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Abstract 
 

We combine an effective diffusivity model with a numerical approach initially proposed by Meyer (1981) to 
simulate transient heat and mass transfer phenomena in a directionally solidifying Sn-Bi rod. This particularly 
efficient 1D numerical model is light enough to be used within the frame of optimization methods at 
reasonable numerical cost. This approach is tested against reference in situ measurements obtained under 
microgravity conditions during the Mephisto program. We simulate the final homogenization transient of 
several experimental runs with different pulling velocities. The solid/liquid interface temperature evolution 
with time is extracted from the simulations and compared with that obtained by Seebeck in line 
measurements. After optimization of the model the observed discrepancy between the simulated and 
measured data is less than 1.5%. This validates both the proposed very efficient 1D numerical approach and the 
consistency of the set of thermophysical parameters values for dilute Sn-Bi alloys. 
 

Keywords: 
Segregation; Effective diffusion; Crystal growth; Thermophysical parameters; Seebeck. 
 

I. Introduction 
 

Directional solidification, where a molten alloy is frozen from one end, is a process with numerous 
industrial applications in the fields of crystal growth and metallurgy. The case where the solidification rate is 
controlled in order for the solid liquid front to remain planar, i.e. avoiding cells or dendrites and bulk nucleation 
to occur, is in particular relevant to crystal growth applications. From a mathematical standpoint, this can be 
considered as a model transport problem, where the position of the solid liquid interface cannot be a priori 
prescribed, but results from time dependent boundary conditions. In addition, the problem is both multiphysics 
since the alloy thermodynamic state is ruled by a phase diagram coupling the alloy local composition to its 
temperature and multiscale since the diffusivities associated to heat and concentration take usually very 
different values. Last but not least for our present purposes, the transport in the melt part of the alloy is usually 
influenced by the presence of convection due to buoyancy effects. It is thus an intricate problem. 

 
The continuous development of computational resources and the need for a better understanding of the 

phenomena and for optimization of industrial processes have led to the development of several numerical 
modelling strategies in the last decades. Numerous efforts have been made to develop realistic 2D and 3D 
simulation tools using either an enthalpy approach featuring a diffuse interface computed on a fixed mesh [1–
5] or resorting to adaptive meshing techniques to track the solidification front and insure its fine description 
with nodes located on the interface [6–11]. Combining coupled 2D and 3D simulations is now an established 



 
 

2 
 

strategy to reduce computational cost in particular in the Czochralski configuration in which the front is nearly 
fixed in space [12,13]. However, the computational time associated with such simulations still goes from 
several hours to several days. As a consequence it is prohibitive to include these models within optimization 
procedures based on parametric minimization strategies. There is thus still a real need of still lighter models, 
typically 1D, to perform fast computations of directional alloys solidification in convecto-diffusive conditions. 

Meyer [14] proposed an original technique allowing to efficiently solve the coupled heat and mass transfer 
problem. This technique has been shown to give reliable results [15,16] and the short computational time 
associated with this method offers the possibility to implement it within a parametric optimization procedure. 
Yet, Meyer’s method only considers diffusive situations and it would be interesting to extend this method to 
account for convective effects. Such an extension is proposed in the present paper, based on an effective 
diffusivity formalism in order to keep the 1D approach. A second step is to test the ability of this modified 
Meyer method to account for the global consistency of a reference experimental dataset obtained in 
microgravity by directional solidification of tin bismuth alloys in the MEPHISTO apparatus [17,18]. A specificity 
of the featured data is that it is not restricted to a limited number of post-mortem concentration vs position 
measurements, as is often the case in metallic alloys and semiconducting materials. Indeed, what is measured 
during the experiments is the real time Seebeck signal associated with the growth interface temperature. We 
thus have access to an almost continuous composition vs time data set. Another feature of our experimental 
data is that it was obtained in microgravity, i.e. in conditions of relatively weak convective transport and, in any 
case, devoid of turbulent fluctuations. Note finally that the simulations with the modified Meyer method 
require thermophysical data, which, for Sn-Bi, are still difficult to obtain. 

To sum up, the objectives of our study are threefold: to propose significant improvements of Meyer’s 
method, with the introduction of an effective diffusion approach in order to extend this method to convecto-
diffusive problems and the use of specific numerical techniques in order to insure a second order spatial 
scheme; to present yet unpublished reference experimental results obtained in microgravity, which will be 
used to test the potentiality of the modified Meyer method; to show the consistency of a set of thermophysical 
parameters values published separately in former papers and which will be used in the simulations. 

 
Section II is dedicated to the background of the present paper, including a brief presentation of Meyer’s 

method, of the relevant physical phenomena and of the experimental set up and growth conditions. We then 
proceed in section III to a description of the proposed modified Meyer’s method and boundary and initial 
conditions, before turning to some specificities of its numerical implementation in section IV. Section V is 
devoted to the comparison with the experimental data before a conclusion in section VI. 
 

II. Background 
 

2.1 Meyer’s original method 
 
The equations to be solved to describe a one-dimensional solidification process with moving interface in 

the diffusive regime are those associated with the conservation of heat and impurity concentration. If we use 
the subscripts + and - to denote the liquid and solid phases, respectively and the subscript int to denote the 
interface, we can write the following equations for temperature   and impurity concentration  : 

 
Heat conservation equation 
 

  

  
    

   

  
        

   

  
    

 

(1) 

Heat conservation at the interface 
 

 
      

     

  
    

   

  
     

   

  
     

 

(2) 

Temperature continuity at the interface 
 
                         

 
(3) 

Impurity concentration equation 
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(4) 

Impurity conservation at the interface 
 

 
       

     

  
    

   

  
     

   

  
     

 

(5) 

Phase diagram relation 
 

                    (6) 
 

In these equations,   is the thermal conductivity,    is the thermal capacity,   is the density,    is the latent 

heat of fusion, and   is the solutal diffusivity. 
To solve this problem known as the Stephan problem, a numerical method was proposed by Meyer [14]. 

New variables are first introduced,       
   

  
 and       

   

  
, which correspond to the heat and impurity 

fluxes, respectively. The temperature and impurity concentration can be defined with these new variables as: 
 

                         
 

(7) 

and  
                          

 
(8) 

respectively. The problem is discretized in time with a time step    and we want to calculate the solution    
and    at time            (with     ) from      and     . The functions       and      , and       
and       are then solutions of ordinary differential equations: 
 
       

   
 

 

  

  
   

  
 
 
         

(9) 

with         and        , 
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with         and        , and 
 
       

   
   

   

  
      

 

         
        

(11) 

with              and             , 
 
       

   
   

    

  
 

 

         
        

(12) 

with              and             . 
 
The functions   ,   ,    and    correspond to the temperature and concentration boundary conditions 

applied on the extremities of the sample (    and    ) at each time. For the case presented in this paper, 
the boundary conditions for temperature are obtained in each phase from the expressions (20), (28) and (29) 
introduced later in the paper, and the boundary conditions for concentration are obtained from the 
concentration in each phase far from the interface (respectively    and    given in Table 1). 

To get the temperature and concentration fields, the functions       and       still have to be 
determined. They are solutions of the following equations derived at order 1 in time from the conservation 
equations: 
       

  
  

   

  
 
 
                     

         
(13) 

and 
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(14) 

 
At each time step, the solutions are calculated from the boundary conditions taken at the solid/liquid 

interface: 
 

         
             

        
  

(15) 

and 
 

         
                 

        
  

 

(16) 

The values of      and      are obtained by solving a system of two equations deduced from heat and mass 
conservation at the interface: 
 
 

                  
         

   

  
 

        

        
 

        

        
    

 

        
 

 

        
   

 

(17) 

 
                           

         
   

  
 

                 

        
 

                 

        
    

(18) 

 
Finally, at each time step, once the functions       and      ,       and      , and       and       

have been calculated, the temperature and concentration fields in the sample can be obtained from equations 
(7) and (8) above. As a conclusion, the interest of this 1D method is thus to substitute the set of coupled partial 
differential equations ruling the moving front problem by a set of ordinary differential equations with initial 
conditions. 
 

2.2 The Mephisto experimental program 

 
The Mephisto program was conducted in the eighties and nineties by the French spatial agency (CNES) and 

the French atomic research center (CEA) in collaboration with the American space agency (NASA) and various 
American labs. The objectives were to perform solidification experiments of metallic alloys in micro-gravity, in 
order to avoid perturbing convective effects, in carefully controlled experiments reaching nearly purely 
diffusive species transport regime. Among the investigated problems, one can cite the morphological stability 
of a planar front, g-jitters effects in microgravity conditions or the determination of liquid phase 
thermophysical properties, see e.g. [17–19]. Mephisto was part of a larger material science effort, see e.g. 
[20,21] in the frame of the ambitious United States Microgravity Payloads (USMP) program that featured 
different campaigns in connection with flight opportunities between 1992 and 1997. Specifically regarding 
Mephisto, the data that will be discussed in the frame of the present paper are issued from two flights, namely 
USMP1 in 1992 and USMP3 in 1996, featuring tin bismuth alloys and where the Mephisto device was operated 
under CEA scientific leadership. The nominal alloy compositions for the feed materials were         at.% Bi 
and 1.6 at.% Bi for the USMP1 and USMP3 flights, respectively, meaning that the alloys could be considered as 
dilute. The starting materials were synthesized in the CEA laboratory from 6N tin and bismuth sources. 

 
Briefly speaking, Mephisto is a sophisticated Bridgman furnace, with two heating and cooling sub-systems, 

where three separate elongated (length = 850 mm, diameter = 6 mm) cylindrical samples are solidified in 
parallel (see the sketch in Fig. 1). Sample #1 is dedicated to a measurement of the Seebeck thermoelectric 
signal, which is used to obtain most of the experimental data presented here. From a thermoelectric 
standpoint, the solid-liquid-solid sample behaves like a double thermocouple. One of the interfaces is 
maintained at a given position during the experiment to provide a reference temperature value, namely that of 
the liquidus at the nominal composition    of the alloy. This temperature can be matched with the contribution 
coming from the other interface, whose motion is controlled by an imposed displacement of the heating-
cooling sub-system. Such a differential measurement is rendered necessary by the small amplitude of the 
observed signals, ranging from 0.5 to 10 µV for the tin based alloys used within the frame of the Mephisto 
program. 
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As mentioned earlier, this Seebeck diagnostic allows data to be gathered from various growth conditions 
on a single piece of material, a useful feature in the space environment where samples are obviously scarce. To 
accomplish this, the experiment is organized in cycles, that consist of (i) a solidification stage at a prescribed 
velocity over a given length, sufficient to form the solute boundary layer ahead of the growth front and to 
reach steady state conditions, (ii) a stabilization period to re-homogenize the melt, (iii) a re-melting of the 
previously solidified material, and (iv) another stabilization period before the subsequent cycle. In some cases, 
stages (iii) and (iv) are not carried out, so that the frozen solute distribution can be a posteriori analyzed by 
classical metallurgical techniques after the samples have been brought back to earth.  

 
Let us discuss now what is measured by the Seebeck signal. First, as a consequence of thermoelectric 

effects, the measured electrical tension between the ends of the sample is directly proportional to the 
temperature difference between the two isothermal solid/liquid interfaces. More precisely, the observed 
electrical signal    can be written as: 
                    

 

(19) 

where     represents the effective thermoelectric power coefficient (µV/K) between the liquid and solid 
phases,      and      standing for the temperatures of the moving and reference fixed interfaces, respectively. 

At a given growth velocity, the Seebeck signal should in principle be measurable directly as a function of time. 
Unfortunately, even though the data is sampled continually, a one to one correspondence with the interface 
temperature variation cannot be simply identified due to a drift in the thermoelectric signal, associated with 
the position of the interface within the furnace. This drift is likely due to the existence of concentration and 
microstructure gradients within the formed solid, that lead to the development of thermoelectric currents as 
growth proceeds [22]. Thus, in order to extract meaningful information, we always had to rely on events that 
caused a well-defined Seebeck signal variation at a given furnace position. For our present purposes, the 
special growth event is the end of the pulling stage: as the variation of the front position during the final 
transient is always smaller than a millimeter, the associated Seebeck drift can be safely neglected. What will be 
analyzed in the frame of the present paper is thus the data associated with the re-homogenization of the solute 
accumulated within the boundary layer ahead of the growth front, for which the one to one correspondence 
between the Seebeck signal and the interface temperature can be taken for granted. 

 
An important feature of the thermoelectric coefficient is that it cannot be a priori assumed to be 

independent of the interface composition, even for the dilute alloys considered in the experimental program. 
This is due to the very high thermoelectric power of Bi. We are not, however, in a position to prescribe a closed 
form relation for such a variation. The comparison between experimental and numerical data will thus be done 
assuming a constant effective thermoelectric coefficient for each re-homogenization stage, but we shall a 
posteriori check that the ranges of variations of such effective thermoelectric coefficients follow a monotonic 
trend and remain within reasonable bounds.  

 
As for the two other samples present in the furnace, a measurement of the electrical resistance is 

performed on sample #2. When the different resistivities of the base material, either solid or liquid, are taken 
into account, this measurement can be translated in an estimation of the solidification velocity. In addition, 
sample #2 contains thermocouples for the measurements of the temperature gradients within the alloy. 
Sample #3 is for Peltier pulse marking and post-mortem analysis of the shape of the quenched growth 
interface. Sample #3 also contains thermocouples for temperature gradient measurements. 

 
It should be noted that the experimental device exhibits some thermal inertia leading to a delay of the thermal 
gradient inside the sample with respect to that imposed by the furnace. This implies that the thermal gradient 
in the sample will continue to move after the furnace motion has been stopped, until both gradients eventually 
match. This phenomenon particularly occurs in the re-homogenization period. If the delay is characterized by 
the time       , the changes that will affect the effective temperature profile imposed along the sides of the 
sample can be modeled by a decreasing exponential law [23] given by: 
 
 

                                
 

      

     

 

(20) 

where       is the temperature profile at the end of the solidification phase,    is the thermal gradient in the 
sample around the interface (       K/cm and         K/cm for USMP3, and        K/cm and 
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        K/cm for USMP1) and    is the pulling rate of the furnace in steady regime. Based on the 
experiments, the thermal delay has been estimated to                . 

 

 
Figure 1: Schematic of the Mephisto furnace, showing the implementation of the three samples within the 

fixed and mobile parts. The solid-liquid interface is located between the hot and cold zones. The characteristic 
temperature profile, as given by the position of the hot and cold zones is also indicated, along with the 
directions of melting and solidification. 

 
In connection with the objective of the present paper, it should be noted that former publications carried 

out 2D/3D numerical simulations of the Mephisto device [24,25]. In these papers, the set of chosen 
thermophysical parameters values has been fixed to realistic values. Unfortunately no comparison with in situ 
Seebeck measurements are given in these articles and no comparison of final transient with experiments are 
proposed. 

 

III. Relevant physical phenomena 
 

The first issue to be discussed concerns the fact that, even in microgravity conditions, the possibility of 
convective solute transport cannot be ruled out, especially because the liquid phase molecular diffusion 
coefficients are very low, in the 10

-9
 m

2
s

-1
 range. As a matter of fact, the weak but non negligible effect of 

natural buoyancy driven convection, coming from the interaction of density gradients with gravity, was clearly 
demonstrated in the frame of the Mephisto program [18,26]. A good description of the re-homogenization 
phase kinetics thus requires addressing the problem. This was done in a number of papers [27–30], where it 
was shown that an effective diffusion coefficient, accounting for the additional solute transport, could be 
defined. More precisely, thanks to an order of magnitude analysis, this effective diffusion coefficient can be 
defined as: 
 

                
        

  

 

 

   

 

(21) 

where    is the distance to the interface in the liquid part (taken as          ),   is the diameter of the 

sample, and        is a characteristic value of the convective velocity at the distance   , derived for a horizontal 
two-dimensional cavity submitted to a horizontal temperature gradient and defined as: 
 
 

        
 

   
 
   

  
    

  

 
 
  

 
     

 

(22) 

  is the kinematic viscosity and    is the Grashof number given by 
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(23) 

with   an estimate of the average ‘steady’ residual gravity level and    the thermal expansion coefficient. The 

free parameter  will be adapted to match the numerical results with the experimental results (    
corresponds to the purely diffusive case).      is equal to    at the interface (rigid wall where         ) and 

increases with the distance    to the interface. Note that the expression of        is valid for    between 0 and  , 
where it matches an analytical 1D solution to the 2D planar Navier Stokes equations [31]. As a consequence, 
the expression of      will, as well, be used for    between 0 and  , and the value obtained at      will be 

used in the rest of the liquid sample. It should be noted that the measurement of the residual gravity aboard a 
space vessel is a formidable task, since a number of quasi-steady (e.g. residual drag) or transient (e.g. 
maneuvers) components have to be considered. Quantifying precisely their contribution to the effective 
diffusion of species is also challenging (see for instance [32] for a discussion on the subject). Nevertheless, 
regarding the averaged effect of interest in the frame of the present paper, it can be safely stated that it should 
be comparable to the effect of a steady component with 1 µg0 intensity, with g0 standing for gravity on earth 
(g0 = 9.81 ms

-2
). 

 
Regarding the thermophysical parameters, further assumptions are required. The first one is that 

potential variations of heat and mass diffusivities with the alloy composition can safely be neglected since the 
experiment features dilute alloys. The same applies to the liquidus and solidus slopes in the phase diagram 
relation, Eq. (6), which can be taken as a simple linear relation: 

 
                         

 

(24) 

where    represents the melting temperature of pure tin (      °C). As a consequence, the phase diagram 

information can also be written as          with   standing for the partition coefficient of Bi in Sn, also 
constant in the composition range to be investigated. The relevant thermophysical parameters for dilute tin 
bismuth alloys will be taken as:        for the partition coefficient,         K/(at.% Bi) for the liquidus 
slope,       W/(m K) and       W/(m K) for the thermal conductivities,         J/(kg K) and 

        J/(kg K) for the thermal capacities,         kg/m
3
 and         kg/m

3
 for the mass densities, 

            m²/s [33,34] and            m²/s for the Bi diffusion coefficients,             J/kg for the 

latent heat of fusion,              K
-1

 for the thermal expansion coefficient,            m²/s for the 
kinematic viscosity. As for the thermoelectric coefficient, tentative values of         µV/K,         µV/K 
and         µV/K were proposed, respectively for pure tin [35], and alloys with 0.58 at.% Bi [22] and 1.6 at.% 
Bi [23]. However, as mentioned earlier, due to the significant variability of     with the Bi content, we will allow 
the values of the thermoelectric coefficient to be taken as variable in the optimization procedure. 

 
Finally, the issue of the initial condition, i.e. the state at the end of the steady solidification regime for 

our present re-homogenization problem, also needs to be discussed. Regarding the solutal problem, we first 
have to know if the initial transient leading to the steady regime is really completed. An analytical solution for 
the extent of this initial transient in purely diffusive solute transport conditions had been given long ago by 
Smith et al. [36]. We can then estimate the characteristic length of the initial transient using this analytical 
solution and compare it with the length solidified before the re-homogenization process. For 7D, 8B and 11C2 
experiments in the USMP3 campaign, the solidified length is respectively about 5.5 times, 3.5 times and 4.5 
times the characteristic length of the initial transient. Moreover, in convecto-diffusive solute transport 
conditions, numerical simulations and order of magnitude arguments show that the initial transient should be 
shorter, since the boundary layer ahead of the interface is reduced [37]. In this respect, we can reasonably 
think that for 8B and 11C2 experiments, the experimental initial transient is shorter than the one estimated 
with the analytical solution, corresponding to a still more favorable situation. Thus, we can consider that the 
initial transient is fully completed and that the steady-state solute profile can be safely taken as the initial 
condition for the simulations. We have also to take into account the fact that the initial state may be affected 
by residual convection for the thermal problem. Nevertheless, as Sn-Bi is a good thermal conductor, the 
temperature profile       can be considered as diffusive with linear profiles in each phase (with the constant 
gradients    and    defined previously), taking as reference the interface temperature     .       can then be 
written as: 
                       

 
(25) 
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where    is used for the liquid part (i.e.       ) and    for the solid part (i.e.       ). Concerning the 
concentration profile, it is taken uniform within the computational domain in the solid phase at a given 
concentration    which needs to be assessed. Once this is done,    is used to determine the initial composition 
profile within the fluid ahead of the interface defined in convecto-diffusive situations as: 
 
 

           
  

 
          

  

 
   

(26) 

where   is the thickness of the solute boundary layer connected to    by the following formula [38]: 
 
 

                
    

  

    
(27) 

For a number of experiments, respectively referred to as 7D, 11C2 and 11I (see Table 1), we do have 
composition measurements and we are thus in a position to fill in an experimental input for   , from which   is 
obtained using (27) and the composition profile within the fluid using (26). Interestingly, for the higher pulling 
rates 7D and 11I,      , meaning that purely diffusive transport conditions were achieved in the solidification 
stage. In contrast, for the 11C2 experiment,    is significantly smaller than   , meaning that residual convection 
did have an influence. This is not unexpected, since it is well known that the sensitivity to residual convection is 
smaller at higher pulling rates [26]. There exists another possibility to determine the initial composition profile, 
particularly useful when    is not available. In that case,   is first estimated using a characteristic equation 
derived in [38],    is deduced using (27) and the composition profile within the fluid is then obtained using (26). 
This alternative procedure has been tested for the different USMP1 and USMP3 experiments: the relative error 
between the estimated and measured values of    was found to be less than 0.5%, indicating the reliability of 
this alternative procedure. This procedure was then used for the 8B experiment, where we do not have any 
measured    value because the solidified sample has been re-melted, and the value of    was thus estimated 
at 1.54 Bi at.% (see Table 1). 
 

Experiment Experimental 
Campaign 

Nominal    

(Bi at.%) 
Steady    
(Bi at.%) 

Pulling rate 
(µm/s) 

Re-homogenization 
duration (s) 

7D USMP3 1.6 1.6 (m) 2.24 7200 

8B USMP3 1.6 1.54 (e) 1.04 10800 

11C2 USMP3 1.6 1.3 (m) 0.47 21600 

11I USMP1 0.58 0.58 (m) 5.2 7200 

 
Table 1: Characteristics of the considered Mephisto experimental runs. For   , some values are measured (m) or 

estimated (e). 
 
Concerning the boundary conditions, they are given for the temperature by the expression (20) applied on the 
extremities of the sample (    for the liquid part and     for the solid part) at each time. In order to 
obtain these boundary conditions, the temperature values on the extremities of the sample at the end of the 
solidification stage, which have to be introduced in the expression (20), are derived from (25) and taken as: 
 
                     (28) 

                         (29) 

For the concentration, the sample is considered as long enough to keep the initial concentrations    and    
unchanged at the far ends of the liquid and solid zones, respectively. 
 

IV. Numerical developments 
 
As our sample is cylindrical, with a small diameter, namely 6 mm and the pulling rates remain moderate, 

we can assume that the solidification front is planar both at the microscopic (no cells or dendrites) and the 
macroscopic (negligible curvature) scales so that the problem can be treated in a one-dimensional 
approximation. The method proposed by Meyer can then be used. This method was implemented in MATLAB 
in order to simulate the re-homogenization transient phenomena in the considered Sn-Bi samples. Only a 
portion of the very long experimental samples (40 mm compared with the overall 850 mm), on both sides of 
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the interface, is considered. The simulated sample, liquid in its left part and solid in its right part, is discretized 
by a grid of  uniformely distributed points distant by    and located at           . 

 
At each time step, the solutions of the spatial ordinary differential equations giving       and      , 

      and      , and       and       are obtained through a one-step implicit Adams-Moulton scheme, 
which has the advantage to be unconditionally stable and of order 2. For the functions       and      , and 
then       and      , the calculations progress from the boundary conditions applied at the ends of the 
sample. In contrast, for       and      , calculated values at the interface are used to initiate the 
computations. A precise calculation of the interface position, generally not located on a grid point, is then 
needed, as well as a precise initiation of the one-step implicit Adams-Moulton scheme for       and       at 
this interface position. 

 
To calculate the position of the interface from equations (17) and (18) at a given time step, we first use its 

position at the previous time step and define two grid points    and    at a certain distance on both sides of 
this interface (   

         
). The calculations in the liquid phase and solid phase are then done in 

extended domains, on grid points from     to    and from      to  , respectively. The values of      and   
are then evaluated for supposed values of      taken on the grid points between    and   , allowing to find 
the two neighboring points between which the function   crosses zero. The position      of the interface, 
which corresponds to    , is then deduced by a three points quadratic interpolation using two points in the 
solid phase and one in the liquid phase. 

 
The position of the interface is then used to interpolate      ,      ,       and       at the interface. 

These values are required to obtain          and          (Eqs. (15) and (16)), which are then used as initial 
conditions for the calculation of       and      . To keep the second order for this calculation, a specific 
method is used, as illustrated in figure 2. In this figure,       denotes any function defined as  
                         on fixed grid points, with a known value         at the moving interface, as it is 
the case for       and       in this paper (Eqs. (13) and (14)). Because the interface position is not located on 
a grid point, we do not use the previous relation between    and   at the interface, so that the one-step 
implicit Adams-Moulton scheme is not adapted to initiate the calculation. A specific scheme is thus 
constructed, which allows to get the values of   at the first three grid points on both sides of the interface: two 
forward second order explicit Nyström scheme steps and one backward second order explicit Adams-Bashforth 
scheme step, adapted to the locally non-regular mesh, are performed simultaneously, leading to three 
variables linear systems, which are easily solved. The classical one-step implicit Adams-Moulton scheme is then 
used for the other grid points. Let us underscore that this numerical approach is a key ingredient to insure the 
global precision of the scheme with a reasonable computational time. 

 

 
Figure 2: Illustration of the specific method used to initiate the calculation for any function       defined as 
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                         on fixed grid points, with a known value         at the moving interface. For 
both sides of the interface, the steps (I), (II) and (III) are performed simultaneously, leading to three variables 
linear systems, which are then solved. The steps (I) and (II) are both second order explicit Nyström scheme steps 
providing relations between        ,          and        , and between        ,          and        , 
respectively, as an example for the solid part. The step (III) is a second order explicit Adams-Bashforth scheme 
step providing a relation between        ,        ,          and        , as an example for the solid part. 
 

As an illustration, typical computed longitudinal concentration profiles obtained from our code are plotted 
in figure 3, corresponding to the 7D experimental run in diffusive conditions. The time evolution of this profile 
(up to 6000 sec) allows the visualization of the interface displacement during the re-homogenization transient. 
 

 
Figure 3: Time evolution of the longitudinal concentration profile in the 7D experiment obtained by 

simulation using the purely diffusive transient model (   ). The concentration profile used as an initial 
condition for the simulation (i.e. at 0 sec) is plotted with blue dashed line, and the concentration profiles 
corresponding to 600 sec, 2400 sec and 6000 sec are plotted with red dotted line, magenta dashed-dotted line 
and black solid line, respectively. The solidification occurs from right to left. 

 

V. Comparison with the experiments 
 

5.1 Fit methodology 
 
In each case shown in Table 1, the real-time Seebeck signals registered during the experiment are 

available. Such experimental signals can be seen in figure 4. The comparison with the numerical results will be 
first done qualitatively by comparing the Seebeck curves. To also have a better estimation of the discrepancy 
between the experimental and numerical results, we will also calculate an error criterion, Err, based on the    
norm and defined as: 
 

     
                    

 

  

           
 

  

  

(30) 

where       is the Seebeck signal at time   . This Err criterion will also be used as an objective function to be 
minimized in the convecto-diffusive model for adjusting its tunable parameters. 

 

5.2 Fit results 
 
The simulations are first performed with the purely diffusive transient model (   ) for the different 

USMP3 Mephisto experiments. The results obtained by simulation with the purely diffusive transient model are 
compared with the experimental results in figure 4 for the 3 pulling rates. In each case, we see that the 
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Seebeck signal strongly evolves with time during the re-homogenization period, due to the change of the 
interface temperature from its value in the steady regime (associated with       and        ) to its value 
in the rest state (associated with         and      ). The comparison between the experimental and 
numerical results is fairly good for one of the experiments, namely 7D, and rather bad for the others. The 
associated error criteria Err are 2.01%, 16.29%, and 26.90% for the 7D, 8B, and 11C2 experiments, respectively. 
It is thus shown that the 7D experiment can be well described by a purely diffusive transient model: this 
experiment has in fact the strongest pulling rate and is consequently expected to be the less sensitive to 
convective phenomena. In contrast, the 8B and 11C2 experiments cannot be properly described by the purely 
diffusive transient model and taking into account the convection then appears necessary. 

 

 
Figure 4: Time evolution of the Seebeck signal recorded in the Mephisto USMP3 experiments during the re-

homogenization period, compared to the results obtained by simulation using the purely diffusive transient 
model (   ). 
 

As a second step, we want to adjust simultaneously the 7D, 8B and 11C2 experiments with simulations 
using the convecto-diffusive model presented in section III. This model involves the Grashof number   , which 
has been calculated with a very low residual gravity         , and has a free parameter  , which is tuned to 
get the best fit between the curves. This optimization is based on the previously defined Err criterion 
measuring the discrepancy between the numerical and experimental Seebeck curves. Let us recall that the 
simulation results are first expressed in terms of concentration and temperature fields. An additional 
parameter has thus to be used to convert them into Seebeck curves, namely the Seebeck coefficient,    . This 
coefficient has a great influence on the calculation of the Seebeck curves, so that we chose to perform the 
optimization with two adjustable parameters, the   coefficient and the Seebeck coefficient. Moreover, the few 
values found in the literature (        µV/K,         µV/K and         µV/K respectively for pure tin 
[35], and alloys with 0.58 at.% Bi [22] and 1.6 at.% Bi [23]) show that this coefficient might decrease when the 
concentration is increased. In the optimization process, the value of   was chosen to be the same for 7D, 8B 
and 11C2 experiments, whereas the Seebeck coefficient was separately optimized for each experiment. 

 
The results obtained with the convecto-diffusive model are shown in figure 5. We see that the fits between 

the experimental curves and the simulated curves are rather good, with errors equal to 1.31%, 1.38%, and 1.49 
% for the 7D, 8B, 11C2 experiments, respectively. These are very small values indeed considering the existing 
error bars on the numerous physical parameters values in this problem. These optimizations correspond to a 
coefficient      and to values of the Seebeck coefficient equal to 1.079 µV/K (7D experiment), 1.208 µV/K 
(8B experiment), and 1.299 µV/K (11C2 experiment). These values of the Seebeck coefficient seem reasonable 
and their monotonic increase is consistent with the decrease in concentration    at steady state (1.6, 1.54, and 
1.3 Bi at.%, respectively, see table 1). Concerning the   coefficient, it can be seen as a pre-factor of the squared 
convective velocity         in expression (21) for the effective diffusivity     . As the velocity is proportional to 

the Grashof number, which is calculated with a residual gravity level of       , the value      can also be 
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seen as a modulation of the gravity which would reach           , a reasonable value for experiments in 
space, specially taking into account that the convective velocity field was derived using an approximate 
solution of the 2D planar Navier-Stokes equations. In addition, it should be recalled at this point that the 
procedure leading to equation (21) is based on an order of magnitude analysis, meaning that the value 
      can clearly be taken as reasonable. 
 

 
Figure 5: Time evolution of the Seebeck signal recorded in the Mephisto USMP3 experiments during the re-

homogenization period, compared to the results obtained by simulation using the convecto-diffusive model 
(adjustment of the coefficient   and of the Seebeck coefficient). 
 

As a third step, we want to adjust the 11I experiment (from the USMP1 campaign) with the convecto-
diffusive model using the   coefficient value provided by the previous simulation. The Seebeck coefficient is 
separately optimized for this experiment. The result, corresponding to a Seebeck coefficient value equal to 
1.343 µV/K, is shown in figure 6. We see that the fit error between the experimental curve and the simulated 
curve is equal to 1.07%, which is comparable to the errors obtained from the USMP3 simulations. 
 

 
Figure 6: Time evolution of the Seebeck signal in the Mephisto USMP1 11I experiment during the re-

homogenization period, compared to the result obtained by simulation using the convecto-diffusive model 
(adjustment of the Seebeck coefficient; the coefficient   is determined from the USMP3 simulations). 
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The value of the Seebeck coefficient obtained for this simulation seems reasonable and in accordance with 
the monotonic variation over the concentration    mentioned above. The validity of this convecto-diffusive 
model and the consistency of the thermophysical parameters values are thus confirmed by comparison with 
experimental runs from two different campaigns. 
 

VI. Conclusion 
 
This paper presents a very consistent and efficient 1D model for the longitudinal convecto-diffusive time 

dependent heat and mass transfer effects in a crystal growth experiment. This model has been tested on its 
ability to simulate final transients during which solute re-homogenization occurs. It reproduces the interface 
temperature temporal evolution in four experimental runs of the Mephisto microgravity program, featuring 
significantly different pulling velocities. Let us recall that, despite the apparent simplicity of the presented 
model, the considered physical problem is rather complex: it is a moving front problem, with phase change and 
impurity segregation, coupled with a 3D weakly unsteady natural convection flow in a very elongated cavity. 

 
Modelling these microgravity experiments, performed several years ago, has required a consistent set of 

thermophysical parameters values, which has been available only in recent times. Another key ingredient is the 
numerical efficiency of the developed 1D convecto-diffusive model combining Meyer’s approach and the 
introduction of an effective diffusivity accounting for convection effects. The implemented second order 
scheme made it possible to introduce the numerical model within an optimization procedure at very 
reasonable computational cost. Though not technically impossible, performing a direct numerical simulation of 
such a complex physical problem case and running it numerous times for the sake of the optimization 
procedure would have been very costly indeed from a numerical standpoint. 

 

The model features two adjustable parameters. One, referred to as , is introduced to account for both 
the uncertainty on the effective residual gravity level and the order of magnitude nature of the effective 

diffusivity approach. After numerical optimization, the adjusted value of  is 30, a compatible value with 
reasonable microgravity level. The other parameter is the Seebeck coefficient itself, which, in the same time, 
has a significant uncertainty and a strong influence on the result. After numerical optimization, the adjusted 
values are consistent with the expected decreasing monotonic behavior of     with concentration and with the 
range of values expected from literature. Finally, the observed discrepancy between the computed and 
measured composition data is less than 1.5%, an unexpectedly small value indeed when considering the 
number of parameters entering this problem and their respective uncertainties. We can thus confidently 
conclude on both the validity of this very efficient numerical approach and the consistency of the 
thermophysical parameters values. 

 
Potential outlooks for applications of the method to new situations will require a determination of the 

value of  . It can be either estimated in an order of magnitude approach [30, 34, 39] for known conditions 
(such as geometry, gravity, thermal expansion coefficient), or computed using a CFD approach in a simpler 
liquid phase configuration, without having to bother with the phase diagram coupling issues. Note that this 
efficient 1D model will be particularly valuable in a system scale process approach, giving the opportunity to 
numerically optimize a set of control parameters, once   has been calibrated in a given specific experimental 
configuration, either under microgravity or on earth. 
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