximation algorithm with performance
guarantee (for maximizing a representation score), and show, on different experimental datasets,
that it almost always returns an optimal solution [10]. Their setting is nevertheless different from
proportional representation in political science: they aim at designing a system able to recommend
a set of options to a group, based on the individual preferences of its members. Such a system could
be used for instance by a conference organizer wishing to select a subset of sushis for the gala din-
ner, based on the individual preferences of the participants over the varieties of sushis. Clearly, this
context authorizes suboptimality. Coming back to voting procedures, it is nevertheless important to
note that the scores only provide an ordinal information: if an assembly A has a misrepresentation
score 1 while an assembly B has a misrepresentation score 1 + ε, one can only conclude that A
is better than B, and not that B is close to be as good as A. Furthermore, in a political setting, it
is simply not possible to elect an assembly without guaranteeing that it is the true winner. To our

1This paper appeared in the proceedings of ECAI 2012.



knowledge, the only general exact approaches proposed for proportional representation in Chamber-
lin and Courant’s scheme are based on integer programming as the ones by Potthoff and Brams [11]
and by Balinski [1] (in this latter reference, the formulation was actually proposed for the κ-median
location problem, which is equivalent to the proportional representation problem [12]). The solution
of these IP formulations might of course take exponential time in the worst case.

Very recently, Betzler et al. proposed an extensive investigation of parameterized complexity
results for the problem [4]. Besides, they established that the problem becomes polynomial when
the preferences are single-peaked [5]. Single-peakedness is the most popular domain restriction in
social choice theory. In single-winner elections, it makes it possible to overcome Arrow’s impos-
sibility theorem (that states that no voting rule can simultaneously fulfill a set of basic axioms). In
particular, there always exists a Condorcet winner (i.e., a candidate who is preferred to any other
candidate by a majority of voters) if preferences are single-peaked. Such preferences are typically
encountered in political science. Intuitively, preferences are single-peaked when 1) all voters agree
on a left-right axis on the candidates reflecting their political convictions, and 2) the preferences
of all voters decrease along the axis when moving away from their preferred candidate to the right
or left. Nevertheless, this condition on preferences can be a bit restrictive when several candidates
share similar opinions (e.g. they belong to the same party) since it is unlikely that the preferences of
all voters are single-peaked on this subset of candidates.

We therefore study a new domain restriction, clustered single-peakedness, where single-
peakedness holds on subsets of candidates (parties or more generally clusters), and not within clus-
ters. The candidates belonging to the same cluster are ranked consecutively in the preferences of
all voters, though not necessarily in the same order. Given a partition of the candidates into clus-
ters such that the preferences are clustered single-peaked, the width of the partition is the size of
the largest cluster minus one. Note that, for a given set of individual preference relations, several
partitions into clusters can be compatible with clustered single-peakedness: we call single-peaked
width the minimum width among all possible partitions of candidates into clusters. We show that
the single-peaked width is computable in polynomial time if preferences are narcissistic, and that
a bounded single-peaked width makes it possible to design a polynomial time solution algorithm
for the proportional representation problem. Note that the same structures have been studied by
Elkind et al. [7], under another terminology (in particular, clusters are called clone sets). Their main
concern is not to study how clustered single-peakedness can be used to determine the winner of an
election, but they show interesting connections with PQ-trees, and use them to design an algorithm
to compute a partition of the candidates into (as many as possible) clusters. The links between their
work and ours will be detailed in Section 4.

The paper is organized as follows. We first formally introduce the proportional representa-
tion problem and clustered single-peakedness (Sect. 2). Then we present a dynamic programming
procedure for solving the proportional representation problem when the preferences are clustered
single-peaked (Sect. 3). A key parameter for the efficiency of the procedure is the width of the
partition into clusters. We therefore study the complexity of determining the single-peaked width
of a set of individual preference relations (Sect. 4), and show the polynomiality of the problem for
narcissistic preferences.

2 Preliminaries

2.1 Proportional representation
Let V be a set of n voters and C a set of m candidates. Let P be an m × n preference profile
matrix over C, that is, each candidate appears exactly once in each column. So the set of columns
of P is the set V and each column v is the preference relation of voter v. We denote by r(v, c)
the rank of candidate c in the preferences of voter v, and by x ≺v y the preference for y over
x. A non-decreasing misrepresentation function µ : {1, . . . ,m} → N is defined such that



µ(r(v, c)) is the misrepresentation value of c for v. The proportional representation problem aims
at determining a subset S ⊆ C of κ candidates such that the total misrepresentation score is min-
imized. In Chamberlin and Courant’s scheme, the scoring function s : 2C → N is defined as follows:

s(S) =
∑
v∈V

min
c∈S

µ(r(v, c))

The proportional representation problem can then be simply written: min|S|=κ s(S). The following
example illustrates the value of using Chamberlin and Courant’s scheme.

Example 1. Consider a proportional representation problem with 6 voters 1, 2, 3, 4, 5, 6 (indices of
the columns) and 4 candidates a, b, c, d, and the following preference profile matrix:

P =


a c a c d c
b b b a c d
c a c b b a
d d d d a b


Assume that the misrepresentation function is µ(r) = r− 1. If κ = 2, then the possible subsets and
scores are (for simplicity ab stands for {a, b}):

ab ac ad bc bd cd
6 1 4 3 6 4

The optimal solution is subset ac with score 1. With such a solution, only one voter is not represented
by her preferred candidate (but by her second choice). Assume now this multi-winner election is
divided into two single-winner elections, namely an election L between b and c for voters 1, 2, 3,
and an electionR between a and d for voters 4, 5, 6. The winner of electionL (resp. R) is b (resp. d).
Consequently, the winning solution is bd, which is the worst one according to the misrepresentation
scores!

2.2 Clustered single-peakedness
Definition 1. Let C = (C1, . . . , Cq) be an ordered partition of C into q non-empty subsets (called
clusters). Preference profile matrix P is clustered single-peaked with respect to C if for all v ∈ V
there exists an index p in {1, . . . , q} such that:

i < j < p ⇒ x ≺v y ≺v z
p < j < i ⇒ x ≺v y ≺v z

for all x ∈ Ci, y ∈ Cj and z ∈ Cp.

For a voter v, we call Cp the peak of v, which means that any candidate in Cp is preferred to any
candidate in C \Cp. This definition coincides with usual single-peakedness when |Ci| = 1 for all i.
The only candidate in Cp is then the most preferred one.

Example 2. Coming back to Example 1, it can be easily seen that the preferences are not single-
peaked w.r.t. axis (a, b, c, d), by considering Figure 1 where each curve represents a preference
ranking of a voter, namely voters 1, 2, 6. For each curve and each candidate on the X-axis, the value
on the Y-axis is the rank in the corresponding preference ranking (the better the rank the higher the
point). Preferences are single-peaked w.r.t. an X-axis iff all curves have a single peak. This is not
the case in the left graph since the curve of voter 6 (in bold) spikes down for b and then spikes up
for a. More generally, it can be shown that the preferences in Example 1 are not single-peaked,
whatever permutation of candidates on the X-axis is considered. However, the preferences are clus-
tered single-peaked with respect to ({a, b}, {c}, {d}), denoted by (ab, c, d) for simplicity. Note that
a and b are adjacent in all preference rankings, which is a necessary condition to be clustered (but
not sufficient for clustered single-peakedness!). A preference profile is clustered single-peaked with
respect to an ordered partition (C1, . . . , Cq) iff it is single-peaked when considering each subset Ci
as a single candidate. In the example, introducing cluster {a, b} amounts to considering a and b
as a “single candidate” ab. The preference profile matrix becomes then the one indicated on the
right-hand side of Figure 1. In the graph on the right, one can observe that the preferences become
then single-peaked, i.e. they are clustered single-peaked with respect to (ab, c, d).




��������

����������������
a c a c d c
b b b a c d
c a c b b a
d d d d a b


 ab c ab c d c

c ab c ab c d
d d d d ab ab



1

2

6

a b c d ab c d

1

2

6

Figure 1: Clustered single-peakedness.

3 Dynamic Programming
We now present a dynamic programming algorithm that generalizes the one proposed by Betzler et
al. for single-peaked preferences [4]. Let P (i, C ′, k) denote the subproblem where all candidates
in C ′ ⊆ C are made mandatory and one selects k − |C ′| candidates in C1 ∪ . . . ∪ Ci. For the
convenience of the reader, we briefly recall the recursion scheme of the procedure proposed by
Betzler et al., with an alternative proof. Assume that the preferences are single-peaked with respect
to axis (x1, . . . , xm) (i.e. clustered single-peaked with respect to (C1, . . . , Cm), where Ci = {xi}
∀i). Let z(i, k) denote the optimal score for problem P (i − 1, {xi}, k), where one selects xi and
k− 1 candidates among {x1, . . . , xi−1} (the i− 1 leftmost candidates on the axis). The authors use
the following recursion:

z(i, k) = min
j∈[k−1··i−1]

{
z(j, k − 1)−

∑
v∈V

max{0, µ(r(v, xj))− µ(r(v, xi))}
}

The optimal score for a subset of κ candidates is then mini∈{κ··m} z(i, κ). The validity of the
recursion can be established by showing that selecting a subset of k candidates, including xj and xi
(mandatory candidates), in {x1, . . . , xj , xi} (problem P (j − 1, {xj , xi}, k)) amounts to selecting
k− 1 candidates, including xj , in {x1, . . . , xj} (problem P (j − 1, {xj}, k− 1)). Indeed, it reduces
to computations on the same minor of the preference profile.

Definition 2. Any preference profile matrix that depicts the individual preferences of a subset V ′ ⊆
V of voters over a subset C ′ ⊆ C of candidates is called a minor and denoted by P(V ′, C ′).

The voters can be partitioned into two sets: the set V[1,j−1] of voters whose peak xp is in
{x1, . . . , xj−1}, and the set V[j,m] of voters whose peak xp is in {xj , . . . , xm}. Both problems
P (j − 1, {xj , xi}, k) and P (j − 1, {xj}, k − 1) amount to computations in the same minor:

• Problem P (j−1, {xj , xi}, k): all voters in V[j,m] can be deleted from the preference profile matrix
since their preferred candidate among {x1, . . . , xj , xi} is either xi or xj , that are mandatory, and
therefore the preferences of these voters play no role in the determination of the optimal solution to
P (j−1, {xj , xi}, k). Furthermore, all voters in V[1,j−1] prefer xj to xi since their peak is to the left
of xj , and therefore candidate xi plays no role since xj is mandatory. Consequently, the problem
reduces to selecting k − 1 candidates, including xj , according to minor P(V[1,j−1], {x1, . . . , xj}).



• Problem P (j − 1, {xj}, k − 1): for all voters in V[j,m], candidate xj is necessarily the most pre-
ferred one in {x1, . . . , xj}. Since candidate xj is mandatory, all voters in V[j,m] can be deleted from
the preference profile matrix. The problem reduces then to selecting k− 1 candidates, including xj ,
according to minor P(V[1,j−1], {x1, . . . , xj}).
The two problems P (j − 1, {xj , xi}, k) and P (j − 1, {xj}, k − 1) are thus equivalent, which es-
tablishes the validity of the recursion. We now show how this recursion scheme can be extended
to handle clustered single-peaked preferences. Assume that the preferences are clustered single-
peaked with respect to an ordered partition (C1, . . . , Cq). Let z(i, C ′i, k) denote the optimal score
when candidates in C ′i ⊆ Ci are mandatory, candidates in Ci \ C ′i are forbidden, and one selects
k − |C ′i| candidates in C1 ∪ . . . ∪ Ci−1. In our setting, the recursion can be written as follows:

z(i, C ′i, k) = min
j∈[1··i−1]

min
C′

j⊆Cj C′
j 6=∅

{
z(j, C ′j , k − |C ′i|)

−
∑
v∈V

max{0, min
y∈C′

j

µ(r(v, y))− min
x∈C′

i

µ(r(v, x))}
}

(1)

where z(i, C ′i, k) = +∞ if |C ′i| > k or |C1 ∪ . . . ∪ Ci−1| < k − |C ′i|.
The optimal score for a subset of κ candidates is then:

min
i∈[1··q]

min
C′

i⊆Ci C′
i 6=∅

z(i, C ′i, κ)

The proof of the recursion is similar to the one in the single-peaked case. It amounts to establishing
the equivalence of problems P (j − 1, C ′j ∪ C ′i, k) and P (j − 1, C ′j , k − |C ′i|), by considering a
partition of V into the set V[1,j−1] of voters whose peak is in {C1, . . . , Cj−1} and the set V[j,q]
whose peak is in {Cj , . . . , Cq}:
• Problem P (j−1, C ′j ∪C ′i, k): all voters in V[j,q] can be deleted from the preference profile matrix
since their preferred candidate among C1 ∪ . . . ∪ Cj−1 ∪ C ′j ∪ C ′i is either in C ′i or in C ′j . All
voters V[1,j−1] prefer a candidate in C ′j to a candidate in C ′i since their peak is to the left of Cj .
Consequently, the problem reduces to selecting k − |C ′i| candidates, including candidates in C ′j ,
according to minor P(V[1,j−1], C1 ∪ . . . ∪ Cj−1 ∪ C ′j).
• Problem P (j − 1, C ′j , k− |C ′i|): for all voters in V[j,q], the most preferred candidate in C1 ∪ . . .∪
Cj−1∪C ′j necessarily belongs toC ′j . The voters can therefore be deleted from the preference profile.
The problem reduces then to selecting k− |C ′i| candidates, including candidates in C ′j , according to
minor P(V[1,j−1], C1 ∪ . . . ∪ Cj−1 ∪ C ′j).
Both problems are thus equivalent, which establishes the validity of the recursion. Algorithm 1
describes the ensuing dynamic programming procedure.

Algorithm 1: Dynamic programming

for i = 1, . . . , q do
for C ′i ⊆ Ci with |C ′i| ≤ κ, C ′i 6= ∅ do

z(i, C ′i, |C ′i|) =
∑
v∈V minx∈C′

i
µ(r(v, x))

for i = 2, . . . , q do
for C ′i ⊆ Ci with |C ′i| ≤ κ, C ′i 6= ∅ do

for k = |C ′i|+ 1, . . . ,min{κ, |C ′i|+
∑i−1
j=1 |Cj |} do

compute z(i, C ′i, k) by Equation 1
return min

i∈[1··q]
min

C′
i⊆Ci, C′

i 6=∅
z(i, C ′i, κ)

Example 3. For simplicity, a set {a, b} is denoted by ab in this example, and {a, b} ∪ {c, d} by
abcd. Consider a proportional representation problem with 6 candidates a, b, c, d, e, f having clus-
tered single-peaked preferences with respect to (ab, cd, e, f). Let us study how many triples of



candidates are examined by the procedure when computing z(4, f, 3). Given r subsets S1, . . . , Sr of
candidates, let us denote by opt{S1, . . . , Sr} a subset in argmini s(Si). The following computation
is performed by the procedure:

z(4, f, 3) = s

(
opt
{
fab, fopt{ca, cb}, fopt{da, db},
fcd, fopt{ea, eb, ec, ed}

})
Therefore 5 subsets are examined (three of the four “opt” operations have been performed during
the previous iterations) while there are 10 subsets of cardinality 3 including f .

For a small single-peaked width, the computational savings become of course more and more
significant when the size of the instance increases. Actually, the following complexity analysis
shows that the dynamic programming procedure is polynomial for a bounded singe peaked width.
Equation 1 requires indeed a computational time withinO(nqt2t) where t = maxi |Ci|−1. Further-
more, the number of computed terms z(i, C ′i, k) is upper bounded by q2tκ. Therefore the running
time of the procedure is within O(nq2t22tκ), which amounts to O(nm3) for a bounded single-
peaked width t (we recall that q ≤ m and κ ≤ m).

Theorem 1. The proportional representation problem over bounded single-peaked width prefer-
ences is polynomial.

The complexity analysis shows that maxi |Ci| is a key parameter for the efficiency of the al-
gorithm. Note that there always exists an ordered partition for which the preferences are clustered
single-peaked: in the worst case, it is sufficient to consider the partition (C). It is nevertheless in-
teresting from an algorithmic viewpoint to have an ordered partition where each subset includes few
candidates. Two cases can occur: either the partition is known in advance (for instance, when the
candidates indicate their affiliation to a political party and the preferences of the voters are consistent
with the displayed affiliations) or it is unknown. In both cases, it is desirable to be able to compute
an ordered partition compatible with clustered single-peakedness and such that maxi |Ci| is mini-
mized. In the next section, we show the polynomiality of this problem for narcissistic preferences
[3, 13].

4 Single peaked width
We call width of an ordered partition (C1, . . . , Cq) the value maxi |Ci|− 1. Given a preference pro-
file matrix, we call single-peaked width the minimum width among all ordered partitions compatible
with clustered single-peakedness. This can be seen as a distance measuring near-single-peakedness
(the single-peaked width is indeed equal to 0 for single-peaked preferences). Note that this should
not be confused with other distance measures that have been proposed in the literature, such as the
number of voters to remove to make a profile single-peaked [9].

Example 4. Consider the preference profile matrixP represented in Figure 2, where the preferences
are not single-peaked. It is easy to check that they are nevertheless clustered single-peaked with
respect to ordered partition (ac, efg, bd, h) (see the left part of the figure, where the subsets of
the partition are encircled), whose width is |{e, f, g}| − 1 = 2. However the preferences are
also clustered single-peaked with respect to (ac, f, eg, b, d, h) (right part of the figure). The single-
peaked width of this preference matrix is thus 1.

Ballester and Haeringer [2] recently showed that single-peakedness can be lost just because of
the existence of two voters and four candidates, or three voters and three candidates. Conversely,
they showed that if a profile is not single-peaked there must exist a set of two voters (resp. three)
whose preferences over four candidates (resp. three) are not single-peaked. More precisely, the
authors characterize single-peakedness with the following two conditions:



P =


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f b c
g d a
e h f
c g e
a e g
b f b
d a d
h c h


P =


��������

����������������
f b c
g d a
e h f
c g e
a e g
b f b
d a d
h c h


Figure 2: Single-peaked width.

•Worst-restriction: Given a triple V ′ ⊆ V of voters and a tripleC ′ ⊆ C of candidates, let L(V ′, C ′)
be the set of all candidates ranked last in C ′ by at least one voter in V ′. The worst-restriction
condition holds if |L(V ′, C ′)| < 3 for all triples V ′ and C ′.

• α-restriction: the α-restriction condition holds if there do not exist two voters v and v′ and four
candidates w, x, y, and z such that their preferences over w, x and z are opposite (w �v x �v z and
z �v′ x �v′ w) and the voters agree about the preference for y over x (y �v x and y �v′ x).

Interestingly, these conditions amount to forbidding five minors in the profile P (Lemma 1). In this
formalism, we propose here a shorter proof of the characterization result of Ballester and Haeringer.
Our proof is based on the polynomial algorithm proposed by Escoffier et al. [8] to determine if a
profile is single-peaked with respect to some axis. This algorithm runs in time O(mn) improving
on the O(mn2) algorithm proposed by Bartholdi and Trick [3]. Before stating Lemma 1, let us
present the algorithm of Escoffier et al. It works recursively and takes as arguments the left part
(x1, . . . , xi) and the right part (xj , . . . , xm) of the axis under construction. A third argument is the
subset C ′ of candidates which remains to be positioned on the axis. This algorithm returns an axis
compatible with P or proves that the preferences are not single-peaked (by raising a contradiction
between voters). The recursion is made possible by the fact that single-peakedness over P implies
single-peakedness over any of its minors. It heavily uses the property that candidates ranked last
in the preferences are necessarily at the extremities of the axis. At each step of the algorithm,
one candidate x or two candidates x and y are ranked last in P(V,C ′) and will be positioned in
xi+1 or xj−1 on the axis. There is a contradiction if a candidate has to be placed in two different
positions (according to the preferences of two voters). These positions depend on the way x and y
are positioned with respect to xi and xj in the preferences of all the voters. The whole procedure is
detailed in Algorithm 2. The initial call is Make-axis(C, (), ()).

Before presenting Lemma 1 (on which our algorithm to compute single-peaked width strongly
relies), we need to introduce the notion of isomorphic minors. A minor P ′ is isomorphic to P if
there exists a bijection φ such that P and P ′ are identical up to column permutation if one renames
every candidate x in P as φ(x). For instance, preference profile matrix P ′ below is isomorphic to
P (take φ(a) = b, φ(b) = c, φ(c) = a and permute the columns).

P =

 a c
b a
c b

 , P ′ =

 a b
b c
c a


Definition 3. A minor is called forbidden if it is isomorphic to one of the following profiles:

T1 =

 a b c
b c a
c a b

 ,T2 =

 a c a
b b c
c a b

 ,

F1 =


a c
d d
b b
c a

 , F2 =


a d
d c
b b
c a

 , or F3 =


d d
a c
b b
c a

 .



Algorithm 2: Make-axis(C ′,(x1, . . . , xi),(xj , . . . , xm))

if C ′ = ∅ then return (x1, . . . , xi, xj , . . . , xm)1

if C ′ = {x} then return (x1, . . . , xi, x, xj , . . . , xm)2

L← candidates ranked last in P(C ′, V ) by at least one voter3

if L = {x} then y ← a candidate in C ′ \ {x} /? x ≺v y, ∀v ?/4

if |L| ≥ 3 then return not single-peaked5

for v = 1, . . . , n do6

if L = {x, y} then let x ≺v y (w.l.o.g)7

if xi ≺v x ≺v xj ≺v y or xi ≺v x ≺v y ≺v xj then8

if no contradiction then xi+1 ← x ; xj−1 ← y9

else return not single-peaked10

if xj ≺v x ≺v xi ≺v y or xj ≺v x ≺v y ≺v xi then11

if no contradiction then xi+1 ← y ; xj−1 ← x12

else return not single-peaked13

if L = {x} then14

if x = xi+1 then Make-axis(C ′ \ {x},(x1, . . . , xi, xi+1),(xj , . . . , xm))15

else Make-axis(C ′ \ {x},(x1, . . . , xi),(xj−1, xj , . . . , xm))16

Make-axis(C ′ \ {x, y},(x1, . . . , xi, xi+1),(xj−1, xj , . . . , xm))17

Lemma 1. P is single-peaked iff it has no forbidden minor.

Proof (sketch) Necessity: it suffices to check that none of the five forbidden minors is single-
peaked, since the single-peakedness property is closed under taking minors.
Sufficiency: run Algorithm 2 and suppose that it returns not single-peaked. If it stops at Line 5, then
P has a minor T1 or T2. Otherwise it stops at Line 10 or 13 and P has a minor F1, F2 or F3.

The rest of the section is devoted to the problem of determining an ordered partition of minimum
width among the ones that are compatible with clustered single-peakedness. Note that Elkind et al.
[7] studied a closely related problem, namely finding an ordered partition (C1, . . . , Cq) maximizing
q. Both problems are not equivalent, as shown by the following example.

Example 5. Consider the preference profile matrix P:

P =



d d
x a
y v
c b
b c
a x
v y


Both partitions (abcv, d, x, y) and (v, a, d, bcxy) maximize q and are compatible with clustered
single-peakedness, but (abv, d, cxy) is the only partition that minimizes the single-peaked width.

However, for narcissistic preferences [3, 13], one can show that the algorithm proposed by
Elkind et al. for their problem returns an ordered partition of minimum width. Nevertheless, our
approach proves that there is a unique (up to reversal) ordered partition maximizing q. Preferences
are said to be narcissistic when each candidate is most preferred by some voter. In politics, as soon
as the candidates are voting, this assumption seems reasonable. In the remainder, we prove the
following result:

Theorem 2. Finding the single-peaked width is polynomial if P is narcissistic.

For each voter v ∈ V and candidates a, b ∈ C we denote Iv(a, b) := {c ∈ C : c = a or c = b or
a �v c �v b or b �v c �v a} the set of candidates between a and b in the preferences of voter v.



By convention, Iv(a, a) = {a}. A subset I of C is called an interval of P if for each v ∈ V , one
can choose two candidates a, b ∈ I such that I = Iv(a, b). This definition coincides with the notion
of clone set studied by Elkind et al. [7]. Notice that the set of intervals I of P is not closed under
taking subsets. Nevertheless, it is closed under intersection [7]. Given a, b ∈ C, the minimal interval
w.r.t. inclusion that contains a and b is thus uniquely defined: we denote it by I(a, b). The following
lemma will prove useful in order to design an algorithm able to compute a partition compatible with
clustered single-peakedness. For simplicity, if P ′ is isomorphic to P for φ, we write I(x, y) for
I(φ(x), φ(y)).

Lemma 2. The following properties hold:
• If T1 is a minor of P , then I(a, b) = I(a, c) = I(b, c);
• If T2 is a minor of P , then I(a, b) and I(a, c) include I(b, c);
• If F1 is a minor of P , then I(a, b), I(a, c), I(a, d), I(b, c) and I(c, d) include I(b, d);
• If F2 is a minor of P , then I(a, b), I(a, c), I(a, d), I(b, d) and I(c, d) include I(b, c);
• If F3 is a minor of P , then

- I(a, c), I(a, d), I(b, d) and I(c, d) include I(a, b),
- I(a, c), I(a, d), I(b, d) and I(c, d) include I(b, c).

Proof (sketch) Let v be the voter of the first column of T1. Since b ∈ Iv(a, c), it follows
that b ∈ I(a, c). Thus I(a, b) and I(b, c) ⊆ I(a, c). The second column gives I(b, c) and
I(a, c) ⊆ I(a, b), and the third column gives I(a, c) and I(a, b) ⊆ I(b, c). Finally I(a, b) = I(a, c)
= I(b, c). The proofs for the four other forbidden minors go along the same lines.

We propose a greedy algorithm to compute the clusters of an ordered partition compatible
with clustered single-peakedness. This algorithm proceeds by contracting candidates so that no
forbidden minor remains in the preference profile matrix. Contracting two candidates a, b ∈ C
consists in contracting I(a, b). Contracting an interval I consists in collapsing all candidates in I
into a single “cluster” candidate. This amounts to choosing a representative in I and removing from
P all the other candidates in I . For instance, contracting b and d in P yields cluster {b, d, e} (since
I(b, d) = {b, d, e}) and profile P ′:

P =


a c
d d
e b
b e
c a

 P ′ =

 a c
b b
c a



Notice that the preference profile matrix P ′ obtained by contracting an interval of P is a minor
of P . Note also that if I, J ∈ I are two intervals of P , then the two minors obtained from P either
by contracting I then J , or by contracting J then I coincide (even if I and J overlap). Besides, if
P ′ is a minor of P and F ′ is a minor of P ′, then F ′ is also a minor of P . The greedy procedure is
detailed in Algorithm 3. The termination follows from the fact that contracting candidates cannot
create new forbidden minors.

Example 6. Consider the preference profile matrix P in Figure 2 and apply Algorithm 3, assume
that it detects:

the minor

 g g c
c a a
a c g

 and then the minor


f h
g g
e e
h f





Algorithm 3: Greedy algorithm
let P ′ be a minor of P isomorphic for φ to:
T1. Contract φ(a) and φ(b)
T2. Contract φ(b) and φ(c)
F1. Contract φ(b) and φ(d)
F2. Contract φ(b) and φ(c)
F3. Contract φ(a) and φ(b), or φ(b) and φ(c)
apply these contractions (non-deterministically) until no forbidden minor remains.

The first minor is isomorphic to T2 for φ(a) = g, φ(b) = a and φ(c) = c. Therefore candidates
a and c are contracted. The second minor is isomorphic to F1 for φ(a) = f , φ(b) = e, φ(c) = h
and φ(d) = g. Therefore candidates e and g are contracted. Taking candidate a (resp. e) as the
representative of cluster {a, c} (resp. {e, g}), the preference profile becomes:

P ′ =


f b a
e d f
a h e
b e b
d f d
h a h


There is no more forbidden minor in the preference profile, and thus the greedy procedure stops. The
clusters are {a, c} and {e, g}.

This algorithm is polynomial since the forbidden minors can be enumerated in O(m3n3) for T1,
T2, and O(m4n2) for F1, F2, F3. The clusters identified by the algorithm belong to an ordered
partition compatible with clustered single-peakedness. The ordered partition itself can be computed
by applying Algorithm 2 on the final preference profile. Coming back to Example 6, Algorithm 2
returns axis (h, d, b, e, f, a) on P ′, which corresponds to the ordered partition (h, d, b, eg, f, ac)
since e (resp. a) is the representative of {e, g} (resp. {a, c}). This is an ordered partition of minimum
width for this profile. However, in the general case, the width of the returned ordered partition is
not guaranteed to be minimal. We now show how to refine the greedy procedure to get an ordered
partition of minimum width when preferences are narcissistic. To this end, we introduce a notion
of similarity between candidates that enables us to identify necessary and sufficient contractions for
clustered single-peakedness.

Definition 4. Two candidates a and b are said to be similar if they belong to the same cluster in all
ordered partitions w.r.t. which P is clustered single-peaked.

It results from Lemma 2 that the following properties hold:
• If T1 (T2) is a minor of P , then a and b (b and c) are similar;

• If F1 (F2) is a minor of P , then b and d (b and c) are similar;

• If F3 is a minor of P , then

– if I(b, c) ⊆ I(a, b), then b and c are similar;
– if I(a, b) ⊆ I(b, c), then a and b are similar.

These properties imply that all contractions but one (F3) in the greedy algorithm cover candi-
dates which belong to the same cluster in any ordered partition of minimum width. The only case
of a forbidden minor that cannot be removed from P by contracting similar candidates is thus F3

when I(a, b) and I(b, c) intersect properly, i.e. I(a, b) 6⊆ I(b, c) and I(b, c) 6⊆ I(a, b). We call such
forbidden minors ambiguous. If one finds an ambiguous minor M, at least two candidates in M



must be in the same cluster. Nevertheless the single-peaked width of an ordered partition depends
on the choice of the candidates to contract. Furthermore this choice does not only depend on the
maximum number of candidates involved in the possible interval contractions. For instance, con-
sider the preference profile matrix P of Example 5 which has the following minor:

d d
c v
b b
v c


The smallest contraction implied by the given minor would be to contract b and c (2 candidates in
the interval). But (abv, d, cxy), where b and c are not in the same cluster, is the only minimum width
ordered partition compatible with clustered single-peakedness.

For this reason, the greedy algorithm may fail to provide clusters belonging to an ordered parti-
tion of minimum width. However when preferences are narcissistic, no ambiguous minor can exist
in the preference profile matrix. Assume indeed that there exists a minorM isomorphic to F3 for
φ. Since P is narcissistic, candidate φ(b) is the most preferred one for some voter v, and conse-
quently: φ(b) �v φ(a) �v φ(c) or φ(b) �v φ(c) �v φ(a). Therefore we have I(a, b) ⊆ I(b, c)
or I(b, c) ⊆ I(a, b). The minor is thus unambiguous. To obtain an optimal greedy algorithm for
narcissistic preferences, contraction related to F3 must then be modified as follows:

let v be a voter whose most preferred candidate is φ(b)
if φ(b) �v φ(a) �v φ(c) then contract φ(a) and φ(b) else contract φ(b) and φ(c).

Furthermore, the greedy algorithm uses necessary and sufficient contractions to make the profile
clustered single-peaked, and thus partition (C1, . . . , Cq) of minimum width is clearly unique under
maximizing the number q of clusters.

5 Conclusion
An interesting open question is whether there exists a general polynomial algorithm to compute
the single-peaked width (not necessarily in the narcissistic case). Adapting the PQ-trees based
algorithm of Elkind et al. [7] to our problem could work. Besides, the concept of minors could be a
tool for finding a short validity proof.
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