Olivier Fercoq
email: olivier.fercoq@telecom-paristech.fr

Pascal Bianchi
email: pascal.bianchi@telecom-paristech.fr

A Coordinate Descent Primal-Dual Algorithm with Large Step Size and Possibly Non-Separable Functions *

This paper introduces a randomized coordinate descent version of the Vũ-Condat algorithm. By coordinate descent, we mean that only a subset of the coordinates of the primal and dual iterates is updated at each iteration, the other coordinates being maintained to their past value. Our method allows us to solve optimization problems with a combination of differentiable functions, constraints as well as non-separable and non-differentiable regularizers.

We show that the sequences generated by our algorithm almost surely converge to a saddle point of the problem at stake, for a wider range of parameter values than previous methods. In particular, the condition on the step-sizes depends on the coordinate-wise Lipschitz constant of the differentiable function's gradient, which is a major feature allowing classical coordinate descent to perform so well when it is applicable. We then prove a sublinear rate of convergence in general and a linear rate of convergence if the objective enjoys strong convexity properties.

We illustrate the performances of the algorithm on a total-variation regularized least squares regression problem and on large scale support vector machine problems.

Introduction 1.Motivation

We consider the optimization problem

inf x∈X f (x) + g(x) + h(M x) (1)
where X is a Euclidean space, M : X → Y is a linear operator onto a second Euclidean space Y; functions f : X → R, g : X → (-∞, +∞] and h : Y →] -∞, +∞] are assumed proper, closed and convex; the function f is moreover assumed differentiable. We assume that X and Y are product spaces of the form

X = X 1 × • • • × X n and Y = Y 1 × • • • × Y p
for some integers n, p. For any x ∈ X , we use the notation x = (x (1) , . . . , x (n)) to represent the (block of) coordinates of x (similarly for y = (y (1) , . . . , y (p)) in Y).

Problem [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF] has numerous applications e.g. in machine learning [START_REF] Cevher | Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics[END_REF], image processing [START_REF] Chambolle | An introduction to total variation for image analysis[END_REF] or distributed optimization [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF].

Under the standard qualification condition 0 ∈ ri(M domg -domh) (where dom and ri stand for domain and relative interior, respectively), a point x ∈ X is a minimizer of (1) if and only if there exists y ∈ Y such that (x, y) is a saddle point of the Lagrangian function L(x, y) = f (x) + g(x) + y, M x -h (y) where . , . is the inner product and h : y → sup z∈Y y, z -h(z) is the Fenchel-Legendre transform of h. There is a rich literature on primal-dual algorithms searching for a saddle point of L (see [START_REF] Tran-Dinh | A primal-dual algorithmic framework for constrained convex minimization[END_REF] and references therein). In the special case where f = 0, the alternating direction method of multipliers (ADMM) proposed by Glowinsky and Marroco [START_REF] Glowinski | Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires[END_REF], Gabay and Mercier [START_REF] Gabay | A dual algorithm for the solution of nonlinear variational problems via finite element approximation[END_REF] and the algorithm of Chambolle and Pock [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] are amongst the most celebrated ones. Based on an elegant idea also used in [START_REF] He | Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective[END_REF], Vũ [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] and Condat [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF] separately proposed a primal-dual algorithm allowing as well to handle ∇f explicitly, and requiring one evaluation of the gradient of f at each iteration. Hence, the ∇f is handled explicitly in the sense that the algorithm does not involve, for instance, the call of a proximity operator associated with f . A convergence rate analysis is provided in [START_REF] Chambolle | On the ergodic convergence rates of a first-order primal-dual algorithm[END_REF] (see also [START_REF] Tran-Dinh | A primal-dual algorithmic framework for constrained convex minimization[END_REF]). A related splitting method has been recently introduced by [START_REF] Davis | A three-operator splitting scheme and its optimization applications[END_REF].

This paper introduces a coordinate descent (CD) version of the Vũ-Condat algorithm. By coordinate descent, we mean that only a subset of the coordinates of the primal and dual iterates is updated at each iteration, the other coordinates being maintained to their past value. Coordinate descent was historically used in the context of coordinate-wise minimization of a unique function in a Gauss-Seidel sense [START_REF] Warga | Minimizing certain convex functions[END_REF][START_REF] Bertsekas | Parallel and distributed computation: numerical methods[END_REF][START_REF] Tseng | Convergence of a block coordinate descent method for nondifferentiable minimization[END_REF]. Tseng et al. [START_REF] Luo | A coordinate gradient descent method for nonsmooth separable minimization[END_REF][START_REF] Tseng | A coordinate gradient descent method for nonsmooth separable minimization[END_REF][START_REF] Tseng | A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training[END_REF] and Nesterov [START_REF] Nesterov | Efficiency of coordinate descent methods on huge-scale optimization problems[END_REF] developped CD versions of the gradient descent. In [START_REF] Nesterov | Efficiency of coordinate descent methods on huge-scale optimization problems[END_REF] as well as in this paper, the updated coordinates are randomly chosen at each iteration. The algorithm of [START_REF] Nesterov | Efficiency of coordinate descent methods on huge-scale optimization problems[END_REF] has at least two interesting features. Not only it is often easier to evaluate a single coordinate of the gradient vector rather than the whole vector, but the conditions under which the CD version of the algorithm is provably convergent are generally weaker than in the case of standard gradient descent. The key point is that the step size used in the algorithm when updating a given coordinate i can be chosen to be inversely proportional to the coordinate-wise Lipschitz constant of ∇f along its ith coordinate, rather than the global Lipschitz constant of ∇f (as would be the case in a standard gradient descent). Hence, the introduction of coordinate descent allows to use longer step sizes which potentially results in a more attractive performance. The random CD gradient descent of [START_REF] Nesterov | Efficiency of coordinate descent methods on huge-scale optimization problems[END_REF] was later generalized by Richtárik and Takáč [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF] to the minimization of a sum of two convex functions f + g (that is, h = 0 in problem [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF]). The algorithm of [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF] is analyzed under the additional assumption that function g is separable in the sense that for each x ∈ X , g(x) = n i=1 g i (x (i)) for some functions g i : X i →] -∞, +∞]. Accelerated and parallel versions of the algorithm have been later developed by [START_REF] Richtárik | Efficient serial and parallel coordinate descent method for huge-scale truss topology design[END_REF][START_REF] Richtárik | Parallel coordinate descent methods for big data optimization[END_REF][START_REF] Fercoq | Accelerated, parallel and proximal coordinate descent[END_REF][START_REF] Lin | An accelerated proximal coordinate gradient method[END_REF], always assuming the separability of g.

In the literature, several papers seek to apply the principle of coordinate descent to primal-dual algorithms. In the case where f = 0, h is separable and smooth and g is strongly convex, Zhang and Xiao [START_REF] Zhang | Stochastic primal-dual coordinate method for regularized empirical risk minimization[END_REF] introduce a stochastic CD primal-dual algorithm and analyze its convergence rate (see also [START_REF] Suzuki | Stochastic dual coordinate ascent with alternating direction method of multipliers[END_REF] for related works). In 2013, Iutzeler et al. [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF] proved that random coordinate descent can be successfully applied to fixed point iterations of firmly non-expansive (FNE) operators. According to [START_REF] Gabay | Chapter ix applications of the method of multipliers to variational inequalities[END_REF], the ADMM can be written as a fixed point algorithm of a FNE operator, which led the authors of [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF] to propose a coordinate descent version of ADMM with application to distributed optimization. The key idea behind the convergence proof of [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF] is to establish the so-called stochastic Fejér monotonicity of the sequence of iterates as noted by [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF]. In a more general setting than [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF], Combettes et al. in [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF] and Bianchi et al. [START_REF] Bianchi | A stochastic coordinate descent primal-dual algorithm and applications to large-scale composite optimization[END_REF] extend the proof to the so-called α-averaged operators, which include FNE operators as a special case. This generalization allows to apply the coordinate descent principle to a broader class of primal-dual algorithms which is no longer restricted to the ADMM or the Douglas Rachford algorithm. For instance, Forward-Backward splitting is considered in [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF] and particular cases of the Vũ-Condat algorithm are considered in [START_REF] Bianchi | A stochastic coordinate descent primal-dual algorithm and applications to large-scale composite optimization[END_REF][START_REF] Pesquet | A class of randomized primal-dual algorithms for distributed optimization[END_REF]. Nevertheless, the above approach has two major limitations.

First, in order to derive a converging coordinate descent version of a given deterministic algorithm, the latter must write as a fixed point algorithm over some product Hilbert space of the form H = H 1 × • • • H q where the inner product in H is the sum of the inner products in the H i 's. Unfortunately, this condition does not hold in general for the Vũ-Condat method, because the inner product over H involves the coupling linear operator M . A workaround was proposed in [START_REF] Bianchi | A stochastic coordinate descent primal-dual algorithm and applications to large-scale composite optimization[END_REF] but for a particular example only.

Second and even more importantly, the approach of [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF][START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF][START_REF] Bianchi | A stochastic coordinate descent primal-dual algorithm and applications to large-scale composite optimization[END_REF][START_REF] Pesquet | A class of randomized primal-dual algorithms for distributed optimization[END_REF] needs "small" step sizes. More precisely, the convergence conditions are identical to the ones of the brute method, the one without coordinate descent. These conditions involve the global Lipschitz constant of the gradient ∇f instead than its coordinate-wise Lipschitz constants. In practice, it means that the application of coordinate descent to primal-dual algorithm as suggested by [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF] and [START_REF] Bianchi | A stochastic coordinate descent primal-dual algorithm and applications to large-scale composite optimization[END_REF] is restricted to the use of potentially small step sizes. One of the major benefits of coordinate descent is lost.

Some recent works also focused on designing primal-dual coordinate descent methods with a guaranteed convergence rate. In [START_REF] Gao | Randomized primal-dual proximal block coordinate updates[END_REF] and [START_REF] Chambolle | Stochastic primaldual hybrid gradient algorithm with arbitrary sampling and imaging application[END_REF], a O(1/k) rate is obtained for the ergodic mean of the sequences. The rates are given in terms of feasibility and optimality or Bregman distance. Those two papers require all the dual variables to be updated at each iteration, which may not be efficient if there are more than a few dual variables. In the present paper, we will have much more flexibility in the variables we choose to update at each iteration, while retaining a provable convergence rate.

Contribution

• Our main contribution is to provide a CD primal-dual algorithm with a broad range of admissible step sizes. Our numerical experiments show that remarkable performance gains can be obtained when using larger step sizes.

• We identify two setups for which the structure of the problem is favorable to coordinate descent algorithms.

• We prove a sublinear rate of convergence in general and a linear rate of convergence if the objective enjoys strong convexity properties.

Organization of the paper

The algorithm is introduced in Section 2. At each iteration k, an index i is randomly chosen w.r.t. the uniform distribution in {1, . . . , n} where n is, as we recall, the number of primal coordinates. The coordinate

x (i)
k of the current primal iterate x k is updated, as well as a set of associated dual iterates. Under some assumptions involving the coordinate-wise Lipschitz constants of ∇f , the primal-dual iterates converges to a saddle point of the Lagrangian. As a remarkable feature, our CD algorithm makes no assumption of separability of the functions f , g or h. In the special case where h = 0 and g is separable, the algorithm reduces to the CD proximal gradient algorithm of [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF].

The convergence proof is provided in Section 3. It is worth noting that, under the stated assumption on the step-size, the stochastic Fejér monotonicity of the sequence of iterates, which is the key idea in [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF][START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF][START_REF] Bianchi | A stochastic coordinate descent primal-dual algorithm and applications to large-scale composite optimization[END_REF], does not hold (a counter-example is provided). Our proof relies on the introduction of an adequate Lyapunov function. In Section 4, we prove a sublinear rate of convergence in general and a linear rate of convergence if the objective enjoys strong convexity properties. In Section 5, the proposed algorithm is instantiated to the case of total-variation regularization and support vector machines. Numerical results performed on real MRI and text data establish the attractive behavior of the proposed algorithm and emphasize the importance of using primal-dual CD with large step sizes.

Coordinate Descent Primal-Dual Algorithm

Notation

We note M = (M j,i : j ∈ {1, . . . , p}, i ∈ {1, . . . , n}) where M j,i : X i → Y j are the block components of M . For each j ∈ {1, . . . , p}, we introduce the set

I(j) := i ∈ {1, . . . , n} : M j,i = 0 .
Otherwise stated, the jth component of vector M x only depends on x through the coordinates x (i) such that i ∈ I(j). We denote by m j := card(I(j))

the number of such coordinates. Without loss of generality, we assume that m j = 0 for all j. We also denote

π j := 1 card(I(j))
.

For all i ∈ {1, . . . , n}, we define J(i) := j ∈ {1, . . . , p} : M j,i = 0 .

Note that for every pair (i, j), the statements i ∈ I(j) and j ∈ J(i) are equivalent.

If is an integer, γ = (γ 1 , . . . , γ) is a collection of positive real numbers and

A = A 1 × • • • × A is a product of Euclidean spaces, we introduce the weighted norm . γ on A given by u 2 γ = i=1 γ i u (i) 2

Ai

for every u = (u (1) , . . . , u

F (w) + 1 2 w -u 2 γ -1
where we use the notation γ -1 = (γ -1 1 , . . . , γ -1). We denote by prox

(i) γ,F : A → A i the ith coordinate mapping of prox γ,F that is, prox γ,F (u) = (prox (1)
γ,F (u), . . . , prox () γ,F (u)) for any u ∈ A. The notation D A (γ) (or simply D(γ) when no ambiguity occurs) stands for the diagonal operator on A → A given by D A (γ)(u) = (γ 1 u (1) , . . . , γ u ()) for every u = (u (1) , . . . , u ()).

Finally, the adjoint of a linear operator B is denoted B . The spectral radius of a square matrix A is denoted by ρ(A). The number of nonzero elements of a matrix A is denoted by nnz(A).

Main algorithm

Consider Problem [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF]. Let σ = (σ 1 , . . . , σ p) and τ = (τ 1 , . . . , τ n) be two tuples of positive real numbers. Consider an independent and identically distributed sequence (i k : k ∈ N *) with uniform distribution on {1, . . . , n} 1 . The proposed primal-dual CD algorithm consists in updating two sequences x k ∈ X , y k ∈ Y. It is provided in Algorithm 1 below.

Algorithm 1 Coordinate-descent primal-dual algorithm Initialization: Choose x 0 ∈ X , y 0 ∈ Y. Iteration k: Define:

y k+1 = prox σ,h y k + D(σ)M x k x k+1 = prox τ,g x k -D(τ) ∇f (x k) + 2M y k+1 -M y k .
For i = i k+1 and for each j ∈ J(i k+1), update:

x (i) k+1 = x (i) k+1 y (j) k+1 = y (j) k + π j (y (j) k+1 -y (j) k) . Otherwise, set x (i) k+1 = x (i)
k , and y

(j) k+1 = y (j) k .
For every i ∈ {1, . . . , n}, we denote by U i : X i → X the linear operator such that all coordinates of U i (u) are zero except the ith coordinate which coincides with u: U i (u) = (0, • • • , 0, u, 0, • • • , 0). Our convergence result holds under the following assumptions. b) The function f is differentiable on X . c) For every i ∈ {1, . . . , n}, there exists β i ≥ 0 such that for any x ∈ X , any u ∈ X i ,

f (x + U i u) ≤ f (x) + ∇f (x), U i u + β i 2 u 2 Xi .
d) The random sequence (i k) k∈N * is independent, uniformly distributed on {1, . . . , n}.

e) The step sizes τ = (τ 1 , . . . , τ n) and σ = (σ 1 , . . . , σ p) satisfy for all i ∈ {1, . . . , n}, τ i < 1

β i + ρ j∈J(i) (2 -π j)m j σ j M j,i M j,i
.

We denote by S the set of saddle points of the Lagrangian function L. Otherwise stated, a couple (x * , y *) ∈ X × Y lies in S if and only if it satisfies the following inclusions

0 ∈ ∇f (x *) + ∂g(x *) + M y * (2) 0 ∈ -M x * + ∂h (y *) . (3)
We shall also refer to elements of S as primal-dual solutions.

Theorem 1. Let Assumption 2.1 hold true and suppose that S = ∅. Let (x k , y k) be a sequence generated by Algorithm 1. Almost surely, there exists (x * , y *) ∈ S such that

lim k→∞ x k = x * lim k→∞ y k = y * .

Efficient implementation using problem structure

In Algorithm 1, it is worth noting that quantities (x k+1 , y k+1) do not need to be explicitly calculated. At iteration k, only the coordinates x

(i k+1) k+1
and y

(j)
k+1 , ∀j ∈ J(i k+1) are needed to perform the update. From a computational point of view, it is often the case that the evaluation of the above coordinates is less demanding than the computation of the whole vectors x k+1 , y k+1 . Two situations have been reported in the literature:

• If g is separable, one only needs to compute the quantities ∇ i k+1 f (x k), (2M ȳk+1 -M y k) (i k+1) and prox τi k+1 ,gi k+1 to perform the kth iteration. A classical example of such smart residual update [START_REF] Nesterov | Subgradient methods for huge-scale optimization problems[END_REF] can be found in the proximal coordinate descent gradient algorithm (case g separable and h = 0) [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF]. More generally, if g (resp. h) is block-separable, we can use this structure in the algorithm, even if this block structure does not match

X 1 × . . . × X n (resp. Y 1 × . . . × Y p).
We used this idea in Section 5.1 to deal efficiently with the proximal operator of the 2,1 norm.

• If g is the indicator of the consensus constraint {x 1 = • • • = x n },
f is separable and h = 0, we recover MISO [START_REF]Incremental majorization-minimization optimization with application to large-scale machine learning[END_REF]. In that case, we can store ∇f (x k) and update its average. Thanks to the separability of f , only one coordinate of ∇f (x k) needs to be updated at each iteration.

We used similar ideas in Section 5.2 to deal efficiently with the projection onto the subspace orthogonal to a vector.

To illustrate the importance of these implementation tricks, we give in the following -The use cases are the ones described in the numerical section. The numbers 6 and 12 highlight the (mild) overhead of duplication in the Total Variation + 1 regularized least squares problem.

Primal dual coordinate descent with duplicated dual variables

In this section, we present a generalization of Algorithm 1 that allows for more flexibility in the update rule for dual variables. It will also be a convenient formulation for the analysis.

Recall that

Y = Y 1 × • • • × Y p .
For every j ∈ {1, . . . , p}, we use the notation

Y j := Y I(j) j
, which means that Y j consists of |I(j)| copies of Y j indexed by I(j). An arbitrary element u in Y j will be represented by u = (u(i) : i ∈ I(j)). We define

Y := Y 1 × • • • × Y p .
An arbitrary element y in Y will be represented as y = (y (1) , . . . , y (p)) and we shall call such an element a duplicated dual variable. This notation is recalled in Table 2 below. j) : j ∈ {1, . . . , p}) nnz(M) where y (j) = (y (j) (i) : i ∈ I(j)) ∀j

X = X 1 × • • • × X n x = (x (i) : i ∈ {1, . . . , n}) n Y = Y 1 × • • • × Y p y = (y (j) : j ∈ {1, . . . , p}) p Y j = Y I(j) j u = (u(i) : i ∈ I(j)) |I(j)| Y = Y 1 × • • • × Y p y = (y (
In our algorithm, we will stack a collection of primal variables (x (i) k : i ∈ {1, . . . , n}) at iteration k, and a set of (duplicated) dual variables (y (j) k (i) : i ∈ {1, . . . , n}, j ∈ J(i)). In a coordinate descent spirit, we however update only a subset of these variables at every iteration k. First, we choose uniformly at random a block of primal coordinates i k+1 : eventually, only the primal variable x (i k+1) k will be updated. As far as the dual variables are concerned, a natural choice is to update the dual variables (y

(j) k (i k+1) : j ∈ J(i k+1)) associated to the primal variable x (i k+1) k
. This case will be investigated in Section 2.5.1. For reasons that will be made clear later on, it may be interesting in some situations to update a larger set of duplicated dual variables at iteration k, namely (y (j) k (l) : (l, j) ∈ J (i k+1)) where for every i ∈ {1, . . . , n}, J (i) is a subset of {1, . . . , n} × {1, . . . , p} chosen in such a way that

{i} × J(i) ⊂ J (i) ⊂ {(l, j) : j ∈ J(l)} . (4)
We shall also define the probability that j ∈ J(i k+1) knowing that (l, j) ∈ J (i k+1) as

π j (i) = 1 card({l : (i, j) ∈ J (l)}) . (5)
Note that 0 < π j (i) ≤ 1. In the special case where J (i) = {i} × J(i), note also that π j (i) = 1 for every j ∈ J(i).

As for Algorithm 1, we consider an independent and identically distributed sequence (i k : k ∈ N *) with uniform distribution on {1, . . . , n}. The algorithm consists in updating four sequences

x k ∈ X , w k ∈ X , z k ∈ Y and y k ∈ Y. It is provided in Algorithm 2 below.
Algorithm 2 Coordinate-descent primal-dual algorithm with duplicated variables Initialization: Choose x 0 ∈ X , y 0 ∈ Y. For all i ∈ {1, . . . , n}, set w

(i) 0 = j∈J(i) M j,i y (j) 0 (i).
For all j ∈ {1, . . . , p}, set z

(j) 0 = 1 mj i∈I(j) y (j) 0 (i).
Iteration k: Define:

y k+1 = prox σ,h z k + D(σ)M x k x k+1 = prox τ,g x k -D(τ) ∇f (x k) + 2M y k+1 -w k .
For i = i k+1 and for each (l, j) ∈ J (i k+1), update:

x (i) k+1 = x (i) k+1 y (j) k+1 (l) = y (j) k (l) + π j (l)(y (j) k+1 -y (j) k (l)) w (l) k+1 = w (l) k + (l,j)∈J (i) M j,l (y (j) k+1 (l) -y (j) k (l)) z (j) k+1 = z (j) k + 1 m j l:(l,j)∈J (i) (y (j) k+1 (l) -y (j) k (l)) . Otherwise, set x (i) k+1 = x (i) k , w (l) k+1 = w (l) k , z (j) k+1 = z (j) k
and y

(j) k+1 (l) = y (j) k (l).
Theorem 2. Let Assumption 2.1 hold true and

τ i < 1
β i + ρ j∈J(i) (2 -π j (i))m j σ j M j,i M j,i . (6)
Suppose that Eq. (4) holds and that S = ∅. Let (x k , y k) be a sequence generated by Algorithm 2. Almost surely, there exists (x * , y *) ∈ S such that

lim k→∞ x k = x * lim k→∞ y (j) k (i) = y (j) *
(∀j ∈ {1, . . . , p}, ∀i ∈ I(j)) .

Special Cases

The case

J (i) = {i} × J(i) for all i
According to (4), the smallest possible choice for

J (i) is J (i) = {i} × J(i).
In that case, π j (i) = 1 for all j ∈ J(i) and the update of the dual variable simplifies to:

∀j ∈ J(i k+1), y (j) k+1 (i k+1) = y j k+1 .
This choice of dual sampling also implies that the primal and dual variables are grouped into n disjoint primal-dual blocks of the type (x (i) , (y

(j) k+1 (i)) j∈J(i)).

The case

J (i) = ∪ j∈J(i) I(j) × J(i) for all i
With this update scheme for dual variables, given i k+1 , we update y (j) k+1 (l) for all j ∈ J(i k+1) and all l ∈ I(j). Said otherwise, we update all the copies of y (j) k+1 as soon as one of them has to be updated.

We have π j (l) = 1 |I(j)| = 1 mj for all l ∈ I(j). The advantage of this update scheme is that, provided there exists y such that y (j) 0 (l) = y (j) 0 for all l ∈ I(j), we have for all l ∈ I(j) and all k ≥ 0,

y (j) k+1 (l) = y (j) k+1 = 1 m j y (j) k+1 + (1 - 1 m j)y (j) k .
Hence, choosing J (i) = ∪ j∈J(i) I(j) × J(i) allows us to undo the duplication of dual variables and reduce the size of the vector of dual variables from the number of nonzero elements in M , nnz(M), to its number of rows p. This shows the following equivalence result.

Proposition 1. Algorithm 1 with initial point y 0 is equivalent to Algorithm 2 with the choice of dual sampling

J (i) = ∪ j∈J(i) I(j) × J(i), ∀i ∈ {1, .
. . , n} and initial point y

(j) 0 (l) = y 0 (j) , ∀j ∈ {1, . . . , p}, ∀l ∈ I(j).
So, a byproduct of the proof of Theorem 2 will be a proof for Theorem 1.

The Case

m 1 = • • • = m p = 1
We consider the special case

m 1 = • • • = m p = 1.
Otherwise stated, the linear operator M has a single nonzero component M j,i per row j ∈ {1, . . . , p}. This happens for instance in the context of distributed optimization [START_REF] Bianchi | A stochastic coordinate descent primal-dual algorithm and applications to large-scale composite optimization[END_REF]. This case will also be extensively used in the proofs.

In this scenario, the notations can be drastically simplied. Indeed, for every j ∈ {1, . . . , p}, I(j) is a singleton. The corresponding set of duplicated dual variables (y

(j) k (i) : i ∈ I(j)) is reduced to a single variable y (j)
k (I(j)), which we shall simply denote as y (j) k . According to (4), J (i) is a subset of {(l, j) : l ∈ I(j)} which simply coincides with the set {(I(j), j) : j ∈ {1, . . . , p}. Therefore, the set J (i) is uniquely determined by its projection onto the second set of indices. Otherwise stated, the selection of J (i) for a given i is equivalent to the selection of a subset of {1, . . . , p} which we abusively denote by J (i) in this paragraph.

Then, Algorithm 2 simplifies to Algorithm 3 below. Note that Algorithm 3 has a range of applicability which is different from Algorithm 1. We make an additional assumption on M but we have more freedom on the dual sampling J .

Algorithm 3 Coordinate-descent primal-dual algorithm -Case m 1 = • • • = m p = 1. Initialization: Choose x 0 ∈ X , y 0 ∈ Y.
Iteration k: Define:

y k+1 = prox σ,h y k + D(σ)M x k x k+1 = prox τ,g x k -D(τ) ∇f (x k) + M (2y k+1 -y k) .
For i = i k+1 and for each j ∈ J (i k+1), update:

x (i) k+1 = x (i) k+1 y (j) k+1 = y (j) k + π j (y (j) k+1 -y (j) k) . Otherwise, set x (i) k+1 = x (i) k , y (j) k+1 = y (j) k .

The Case h = 0

Instanciating Algorithm 2 in the special case h = 0, it boils down to the following CD forward-backward algorithm:

x (i) k+1 = prox (i) τ,g x k -D(τ)∇f (x k) , if i = i k+1 , x (i) k , otherwise. (7)
As a consequence, Algorithm 2 allows to recover the CD proximal gradient algorithm of [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF] with the notable difference that we do not assume the separability of g. On the other hand, Assumption 2.1(e) becomes τ i < 1/β i whereas in the separable case, [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF] assumes τ i = 1/β i . This remark leads us to conjecture that, even though Assumption 2.1(e) generally allows for the use of larger step sizes than the ones suggested by the approach of [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF][START_REF] Bianchi | A stochastic coordinate descent primal-dual algorithm and applications to large-scale composite optimization[END_REF], one might be able to use even larger step sizes than the ones allowed by Theorem 2. Note that a similar CD forward-backward algorithm can be found in [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF] with no need to require the separability of g. However, the algorithm of [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF] assumes that the step size τ i (there assumed to be independent of i) is less than 2/β where β is the global Lipschitz constant of ∇f . As discussed in the introduction, an attractive feature of our algorithm is the fact that our convergence condition τ i < 1/β i only involves the coordinate-wise Lipschitz constant of ∇f .

Failure of Stochastic Fejér Monotonicity

As discussed in the introduction, an existing approach to prove convergence of CD algorithm in a general setting (that is, not restricted to h = 0 and separable g) is to establish the stochastic Fejér monotonicity of the iterates. The idea was used in [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF] and extended by [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF] and [START_REF] Bianchi | A stochastic coordinate descent primal-dual algorithm and applications to large-scale composite optimization[END_REF] to a more general setting. Unfortunately, this approach implies to select a "small" step size as noticed in the previous section. The use of small step size is unfortunate in practice, as it may significantly affect the convergence rate.

It is natural to ask whether the existing convergence proof based on stochastic Fejér monotonicity can be extended to the use of larger step sizes. The answer is negative, as shown by the following example.

Example 1. Consider the toy problem min

x∈R 3 1 2 (x (1) + x (2) + x (3) -1) 2 that is we take f (x) = 1 2 (x (1) + x (2) + x (3) -1) 2 and g = h = M = 0. One of the minimizers is x * = (1 3 , 1 3 , 1 3
). The global Lipschitz constant of ∇f is equal to 3 and the coordinate-wise Lipschitz constants are equal to 1. The CD proximal gradient algorithm [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF] writes

x (i) k+1 = x (i) k -τ (x (1) k + x (2) k + x (3) k -1) if i = i k+1 x (i) k
otherwise where we used τ 1 = τ 2 = τ 3 τ for simplicity. By Theorem 2, x k converges almost surely to x * whenever τ < 1. Setting x 0 = 0, one has

x 0 -x * 2 = 1 3 . It is immediately seen that E x 1 -x * 2 = (τ -1 3) 2 + 1 9 + 1 9
where E represents the expectation. In particular, E x 1 -x * 2 > x 0 -x * 2 as soon as τ > 2/3. Therefore, the sequence E x k -x * 2 is not decreasing. This example shows that the proof techniques based on monotone operators and Fejér monotonicity are not directly applicable in the case of long step sizes. Indeed, as shown in Lemma 3 below, one needs to make use of another Lyapunov function, defined in [START_REF] Dohmatob | Benchmarking solvers for tv-l1 least-squares and logistic regression in brain imaging[END_REF]. That inequality shows that the sequence exhibits a stochastic monotonicity property in the Bregman divergence sense [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF].

3 Proof of Theorem 2

Preliminary Lemma

For every (x, y) ∈ X × Y, we define

V (x, y) := 1 2 x 2 τ -1 + y, M x + 1 2 y 2 σ -1 . (8
) Lemma 1. Let Assumption 2.1(a-b) hold true. Let (x, y) ∈ X × Y and (x * , y *) ∈ S. Define y = prox σ,h y + D(σ)M x x = prox τ,g x -D(τ) ∇f (x) + M (2y -y)
and set z = (x, y), z * = (x * , y *), z = (x, y). Then,

∇f (x *) -∇f (x), x * -x + V (z -z) ≤ V (z -z *) -V (z -z *) .
Proof. The inclusions (3) also read

∀u ∈ X , g(u) ≥ g(x *) + -∇f (x *) -M y * , u -x * ∀v ∈ Y, h (v) ≥ h (y *) + M x * , v -y * .
Setting u = x and v = y in the above inequalities, we obtain

g(x) ≥ g(x *) + ∇f (x *) + M y * , x * -x (9) h (y) ≥ h (y *) + M x * , y -y * . (10
)
By definition of the proximal operator,

y = arg min v∈Y h (v) -v, M x + 1 2 v -y 2 σ -1 (11)
x = arg min

u∈X g(u) + u, ∇f (x) + M (2y -y) + 1 2 u -x 2 τ -1 . (12)
Consider Equality [START_REF] Chambolle | Stochastic primaldual hybrid gradient algorithm with arbitrary sampling and imaging application[END_REF] above. It classically implies [START_REF] Tseng | On accelerated proximal gradient methods for convex-concave optimization[END_REF] that for any v ∈ Y,

h (y) -y, M x + 1 2 y -y 2 σ -1 ≤ h (v) -v, M x + 1 2 v -y 2 σ -1 - 1 2 y -v 2 σ -1 . (13)
Setting v = y * , we obtain

h (y) ≤ h (y *) + y -y * , M x + 1 2 y * -y 2 σ -1 - 1 2 y -y * 2 σ -1 - 1 2 y -y 2 σ -1 (14)
and using [START_REF] Chambolle | On the convergence of the iterates of "FISTA[END_REF], we finally have

M (x * -x), y -y * ≤ 1 2 y * -y 2 σ -1 - 1 2 y -y * 2 σ -1 - 1 2 y -y 2 σ -1 (15)
Similarly, Equality [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] implies that for any u ∈ X ,

g(x) + x, ∇f (x) + M (2y -y) + 1 2 x -x 2 τ -1 ≤ g(u) + u, ∇f (x) + M (2y -y) + 1 2 u -x 2 τ -1 - 1 2 x -u 2 τ -1 . (16)
We set u = x * . This yields

g(x) ≤ g(x *) + x * -x, ∇f (x) + M (2y -y) + 1 2 x * -x 2 τ -1 - 1 2 x -x * 2 τ -1 - 1 2 x -x 2 τ -1 .
Using moreover Inequality (9), we obtain

∇f (x *) + M y * , x * -x ≤ x * -x, ∇f (x) + M (2y -y) + 1 2 x * -x 2 τ -1 - 1 2 x -x * 2 τ -1 - 1 2 x -x 2 τ -1
hence, rearranging the terms,

∇f (x *) -∇f (x), x * -x - 1 2 x * -x 2 τ -1 + 1 2 x -x * 2 τ -1 + 1 2 x -x 2 τ -1 ≤ 2y -y -y * , M (x * -x) .
Summing the above inequality with [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF],

∇f (x *) -∇f (x),x * -x + 1 2 x -x 2 τ -1 + y -y, M (x -x) + 1 2 y -y 2 σ -1 ≤ 1 2 x -x * 2 τ -1 + y -y * , M (x -x *) + 1 2 y -y * 2 σ -1 - 1 2 x -x * 2 τ -1 -y -y * , M (x -x *) - 1 2 y -y * 2 σ -1 .
This completes the proof of the lemma thanks to the definition of V .

Study of Algorithm 3

We first prove Theorem 2 in the special case

m 1 = • • • = m p = 1.
In that case, Algorithm 2 boils down to Algorithm 3. We recall that in this case, the vector y

(j)
k is reduced to a single value y

(j)
k (i) ∈ Y j where i is the unique index such that M j,i = 0. We simply denote this value by y (j) k . We denote by F k the filtration generated by the random variable (r.v.

) i 1 , • • • , i k . We denote by E k (.) = E(. |F k) the conditional expectation w.r.t. F k . Lemma 2. Let Assumptions 2.1(a,b,d) hold true. Suppose m 1 = • • • = m p = 1.
Consider Algorithm 3 and let γ 1 , . . . , γ n , γ 1 , . . . , γ p be arbitrary positive coefficients. For every k ≥ 1 and every F k -measurable pair of random variables (X, Y) on X × Y,

E k (x k+1) = 1 n x k+1 + (1 - 1 n)x k E k (x k+1 -X 2 γ) = 1 n x k+1 -X 2 γ + (1 - 1 n) x k -X 2 γ E k (y k+1 -Y 2 γ) = 1 n y k+1 -Y 2 γ + (1 - 1 n) y k -Y 2 γ - 1 n y k+1 -y k 2 D(1-π)γ E k (y k+1 -Y, M (x k+1 -X)) = 1 n y k+1 -Y, M (x k+1 -X) + (1 - 1 n) y k -Y, M (x k -X) - 1 n D(1 -π)(y k+1 -y k), M (x k+1 -x k) .
Proof. The first equality is immediate.

Consider the second one.

E k (x k+1 -X 2 γ) = n i=1 γ i E k (x (i) k+1 -X (i) 2) which coincides with n i=1 γ i (1 n x (i) k+1 - X (i) 2 + (1 -1 n) x (i) k -X (i) 2
) and the second equality is proved. Similarly for the third equality,

E k (y k+1 -Y 2 γ) = p j=1 γ j E k (y (j)
k+1 -Y (j) 2) and for every j,

E k (y (j) k+1 -Y (j) 2) = y (j) k +π j (y (j) k+1 -y (j) k) -Y (j) 2 P(j ∈ J (i k+1)) + y (j) k -Y (j) 2 P(j / ∈ J (i k+1)).
As j ∈ J(i k+1) ⇔ i k+1 ∈ I(j), we get

P(j ∈ J(i k+1)) = P(i k+1 ∈ I(j)) = card(I(j))/n = 1/n.
From [START_REF] Bianchi | Using big steps in coordinate descent primal-dual algorithms[END_REF],

π j = P(j ∈ J(i k+1)|j ∈ J (i k+1)) = P(j ∈ J(i k+1) & j ∈ J (i k+1)) P(j ∈ J (i k+1)) = P(j ∈ J(i k+1)) P(j ∈ J (i k+1))
and so

P(j ∈ J (i k+1)) = 1 nπ j = |{i : j ∈ J (i)}| n .
We also have

y (j) k + π j (y (j) k+1 -y (j) k) -Y (j) 2 = π j y (j) k+1 -Y (j) 2 + (1 -π j) y (j) k -Y (j) 2 -π j (1 -π j) y (j) k+1 -y (j) k 2
This leads to

E k (y (j) k+1 -Y (j) 2) = 1 n y (j) k+1 -Y (j) 2 + (1 - 1 n) y (j) k -Y (j) 2 - 1 -π j n y (j) k+1 -y (j) k 2 .
This proves the third equality.

Consider the fourth equality. Note that

y k+1 -Y, M (x k+1 -X) = n i=1 j∈J(i) y (j) k+1 -Y (j) , M j,i (x (i) k+1 -X (i)) .
For any pair (i, j) such that j ∈ J(i), the conditional expectation of each term in the sum is equal to

1 n π j y (j) k+1 + (1 -π j)y (j) k -Y (j) , M j,i (x (i) k+1 -X (i)) + (1 nπ j - 1 n) π j y (j) k+1 + (1 -π j)y (j) k -Y (j) , M j,i (x (i) k -X (i)) + (1 - 1 nπ j) y (j) k -Y (j) , M j,i (x (i) k -X (i)) = π j n y (j) k+1 -Y (j) , M j,i (x (i) k+1 -X (i)) + (1 - 2 n + π j n) y (j) k -Y (j) , M j,i (x (i) k -X (i)) + (1 n - π j n) y (j) k -Y (j) , M j,i (x (i) k+1 -X (i)) + (1 n - π j n) y (j) k+1 -Y (j) , M j,i (x (i) k -X (i)) = 1 n y (j) k+1 -Y (j) , M j,i (x (i) k+1 -X (i)) + (1 - 1 n) y (j) k -Y (j) , M j,i (x (i) k -X (i)) + (1 n - π j n) y (j) k -y (j) k+1 , M j,i (x (i) k+1 -X (i)) + γ j (1 n - π j n) y (j) k+1 -y (j) k , M j,i (x (i) k -X (i)) = 1 n y (j) k+1 -Y (j) , M j,i (x (i) k+1 -X (i)) + (1 - 1 n) y (j) k -Y (j) , M j,i (x (i) k -X (i)) + (1 n - π j n) y (j) k -y (j) k+1 , M j,i (x (i) k+1 -x (i) k)
Finally, we obtain

E(y k+1 -Y, M (x k+1 -X)) = 1 n y k+1 -Y, M (x k+1 -X) + (1 - 1 n) y k -Y, M (x k -X) - 1 n D(1 -π)(y k+1 -y k), M (x k+1 -x k)
which in turn implies the fourth equality in the Lemma.

Assume that τ -1 i > β i for each i ∈ {1, . . . , n}. Define for every z = (x, y) ∈ X × Y,

Ṽ (z) = Ṽ (x, y) := 1 2 x 2 τ -1 -β + D(2 -π)y, M x + 1 2 y 2 σ -1 (2-π) . (17
S k, * := f (x k) -f (x *) -∇f (x *), x k -x * . (18
)
Then the following inequality holds:

E k [S k+1, * + V (z k+1 -z *)] ≤ (1 - 1 n)S k, * + V (z k -z *) - 1 n Ṽ (z k+1 -z k) (19
)
where z k+1 = (x k+1 , y k+1).

Proof. We can write the relations of Lemma 2 as

x k+1 -X 2 τ -1 = nE k (x k+1 -X 2 τ -1) -(n -1) x k -X 2 τ -1 y k+1 -Y 2 σ -1 = nE k (y k+1 -Y 2 σ -1) -(n -1) y k -Y 2 σ -1 + y k+1 -y k 2 σ -1 (1-π) y k+1 -Y, M (x k+1 -X) = nE k (y k+1 -Y, M (x k+1 -X)) -(n -1) y k -Y, M (x k -X) + D(1 -π)(y k+1 -y k), M (x k+1 -x k) .
Choosing Z = (X, Y), denoting z k = (x k , y k) and z k = (x k , y k), we obtain

V (z k+1 -Z) = nE k (V (z k+1 -Z)) -nV (z k -Z) + V (z k -Z) + 1 2 y k+1 -y k 2 σ -1 (1-π) + D(1 -π)(y k+1 -y k), M (x k+1 -x k) . (20
)
We shall denote

R π = 1 2 y k+1 -y k 2 σ -1 (1-π) + D(1 -π)(y k+1 -y k), M (x k+1 -x k) (21)
Let z * = (x * , y *) ∈ S. By Lemma 1,

∇f (x *) -∇f (x k), x * -x k+1 + V (z k+1 -z k) ≤ V (z k -z *) -V (z k+1 -z *) .
Identifying Z in [START_REF] Fercoq | Accelerated, parallel and proximal coordinate descent[END_REF] to z * and z k successively, we obtain

∇f (x *) -∇f (x k), x * -x k+1 + nE k (V (z k+1 -z k)) ≤ nV (z k -z *) -nE k (V (z k+1 -z *)) -2R π
Dividing both sides of the above inequality by n and using that

x k+1 = nE k (x k+1) -(n -1)x k , we obtain ∇f (x *) -∇f (x k), x * -E k (x k+1) + (1 - 1 n)(x k -x *) + E k (V (z k+1 -z k)) ≤ V (z k -z *) -E k (V (z k+1 -z *)) - 2 n R π .
Rearranging the terms,

E k [∇f (x k) -∇f (x *), x k+1 -x k + V (z k+1 -z *)] (22)
≤ -

1 n ∇f (x k) -∇f (x *), x k -x * + V (z k -z *) -E k (V (z k+1 -z k)) - 2 n R π
We now use Assumption 2.1(c), knowing that x k+1 only differs from

x k along coordinate i k+1 f (x k+1) ≤ f (x k) + ∇f (x k), x k+1 -x k + β i k+1 2 x k+1 -x k 2 = f (x k) + ∇f (x k), x k+1 -x k + 1 2 x k+1 -x k 2 β (23
)
which implies that ∇f

(x k), x k+1 -x k ≥ f (x k+1) -f (x k) -1 2 x k+1 -x k 2
β . Thus, plugging this into [START_REF] Gabay | Chapter ix applications of the method of multipliers to variational inequalities[END_REF],

E k f (x k+1) -f (x k) - 1 2 x k+1 -x k 2 β -∇f (x *), x k+1 -x k + V (z k+1 -z *) ≤ - 1 n ∇f (x k) -∇f (x *), x k -x * + V (z k -z *) -E k (V (z k+1 -z k)) - 2 n R π .
Introducing the quantity S k, * as in [START_REF] Davis | Faster convergence rates of relaxed peaceman-rachford and admm under regularity assumptions[END_REF], the inequality simplifies to

E k S k+1, * + V (z k+1 -z *) - 1 2 x k+1 -x k 2 β ≤f (x k) -f (x *) -(1 - 1 n) ∇f (x *), x k -x * - 1 n ∇f (x k), x k -x * + V (z k -z *) -E k (V (z k+1 -z k)) - 2 n R π .
An estimate of the right-hand side is obtained upon noticing that ∇f

(x k), x k -x * ≥ f (x k) -f (x *).
Therefore,

E k S k+1, * + V (z k+1 -z *) - 1 2 x k+1 -x k 2 β ≤ (1 - 1 n)S k, * + V (z k -z *) -E k (V (z k+1 -z k)) - 2 n R π .
Using Lemma 2, (17) and (21), it is immediate that

E k (V (z k+1 -z k) - 1 2 x k+1 -x k 2 β) + 2 n R π = 1 n V (z k+1 -z k) - 1 n R π - 1 2n x (j) k+1 -x k 2 β + 2 n R π = 1 n Ṽ (z k+1 -z k)
and the proof is complete.

Recall that we denote by ρ(A) the spectral radius of a matrix A.

Lemma 4. Suppose that m 1 = • • • = m p = 1 and assume that the following condition holds for every i ∈ {1, . . . , n}:

τ i < 1
β i + ρ j∈J(i) (2 -π j)σ j M j,i M j,i . (24)
Then Ṽ 1/2 is a norm on X × Y.

Note that under the assumptions of Lemma 4, V 1/2 is also, a fortiori, a norm, but that V 1/2 need not be a norm.

Proof. Let γ -1 = τ -1 -β. Denote by σ j = (2 -π j)σ j for all j and by D(σ) the diagonal matrix on Y → Y defined by D(σ)(y) := (σ 1 y (1) , . . . , σ p y (p)) for every y = (y (1) , . . . , y (p)). We define D(γ) similarly on X → X . By [28, Theorem 7.7.6], a sufficient (and necessary) condition for Ṽ to be a squared norm is that D(γ -1) M D(σ)M (where notation A B means that A -B is a positive definite matrix). Defining R = D(σ 1/2)M D(γ 1/2) (that is, R j,i = γ i σ j M j,i for every j, i), the condition reads equivalently ρ(R R) < 1. As the set I(j) is reduced to a unique element for all j, the matrix R R is (block) diagonal. Precisely, for any 1 ≤ i, ≤ n, the (i,)-component (R R) i, is zero whenever i = and is equal to

(R R) i,i = γ i j∈J(i) σ j M j,i M j,i otherwise.
The condition ρ(R R) < 1 yields γ i ρ j∈J(i) σ j M j,i M j,i < 1 for each i ∈ {1, . . . , n} which is in turn equivalent to [START_REF] Gao | Randomized primal-dual proximal block coordinate updates[END_REF].

Proof of Theorem 1 in the case m 1 = . . . = m p = 1. Let z * be an arbitrary point in S. Whenever condition (24) is met, the r.v. V (z k -z *) and Ṽ (z k+1 -z k) are non-negative. The r.v. S k, * is non-negative as well by convexity of f . We review two important consequences of Lemma 3.

• Define U k := S k, * + V (z k -z *). A first consequence of Lemma 3 is that for all k,

E k (U k+1) ≤ U k - 1 n S k, * .
Recalling that U k and S k are non-negative r.v., the Robbins-Siegmund Lemma [START_REF] Robbins | A convergence theorem for non negative almost supermartingales and some applications[END_REF] implies that almost surely, lim k→∞ U k exists and k S k, * < ∞. In particular, S k, * converges almost surely to zero. By definition of U k , this implies that lim k→∞ V (z k -z *) exists almost surely. Following the argument of [3, Prop. 9] (see also [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF], [15, Prop. 2.3]), this implies that there exists an event A of probability one such that for every ω ∈ A and every ž ∈ S, lim k→∞ V 1/2 (z k (ω) -ž) exists.

• A second consequence of Lemma 3 is that, by taking the expectation E of both handsides of (19),

E [S k+1, * + V (z k+1 -z *)] ≤ E[S k, * + V (z k -z *)] - 1 n E(Ṽ (z k+1 -z k))
and by summing these inequalities, we obtain

0 ≤ S 0, * + V (z 0 -z *) - 1 n k i=0 E(Ṽ (z i+1 -z i)). (25
)
Thus E(

∞ i=0 Ṽ (z i+1 -z i)) < ∞.
The integrand is non-negative by Lemma 4. It is therefore finite almost everywhere. In particular, the sequence Ṽ (z k+1 -z k) converges almost surely to zero. By Lemma 4, z k+1 -z k converges to zero almost surely. Say z k+1 (ω) -z k (ω) → 0 for every ω ∈ B where B is a probability event of probability one.

We introduce the mapping T : X × Y → X × Y such that for any (x, y) ∈ X × Y, the quantity T (x, y) coincides with the couple (x, y) given by

y = prox σ,h y + D(σ)M x x = prox τ,g x -D(τ)∇f (x) -D(τ)M (2y -y) .
With this definition, z k+1 = T (z k). By non-expansiveness of the proximity operator, it is straightforward to show that T is continuous. It is also straightforward to verify that its set of fixed points coincides with S.

From now on to the end of this paragraph, we select a fixed ω ∈ A ∩ B. Note that z k (ω) is a bounded sequence. Let z be a cluster point of the latter. We have shown that T (z k (ω)) -z k (ω) → 0 which implies that T (z) -z = 0 by continuity of T . Thus, z ∈ S. This implies that lim k→∞ V 1/2 (z k (ω) -z) exists. Since V 1/2 (z k (ω) -z) tends to zero at least on some subsequence, we conclude that lim k→∞ V 1/2 (z k (ω) -z) = 0. Otherwise stated, the sequence z k (ω) converges to some point z ∈ S. This completes the proof of Theorem 2 in the case m 1 = • • • = m p = 1.

General Case

For every j ∈ {1, . . . , p}, Y j = Y I(j) j is equipped with the inner product u, v = i∈I(j) u(i), v(i) . The space Y j stores I(j) duplicates of the original problem's jth dual variable y j . We introduce the averaging operator S j : Y j → Y j defined for every u ∈ Y j by S j (u) := 1 m j i∈I(j) u(i) .

The averaging operators allows us to come back from duplicated dual variables to actual dual variables. For any u ∈ Y j , we denote by 1 mj ⊗ u = (u, . . . , u) the vector of Y j whose components all coincide with u.

We introduce the linear operator K j : X → Y j by

K j (x) = (M j,i (x (i)) : i ∈ I(j))
The operators S : Y → Y, K : X → Y are respectively defined by S(y) := (S 1 (y (1)), . . . , S p (y (p))) and K(x) := (K 1 (x), . . . , K p (x)). It is immediate to verify that

M = D(m)SK (26)
where m = (m 1 , . . . , m p). In order to have some insights, the following example illustrates the construction of K for a given M .

Example 2. Let X = Y = R 3 and define M : X → Y as the 3 × 3 matrix

M =   M 1,1 M 1,2 0 0 M 2,2 0 M 3,1 M 3,2 M 3,3   .
Here, I(1) = {1, 2} is the set of non-zero coefficients of the first row of M and it cardinal is m 1 = 2. Similarly m 2 = 1, m 3 = 3 and Y = R 6 . Then K : R 3 → R 6 coincides with the matrix

K =         M 1,1 0 0 0 M 1,2 0 0 M 2,2 0 M 3,1 0 0 0 M 3,2 0 0 0 M 3,3        
and each row of K contains exactly one non-zero coefficient. On the other hand, S and D(m) respectively coincide with

S =   1 2 1 2
0 0 0 0 0 0 1 0 0 0 0 0 0 1

We denote by S the set of primal-dual solutions of the above problem i.e., the set of pairs (x * , y *) ∈ X × Y satisfying 0 ∈ ∇f (x *) + ∂g(x *) + K y * 0 ∈ -Kx * + ∂h (y *) .

Substituting M with K, we may now apply Algorithm 3 to [START_REF] He | Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective[END_REF]. For a fixed parameter σ = (σ 1 , . . . , σ p), we define σj := m j σ j and we define σ ∈ R p j=1 mj as the vector σ := (σ 1 1 m1 , . . . , σp 1 mp) where 1 mj is a vector of size m j whose components are all equal to one. Algorithm 3 writes Initialization: Choose x 0 ∈ X , y 0 ∈ Y. Iteration k: Define:

y k+1 = prox σ,h y k + D(σ)Kx k (28
)
x k+1 = prox τ,g x k -D(τ) ∇f (x k) + K (2y k+1 -y k) . (29
)
For i = i k+1 and for each (l, j) ∈ J (i k+1), update:

x (i) k+1 = x (i) k+1 (30)
y (j) k+1 (l) = y (j) k (l) + π j (l)(y (j) k+1 (l) -y (j) k+1 (l)) . (31)
Otherwise, set x

(i) k+1 = x (i) k , y (j) k+1 (l) = y (j)
k (l). Using the result of the Section 3.2 and the properties of K, the sequence (x k , y k) converges almost surely to a primal-dual point of Problem [START_REF] He | Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective[END_REF], provided that such a point exists and that the following condition holds:

τ i < 1
β i +ρ (l,j)∈{i}×J(i)
(2 -π j (l))σ j K (l,j),i K (l,j),i = 1

β i +ρ j∈J(i) (2 -π j (i))σ j M j,i M j,i
which is equivalent to [START_REF] Bianchi | A stochastic coordinate descent primal-dual algorithm and applications to large-scale composite optimization[END_REF]. It remains to prove that the algorithm given by the iterations (28)-(31) coincides with Algorithm 2. To that end, we need the following Lemma.

Lemma 5. For any y ∈ Y,

prox σ,h (y) = (1 m1 ⊗ prox (1)
σ,h (S(y)), . . . ,

1 mp ⊗ prox (p)
σ,h (S(y))) .

Proof. We have h(y) = h(m 1 S 1 (y (1)), . . . , m p S p (y (p))). Thus,

h (ϕ) = sup y∈Y ϕ, y -h(m 1 S 1 (y (1)), . . . , m p S p (y (p)))
For all j ∈ {1, . . . , p}, denote by C j the subset of Y j formed by the vectors of the form (u, . . . , u) for some u ∈ Y j , and define

C = C 1 × • • • × C p .
Clearly, h (ϕ) = +∞ whenever ϕ / ∈ C and ∂h (ϕ) = ∅ in that case. If on the other hand ϕ ∈ C, one can write ϕ under the form ϕ = (1 m1 ⊗ ϕ (1) , . . . , 1 mp ⊗ ϕ (p)) for some ϕ ∈ Y. In that case,

h (ϕ) = sup y∈Y p j=1 1 mj ⊗ ϕ (j) , 1 mj ⊗ y (j) -h(m 1 y (1) , . . . , m p y (p)) = sup y∈Y p j=1 ϕ (j) , m j y (j) -h(m 1 y (1) , . . . , m p y (p)) = h (ϕ) . Then, u ∈ ∂h (ϕ) if and only if for every ψ ∈ Y, h (ψ) ≥ h (ϕ) + p j=1 u (j) , 1 mj ⊗ (ψ (j) -ϕ (j)) or equivalently, h (ψ) ≥ h (ϕ) + p j=1 m j S j (u (j)), ψ (j) -ϕ (j) . Therefore, u ∈ ∂h (ϕ) if and only if D(m)S(u) ∈ ∂h (ϕ).
Now consider an arbitrary y ∈ Y and set q = prox σ,h (y). This is equivalent to

D(σ -1)(y -q) ∈ ∂h (q). (32
)
In particular, q ∈ dom(∂h) and thus q has the form q = (1 m1 ⊗ q (1) , . . . , 1 mp ⊗ q (p)) for some q ∈ Y.

The inclusion [START_REF] Luo | A coordinate gradient descent method for nonsmooth separable minimization[END_REF] reads D(m)SD(σ -1)(y -q)) ∈ ∂h (q). Since D(m)SD(σ -1) = D(σ -1)S, we obtain D(σ -1)(S(y) -q) ∈ ∂h (q) which is equivalent to q = prox σ,h (S(y)). This completes the proof.

The proof of the following Lemma is immediate.

Lemma 6. For any y ∈ Y,

K (y) = (j∈J (1)
M j1 (y (j) (1)), . . . ,

j∈J(n) M jn (y (j) (n))).
In particular, for any y ∈ Y, K (1 m1 ⊗ y (1) , . . . , 1 mp ⊗ y (p)) = M y .

The following example shows how we are going to use the concept of duplication.

Example 3 (Total variation). Let us consider X = R n1×n2×n3 , Y = R 3×n1×n2×n3 and the total variation regularizer defined as h • M where

h(y) = n1 i1=1 n2 i2=1 n3 i3=1 3 j=1 y 2 j,i1,i2,i3 = n1 i1=1 n2 i2=1 n3 i3=1 h i1,i2,i3 (y :,i1,i2,i3)
and M defined by blocks of the type

M (i1,i2,i3) =     (x i1,i2,i3) (x i1+1,i2,i3) (x i1,i2+1,i3) (x i1,i2,i3+1) -1 1 0 0 -1 0 1 0 -1 0 0 1     (y 1,i1,i2,i3) (y 2,i1,i2,i3) (y 3,i1,i2,i3)
Each line has two nonzero elements so we duplicate dual variables as

K (i1,i2,i3) =           (x i1,i2,i3) (x i1+1,i2,i3) (x i1,i2+1,i3) (x i1,i2,i3+1) -1 0 0 0 0 1 0 0 -1 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 1           (y 1,i1,i2,i3 (1)) (y 1,i1,i2,i3 (2)) (y 2,i1,i2,i3 (1)) (y 2,i1,i2,i3 (2)) (y 3,i1,i2,i3 (1)) (y 3,i1,i2,i3 (2)
)

Hence, we cam write hi1,i2,i3 (y i1,i2,i3,:

) = 3 j=1 (y i1,i2,i3,j (1) + y i1,i2,i3,j (2)) 2 prox mσ,h * (y) = (1 m1 ⊗prox (1) σ,h * (S(y)), . . . , 1 mp ⊗prox (p)
σ,h * (S(y))) becomes, denoting e l the lth coordinate vector,

prox 2σ,h * i 1 ,i 2 ,i 3 (y i1,i2,i3,:) =          e 1 prox σ,h * i 1 ,i 2 ,i 3 (y i1,i2,i3,: (1) + y i1,i2,i3,: (2)) e 1 prox σ,h * i 1 ,i 2 ,i 3 (y i1,i2,i3,: (1) + y i1,i2,i3,: (2)) e 2 prox σ,h * i 1 ,i 2 ,i 3 (y i1,i2,i3,: (1) + y i1,i2,i3,: (2)) e 2 prox σ,h * i 1 ,i 2 ,i 3 (y i1,i2,i3,: (1) + y i1,i2,i3,: (2)) e 3 prox σ,h * i 1 ,i 2 ,i 3 (y i1,i2,i3,: (1) + y i1,i2,i3,: (2)) e 3 prox σ,h * i 1 ,i 2 ,i 3 (y i1,i2,i3,: (1) + y i1,i2,i3,: (2))         
Suppose we would like to update x 3,4,5 :

• The dual variables corresponding to x 3,4,5 are y 3,4,5,1 (1), y 3,4,5,2 (1), y 3,4,5,3 (1), y 2,4,5,1 (2), y 3,3,5,2 [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] and y 3,4,4,3 (2).

• We compute prox 2σ,h * (y 3,4,4,:), which amounts to 12 real numbers.

• We update only the 6 useful dual values.

We are now in a position to simplify the iterations (28)- [START_REF] Lin | An accelerated proximal coordinate gradient method[END_REF]. For every k, we define the vectors y k+1 = prox σ,h S(y k + D(σ)Kx k) and y k+1 = (1 m1 ⊗ y

y k+1 = prox σ,h (z k + D(σ)M x k) (33
)
where we defined z k = S(y k), otherwise stated, for each j ∈ {1, . . . , p}, z

(j) k = 1 m j i∈I(j) y (j) k (i) .
Note that z k+1 differs from z k only along the components j for which y (j)

k+1 (i) differs from y (j) k (i) for some i. That is, z (j) k+1 = z (j)
k for each j such that (i, j) / ∈ J (i k+1) for all I while for any j such that there exists i such that (i, j) ∈ J (i k+1),

z (j) k+1 = z (j) k + 1 m j i:(i,j)∈J (i k+1) (y (j) k+1 (i) -y (j) k (i)) . (34)
Now consider equation [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF]. By Lemma 6, K y k+1 = M y k+1 . Thus, setting w k = K y k , equation (29) simplifies to:

x k+1 = prox τ,g x k -D(τ) ∇f (x k) + (2M y k+1 -w k) . (35)
By Lemma 6 again, w k = (j∈J(1) M j1 y

(j) k (1), . . . , j∈J(n) M jn y (j) k (n))
. Therefore, w k+1 only differs from w k along the coordinates i such that there exists (i, j) ∈ J (i k+1) and the update reads:

w (i) k+1 = w (i) k + (i,j)∈J (i k+1) M j,i (y (j) k+1 (i) -y (j) k (i)) . (36)
Putting all pieces together, the update equations (33)-(36) coincide with Algorithm 2. We have thus proved that Algorithm 2 is such that (x k , y k) converges to a primal-dual point of Problem [START_REF] He | Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective[END_REF] provided that such a point exists. To complete the proof, the final step is to relate the primal-dual solutions of Problem (27) to the primal-dual solutions of the initial Problem [START_REF] Bauschke | Bregman monotone optimization algorithms[END_REF]. Consider the mapping G : X × Y → X × Y defined by G(x, y) := (x, (1 m1 ⊗ y (1) , . . . , 1 mp ⊗ y (p))).

Lemma 7. S = G(S).

Proof. Let (x, y) ∈ X × Y and set y = (1 m1 ⊗ y (1) , . . . ,

1 mp ⊗ y (p)). Then M y = K y, therefore 0 ∈ ∇f (x) + ∂g(x) + K y ⇔ 0 ∈ ∇f (x) + ∂g(x) + M y . Moreover, 0 ∈ -Kx + ∂h (y) ⇔ Kx ∈ ∂h (y) ⇔ D(m)S(Kx) ∈ ∂h (y) ⇔ M x ∈ ∂h (y)
where we used Lemma 5 along with the identities D(m)SK = M and S(y) = y. The proof is completed upon noting that if (x, y) ∈ S, then there exists y ∈ Y such that y has the form y = (1 m1 ⊗ y (1) , . . . , 1 mp ⊗ y (p)) .

We have shown that, almost surely, (x k , y k) converges to some point in G(S). This completes the proof of Theorem 2.

Convergence rate

In this section, we are interested in the rate of convergence of the method. We consider three cases:

• h is Lipschitz continuous: we prove a O(1/ √ k) decrease for the function value (Theorem 3).

• h = I {b} , i.e. h(y) = 0 if y = b and h(y) = +∞ otherwise. This corresponds to an optimization problem under the affine constraints M x = b. We prove a O(1/ √ k) decrease for the function value and the feasibility (Theorem 3).

• f + g is strongly convex and ∇h is Lipschitz continuous: we prove a O(e -µk) rate for the distance to the optimum (Theorem 4).

These convergence guarantees are of the same order as what can be obtained by other primal-dual methods like the ADMM [START_REF] Davis | Faster convergence rates of relaxed peaceman-rachford and admm under regularity assumptions[END_REF], i.e. O(1/ √ k) in general and linear rate of convergence under strong convexity assumptions.

Theorem 3. Define for α ≥ 1, C 1,α = max 1≤i≤n τ -1 i + τ -1/2 i ρ(j∈J(i) m j σ j M j,i M j,i) 1/2 τ -1 i -ρ(j∈J(i) m j σ j M j,i M j,i) (1 + n α) C 2,α = 1 + max 1≤i≤n α -1 (n(n -1) + 1) + 1 τ -1 i -β i -ρ(j∈J(i) (2 -π j (i))m j σ j M j,i M j,i) β i .
We have that C 1,α and C 2,α are nonincreasing with respect to α, and thus bounded. Define the number of iterations K ∈ {1, . . . , k} as a random variable, independent of {i 1 , . . . , i k } and such that Pr(K = l) = 1 k for all l ∈ {1, . . . , k}.

If h is L(h)-Lipschitz in the norm • D(m)σ , then for all k ≥ 0, E(f (x K) + g(x K) + h(M x K) -f (x *) -g(x *) -h(M x *)) ≤ C 2, √ k + 2C 1,k √ k n(S 0, * + V (z 0 -z *)) + 4 √ k L(h) 2
where V is defined in (8) and S 0, * is defined in [START_REF] Davis | Faster convergence rates of relaxed peaceman-rachford and admm under regularity assumptions[END_REF].

If h = I {b} , then for all k ≥ 0, E(f (x K) + g(x K) -f (x *) -g(x *)) ≤ C 2, √ k + 2C 1,k √ k n S 0, * + V (z 0 -z *) + y * E(M x K -b) E(M x K -b D(m)σ) ≤ 2 √ k C 2, √ k + 2C 1,k + 2C 1,k n(S 0, * + V (z 0 -z *)) 1/2
Proof. We begin with the proof for Algorithm 3, that is the case m 1 = . . . = m p = 1. We combine the following inequalities proved in the previous sections and that are valid for all (x, y) ∈ X × Y.

g(x k+1) + x k+1 , ∇f (x k) + M (2y k+1 -y k) + 1 2 x k+1 -x k 2 τ -1 (16)
≤ g(x) + x, ∇f

(x k) + M (2y k+1 -y k) + 1 2 x -x k 2 τ -1 - 1 2 x k+1 -x 2 τ -1 h (y k+1) -y k+1 , M x k + 1 2 y k+1 -y k 2 σ -1 (13)
≤ h (y) -y, M x k + 1 2 y -y k 2 σ -1 - 1 2 y k+1 -y 2 σ -1 E k (f (x k+1)) (23)+Lem. 2 ≤ f (x k) + 1 n ∇f (x k), xk+1 -x k + 1 2n xk+1 -x k 2 β f (x) ≥ f (x k) + ∇f (x k), x -x k
We obtain that for all z ∈ X × Y such that z is measurable with respect to F k ,

g(x k+1) + nE k (f (x k+1)) -(n -1)f (x k) + M xk+1 , y -h (y) + h (ȳ k+1) -M ȳk+1 , x -g(x) -f (x) ≤ V (z k -z) -V (z k+1 -z) -V (z k+1 -z k) + 1 2 xk+1 -x k 2 β
As ∇f is n-Lipschitz in the norm • β [START_REF] Richtárik | Parallel coordinate descent methods for big data optimization[END_REF] and

nE(x k+1) -(n -1)x k -xk+1 = 0, nE k (f (x k+1)) -(n -1)f (x k) ≥ nE k f (x k+1) + ∇f (x k+1), x k+1 -xk+1 -(n -1) f (x k+1) + ∇f (x k+1), x k -xk+1 + n 2 x k -xk+1 2 β ≥ f (x k+1) - n(n -1) 2 x k -xk+1 2 β . 20
We also have for all α > 0,

V (z k -z) -V (z k+1 -z) -V (z k+1 -z k) = z k -zk+1 , zk+1 -z V ≤ 2V (z k -zk+1) 1/2 V (z k+1 -z) 1/2 ≤ αV (z k -zk+1) + 1 α V (z k+1 -z)
Gathering everything, we get

g(x k+1) + f (x k+1) + M xk+1 , y -h (y) + h (ȳ k+1) -M ȳk+1 , x -g(x) -f (x) - 1 α V (z k+1 -z) ≤ αV (z k -zk+1) + n(n -1) + 1 2 xk+1 -x k 2 β
We can show by tedious but straightforward algebra that the norms V 1/2 , Ṽ 1/2 and (1/2(x

2 τ -1 + y 2 σ -1
)) 1/2 are equivalent with constants given by

V (z) ≤ max 1≤i≤n 1 + τ i ρ(j∈J(i) σ j M j,i M j,i) 1 2 (x 2 τ -1 + y 2 σ -1) ≤ 2 × 1 2 (x 2 τ -1 + y 2 σ -1) 1 2 (x 2 τ -1 + y 2 σ -1) ≤ max 1≤i≤n τ -1 i + τ -1/2 i ρ(j∈J(i) σ 1/2 j M j,i M j,i) 1/2 τ -1 i -ρ(j∈J(i) σ j M j,i M j,i) V (z) = C 1,∞ V (z) αV (z) + n(n -1) + 1 2 xk+1 -x k 2 β ≤ α + max 1≤i≤n n(n -1) + 1 + α τ -1 i -β i -ρ(j∈J(i) (2 -π j)σ j M j,i M j,i) β i Ṽ (z) = αC 2,α Ṽ (z)
where C 2,α ∈ O(1) for α → ∞. Denoting the smoothed gap [START_REF] Tran-Dinh | A smooth primal-dual optimization framework for nonsmooth composite convex minimization[END_REF] as

G 2 α (z k , zk) = sup z g(x k) + f (x k) + M xk , y -h (y) + h (ȳ k) -M ȳk , x -g(x) -f (x) - 2 2α xk -x 2 τ -1 - 2 2α ȳk -y 2 σ -1 ,
we have

G 2 α (z k , zk) ≤ αC 2,α Ṽ (z k -z k-1)
Now, by [START_REF] Glowinski | Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires[END_REF] and the fact that K is independent of the coordinate selection process,

E(Ṽ (z K -z K-1)) ≤ k i=1 1 k E(Ṽ (z i -z i-1)) (25)
≤ n k (S 0, * + V (z 0 -z *)) so E(G 2 α (z K , z K)) ≤ αC 2,α k n(S 0, * + V (z 0 -z *))
Taking α = √ k as in [START_REF] Davis | Faster convergence rates of relaxed peaceman-rachford and admm under regularity assumptions[END_REF], we get

E(G 2 √ k (z K , z K)) ≤ C 2, √ k √ k n(S 0, * + V (z 0 -z *))
We can also bound

1 2 E(x K -x * 2 τ -1) ≤ C 1,∞ E(V (z K -z *)) (20)+(21) = C 1,∞ E(nV (z K -z *) -nV (z K-1 -z *) + V (z K-1 -z *) + R (K) π) = C 1,∞ k k i=1 E(nV (z i -z *) -nV (z i-1 -z *) + V (z i-1 -z *) + R (i) π) = C 1,∞ k E(nV (z k -z *) -nV (z 0 -z *) + k i=1 V (z i-1 -z *) + R (i) π) (19) ≤ C 1,∞ n + k k (S 0, * + V (z 0 -z *)) + C 1,∞ k k i=1 R (i) π -Ṽ (z i -z i-1) ≤ C 1,k (S 0, * + V (z 0 -z *))
where the last inequality follows from R

(i) π -Ṽ (z i -z i-1) = 1 2 xi -x i-1 2 β -V (z i -z i-1) ≤ 0. If h is L(h)-Lipschitz in the norm • σ , we can choose y ∈ ∂h(M xk) = ∅ so that M xk , y -h * (y) = h(M xk), and x = x so that h * (ȳ k) -M ȳk , x ≥ -h(M x)
We then use the inequality

G 2 √ k (z K , z K) ≥ f (x K) + g(x K) + h(M x K) - 4 √ k L(h) 2 -f (x *) -g(x *) -h(M x *) - 1 √ k x K -x * 2 τ -1
to conclude. If h = I {b} , then using Lemma 1 in [START_REF] Tran-Dinh | A smooth primal-dual optimization framework for nonsmooth composite convex minimization[END_REF], we get that

E(f (x K) + g(x K) -f (x *) -g(x *)) ≤ C 2, √ k √ k n(S 0, * + V (z 0 -z *))+ E(1 √ k x K -x * 2 τ -1 + 1 √ k ȳ K -y * 2 σ -1 -y * , M x K -b) E(M x K -b σ) ≤ 2 √ k E(ȳ K -y σ -1) + E(ȳ K -y 2 σ -1) + 2 2/ √ k C 2, √ k √ k n(S 0, * + V (z 0 -z *)) + E(x K -x 2 τ -1) 1/2
To obtain the result for Algorithm 2 we only need to remark that when we need to duplicate dual variables we have h (ȳ k) = h (ȳ k). One then just needs to replace σ j by m j σ j in the conditions. Remark 1. To prove the result of Theorem 3, we use a random number of iterations. This has also been proposed for instance in [START_REF] Shalev-Shwartz | Stochastic dual coordinate ascent methods for regularized loss minimization[END_REF] for the stochastic dual coordinate ascent algorithm. Note that the number of iterations can be sampled beforehand, which means that the procedure comes with no computational cost. When K iterations have taken place, one just needs to compute x K+1 once in order to obtain the guarantee.

We also have a fast rate if the problem has particular properties. We prove that if the Lagrangian function satisfies a strong convexity and strong concavity assumption, then Algorithm 2 converges exponentially fast with a rate that depends on the step size. Assumption 4.1. There exists non-negative constants µ g and µ f such that µ f + µ g > 0 and a constant µ h > 0 such that g is µ g -strongly convex in the norm

• τ -1 , f is µ f -strongly convex in the norm • τ -1 and h is µ h -strongly convex in the norm • σ -1 . Theorem 4. For z = (x, y), denote V µ (z) = V (z)+µ g x 2 τ -1 +µ h y 2 (D(m)σ) -1 where µ h = min(µ h , sup{µ > 0 : ∀i, τ -1 i > β i + ρ(j∈J(i) (2-πj (i)) 2 σj mj 2-πj (i)-µ(1-πj (i)) M j,i M j,i
)} (note that if π j (i) = 1 for all i and j, then µ h = µ h). If Assumption 4.1 holds then the iterates of Algorithm 2 satisfy

E [S k, * + V µ (z k -z *)] ≤ 1 - 1 n (µ f + 2µ g)µ h µ f + 2µ g + µ h k [S 0, * + V µ (z 0 -z *)] .
In order to prove this theorem, we begin with a lemma that generalizes Lemma 1.

Lemma 8. If Assumption 4.1 holds, then ∇f (x *) -∇f (x), x * -x + V (z -z) ≤ V (z -z *) -V (z -z *) -µ g x -x 2 τ -1 -µ h y -y 2 σ -1 .
Proof. Assumption 4.1 gives us: for (x * , y *) ∈ S,

g(x) ≥ f (x *) + g(x *) + ∇f (x *) + M y * , x * -x + µ g 2 x -x * 2 τ -1 , (37)
h (y) ≥ h (y *) + M x * , y -y * + µ h 2 y -y * 2 σ -1 . (38)
With the same argument as in (14), we have

h (y) ≤ h (y *) + y -y * , M x + 1 2 y * -y 2 σ -1 - 1 + µ h 2 y -y * 2 σ -1 - 1 2 y -y 2 σ -1
and so using (38)

M (x * -x), y -y * ≤ 1 2 y -y * 2 σ -1 - 1 + 2µ h 2 y -y * 2 σ -1 - 1 2 y -y 2 σ -1 (39)
Similarly, we have

∇f (x *)-∇f (x), x * -x - 1 + 2µ g 2 x-x * 2 τ -1 + 1 2 x-x * 2 τ -1 + 1 2 x-x 2 τ -1 ≤ 2y -y -y * , M (x * -x) .
Summing the above inequality with [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF], and recalling the definition of

V (z) = V (x, y) = 1 2 x 2 τ -1 + y, M x + 1 2 y 2 σ -1 , we get ∇f (x *) -∇f (x), x * -x + V (z -z) ≤ V (z -z *) -V (z -z *) -µ g x -x 2 τ -1 -µ h y -y 2 σ -1
Proof of Theorem 4. We begin with the case m 1 = . . . = m p . By Assumption 2.1(e), if µ h > 0, then µ h > 0 and if h is µ h -strongly convex, it is also µ h -strongly convex. Then, by a straightforward adaptation of the proof of Lemma 3 to the strongly convex case, we have

E k S k+1, * + V (z k+1 -z *) + 2µ g 2 x k+1 -x * 2 τ -1 + 2µ h 2 y k+1 -y * 2 σ -1 ≤ (1 - 1 n)S k, * + V (z k -z *) + 2(n -1)µ g -µ f 2n x k -x * 2 τ -1 + 2(n -1)µ h 2n y k -y * 2 σ -1 - 1 n Ṽ (z k+1 -z k) + µ h n y k+1 -y k 2 σ -1 (1-π)
As soon as τ -1

i > β i + ρ j∈J(i) (2-πj) 2
2-πj -µ h (1-πj) σ j M j,i M j,i , we can remove the term -

1 n Ṽ (z k+1 -z k) + µ h n y k+1 -y k 2 σ -1 (1-π)
≤ 0. This is indeed guaranteed by the definition of µ h .

In order to prove a linear convergence rate (1 -η), it suffices to prove that (1 -1 n) ≤ (1 -η) and that with respect to the order of semi-definite matrices,

τ -1 (1 + 2(n-1)µg-µ f n) M M σ -1 (1 + 2(n-1)µ h n) (1 -η) τ -1 (1 + 2µ g) M M σ -1 (1 + 2µ h)
Using the fact that M is block-diagonal, this gives for all i the conditions

1 + 2(n -1)µ g -µ f n ≤ (1 -η)(1 + 2µ g) 1 + 2(n -1)µ h n ≤ (1 -η)(1 + 2µ h) τ -1 i (-η(1 + 2µ g) + µ f + 2µ g n) ≥ j∈J(i) σ j -η(1 + 2µ h) + 2µ h n η 2 M j,i M j,i .
Using the second condition we can multiply the third one by -η(1

+ 2µ h) + 2µ h n
≥ 0 and we obtain the condition

η 2 τ -1 i - j∈J(i) σ j M j,i M j,i + τ -1 i η 2 (2µ g + 2µ h) -η µ f + 2µ g + 2µ h n - 4µ g µ h n - 2µ f µ h + 4µ g µ h n + (µ f + 2µ g)µ h n 2 ≥ 0 .
The first term is nonnegative thanks to Assumption 2.1(e). The second term is nonnegative as soon as

η ≤ 1 n (µ f + 2µ g)µ h µ f + 2µ g + µ h .
To conclude, we remark that 1 n

(µ f + 2µ g)µ h µ f + 2µ g + µ h ≤ min(1 n µ f + 2µ g 1 + 2µ g , 1 n 2µ h 1 + 2µ h) ≤ 1 n .
This result also implies the same rate for the iterates of Algorithm 2 because h * is µ h -strongly convex in the norm • σ -1 if and only if h is µ h -strongly convex in the norm • σ-1 .

Remark 2. It is worth noting that the algorithm does not depend on the strong convexity constants, which means that it automatically adapts to local strong convex-concave parameters of the Lagrangian. Moreover as can be seen on Figure 2 we do observe linear convergence in some cases, even when Assumption 4.1 is not satisfied. Thus we think that Theorem 4 can give an indication of how the algorithm behaves in favorable cases.

Remark 3. Of particular interest is the relation between the rate proved in Theorem 4 and the size of the steps. Having longer step sizes improves the rate greatly since µ f , µ g and µ h , measured in the weighted norm, are "proportional" to the step-sizes: as µ g x 2 τ -1 = (αµ g) x 2 (ατ) -1 for all α > 0, multiplying the stepsizes by α > 1 also multiplies µ f , µ g and µ h by α, which leads to an improved rate 1 -

1 n (αµ f +2αµg)αµ h αµ f +2αµg+αµ h = 1 -α 1 n (µ f +2µg)µ h µ f +2µg+µ h < 1 -1 n (µ f +2µg)µ h µ f +2µg+µ h .
As shown in Section 5.2, in large scale applications one can expect much more than twice larger steps and so we can expect a much faster algorithm by using large steps than by using the steps proposed in [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF].

Numerical Experiments

For all the experiments, we used one processor of a computer with Intel Xeon CPUs at 2.80GHz.

Total Variation + 1 Regularized Least Squares Regression

For given regularization parameters α > 0 and r ∈ [0, 1], we would like to solve the following regression problem with regularization given by the sum of Total Variation (TV) and the 1 norm:

min x∈R n 1 2 Ax -b 2 2 + α r x 1 + (1 -r) M x 2,1 .
The problem takes place on a 3D image of the brains of size 40 × 48 × 34. The optimization variable x is a real vector with one entry in each voxel, that is n = 65,280. Matrix M is the discretized 3D gradient. This is a sparse matrix of size 195,840 × 65,280 with 2 nonzero elements in each row. The matrix A ∈ R 768×65,280 and the vector b ∈ R 768 correspond to 768 labeled experiments where each line of A gathers brains activity for the corresponding experiment. Parameter r tunes the tradeoff between the two regularization terms. If r = 1, one gets a Lasso problem for which coordinate descent has been reported to be very efficient [START_REF] Friedman | Pathwise coordinate optimization[END_REF]. For r < 1, classical (primal) coordinate descent cannot be applied but primal-dual coordinate descent can.

In this scenario, we set the objective as f

(x) = 1 2 Ax -b 2
2 , g(x) = αr x 1 and h(y) = α(1 -r) y 2,1 . We coded Algorithm 2 in Cython 2 and duplicated each dual variable two times. Note that as h = α(1r) • 2,1 is not separable, we need to compute 12 dual components of ȳk+1 for each primal variable x (i) k+1 updated and then use only 6 of them to update z (j) k+1 for j ∈ J(i k+1). This procedure is explained in detail in Section 3.3. We chose σ j such that ρ(j∈J(i) σ j M j,i M j,i) is of the same order of magnitude as β i and τ i equal to 0.95 times its upper bound in Assumption 2.1. We compared Algorithm 2 against:

• Vũ-Condat's algorithm [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF],

• Chambolle-Pock's algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF],

• FISTA [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] with an inexact resolution of the proximal operator of TV and a momentum factor ensuring convergence [START_REF] Chambolle | On the convergence of the iterates of "FISTA[END_REF],

• L-BFGS [START_REF] Zhu | Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization[END_REF] with a smoothing of the nonsmooth functions and continuation.

Figure 1 indicates that our primal coordinate descent is a competitive algorithm for a wide range of regularization parameters. Note that Chambolle-Pock needs to compute the singular values decomposition of A (which explains the flat shape of the performance curve when the algorithm starts). FISTA and Vũ-Condat need to estimate its largest singular value. If only a low accuracy is required, Algorithm 2 may have reached this low accuracy even before these preprocessing steps are completed.

L-BFGS has similar behaviour as Algorithm 2 except for α = 0.1, r = 0.9 where it suffers from the non-smoothness of the objective while Algorithm 2 deals with it directly by the proximal operators. FISTA is the fastest algorithm for problems with a heavy TV regularization.

Linear Support Vector Machines

We now present a second application for our algorithm. We consider a set of n observations gathered into a data matrix A ∈ R m×n and labels b ∈ R n and we intend to solve the following Support Vector Machine (SVM) problem:

min w∈R m ,w0∈R n i=1 C i max 0, 1 -b i ((A w) i + w 0) + λ 2 w 2 2 .
2 The code is available on http://perso.telecom-paristech.fr/ ~ofercoq/Software.html For each problem, we compute the dual function at the last iterate (this amounts to solving a Lasso problem). Then we compare the primal objective curves to this reference value and we plot them in logarithmic scale. Note for the choices of regularization parameters such that α(1 -r) is larger, the problem is more difficult to solve because the total variation regularizer is dominant. This is in fact the most challenging part of the objective because it is non-differentiable and non-separable.

As is common practice for this problem, we solve instead the Dual Support Vector Machine problem: Here, we are considering a nonzero bias. Therefore the primal SVM problem is not strongly convex and the Dual SVM problem has a coupling constraint. Some authors proposed to fix the bias to 0 in order to make the problem easier to solve but we show that our method can solve the original SVM problem nearly as fast.

In the experiments3 , we consider:

• the RCV1 dataset [START_REF] Lewis | Rcv1: A new benchmark collection for text categorization research[END_REF] where A is a sparse m × n matrix with m = 20,242, n = 47,236 and 0.157 % of nonzero entries and we take C i = 1 n for all i and λ = 1 4n . For this dataset, A 2 ≈ 450 max i Ae i 2 , which means that using small step sizes leads to a roughly 450 times slower algorithm. This situation is not uncommon and is one of the reasons why coordinate descent methods are attractive.

• the KDD cup 2009 dataset [START_REF] Guyon | Analysis of the KDD cup 2009: Fast scoring on a large Orange customer database[END_REF]: the data is a mix of 14740 numerical values and 260 categorical values from Orange Labs. We preprocessed the data by adding a feature for each column containing missing values and binarizing the categorical values. We obtained a sparse matrix with m = 86,825, n = 50,000 and 1.79 % of nonzero entries. We divided the columns by their standard deviation and removed columns with a too small standard deviation. There are three tasks with this dataset: estimate the appetency, churn and up-selling probability of customers. As the classes are unbalanced, we compensate this with values of C i proportional to the class weight and we chose max i C i = λ = 1 n . We also chose a value of σ i depending on the class.

Here f (x) = 1 2 AD(b)x • SCDA [START_REF] Shalev-Shwartz | Stochastic dual coordinate ascent methods for regularized loss minimization[END_REF]: note that SDCA simply forgets I {0} (y) in order to be able to apply the classical coordinate descent method a thus will not converge to an optimal solution.

• RCD [START_REF] Necoara | A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints[END_REF]: at each iteration, the algorithm selects two coordinates randomly and performs a coordinate descent step according to these two variables. Updating two variables at a times allows us to satisfy the linear constraint at each iteration.

• Primal-dual coordinate descent (PD-CD) with small steps using the step size τ < 1 β(f)/2+σρ(K K) as in [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF].

• Algorithm 2 with J (i) = {i} × J(i) for all i (PC-CD).

• Algorithm 1, i.e. Algorithm 2 with J (i) = ∪ 1≤j≤n {j} × J(j) for all i in order to maintain a single Lagrange multiplier (PD-CD without duplication).

We can see on Figures 2 and3 the decrease of the SVM duality gap for each algorithm. SDCA is very efficient in the beginning and converges quickly. However, as the method does not take into account the intercept, it does not converge to the optimal solution and stagnates after a few passes on the data. Algorithm 2 allows step sizes nearly as long as SDCA's and taking into account the coupling constraint represents only marginal additional work. Hence, the objective value decreases nearly as fast for SDCA in the beginning without sacrificing the intercept, leading to a smaller objective value in the end. The RCD method of [START_REF] Necoara | A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints[END_REF] does work but is not competitive in terms of rate of convergence. Also, as expected, using small steps [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF] leads to a very slow algorithm in this context. Finally, for this problem, the additional memory requirement induced by duplication is negligible compared to the size of the problem data, but the slightly stricter step size condition may explain why PD-CD without duplication is slower. We also tried the C implementation of LIBSVM [START_REF] Chang | LIBSVM: A library for support vector machines[END_REF] but it needed 175s to solve the (medium-size) RCV1 problem. We report the value of the duality gap after a post-processing to recover feasible primal and dual variables. Primal variables are recovered as suggested in [START_REF] Shalev-Shwartz | Stochastic dual coordinate ascent methods for regularized loss minimization[END_REF] and the intercept is recovered by exact minimization of the primal objective given the other primal variables. When dual iterates are not feasible, we project them onto the dual feasible set before computing the dual objective. We stopped each algorithm after 100 passes through the data: note that the cost per iteration of the 5 algorithms is similar but that the algorithm of [START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF] needs first to compute the Lipschitz constant of the gradient. the appetency, churn and up-selling tasks (one plot for each). We did the same post-processing as in Fig. 2. We stopped each algorithm after 300 passes through the data. We can see here also that dealing with the intercept allows us to find more accurate solutions for a similar computational cost as with SDCA.

Assumption 2 . 1 .

 21 a) The functions f , g, h are closed proper and convex.

) Lemma 3 .

 3 Let Assumptions 2.1(a,b,c,d) hold true. Suppose m 1 = • • • = m p = 1 and assume that τ -1 i > β i for each i ∈ {1, . . . , n}. Consider Algorithm 3 and define for every k ∈ N,

 D(m)SK = M . We define the function h := h • (D(m)S) . By (26), Problem (1) is equivalent to min x∈X f (x) + g(x) + h(Kx) .

3, 4 , 5 (y 3 , 4 , 5 , 2 , 4 , 5 (y 2 , 4 , 5 , 3 , 3 , 5 (y 3 , 3 , 5 ,

 45345245245335335 :), prox 2σ,h * :), prox 2σ,h * :) and prox 2σ,h * 3,4,4

(1)

 1 k+1 , . . . , 1 mp ⊗ y (p) k+1). Upon noting that SD(σ)K = D(σ)D(m)SK = D(σ)M , we obtain

Figure 1 :

 1 Figure 1: Comparison of algorithms for TV+L 1 -regularized regression at various regularization parameters.For each problem, we compute the dual function at the last iterate (this amounts to solving a Lasso problem). Then we compare the primal objective curves to this reference value and we plot them in logarithmic scale. Note for the choices of regularization parameters such that α(1 -r) is larger, the problem is more difficult to solve because the total variation regularizer is dominant. This is in fact the most challenging part of the objective because it is non-differentiable and non-separable.

I

 [0,Ci] (x i) -I {0} (b, x)

2 2 -

 2 e T x, g(x) = n i=1 I [0,Ci] (x i), h(y) = I {0} (y) (h is the indicator for {0} ⊂ R, i.e.h(y) = 0 if y = 0, h(y) = +∞ otherwise) and M = b . We compare the following methods:

 -Shwartz & Zhang) Primal-dual coordinate descent (PD-CD) PD-CD without duplication RCD (Necoara & Patrascu) PD-CD with small steps (Iutzeler et al)

Figure 2 :

 2 Figure2: Comparison of dual algorithms for the resolution of linear SVM on the RCV1 dataset. We report the value of the duality gap after a post-processing to recover feasible primal and dual variables. Primal variables are recovered as suggested in[START_REF] Shalev-Shwartz | Stochastic dual coordinate ascent methods for regularized loss minimization[END_REF] and the intercept is recovered by exact minimization of the primal objective given the other primal variables. When dual iterates are not feasible, we project them onto the dual feasible set before computing the dual objective. We stopped each algorithm after 100 passes through the data: note that the cost per iteration of the 5 algorithms is similar but that the algorithm of[START_REF] Iutzeler | Asynchronous distributed optimization using a randomized alternating direction method of multipliers[END_REF] needs first to compute the Lipschitz constant of the gradient.

 -Shwartz & Zhang) Primal-dual coordinate descent

Figure 3 :

 3 Figure3: Comparison of dual algorithms for the resolution of linear SVM on the KDD cup 2009 dataset for the appetency, churn and up-selling tasks (one plot for each). We did the same post-processing as in Fig.2. We stopped each algorithm after 300 passes through the data. We can see here also that dealing with the intercept allows us to find more accurate solutions for a similar computational cost as with SDCA.

 ()) where . Ai stand for the norm on A i . If F : A →] -∞, +∞] denotes a convex proper lower-semicontinuous function, we introduce the proximity operator prox γ,F : A → A defined for any u ∈ A by prox γ,F (u) := arg min

	w∈A

Table 1 :

 1 table a comparison of the number of operations to compute the updates of the standard Vũ-Condat method against the proposed algorithm. Number of operations per iteration for the proposed algorithm and for the standard Vũ-Condat algorithm

	Problem / Dimension of data	Vũ-Condat	Our algorithm
	Total Variation + 1 regularization	O(mn + 6n)	O(m + 12)
	A ∈ R m×n : dense; M ∈ R 3n×n : nnz(M) = 6n		
	Support Vector Machines	O(nnz(A) + n) O(nnz(Ae i) + 1)
	A ∈ R m×n : sparse		

Table 2 :

 2 Standing notation.

	Space	Element	Dimension
			(if blocks of size 1)

The results of this paper easily extend to the selection of several primal coordinates at each iteration with a uniform samplings of the coordinates, using the techniques introduced in[START_REF] Richtárik | Parallel coordinate descent methods for big data optimization[END_REF].

Code available on https://github.com/ofercoq/lightning

Acknowledgement

We are grateful to Elvis Dohmatob for letting us use his benchmarking tool [19].

This work has been supported by the Orange/Telecom ParisTech think tank Phi-TAB.

Conclusion

In this work, we combined features of two seemingly incompatible versions of coordinate descent: one based on Fejér monotonicity [START_REF] Combettes | Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping[END_REF], which allows non-separable non-smooth functions, and one based on the decrease of the function value [START_REF] Richtárik | Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[END_REF], which allows a large step size. We proved the convergence of the algorithm and demonstrated its efficiency on two large scale problems.

Our future work will focus on the limits of Theorem 2. We believe that the restriction to uniform sampling probabilities can be removed. Also, by analogy with Vũ-Condat's method, one should be able to replace β i by β i /2 in the step size condition. A more prospective research, motivated by [START_REF]Incremental majorization-minimization optimization with application to large-scale machine learning[END_REF], consists in studying the impact of the non-smooth functions on the range of step sizes ensuring convergence.