
HAL Id: hal-01497107
https://hal.science/hal-01497107

Submitted on 28 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the complexity of the Eulerian closed walk with
precedence path constraints problem

Hervé Kerivin, Mathieu Lacroix, Ali Ridha Mahjoub

To cite this version:
Hervé Kerivin, Mathieu Lacroix, Ali Ridha Mahjoub. On the complexity of the Eulerian closed
walk with precedence path constraints problem. Theoretical Computer Science, 2012, 439,
�10.1016/j.tcs.2012.03.014�. �hal-01497107�

https://hal.science/hal-01497107
https://hal.archives-ouvertes.fr


On the complexity of the Eulerian closed walk
with precedence path constraints problem

H. L. M. Kerivin 1

Department of Mathematical Sciences,

Clemson University O-326 Martin Hall

Clemson, SC 29634, USA

M. Lacroix 2, A. R. Mahjoub 2
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Abstract

The Eulerian closed walk problem in a digraph is a well-known polynomial-time
solvable problem. In this paper, we show that if we impose the feasible solutions
to fulfill some precedence constraints specified by paths of the digraph, then the
problem becomes NP-complete. We also present a polynomial-time algorithm to
solve this variant of the Eulerian closed walk problem when the paths are arc-
disjoint. We also give necessary and sufficient conditions for the existence of feasible
solutions in this polynomial-time solvable case.
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1 Introduction

In this paper, we consider a variant of the famous Eulerian Closed Walk Prob-
lem (ECWP) which consists of finding an Eulerian closed walk starting from
a fixed vertex and fulfilling some precedence constraints on the arcs, specified
by a partial order on arcs, the latter being defined by a set of paths. Let
D = (V,A) be a loopless Eulerian digraph and let v0 ∈ V be a specified ver-
tex. A walk of length k is a sequence P = (a1, . . . , ak) of k arcs of A with
k ≥ 1, ai = (ui, vi) for all i = 1, . . . , k and vi = ui+1 for i = 1, . . . , k − 1. The
vertex u1 (respectively vk) is called the starting (respectively ending) vertex of
P . A path is a walk so that the vertices u1, vi, i = 1, 2, . . . , k are all different.
A closed walk is a walk having vk = u1. A closed walk P is Eulerian if each
arc of D appears exactly once in P . Given a walk P composed of distinct
arcs, we write a ≺P a′ if the arc a precedes the arc a′ 6= a in P , that is, if P

traverses a before a′. Moreover if we consider a path Q = (a1, a2, . . . , ak) of D,
k ≥ 1, we say that the walk P respects the path Q if a ≺Q a′ and P contains
a′ imply that P also contains a and a ≺P a′. (Remark that two adjacent arcs
of Q are not necessarily adjacent in P .) We now precisely define the problem
we consider hereafter. Let D = (V,A) be a loopless Eulerian digraph and let
v0 ∈ V be a specified vertex. (Note that D is not necessarily simple, that
is, it may have multiple arcs.) The required partial order on A is given by a
set K = {Q1, Q2, . . . , Qq} of paths of D, q ≥ 1. The Eulerian Closed Walk
with Precedence Path Constraints Problem (ECWPPCP) consists of finding
an Eulerian closed walk P of D whose starting vertex is v0 and which respects
all the paths of K, that is, for i = 1, 2, . . . , q, if a ≺Qi

a′ then a ≺P a′ for
all a, a′ ∈ A. An instance of the ECWPPCP then is defined by the (ordered)
triple (D, v0, K).

Studying the ECWPPCP was originally motivated by the so-called Single-
vehicle Preemptive Pickup and Delivery Problem (SPPDP) [2]. In this vehicle
routing problem with a single vehicle having limited capacity, each demand
may be temporarily unloaded elsewhere than its destination and picked up
later.
Given a closed walk P corresponding to the vehicle route and the set K of the
demand paths, Kerivin et al. [2] showed that (P,K) corresponds to a feasible
solution to the SPPDP if the capacity constraints are satisfied and P respects
the paths of K. To avoid carrying too much information (and then variables
when formulating the SPPDP as a mixed-integer linear program), a natural
question is whether or not one can get rid of the sequence of arcs of the ve-



hicle route, that is, can we represent a solution by an ordered pair (D,K),
where D corresponds to the digraph induced by the set of arcs traversed by
the vehicle, and determine in polynomial time if (D,K) is a feasible solution?
Since, given (D,K), it is easy to check if the capacity constraints are satisfied,
and since the digraph induced by the set of arcs of a closed walk is Eulerian,
the problem of determining whether or not (D,K) corresponds to a feasible
solution to the SPPDP is nothing but determining if the instance (D, v0, K)
of the ECWPPCP, where v0 corresponds to the depot of the vehicle, admits
a feasible solution.

To the best of our knowledge, the ECWPPCP has not been considered
yet. However, a close-related problem, called the Eulerian Superpath Problem
(ESP) has been considered by Pevzner et al. [4]. This problem has the same
input as the ECWPPCP, except that each path in K is specified by a sequence
of adjacent vertices, instead of a set of arcs. The ESP consists of determining
an Eulerian closed walk starting at v0 and having all the paths specified in K

as subpaths (whereas in the ECWPPCP, the Eulerian closed walk may not
contain paths of K as subpaths ; it must just respect these paths). Pevzner
et al. [4] proved that the ESP is NP-complete by reducing the DNA fragment
assembly problem, known for being NP-hard [1], to it. They also pointed out
that the ESP can be solved in polynomial time whenever the digraph D is
simple. Note that despite looking alike, the ESP and ECWPPCP are quite
different; for instance, as we will see in Section 2, the ECWPPCP remains
NP-complete even when D is a simple digraph.

In the next section, we prove the NP-completeness of the ECWPPCP for
the general case. Section 3 is dedicated to the polynomial-time solvable case
of ECWPPCP where the demand paths are arc-disjoint.

2 NP-completeness of the ECWPPCP

In this section, we prove the NP-completeness of the ECWPPCP. To do so, we
use a polynomial reduction from the Directed Hamiltonian Circuit of indegrees
and outdegrees exactly two Problem (2DHCP), which can be stated as follows.
Let DH = (VH , AH) be a digraph having all its vertices of indegree and outde-
gree two, that is, degin

GH
(v) = degout

GH
(v) = 2 for all v ∈ VH = {v1, v2, . . . , vn}

with n ≥ 2. The 2DHCP consists of asserting whether or not DH contains
a Hamiltonian circuit, that is, a closed walk traversing all the vertices of VH

exactly once. The 2DHCP is known to be NP-complete [3]. We remark that



the proof given by Plesnik [3] was devised for planar digraphs with indegrees
and outdegrees at most two, yet by considering some additional arcs, we can
easily extend this result to planar digraphs (with possible multiple arcs) with
indegrees and outdegrees two.

The first step of our reduction is the construction of an instance (D, v0, K)
of the ECWPPCP from DH . We construct D as follows. With vertex v1

of VH , we associate six vertices v1
1, v

2
1, v

3
1, v

4
1, w1, w2, together with the follow-

ing arc set A1 composed of the ten following arcs (v1
1, v

3
1), (v

3
1, v

2
1), (v

2
1, v

4
1),

(v1
1, w1), (w1, w2), (w2, v

2
1), (v4

1, w1), (w1, v
2
1), (v3

1, w2), (w2, v
3
1).

For any i ∈ {2, 3, . . . , n}, we associate, with vi, four vertices v1
i , v

2
i , v

3
i , v

4
i ,

together with the arc set Ai defined by the eight following arcs (v1
i , v

3
i ), (v

3
i , v

2
i ),

(v2
i , v

4
i ), (v4

i , w1), (w1, v
2
i ), (v3

i , w2), (w2, v
3
i ). Let

V = {vj
i : i = 1, 2, . . . , n and j = 1, 2, 3, 4} ∪ {w1, w2}.

We now consider the arcs of DH in the following manner. With every arc
(vi, vj) in AH , we associate the arc (v2

i , v
1
j ). Let

A =

(

n
⋃

i=1

Ai

)

∪ {(v2

i , v
1

j ) : (vi, vj) ∈ AH}.

The digraph D = (V,A) obtained by our construction is clearly Eulerian. To
obtain an instance of the ECWPPCP, we set v0 equal to v2

1 and we define
the path set K as follows. For all i = 1, 2, . . . , n, we consider the paths
Pi = ((v4

i , w1), (w1, w2), (w2, v
3
i ), (v

3
i , v

2
i )) and Qi = ((v4

i , w1), (w1, v
2
i )). The

path set K is then equal to

K = {Pi : i = 1, 2, . . . , n}∪{Qi : i = 1, 2, . . . , n}∪{
(

(v1

1, w1), (w1, w2), (w2, v
2

1)
)

}.

The instance of the ECWPPCP obtained from DH is then (D, v2
1, K). We

show in the next lemma the relation between DH and (D, v2
1, K).

Lemma 2.1 DH has a Hamiltonian circuit if and only if D has an Eule-
rian closed walk starting at v2

1 and respecting the precedence path constraints
specified by K.

Proof. (⇒) Let CH be a Hamiltonian circuit of DH . Without loss of general-
ity, we suppose that CH = ((v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)). We con-
struct an Eulerian closed walk C of D starting from v2

1 and respecting the paths
of K in several steps. Let C1 be the arc sequence obtained by substituting arc



(vi, vi+1) of CH by the path
(

(v2
i , v

4
i ), (v

4
i , w1), (w1, v

2
i ), (v

2
i , v

1
i+1), (v

1
i+1, v

2
i+1)
)

for any i = 1, 2, . . . , n−1, and arc (vn, v1) by the path ((v2
n, v

4
n), (v4

n, w1), (w1, v
2
n),

(v2
n, v

1
1), (v

1
1, w1), (w1, w2)). C1 clearly corresponds to a walk starting at v2

1,
since CH is a closed walk of DH . Note that neither the arcs (w2, v

3
i ), (v3

i , w2),
for i = 1, 2, . . . , n, nor arc (w2, v

2
1) appears in C1. Since for i = 1, 2, . . . , n,

the paths Qi and ((v1
i , w1), (w1, w2)) are subpaths of C1, the latter straight-

forwardly respects K.
Consider now the digraph D∗ = (V ∗, A∗) induced by the remaining arcs of
D except arc (w2, v

2
1), that is, by A \ {C1 ∪ {(w2, v

2
1)}}. We have V ∗ =

V \ ({v4
i : i = 1, 2, . . . , n} ∪ {w1}) and degin

D∗(v)−degout

D∗ (v) = 0 for all v ∈ V ∗.
Moreover, D∗ is weakly connected, that is its underlying graph is connected,
since it contains the arcs (w2, v

3
i ), (v1

i , v
3
i ) and (v3

i , v
2
i ) for i = 1, 2, . . . , n, which

implies that D∗ is Eulerian. Furthermore, the digraph D∗−w2 = D∗[V ∗\{w2}]
may not be weakly connected, yet each vertex in V ∗ \ {w2} clearly has equal
indegree and outdegree. Let D∗

1, D
∗

2, . . . , D
∗

p, p ≥ 1, be the strongly connected
components of D∗ − w2 which obviously are Eulerian. Since D∗ − w2 is not
weakly connected only if DH−CH is not weakly connected either, then for any
k = 1, 2, . . . , p, there must exist ik ∈ {1, 2, . . . , n} so that v3

ik
is a vertex of D∗

k.
Consider any strongly connected component D∗

k, k = 1, 2, . . . , p. Any Eulerian
closed walk B∗

k of D∗

k starting at v3
ik

can be transformed into a closed walk Bk

of D∗ starting at w2 in the following manner. The first arc of Bk is (w2, v
3
ik

).
All the arcs of B∗

k are then added to Bk sequentially. If the head of the added
arc is a vertex v3

i , for some i ∈ {1, 2, . . . , n}, then the path ((v3
i , w2)(w2, v

3
i ))

is added to Bk before moving to the next arc of B∗

k. Once we have dealt
with all the arcs of B∗

k, we complete Bk by adding (v3
ik
, w2). Since any Bk,

for k = 1, 2, . . . , p, starts at vertex w2, the concatenation (B1, B2, . . . , Bp) of
these Eulerian closed walks clearly forms an Eulerian closed walk C2 of D∗.
Let C be the concatenation of C1, C2 and arc (w2, v

2
1). Note that C is com-

posed of all the arcs in A. Moreover, since C1 starts at v2
1 and ends at w2

which is the starting vertex of closed walk C2, C is an Eulerian closed walk
of D starting at v2

1. For any i = 1, 2, . . . , n, the paths ((v4
i , w1), (w1, w2)) and

((w2, v
3
i ), (v

3
i , w2)) are subpaths of C1 and C2, respectively. Recalling that all

the paths Qi, for i = 1, 2, . . . , n, are subpaths of C1, we can conclude that C

respects all the paths of K.

(⇐) Let C be an Eulerian closed walk of D starting at v2
1 and respecting all

the paths of K. Due to the definition of K, arc (w1, w2) appears in C before all
the arcs of D leaving w2, that is, (w1, w2) ≺C a for all a ∈ δout(w2). Moreover,
since we have degout(v) = degin(v) for all v ∈ V , we deduce that arc (w1, w2)



appears in C before any other entering arc of w2, that is, (w1, w2) ≺C a for
all a ∈ δin(w2) \ {(w1, w2)}. Let C be the walk obtained from C by only
considering the arcs of D preceding (w1, w2) in C. By considering all the
paths Pi of K, we deduce that (w1, w2) ≺C (v3

i , v
2
i ) for all i = 1, 2, . . . , n

which implies, with the previous results, that C does not contain any vertex
in {v3

i : i = 1, 2, . . . , n}. Moreover, due to the vertex degree conditions, C

contains arc (v4
i , w1) for all i = 1, 2, . . . , n. Since w1 is not the starting vertex

of C, by considering Qi, we deduce that (v1
1, w1) is the last arc of C and every

path Qi, i = 1, 2, . . . , n is a subpath of C. As every vertex v4
i has only one

entering arc, namely (v2
i , v

4
i ), removing closed walks ((v2

i , v
4
i ), (v

4
i , w1), (w1, v

2
i ))

for all i = 1, 2, . . . , n, and arc (v1
1, w1) leads to a walk C̃ starting at v2

1, ending
at v1

1, and containing all the vertices in {v2
i : i = 1, 2, . . . , n}. Since C̃ does

not contain any vertex in {v3
i : i = 1, 2, . . . , n}, we clearly have δin

D(v2
i ) ∩

C̃ = {(v1
i , v

2
i )} for all i = 2, 3, . . . , n. Therefore, C̃ contains all the vertices

in {v1
i , v

2
i : i = 1, 2, . . . , n} exactly once. Consequently, C̃ is an alternate

sequence of arcs of {(v2
i , v

2
j ) : (vi, vj) ∈ AH} and of {(v1

i , v
2
i ) : i = 2, 3, . . . , n}

so that every arc from both sets appears once. Therefore, contracting the
vertices v1

i and v2
i into vertex vi, for i = 1, 2, . . . , n, transforms C̃ into a

Hamiltonian circuit of DH . 2

Theorem 2.2 The Eulerian closed walk with precedence path constraints prob-
lem is NP-complete.

Proof. Clearly the problem is in NP. Moreover, the construction from an
instance of the NP-complete 2DHCP into an instance of the ECWPPCP can
be performed in polynomial time. Therefore, the NP-completeness of the
Eulerian closed walk with precedence path constraints problem directly follows
from Lemma 2.1. 2

We remark that, on the contrary of the ESP, the ECWPPCP remains NP-
hard if the digraph D is simple. To prove this, one has just to modify the
construction of (D, v0, K) from DH by sequentially replacing, in D and every
path of K, each multiple arc (u, v) by the two arcs (u,w) and (w, v) where w

is a new vertex with indegree and outdegree one.

3 A polynomial-time solvable case

Throughout this section, we consider an instance (D, v0, K) of the ECWP-
PCP where K is composed of arc-disjoint paths. We prove that, in this case,
the ECWPPCP can be solved in polynomial time. From now on, we say that
arc a ∈ A is a predecessor of an arc a′ ∈ A \ {a} if there exists a path Q



of K with a ≺Q a′. (Note that, since K is composed of arc-disjoint paths,
given two distinct arcs, at most one is the predecessor of the other.) We now
define particular subdigraphs of D. Let D′ = (V ′, A′) be an Eulerian digraph
induced by an arc subset A′ ⊆ A. A vertex v ∈ V ′ is said D′-impregnable if
either it is different from v0 and incident with no arc in A′, or all its leaving
arcs in A′ have a predecessor in δin

D′(v). The subdigraph D′ is then called im-
pregnable (with respect to (D, v0, K)) if all its vertices are D′-impregnable. By
definition, the impregnable Eulerian subdigraphs are composed of arcs that
cannot appear in a closed walk of D starting from v0 and respecting the paths
of K. Therefore, if (D, v0, K) contains an impregnable Eulerian subdigraph,
then the ECWPPCP associated with instance (D, v0, K) has not a feasible
solution.

Given an instance (D, v0, K) of the ECWPPCP so that v0 is not D-
impregnable, one can easily construct a closed walk C of D starting from
v0 and respecting K as follows. (Remark that C may not be Eulerian.) Since
v0 is not D-impregnable, there exists an arc leaving v0, say (v0, v1), with no
predecessor. Therefore, the walk C = ((v0, v1)) respects K. Moreover, as long
as the ending vertex of C, say v, is different from v0, we can extend C by
pushing back to C a new arc leaving v. Indeed, since D is Eulerian, we have
|δout(v)\C| = |δin(v)\C|+1. Since K is composed of arc-disjoint paths, each
arc of δin(v) \C is the predecessor of at most one of δout(v) \C, which implies
that there exists an arc (v, w) of A\C with no predecessor in δin(v)\C. there-
fore, the walk (C, (v, w)) respects K. By iteratively pushing back arcs to C

until reaching v0, we obtain a closed walk C starting at v0 and respecting K.

By definition, if (D, v0, K) contains an impregnable Eulerian subdigraph,
then it admits no feasible solution. Suppose now that (D, v0, K) does not
contain any impregnable Eulerian subdigraph. Using the previous routine,
we now construct a feasible solution to the ECWPPCP as follows. We first
compute a closed walk C of (D, v0, K). If C is Eulerian, then it corresponds
to a feasible solution to the ECWPPCP. Otherwise, let D = (V ,A) be the
digraph induced by the arc set A\C. It is clear that each connected component
of D corresponds to an Eulerian subdigraph of D. Let D′ = (V ′, A′) be
any of these connected components. By hypothesis, D′ is not impregnable.
Therefore, let v′

0 ∈ V ′ be the last vertex appearing in C that is not D′-
impregnable and K ′ the restriction of K on D′. (D′, v′

0, K
′) corresponds to

an instance of the ECWPPCP. Using the previous routine, we can construct
a closed walk C ′ of D′ starting at v′

0 and respecting K ′. Inserting C ′ into C

after the last time v′

0 appears in C leads to a new closed walk C ′′ starting



at v0. Suppose now that C ′′ does not respect K. Since C and C ′ respect
K, this implies that there exists an arc a′ in C ′ that has a predecessor in C,
say a, which appears after a′ in C ′′. We suppose, without loss of generality,
that a = (u, v) and a′ = (v, w) are incident. Vertex v is not D′-impregnable
because it is incident to at least one arc of C and a′ has only one predecessor
in δin(v), namely a, which does not belong to D′. Since v appears after v′

0

in C, this contradicts the fact that v′

0 is the last vertex of C that is not D′-
impregnable. Thus, C ′′ respects K. By iteratively inserting closed walks into
the current one, we finally obtain a solution to the ECWPPCP. (Otherwise,
the digraph induced by the remaining arcs contains at least one impregnable
Eulerian subdigraph.) These results lead to the following theorem.

Theorem 3.1 The ECWPPCP can be solved in polynomial time if the paths
are arc-disjoint. Moreover, (D, v0, K) admits a feasible solution if and only if
it does not contain any impregnable Eulerian subdigraph. �

4 Conclusion

In this paper, we introduced a new variant of the Eulerian closed walk problem
where some precedence constraints are specified by a set of paths K. We first
proved that this problem is NP-complete. We also presented a polynomial-
time algorithm to solve the problem if K is composed of arc-disjoint paths.
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