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Abstract

This paper introduces a coordinate descent version of the Vũ-Condat algorithm. By coordinate
descent, we mean that only a subset of the coordinates of the primal and dual iterates is updated at
each iteration, the other coordinates being maintained to their past value. Our method allows us to solve
optimization problems with a combination of differentiable functions, constraints as well as non-separable
and non-differentiable regularizers.

We show that the sequences generated by our algorithm converge to a saddle point of the problem
at stake, for a wider range of parameter values than previous methods. In particular, the condition on
the step-sizes depends on the coordinate-wise Lipschitz constant of the differentiable function’s gradient,
which is a major feature allowing classical coordinate descent to perform so well when it is applicable.

We illustrate the performances of the algorithm on a total-variation regularized least squares regression
problem and on large scale support vector machine problems.

1 Introduction

We consider the optimization problem

inf
x∈X

f(x) + g(x) + h(Mx) (1)

where X is a Euclidean space, M : X → Y is a linear operator onto a second Euclidean space Y; functions
f : X → R, g : X → (−∞,+∞] and h : Y → (−∞,+∞] are assumed proper, closed and convex; the
function f is moreover assumed differentiable. We assume that X and Y are product spaces of the form
X = X1 × · · · × Xn and Y = Y1 × · · · × Yp for some integers n, p. For any x ∈ X , we use the notation
x = (x(1), . . . , x(n)) to represent the (block of) coordinates of x (similarly for y = (y(1), . . . , y(p)) in Y).
Problem (1) has numerous applications e.g. in machine learning [CBS14], image processing [CCC+10] or
distributed optimization [BPC+11].

Under the standard qualification condition 0 ∈ ri(Mdomg−domh) (where dom and ri respectively stand
for domain and relative interior), a point x ∈ X is a minimizer of (1) if and only if there exists y ∈ Y such
that (x, y) is a saddle point of the Lagrangian function

L(x, y) = f(x) + g(x) + 〈y,Mx〉 − h?(y)

where 〈 . , . 〉 is the inner product and h? : y 7→ supz∈Y〈y, z〉 − h(z) is the Fenchel-Legendre transform
of h. There is a rich literature on primal-dual algorithms searching for a saddle point of L (see [TDC14] and
references therein). In the special case where f = 0, the alternating direction method of multipliers (ADMM)
proposed by Glowinsky and Marroco [GM75], Gabay and Mercier [GM76] and the algorithm of Chambolle
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and Pock [CP11] are amongst the most celebrated ones. In order to encompass the presence of a nonzero
smooth function f , Combettes and Pesquet proposed a primal-dual splitting algorithm which, in the case of
Problem (1), involves two calls of the gradient of f at each iteration [CP12]. Hence, function f is handled
explicitely in the sense that the algorithm does not involve, for instance, the call of a proximity operator
associated with f . Based on an elegant idea also used in [HY12], Vũ [Vũ13] and Condat [Con13] separately
proposed a primal-dual algorithm allowing as well to handle f explicitely, and requiring one evaluation of
the gradient of f at each iteration. A convergence rate analysis is provided in [CP14a] (see also [TDC14]).
A related splitting method has been recently introduced by [DY15].

This paper introduces a coordinate descent (CD) version of the Vũ-Condat algorithm. By coordinate
descent, we mean that only a subset of the coordinates of the primal and dual iterates is updated at
each iteration, the other coordinates being maintained to their past value. Coordinate descent was his-
torically used in the context of coordinate-wise minimization of a unique function in a Gauss-Seidel sense
[War63] [BT89] [TM01]. Tseng et al. [LT02] [TY] [TY10] and Nesterov [Nes12] developped CD versions of
the gradient descent. In [Nes12] as well as in this paper, the updated coordinates are randomly chosen at
each iteration. The algorithm of [Nes12] has at least two interesting features. Not only it is often easier
to evaluate a single coordinate of the gradient vector rather than the whole vector, but the conditions un-
der which the CD version of the algorithm is provably convergent are generally weaker than in the case of
standard gradient descent. The key point is that the step size used in the algorithm when updating a given
coordinate i can be chosen to be inversely proportional to the coordinate-wise Lipschitz constant of ∇f along
its ith coordinate, rather than the global Lipschitz constant of ∇f (as would be the case in a standard gradi-
ent descent). Hence, the introduction of coordinate descent allows to use larger step sizes which potentially
results in a more attractive performance. The random CD gradient descent of [Nes12] was later generalized
by Richtárik and Takáč [RT14] to the minimization of a sum of two convex functions f + g (that is, h = 0
in problem (1)). The algorithm of [RT14] is analyzed under the additional assumption that function g is
separable in the sense that for each x ∈ X , g(x) =

∑n
i=1 gi(x

(i)) for some functions gi : Xi → (−∞,+∞].
Accelerated and parallel versions of the algorithm have been later developed by [RT12] [RT15] [FR13] always
assuming the separability of g.

In the literature, several papers seek to apply the principle of coordinate descent to primal-dual algo-
rithms. In the case where f = 0, h is separable and smooth and g is strongly convex, Zhang and Xiao [ZX14]
introduce a stochastic CD primal-dual algorithm and analyze its convergence rate (see also [Suz14] for re-
lated works). In 2013, Iutzeler et al. [IBCH13] proved that random coordinate descent can be successfully
applied to fixed point iterations of firmly non-expansive (FNE) operators. Due to [Gab83], the ADMM can
be written as a fixed point algorithm of a FNE operator, which led the authors of [IBCH13] to propose a
coordinate descent version of ADMM with application to distributed optimization. The key idea behind the
convergence proof of [IBCH13] is to establish the so-called stochastic Fejèr monotonicity of the sequence of
iterates as noted by [CP14b]. In a more general setting than [IBCH13], Combettes et al. in [CP14b] and
Bianchi et al. [BHI14] extend the proof to the so-called α-averaged operators, which include FNE operators
as a special case. This generalization allows to apply the coordinate descent principle to a broader class
of primal-dual algorithms which is no longer restricted to the ADMM or the Douglas Rachford algorithm.
For instance, Forward-Backward splitting is considered in [CP14b] and the Vũ-Condat algorithm is consid-
ered in [BHI14, PR14]. However, the approach of [IBCH13], [CP14b], [BHI14] which is based on stochastic
Féjer monotonicity, has a major drawback: the convergence conditions are identical to the ones of the brute
method, the one without coordinate descent. These conditions involve the global Lipschitz constant of the
gradient ∇f instead than its coordinate-wise Lipschitz constants. In practice, it means that the application
of coordinate descent to primal-dual algorithm as suggested by [CP14b] and [BHI14] is restricted to the use
of potentially small step sizes. One of the major benefits of coordinate descent is lost.

In this paper, we introduce a CD primal-dual algorithm with a broader range of admissible step sizes.
The algorithm is introduced in Section 2. At each iteration k, an index i is randomly chosen w.r.t. the
uniform distribution in {1, . . . , n} where n is, as we recall, the number of primal coordinates. The coordinate

x
(i)
k of the current primal iterate xk is updated, as well as a set of associated dual iterates. Under some

assumptions involving the coordinate-wise Lipschitz constants of ∇f , the primal-dual iterates converges to
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a saddle point of the Lagrangian. As a remarkable feature, our CD algorithm makes no assumption of
separability of the functions f , g or h. In the special case where h = 0 and g is separable, the algorithm
reduces to the CD proximal gradient algorithm of [RT14]. The convergence proof is provided in Section 3. It
is worth noting that, under the stated assumption on the step-size, the stochastic Fejèr monotonicity of the
sequence of iterates, which is the key idea in [IBCH13], [CP14b], [BHI14], does not hold (a counter-example
is provided). Our proof relies on the introduction of an adequate Lyapunov function. In Section 4, the
proposed algorithm is instanciated to the case of total-variation regularization and support vector machines.
Numerical results performed on real IRM and text data establish the attractive behavior of the proposed
algorithm and emphasize the importance of using primal-dual CD with large step sizes.

2 Coordinate Descent Primal-Dual Algorithm

2.1 Notation

We note M = (Mj,i : i ∈ {1, . . . , n}, j ∈ {1, . . . , p}) where Mj,i : Xi → Yj are the block components of M .
For each j ∈ {1, . . . , p}, we introduce the set

I(j) =
{
i ∈ {1, . . . , n} : Mj,i 6= 0

}
.

Otherwise stated, the jth component of vector Mx only depends on x through the coordinates x(i) such that
i ∈ I(j). We denote by

mj = card(I(j))

the number of such coordinates. Without loss of generality, we assume that mj 6= 0 for all j. For all
i ∈ {1, . . . , n}, we define

J(i) =
{
j ∈ {1, . . . , p} : Mj,i 6= 0

}
.

Note that for every pair (i, j), the statements i ∈ I(j) and j ∈ J(i) are equivalent.

Recall that Y = Y1 × · · · × Yp. For every j ∈ {1, . . . , p}, we use the notation Yj = YI(j)j . An arbitrary
element u in Yj will be represented by u = (u(i) : i ∈ I(j)). We define Y = Y1 × · · · × Yp. An arbitrary
element y in Y will be represented as y = (y(1), . . . ,y(p)). These notations are recalled in Table 1 below.

Space Element

X = X1 × · · · × Xn x = (x(i) : i ∈ {1, . . . , n})
Y = Y1 × · · · × Yp y = (y(j) : j ∈ {1, . . . , p})

Yj = YI(j)j u = (u(i) : i ∈ I(j))

Y = Y1 × · · · ×Yp y = (y(j) : j ∈ {1, . . . , p})
where y(j) = (y(j)(i) : i ∈ I(j)) ∀j

Table 1: Standing notations.

If ` is an integer, γ = (γ1, . . . , γ`) is a collection of positive real numbers and A = A1 × · · · × A` is
an arbitrary product of Euclidean spaces, we introduce the weighted norm ‖ . ‖γ on A given by ‖u‖2γ =∑`
i=1 γi‖u(i)‖2Ai

for every u = (u(1), . . . , u(`)) where ‖ . ‖Ai
stand for the norm on Ai. If F : A → (−∞,+∞]

denotes a convex proper lower-semicontinuous function, we introduce the proximity operator proxγ,F : A →
A defined for any u ∈ A by

proxγ,F (u) = arg min
w∈A

F (w) +
1

2
‖w − u‖2γ−1

where we use the notation γ−1 = (γ−11 , . . . , γ−1` ). We denote by prox
(i)
γ,F : A → Ai the ith coordinate

mapping of proxγ,F that is, proxγ,F (u) = (prox
(1)
γ,F (u), . . . ,prox

(`)
γ,F (u)) for any u ∈ A. The notation DA(γ)
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(or simply D(γ) when no ambiguity occurs) stands for the diagonal operator on A → A given by DA(γ)(u) =
(γ1u

(1), . . . , γ`u
(`)) for every u = (u(1), . . . , u(`)).

Finally, the adjoint of a linear operator B is denoted B?. The spectral radius of a square matrix A is
denoted by ρ(A).

2.2 Main Algorithm

Consider Problem (1). Let σ = (σ1, . . . , σp) and τ = (τ1, . . . , τn) be two tuples of positive real numbers.
Consider an independent and identically distributed sequence (ik : k ∈ N∗) with uniform distribution on
{1, . . . , n}1. The proposed primal-dual CD algorithm consists in updating four sequences xk ∈ X , wk ∈ X ,
zk ∈ Y and yk ∈ Y . It is provided in Algorithm 1 below.

Algorithm 1 Coordinate-descent primal-dual algorithm

Initialization: Choose x0 ∈ X , y0 ∈ Y .

For all i ∈ {1, . . . , n}, set w
(i)
0 =

∑
j∈J(i)M

?
j,i y

(j)
0 (i).

For all j ∈ {1, . . . , p}, set z
(j)
0 = 1

mj

∑
i∈I(j) y

(j)
0 (i).

Iteration k: Define:

yk+1 = proxσ,h?

(
zk +D(σ)Mxk

)
xk+1 = proxτ,g

(
xk −D(τ)

(
∇f(xk) + 2M?yk+1 − wk

) )
.

For i = ik+1 and for each j ∈ J(ik+1), update:

x
(i)
k+1 = x

(i)
k+1

y
(j)
k+1(i) = y

(j)
k+1

w
(i)
k+1 = w

(i)
k +

∑
j∈J(i)

M?
j,i (y

(j)
k+1(i)− y

(j)
k (i))

z
(j)
k+1 = z

(j)
k +

1

mj
(y

(j)
k+1(i)− y

(j)
k (i)) .

Otherwise, set x
(i)
k+1 = x

(i)
k , w

(i)
k+1 = w

(i)
k , z

(j)
k+1 = z

(j)
k and y

(j)
k+1(i) = y

(j)
k (i).

Remark 1. In Algorithm 1, it is worth noting that quantities (xk+1, yk+1) do not need to be explicitely
calculated. At iteration k, only the coordinates

x
(ik+1)
k+1 and y

(j)
k+1 ∀j ∈ J(ik+1)

are needed to perform the update. When g is separable, it can be easily checked that other coordinates do
not need to be computed. From a computational point of view, it is often the case that the evaluation of
the above coordinates is less demanding than the computation of the whole vectors xk+1, yk+1. Practical
examples are provided in Section 4.

For every i ∈ {1, . . . , n}, we denote by Ui : Xi → X the linear operator given by Ui(u) = (0, · · · , 0, u, 0, · · · , 0)
i.e., all coordinates of Ui(u) are zero except the ith coordinate which coincides with u. Our convergence
result holds under the following assumptions.

Assumption 1. a) The functions f , g, h are closed proper and convex.

1The results of this paper easily extend to the selection of several primal coordinates at each iteration with a uniform
samplings of the coordinates, using the techniques introduced in [RT15].
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b) The function f is differentiable on X .

c) For every i ∈ {1, . . . , n}, there exists βi ≥ 0 such that for any x ∈ X , any u ∈ Xi,

f(x+ Uiu) ≤ f(x) + 〈∇f(x), Uiu〉+
βi
2
‖u‖2Xi

.

d) The random sequence (ik)k∈N∗ is independent with uniform distribution on {1, . . . , n}.

e) For every i ∈ {1, . . . , n},
τi <

1

βi + ρ
(∑

j∈J(i)mjσjM?
j,iMj,i

) .
We denote by S the set of saddle points of the Lagrangian function L. Otherwise stated, a couple

(x∗, y∗) ∈ X × Y lies in S if and only if it satisfies the following inclusions

0 ∈ ∇f(x∗) + ∂g(x∗) +M?y∗ (2)

0 ∈ −Mx∗ + ∂h?(y∗) . (3)

We shall also refer to elements of S as primal-dual solutions.

Theorem 1. Let Assumption 1 hold true and suppose that S 6= ∅. Let (xk,yk) be a sequence generated by
Algorithm 1. Almost surely, there exists (x∗, y∗) ∈ S such that

lim
k→∞

xk = x∗

lim
k→∞

y
(j)
k (i) = y

(j)
∗ (∀j ∈ {1, . . . , p}, ∀i ∈ I(j)) .

2.3 Special cases

2.3.1 The case m1 = · · · = mp = 1

We consider the special case m1 = · · · = mp = 1. Otherwise stated, the linear operator M has a single
nonzero component Mj,i per row j ∈ {1, . . . , p}. This case happens for instance in the context of distributed
optimization [BHI14].

For each j ∈ {1, . . . , p}, the vector y
(j)
k is reduced to a single value y

(j)
k (i) ∈ Yj where i is the unique

index such that Mj,i 6= 0. We simply denote this value by y
(j)
k . Algorithm 1 simplifies to Algorithm 2 below.

2.3.2 The case h = 0

Instanciating Algorithm 1 in the special case h = 0, it boils down to the following CD forward-backward
algorithm:

x
(i)
k+1 =

{
prox

(i)
τ,g

(
xk −D(τ)∇f(xk)

)
if i = ik+1

x
(i)
k otherwise.

(4)

As a consequence, Algorithm 1 allows to recover the CD proximal gradient algorithm of [RT14] with the
notable difference that we do not assume the separability of g. On the other hand, Assumption 1(e) becomes
τi < 1/βi whereas in the separable case, [RT14] assumes τi = 1/βi. This remark leads us to conjecture
that, even though Assumption 1(e) generally allows for the use of larger step sizes as the ones suggested by
the approach of [CP14b] [BHI14], one might be able to use even larger step sizes than the ones allowed by
Theorem 1.

Note that a similar CD forward-backward algorithm can be found in [CP14b] with no need to require
the separability of g. However, the algorithm of [CP14b] assumes that the step size τi (there assumed to
be independent of i) is less than 2/β where β is the global Lipschitz constant of ∇f . As discussed in the
introduction, an attractive feature of our algorithm is the fact that our convergence condition τi < 1/βi only
involves the coordinate-wise Lipschitz constant of ∇f .
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Algorithm 2 Coordinate-descent primal-dual algorithm - Case m1 = · · · = mp = 1.

Initialization: Choose x0 ∈ X , y0 ∈ Y.
Iteration k: Define:

yk+1 = proxσ,h?

(
yk +D(σ)Mxk

)
xk+1 = proxτ,g

(
xk −D(τ)

(
∇f(xk) +M?(2yk+1 − yk)

))
.

For i = ik+1 and for each j ∈ J(ik+1), update:

x
(i)
k+1 = x

(i)
k+1

y
(j)
k+1 = y

(j)
k+1 .

Otherwise, set x
(i)
k+1 = x

(i)
k ,y

(j)
k+1 = y

(j)
k .

2.4 Failure of stochastic Fejér monotonicity

As discussed in the introduction, an existing approach to prove convergence of CD algorithm in a general
setting (that is, not restricted to h = 0 and separable g) is to establish the stochastic Fejér monotonicity
of the iterates. The idea was used in [IBCH13] and extended by [CP14b] and [BHI14] to a more general
setting. Unfortunately, this approach implies to select a “small” step size as noticed in the previous section.
The use of small step size is unfortunate in practice, as it may significantly affect the convergence rate.

It is natural to ask whether the existing convergence proof based on stochastic Fejér monotonicity can
be extended to the use of larger step sizes. The answer is negative, as shown by the following example.

Consider the toy problem

min
x∈R3

1

2
(x(1) + x(2) + x(3) − 1)2

that is we take f(x) = 1
2 (x(1) +x(2) +x(3)−1)2 and g = h = M = 0. One of the minimizers is x∗ = ( 1

3 ,
1
3 ,

1
3 ).

The global Lispchitz constant of ∇f is equal to 3 and the coordinate-wise Lipschitz constants are equal to
1. The CD proximal gradient algorithm (4) writes

x
(i)
k+1 =

{
x
(i)
k − τ(x

(1)
k + x

(2)
k + x

(3)
k − 1) if i = ik+1

x
(i)
k otherwise

where we used τ1 = τ2 = τ3 , τ for simplicity. By Theorem 1, xk converges almost surely to x∗ whenever
τ < 1. Setting x0 = 0, one has ‖x0 − x∗‖2 = 1

3 . It is immediately seen that E‖x1 − x∗‖2 = (τ − 1
3 )2 + 1

9 + 1
9

where E represents the expectation. In particular, E‖x1− x∗‖2 > ‖x0− x∗‖2 as soon as τ > 2/3. Therefore,
the sequence E‖xk−x∗‖2 is not decreasing. This example shows that the proof techniques based on monotone
operators and Fejér monotonicity are not directly applicable in the case of long stepsizes.

3 Proof of Theorem 1

3.1 Preliminary Lemma

For every (x, y) ∈ X × Y, we define V (x, y) = 1
2‖x‖

2
τ−1 + 〈y,Mx〉+ 1

2‖y‖
2
σ−1 .

Lemma 1. Let Assumption 1(a-b) hold true. Let (x, y) ∈ X × Y and (x∗, y∗) ∈ S. Define

y = proxσ,h?

(
y +D(σ)Mx

)
x = proxτ,g

(
x−D(τ)

(
∇f(x) +M?(2y − y)

))

6



and set z = (x, y), z∗ = (x∗, y∗), z = (x, y). Then,

〈∇f(x∗)−∇f(x), x∗ − x〉+ V (z, z) ≤ V (z, z∗)− V (z, z∗) .

Proof. The inclusions (3) also read

∀u ∈ X , g(u) ≥ g(x∗) + 〈−∇f(x∗)−M?y∗, u− x∗〉
∀v ∈ Y, h(v) ≥ h(y∗) + 〈Mx∗, v − y∗〉 .

Setting u = x and v = y in the above inequalities, we obtain

g(x) ≥ g(x∗) + 〈∇f(x∗) +M?y∗, x∗ − x〉 (5)

h?(y) ≥ h?(y∗) + 〈Mx∗, y − y∗〉 . (6)

By definition of the proximal operator,

y = arg min
v∈Y

h?(v)− 〈v,Mx〉+
1

2
‖v − y‖2σ−1 (7)

x = arg min
u∈X

g(u) + 〈u,∇f(x) +M?(2y − y)〉+
1

2
‖u− x‖2τ−1 . (8)

Consider Equality (7) above. It classically implies [Tse08] that for any v ∈ Y,

h?(y)− 〈y,Mx〉+
1

2
‖y − y‖2σ−1 ≤ h?(v)− 〈v,Mx〉+

1

2
‖v − y‖2σ−1 −

1

2
‖y − v‖2σ−1 .

Setting v = y∗, we obtain

h?(y) ≤ h?(y∗) + 〈y − y∗,Mx〉+
1

2
‖y∗ − y‖2σ−1 −

1

2
‖y − y∗‖2σ−1 −

1

2
‖y − y‖2σ−1

and using (6), we finally have

〈M(x∗ − x), y − y∗〉 ≤
1

2
‖y∗ − y‖2σ−1 −

1

2
‖y − y∗‖2σ−1 −

1

2
‖y − y‖2σ−1 (9)

Similarly, Equality (8) implies that for any u ∈ X ,

g(x)+〈x,∇f(x)+M?(2y−y)〉+ 1

2
‖x−x‖2τ−1 ≤ g(u)+〈u,∇f(x)+M?(2y−y)〉+ 1

2
‖u−x‖2τ−1−

1

2
‖x−u‖2τ−1 .

We set u = x∗. This yields

g(x) ≤ g(x∗) + 〈x∗ − x,∇f(x) +M?(2y − y)〉+
1

2
‖x∗ − x‖2τ−1 −

1

2
‖x− x∗‖2τ−1 −

1

2
‖x− x‖2τ−1 .

Using moreover Inequality (5), we obtain

〈∇f(x∗) +M?y∗, x∗ − x〉 ≤ 〈x∗ − x,∇f(x) +M?(2y − y)〉+
1

2
‖x∗ − x‖2τ−1 −

1

2
‖x− x∗‖2τ−1 −

1

2
‖x− x‖2τ−1

hence, rearranging the terms,

〈∇f(x∗)−∇f(x), x∗ − x〉 −
1

2
‖x∗ − x‖2τ−1 +

1

2
‖x− x∗‖2τ−1 +

1

2
‖x− x‖2τ−1 ≤ 〈2y − y − y∗,M(x∗ − x)〉 .

Summing the above inequality with (9),

〈∇f(x∗)−∇f(x), x∗ − x〉+
1

2
‖x− x‖2τ−1 + 〈y − y,M(x− x)〉+

1

2
‖y − y‖2σ−1

≤ 1

2
‖x−x∗‖2τ−1 +〈y−y∗,M(x−x∗)〉+

1

2
‖y−y∗‖2σ−1−

1

2
‖x−x∗‖2τ−1−〈y−y∗,M(x−x∗)〉−

1

2
‖y−y∗‖2σ−1 .

This completes the proof of the lemma thanks to the definition of V .
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3.2 Study of Algorithm 2

We first prove Theorem 1 in the special case m1 = · · · = mp = 1. In that case, Algorithm 1 boils down to

Algorithm 2. We recall that in this case, the vector y
(j)
k is reduced to a single value y

(j)
k (i) ∈ Yj where i is

the unique index such that Mj,i 6= 0. We simply denote this value by y
(j)
k .

We denote by Fk the filtration generated by the random variable (r.v.) i1, · · · , ik. We denote by
Ek( . ) = E( . |Fk) the conditional expectation w.r.t. Fk.

Lemma 2. Let Assumptions 1(a,b,d) hold true. Suppose m1 = · · · = mp = 1. Consider Algorithm 2 and
let γ1, . . . , γn be arbitrary positive coefficients. For every k ≥ 1 and every Fk-measurable pair of random
variables (X,Y ) on X × Y,

Ek(xk+1) =
1

n
xk+1 + (1− 1

n
)xk

Ek(‖xk+1 −X‖2γ) =
1

n
‖xk+1 −X‖2γ + (1− 1

n
)‖xk −X‖2γ

Ek(‖yk+1 − Y ‖2σ−1) =
1

n
‖yk+1 − Y ‖2σ−1 + (1− 1

n
)‖yk − Y ‖2σ−1

Ek(〈yk+1 − Y,M(xk+1 −X)〉) =
1

n
〈yk+1 − Y,M(xk+1 −X)〉+ (1− 1

n
)〈yk − Y,M(xk −X)〉 .

Proof. The first equality is immediate.

Consider the second one. Ek(‖xk+1 − X‖2τ−1) =
∑n
i=1 τ

−1
i Ek(‖x(i)k+1 − X(i)‖2) which coincides with∑n

i=1 τ
−1
i ( 1

n‖x
(i)
k+1 −X(i)‖2 + (1− 1

n )‖x(i)k −X(i)‖2) and the second equality is proved.

Similarly for the third equality, Ek(‖yk+1 − Y ‖2σ−1) =
∑p
j=1 σ

−1
j Ek(‖y(j)k+1 − Y (j)‖2) and for every j,

Ek(‖y(j)k+1 − Y
(j)‖2) = ‖y(j)k+1 − Y

(j)‖2P(j ∈ J(ik+1)) + ‖y(j)k − Y
(j)‖2P(j /∈ J(ik+1)).

P(j ∈ J(ik+1)) = P(ik+1 ∈ I(j)) = card(I(j))/n = 1/n, implies that Ek(‖y(j)k+1−Y (j)‖2) = 1
n‖y

(j)
k+1−Y (j)‖2+

(1− 1
n )‖y(j)k − Y (j)‖2 and the third equality is proved.

Consider the fourth equality. Note that

〈yk+1 − Y,M(xk+1 −X)〉 =

n∑
i=1

∑
j∈J(i)

〈y(j)k+1 − Y
(j),Mj,i(x

(i)
k+1 −X

(i))〉.

For any pair (i, j) such that j ∈ J(i), the conditional expectation of each term in the sum is equal to
1
n 〈y

(j)
k+1 − Y (j),Mj,i(x

(i)
k+1 −X(i))〉+ (1− 1

n )〈y(j)k − Y (j),Mj,i(x
(i)
k −X(i))〉 which in turn implies the fourth

equality in the Lemma.

Assume that τ−1i > βi for each i ∈ {1, . . . , n}. Define for every (x, y) ∈ X × Y,

Ṽ (x, y) =
1

2
‖x‖2τ−1−β + 〈y,Mx〉+

1

2
‖y‖2σ−1 .

Lemma 3. Let Assumptions 1(a,b,c,d) hold true. Suppose m1 = · · · = mp = 1 and assume that τ−1i > βi
for each i ∈ {1, . . . , n}. Consider Algorithm 2 and define for every k ∈ N,

Sk,∗ = f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉 . (10)

Then the following inequality holds:

Ek [Sk+1,∗ + V (zk+1, z∗)] ≤ (1− 1

n
)Sk,∗ + V (zk, z∗)−

1

n
Ṽ (zk+1, zk) (11)

where zk+1 = (xk+1, yk+1).
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Proof. Choosing Z = (X,Y ) as in Lemma 2, denoting zk = (xk, yk) and zk = (xk, yk), we obtain immediately
Ek(V (zk+1, Z)) = 1

nV (zk+1, Z) + (1− 1
n )V (zk, Z) or equivalently,

V (zk+1, Z) = nEk(V (zk+1, Z))− (n− 1)V (zk, Z) . (12)

Let z∗ = (x∗, y∗) ∈ S. By Lemma 1,

〈∇f(x∗)−∇f(xk), x∗ − xk+1〉+ V (zk+1, zk) ≤ V (zk, z∗)− V (zk+1, z∗) .

Identifying Z in (12) to z∗ and zk successively, we obtain

〈∇f(x∗)−∇f(xk), x∗ − xk+1〉+ nEk(V (zk+1, zk)) ≤ nV (zk, z∗)− nEk(V (zk+1, z∗)) .

Dividing both sides of the above inequality by n and using that xk+1 = nEk(xk+1)− (n− 1)xk, we obtain

〈∇f(x∗)−∇f(xk), x∗ − Ek(xk+1) + (1− 1

n
)(xk − x∗)〉+ Ek(V (zk+1, zk)) ≤ V (zk, z∗)− Ek(V (zk+1, z∗)) .

Rearranging the terms,

Ek [〈∇f(xk)−∇f(x∗), xk+1 − xk〉+ V (zk+1, z∗)]

≤ − 1

n
〈∇f(xk)−∇f(x∗), xk − x∗〉+ V (zk, z∗)− Ek(V (zk+1, zk)) .

We now use Assumption 1(c), knowing that xk+1 only differs from xk along coordinate ik+1

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
βik+1

2
‖xk+1 − xk‖2

which implies that 〈∇f(xk), xk+1 − xk〉 ≥ f(xk+1)− f(xk)− βik+1

2 ‖xk+1 − xk‖2. Thus,

Ek
[
f(xk+1)− f(xk)−

βik+1

2
‖xk+1 − xk‖2 − 〈∇f(x∗), xk+1 − xk〉+ V (zk+1, z∗)

]
≤ − 1

n
〈∇f(xk)−∇f(x∗), xk − x∗〉+ V (zk, z∗)− Ek(V (zk+1, zk)) .

Introducing the quantity Sk,∗ as in (10), the inequality simplifies to

Ek
[
Sk+1,∗ + V (zk+1, z∗)−

βik+1

2
‖xk+1 − xk‖2

]
≤ f(xk)− f(x∗)− (1− 1

n
)〈∇f(x∗), xk − x∗〉 −

1

n
〈∇f(xk), xk − x∗〉+ V (zk, z∗)− Ek(V (zk+1, zk)) .

An estimate of the right-hand side is obtained upon noticing that 〈∇f(xk), xk − x∗〉 ≥ f(xk) − f(x∗).
Therefore,

Ek
[
Sk+1,∗ + V (zk+1, z∗)−

βik+1

2
‖xk+1 − xk‖2

]
≤ (1− 1

n
)Sk,∗ + V (zk, z∗)− Ek(V (zk+1, zk)) .

Upon noting that ‖xk+1 − xk‖2τ−1 − βik+1
‖xk+1 − xk‖2 = ‖xk+1 − xk‖2τ−1−β , we obtain

Ek [Sk+1,∗ + V (zk+1, z∗)] ≤ (1− 1

n
)Sk,∗ + V (zk, z∗)− Ek(Ṽ (zk+1, zk)) .

Using Lemma 2, it is immediate that Ek(Ṽ (zk+1, zk)) = 1
n Ṽ (zk+1, zk) and the proof is complete.
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Recall that we denote by ρ(A) the spectral radius of a matrix A.

Lemma 4. Suppose that m1 = · · · = mp = 1 and assume that the following condition holds for every
i ∈ {1, . . . , n}:

τi <
1

βi + ρ
(∑

j∈J(i) σjM
?
j,iMj,i

) . (13)

Then Ṽ 1/2 is a norm on X × Y.

Note that under the assumptions of Lemma 4, V 1/2 is also, a fortiori, a norm.

Proof. Let γ−1 = τ−1 − β. Denote by D(σ) the diagonal matrix on Y → Y defined by D(σ)(y) =
(σ1y

(1), . . . , σpy
(p)) for every y = (y(1), . . . , y(p)). We define D(γ) similarly on X → X . By [HJ12, The-

orem 7.7.6], a sufficient (and necessary) condition for Ṽ to be a squared norm is that D(γ−1) �M?D(σ)M
(where notation A � B means that A − B is a positive definite matrix). Defining R = D(σ1/2)MD(γ1/2)
(that is, Rj,i =

√
γiσjMj,i for every j, i), the condition reads equivalently ρ(R?R) < 1. As the set I(j) is

reduced to a unique element for all j, the matrix R?R is (block) diagonal. Precisely, for any 1 ≤ i, ` ≤ n, the
(i, `)-component (R?R)i,` is zero whenever i 6= ` and is otherwise equal to (R?R)i,i = γi

∑
j∈J(i) σjM

?
j,iMj,i .

The condition ρ(R?R) < 1 yields γiρ
(∑

j∈J(i) σjM
?
j,iMj,i

)
< 1 for each i ∈ {1, . . . , n} which is in turns

equivalent to condition (13).

Proof of Theorem 1 in the case m1 = . . . = mp = 1. Let z∗ be an arbitrary point in S. Whenever condi-

tion (13) is met, the r.v. V (zk, z∗) and Ṽ (zk+1, zk) are non-negative. The r.v. Sk,∗ is non-negative as well
by convexity of f . We review two important consequences of Lemma 3.
• Define Uk = Sk,∗ + V (zk, z∗). A first consequence of Lemma 3 is that for all k,

Ek(Uk+1) ≤ Uk −
1

n
Sk,∗ .

Recalling that Uk and Sk are non-negative r.v., the Robbins-Siegmund Lemma [RS71] implies that almost
surely, limk→∞ Uk exists and

∑
k Sk,∗ <∞. In particular, Sk,∗ converges almost surely to zero. By definition

of Uk, this implies that limk→∞ V (zk, z∗) exists almost surely. Following the argument of [Ber11, Prop. 9]
(see also [IBCH13], [CP14b, Prop. 2.3]), this implies that there exists an event A of probability one such
that for every ω ∈ A and every ž ∈ S, limk→∞ V 1/2(zk(ω)− ž) exists.
• A second consequence of Lemma 3 is that, by taking the expectation E of both handsides of (11),

E [Sk+1,∗ + V (zk+1, z∗)] ≤ E[Sk,∗ + V (zk, z∗)]−
1

n
E(Ṽ (zk+1, zk))

and by summing these inequalities, we obtain 0 ≤ S0,∗ + V (z0, z∗) − 1
n

∑k
i=0 E(Ṽ (zi+1, zi)). This shows

that E(
∑∞
i=0 Ṽ (zi+1, zi)) < ∞. The integrand is non-negative by Lemma 4. It is therefore finite almost

everywhere. In particular, the sequence Ṽ (zk+1, zk) converges almost surely to zero. By Lemma 4, zk+1−zk
converges to zero almost surely. Say zk+1(ω)− zk(ω)→ 0 for every ω ∈ B where B is a probability event of
probability one.

We introduce the mapping T : X × Y → X × Y such that for any (x, y) ∈ X × Y, the quantity T (x, y)
coincides with the couple (x, y) given by

y = proxσ,h?

(
y +D(σ)Mx

)
x = proxτ,g

(
x−D(τ)∇f(x)−D(τ)M?(2y − y)

)
.

With this definition, zk+1 = T (zk). By non-expansiveness of the proximity operator, it is straightforward to
show that T is continuous. It is also straightforward to verify that its set of fixed points coincides with S.

From now on to the end of this paragraph, we select a fixed ω ∈ A ∩ B. Note that zk(ω) is a bounded
sequence. Let z̃ be a cluster point of the latter. We have shown that T (zk(ω)) − zk(ω) → 0 which implies
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that T (z̃)− z̃ = 0 by continuity of T . Thus, z̃ ∈ S. This implies that limk→∞ V 1/2(zk(ω)− z̃) exists. Since
V 1/2(zk(ω)− z̃) tends to zero at least on some subsequence, we conclude that limk→∞ V 1/2(zk(ω)− z̃) = 0.
Otherwise stated, the sequence zk(ω) converges to some point z̃ ∈ S. This completes the proof of Theorem 1
in the case m1 = · · · = mp = 1.

3.3 General case

For every j ∈ {1, . . . , p}, the space Yj = YI(j)j is equipped with the inner product 〈u,v〉 =
∑
i∈I(j)〈u(i),v(i)〉.

We introduce the averaging operator Sj : Yj → Yj defined for every u ∈ Yj by

Sj(u) =
1

mj

∑
i∈I(j)

u(i) .

For any u ∈ Yj , we denote by 1mj ⊗ u = (u, . . . , u) the vector of Yj whose components all coincide with u.
We introduce the linear operator Kj : X → Yj by

Kj(x) = (Mj,i(x
(i)) : i ∈ I(j))

The operators S : Y → Y, K : X → Y are respectively defined by S(y) = (S1(y(1)), . . . , Sp(y
(p))) and

K(x) = (K1(x), . . . ,Kp(x)). It is immediate to verify that

M = D(m)SK (14)

where m = (m1, . . . ,mp). In order to have some insights, the following example illustrates the construction
of K for a given M .

Example 1. Let X = Y = R3 and define M : X → Y as the 3× 3 matrix

M =

M1,1 M1,2 0
0 M2,2 0

M3,1 M3,2 M3,3

 .

Here, I(1) = {1, 2} is the set of non-zero coefficients of the first row of M and it cardinal is m1 = 2. Similarly
m2 = 1, m3 = 3 and Y = R6. Then K : R3 → R6 coincides with the matrix

K =


M1,1 0 0

0 M1,2 0
0 M2,2 0

M3,1 0 0
0 M3,2 0
0 0 M3,3


and each row of K contains exactly one non-zero coefficient. On the other hand, S and D(m) respectively
coincide with

S =

 1
2

1
2 0 0 0 0

0 0 1 0 0 0
0 0 0 1

3
1
3

1
3

 and D(m) =

2 0 0
0 1 0
0 0 3


and obviously D(m)SK = M .

We define the function h = h ◦ (D(m)S) . By (14), Problem (1) is equivalent to

min
x∈X

f(x) + g(x) + h(Kx) . (15)

11



We denote by S the set of primal-dual solutions of the above problem i.e., the set of pairs (x∗,y∗) ∈ X ×Y
satisfying

0 ∈ ∇f(x∗) + ∂g(x∗) +K?y∗

0 ∈ −Kx∗ + ∂h
?
(y∗) .

Substituting M with K, we may now apply Algorithm 2 to (15). For a fixed σ = (σ1, . . . , σp), we define

σ̃j = mjσj and we define σ̃ ∈ R
∑p

j=1mj as the vector σ̃ = (σ̃11m1
, . . . , σ̃p1mp

) where 1mj
is a vector of size

mj whose components are all equal to one. Algorithm 2 writes
Initialization: Choose x0 ∈ X , y0 ∈ Y .
Iteration k: Define:

yk+1 = proxσ̃,h?

(
yk +D(σ̃)Kxk

)
(16)

xk+1 = proxτ,g

(
xk −D(τ)

(
∇f(xk) +K?(2yk+1 − yk)

))
. (17)

For i = ik+1 and for each j ∈ J(ik+1), update:

x
(i)
k+1 = x

(i)
k+1 (18)

y
(j)
k+1(i) = y

(j)
k+1(i) . (19)

Otherwise, set x
(i)
k+1 = x

(i)
k , y

(j)
k+1(i) = y

(j)
k (i).

Using the result of the Section 3.2 and the properties of K, the sequence (xk,yk) converges almost surely
to a primal-dual point of Problem (15), provided that such a point exists and that the following condition
holds:

τi <
1

βi + ρ
(∑

j∈J(i) σ̃jM
?
j,iMj,i

)
which is equivalent to Assumption 1(e). It remains to prove that the algorithm given by the iterations (16)–
(19) coincides with Algorithm 1. To that end, we need the following Lemma.

Lemma 5. For any y ∈ Y, proxσ̃,h?(y) = (1m1
⊗ prox

(1)
σ,h?(S(y)), . . . ,1mp

⊗ prox
(p)
σ,h?(S(y))) .

Proof. We have h(y) = h(m1S1(y(1)), . . . ,mpSp(y
(p))). Thus,

h
?
(ϕ) = sup

y∈Y
〈ϕ,y〉 − h(m1S1(y(1)), . . . ,mpSp(y

(p)))

For all j ∈ {1, . . . , p}, denote by Cj the subset of Yj formed by the vectors of the form (u, . . . , u) for some

u ∈ Yj , and define C = C1×· · ·×Cp. Clearly, h
?
(ϕ) = +∞ whenever ϕ /∈ C and ∂h

?
(ϕ) = ∅ in that case. If

on the other hand ϕ ∈ C, one can write ϕ under the form ϕ = (1m1 ⊗ϕ(1), . . . ,1mp ⊗ϕ(p)) for some ϕ ∈ Y.
In that case,

h
?
(ϕ) = sup

y∈Y

p∑
j=1

〈1mj
⊗ ϕ(j),1mj

⊗ y(j)〉 − h(m1y
(1), . . . ,mpy

(p))

= sup
y∈Y

p∑
j=1

〈ϕ(j),mjy
(j)〉 − h(m1y

(1), . . . ,mpy
(p)) = h?(ϕ) .

Then, u ∈ ∂h
?
(ϕ) if and only if for every ψ ∈ Y, h?(ψ) ≥ h?(ϕ) +

∑p
j=1〈u(j),1mj

⊗ (ψ(j) − ϕ(j))〉
or equivalently, h?(ψ) ≥ h?(ϕ) +

∑p
j=1〈mjSj(u

(j)), ψ(j) − ϕ(j)〉 . Therefore, u ∈ ∂h
?
(ϕ) if and only if

D(m)S(u) ∈ ∂h?(ϕ).
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Now consider an arbitrary y ∈ Y and set q = proxσ̃,h?(y). This is equivalent to

D(σ̃−1)(y − q) ∈ ∂h?(q). (20)

In particular, q ∈ dom(∂h
?
) and thus q has the form q = (1m1 ⊗ q(1), . . . ,1mp ⊗ q(p)) for some q ∈ Y.

The inclusion (20) reads D(m)SD(σ̃−1)(y − q)) ∈ ∂h?(q). Since D(m)SD(σ̃−1) = D(σ−1)S, we obtain
D(σ−1)(S(y)− q) ∈ ∂h?(q) which is equivalent to q = proxσ,h?(S(y)). This completes the proof.

The proof of the following Lemma is immediate.

Lemma 6. For any y ∈ Y, K?(y) = (
∑
j∈J(1)M

?
j1(y(j)(1)), . . . ,

∑
j∈J(n)M

?
jn(y(j)(n))). In particular, for

any y ∈ Y,
K?(1m1 ⊗ y(1), . . . ,1mp ⊗ y(p)) = M?y .

We are now in a position to simplify the iterations (16)–(19). For every k, yk+1 = (1m1⊗y
(1)
k+1, . . . ,1mp⊗

y
(p)
k+1). where we define yk+1 = proxσ,h?

(
S(yk+D(σ̃)Kxk)

)
. Upon noting that SD(σ̃)K = D(σ)D(m)SK =

D(σ)M , we obtain
yk+1 = proxσ,h?(zk +D(σ)Mxk) (21)

where we defined zk = S(yk), otherwise stated, for each j ∈ {1, . . . , p},

z
(j)
k =

1

mj

∑
i∈I(j)

y
(j)
k (i) .

Note that zk+1 differs from zk only along the components j for which y
(j)
k+1(i) differs from y

(j)
k (i) for some i.

That is, z
(j)
k+1 = z

(j)
k for each j /∈ J(ik+1) while for any j ∈ J(ik+1),

z
(j)
k+1 = z

(j)
k +

1

mj
(y

(j)
k+1(ik+1)− y

(j)
k (ik+1)) . (22)

Now consider equation (17). By Lemma 6, K?yk+1 = M?yk+1. Thus, setting wk = K?yk, equation (17)
simplifies to:

xk+1 = proxτ,g

(
xk −D(τ)

(
∇f(xk) + (2M?yk+1 − wk)

))
. (23)

By Lemma 6 again, wk = (
∑
j∈J(1)M

?
j1y

(j)
k (1), . . . ,

∑
j∈J(n)M

?
jny

(j)
k (n)). Therefore, wk+1 only differs from

wk along the ik+1-th coordinate and the update reads:

w
(ik+1)
k+1 = w

(ik+1)
k +

∑
j∈J(ik+1)

M?
j,ik+1

(y
(j)
k+1(ik+1)− y

(j)
k (ik+1)) . (24)

Putting all pieces together, the update equations (21)–(24) coincide with Algorithm 1. We have thus proved
that Algorithm 1 is such that (xk,yk) converges to a primal-dual point of Problem (15) provided that such
a point exists. To complete the proof, the final step is to relate the primal-dual solutions of Problem (15) to
the primal-dual solutions of the initial Problem (1).

Consider the mapping G : X × Y → X ×Y defined by G(x, y) = (x, (1m1 ⊗ y(1), . . . ,1mp ⊗ y(p))).

Lemma 7. S = G(S).

Proof. Let (x, y) ∈ X × Y and set y = (1m1
⊗ y(1), . . . ,1mp

⊗ y(p)). Then M?y = K?y, therefore

0 ∈ ∇f(x) + ∂g(x) +K?y ⇔ 0 ∈ ∇f(x) + ∂g(x) +M?y .
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Moreover,

0 ∈ −Kx+ ∂h
?
(y) ⇔ Kx ∈ ∂h?(y)

⇔ D(m)S(Kx) ∈ ∂h?(y)

⇔ Mx ∈ ∂h?(y)

where we used Lemma 5 along with the identities D(m)SK = M and S(y) = y. The proof is completed
upon noting that if (x,y) ∈ S, then y has the form y = (1m1

⊗ y(1), . . . ,1mp
⊗ y(p)) for some y ∈ Y.

We have shown that, almost surely, (xk,yk) converges to some point in G(S). This completes the proof
of Theorem 1.

4 Numerical experiments

For all the experiments, we used one processor of a computer with Intel Xeon CPUs at 2.80GHz.

4.1 Total Variation + `1 regularized least squares Regression

For given regularization parameters α > 0 and r ∈ [0, 1], we would like to solve the following regression
problem with regularization given by the sum of Total Variation (TV) and the `1 norm:

min
x∈Rn

1

2
‖Ax− b‖22 + α

(
r ‖x‖1 + (1− r) ‖Mx‖2,1

)
.

The problem takes place on a 3D image of the brains of size 40× 48× 34. The optimization variable x is a
real vector with one entry in each voxel, that is n = 65,280. Matrix M is the discretized 3D gradient. This
is a sparse matrix of size 195,840 × 65,280 with 2 nonzero elements in each row. The matrix A ∈ R768×65,280

and the vector b ∈ R768 correspond to 768 labeled experiments where each line of A gathers brains activity
for the corresponding experiment. Parameter r tunes the tradeoff between the two regularization terms. If r
= 1, one gets a Lasso problem for which coordinate descent has been reported to be very efficient [FHHT07].
For r < 1, classical (primal) coordinate descent cannot be applied but primal-dual coordinate descent can.

In this scenario, we set f(x) = 1
2 ‖Ax− b‖

2
2, g(x) = αr ‖x‖1, h(y) = α(1−r) ‖y‖2,1. We coded Algorithm 1

in Cython2 and duplicated each dual variable two times. Note that as h = α(1 − r) ‖·‖2,1 is not separable,

we need to compute 12 dual components of ȳk+1 for each primal variable x
(i)
k+1 updated and then use only 6

of them to update z
(j)
k+1 for j ∈ J(ik+1). We chose σj such that ρ(

∑
j∈J(i) σjM

?
j,iMj,i) is of the same order

of magnitude as βi and τi equal to 0.95 times its upper bound in Assumption 1. We compared Algorithm 1
against:

• Vũ-Condat’s algorithm [Vũ13, Con13],

• Chambolle-Pock’s algorithm [CP11],

• FISTA [BT09] with an inexact resolution of the proximal operator of TV,

• L-BFGS [ZBLN97] with a smoothing of the nonsmooth functions and continuation.

Figure 1 indicates that our primal coordinate descent is a competitive algorithm for a wide range of regu-
larization parameters.

Note that Chambolle-Pock needs to compute the singular values decomposition of A (which explains the
flat shape of the performance curve when the algorithm starts). FISTA and Vũ-Condat need to estimate its
largest singular value. If only a low accuracy is required, Algorithm 1 may have reached this low accuracy
even before these preprocessing steps are completed.

2The code is available on http://perso.telecom-paristech.fr/~ofercoq/Software.html
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Figure 1: Comparison of algorithms for TV+L1-regularized regression at various regularization parameters

L-BFGS has similar behaviour as Algorithm 1 except for α = 0.1, r = 0.9 where it suffers from the
non-smoothness of the objective while Algorithm 1 deals with it directly by the proximal operators. FISTA
is the fastest algorithm for strongly regularized problems.

4.2 Linear Support Vector Machines

We now present a second application for our algorithm. We consider a set of n observations gathered into
a data matrix A ∈ Rm×n and labels b ∈ Rn and we intend to solve the following Support Vector Machine
problem:

min
w∈Rm,w0∈R

n∑
i=1

Ci max
(
0, 1− bi((A>w)i + w0)

)
+
λ

2
‖w‖22 .

As is common practice for this problem, we solve instead the Dual Support Vector Machine problem:

max
x∈Rn

− 1

2λ
‖AD(b)x‖22 + eTx−

n∑
i=1

I[0,Ci](xi)− Ib⊥(x)

In the experiments3, we consider:

• the RCV1 dataset [LYRL04] where A is a sparse m×n matrix with m = 20,242, n = 47,236 and 0.157
% of nonzero entries and we take Ci = 1

n for all i and λ = 1
4n ;

• the KDD cup 2009 dataset [GLB+09]: the data is a mix of 14740 numerical values and 260 categorical
values from Orange Labs. We preprocessed the data by adding a feature for each column containing
missing values and binarizing the categorical values. We obtained a sparse matrix with m = 86,825,
n = 50,000 and 1.79 % of nonzero entries. We divided the columns by their standard deviation
and removed columns with a too small standard deviation. There are three tasks with this dataset:
estimate the appetency, churn and up-selling probability of customers. As the classes are unbalanced,

3Code available on https://github.com/ofercoq/lightning
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Figure 2: Comparison of dual algorithms for the resolution of linear SVM on the RCV1 dataset. We report
the value of the duality gap after a post-processing to recover feasible primal and dual variables. Primal
variables are recovered as suggested in [SSZ13] and the intercept is recovered by exact minimization of the
primal objective given the other primal variables. When dual iterates are not feasible, we project them
onto the dual feasible set before computing the dual objective. We stopped each algorithm after 100 passes
through the data: note that the cost per iteration of the three algorithms is similar.

we compensate this with values of Ci proportional to the class weight and we chose maxi Ci = λ = 1
n .

We also chose a value of σi depending on the class.

Here f(x) = 1
2 ‖AD(b)x‖22 − eTx, g(x) =

∑n
i=1 I[0,Ci](xi), h(y) = Ib⊥(y) and M = I. We compare our

method with

• SCDA [SSZ13]: note that SDCA simply forgets Ib⊥(x) in order to be able to apply the classical
coordinate descent method a thus will not converge to an optimal solution.

• RCD [NP12]: at each iteration, the algorithm selects two coordinates randomly and performs a coor-
dinate descent step according to these two variables. Updating two variables at a times allows us to
satisfy the linear constraint at each iteration.

We can see on Figures 2 and 3 the decrease of the SVM duality gap for each algorithm. SDCA is very efficient
in the beginning and converges quickly. However, as the method does not take into account the intercept,
it does not converge to the optimal solution and stagnates after a few passes on the data. Algorithm 1
allows step sizes nearly as long as SDCA’s and taking into account the coupling constraint represents only
marginal additional work. Hence, the objective value decreases nearly as fast for SDCA in the beginning
without sacrificing the intercept, leading to a smaller objective value in the end. The RCD method of [NP12]
does work but is not competitive in terms of speed of convergence. We also tried the C implementation of
LIBSVM [CL11] but it needed 175s to solve the (medium-size) RCV1 problem.
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[RT12] Peter Richtárik and Martin Takáč. Efficient serial and parallel coordinate descent method for
huge-scale truss topology design. In Operations Research Proceedings, pages 27–32. Springer,
2012.
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