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In this paper, the main objective is to generalize to the Navier-Stokes-Korteweg (with density dependent viscosities satisfying the BD relation) and Euler-Korteweg systems a recent relative entropy [proposed by D. Bresch, P. Noble and J.-P. Vila, (2016)] introduced for the compressible Navier-Stokes equations with a linear density dependent shear viscosity and a zero bulk viscosity. As a concrete application, this helps to justify mathematically the convergence between global weak solutions of the quantum Navier-Stokes system [recently obtained simultaneously by I. Lacroix-Violet and A. Vasseur (2017)] and dissipative solutions of the quantum Euler system when the viscosity coefficient tends to zero: This selects a dissipative solution as the limit of a viscous system. We also get weak-strong uniqueness for the Quantum-Euler and for the Quantum-Navier-Stokes equations. Our results are based on the fact that Euler-Korteweg systems and corresponding Navier-Stokes-Korteweg systems can be reformulated through an augmented system such as the compressible Navier-Stokes system with density dependent viscosities satisfying the BD algebraic relation. This was also observed recently [by D. Bresch, F. Couderc, P. Noble and J.-P. Vila, (2016)] for the Euler-Korteweg system for numerical purposes. As a by-product of our analysis, we show that this augmented formulation helps to define relative entropy estimates for the Euler-Korteweg systems in a simplest way compared to recent works [See D. Donatelli, E. Feireisl, P. Marcati (2015) and J. Giesselmann, C. Lattanzio, A.-E. Tzavaras

Introduction

Quantum fluid models have attracted a lot of attention in the last decades due to te variety of applications. Indeed, such models can be used to describe superfluids [START_REF] Loffredo | On the creation of quantum vortex lines in rotating He II[END_REF], quantum semiconductors [START_REF] Ferry | Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling[END_REF], weakly interacting Bose gases [START_REF] Grant | Pressure and stress tensor expressions in the fluid mechanical formulation of the Bose condensate equations[END_REF] and quantum trajectories of Bohmian mechanics [START_REF] Wyatt | Quantum Dynamics with Trajectories[END_REF]. Recently some dissipative quantum fluid models have been derived. In particular, under some assumptions and using a Chapman-Enskog expansion in Wigner equation, the authors have obtained in [START_REF] Brull | Derivation of viscous correction terms for the isothermal quantum Euler model[END_REF] the so-called quantum Navier-Stokes model. Roughly speaking, it corresponds to the classical Navier-Stokes equations with a quantum correction term. The main difficulties of such models lie in the highly nonlinear structure of the third order quantum term and the proof of positivity (or non-negativity) of the particle density. Note that formally, the quantum Euler system corresponds to the limit of the quantum Navier-Stokes model when the viscosity coefficient tends to zero. This type of models belong to more general classes of models: the Navier-Stokes-Korteweg and the Euler-Korteweg systems.

Readers interested by Korteweg type systems are referred to the following articles and books: [START_REF] Korteweg | Sur la forme que prennent les équations du mouvement si l'on tient compte de forces capillaires causées par les variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité[END_REF][START_REF] Van Der Waals | Thermodynamische theorie der capillariteit in de onderstelling van continue dichteisverandering[END_REF][START_REF] Cahn | Free energy of a non uniform system I, interfacial free energy[END_REF][START_REF] Dunn | On the thermomechanics of interstitial working[END_REF][START_REF] Rowlinson | Molecula theory of capillarity[END_REF][START_REF] Nigmatulin | Methods of mechanics of a continuous medium for the description of multiphase mixtures[END_REF][START_REF] Heida | On compressible Korteweg fluid-like materials[END_REF] and references cited therein.

The goal of this paper is to extend to these two Korteweg systems a recent relative entropy proposed in [START_REF] Bresch | Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and applications[END_REF] introduced for the compressible Navier-Stokes equations with a linear density dependent shear viscosity and a zero bulk viscosity. This leads for each system to the definition of what we call a dissipative solution following the concept introduced by P.-L. Lions in the incompressible setting (see [START_REF] Lions | Mathematical topics in fluid mechanics[END_REF]) and later extended to the compressible framework (see [START_REF] Feireisl | Singular Limits in Thermodynamics of Viscous Fluids[END_REF][START_REF] Feireisl | Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system[END_REF][START_REF] Bardos | Remarks on the inviscid limit for the compressible flows[END_REF][START_REF] Sueur | On the inviscid limit for the compressible Navier-Stokes system in an impermeable bounded domain[END_REF] for constant viscosities and [START_REF] Haspot | Weak-Strong uniqueness for compressible Navier-Stokes system with degenerate viscosity coefficient and vacuum in one dimension[END_REF][START_REF] Bresch | Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and applications[END_REF] for density dependent viscosities). As a consequence we obtain some weak-strong uniqueness results and as an application, we can use it to show that a global weak solution (proved in [START_REF] Lacroix-Violet | Global weak solutions to the compressible quantum Navier-Stokes equations and its semi-classical limit[END_REF], which is also a dissipative one) of the quantum Navier-Stokes system converges to a dissipative solution of the quantum Euler system. Our results will be compared to recent results in [START_REF] Donatelli | Well/ill posedness for the Euler-Korteweg-Poisson system and related problems[END_REF][START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF] showing that we relax one hypothesis on the capillarity coefficient by introducing entropy-relative solutions of an augmented system. Note also the interesting paper [START_REF] Antonelli | Global existence of finite energy weak solutions of the quantum Navier-Stokes equations[END_REF] where the authors prove the existence of global weak solutions of the quantum-Navier-Stokes equations with a different method compared to [START_REF] Lacroix-Violet | Global weak solutions to the compressible quantum Navier-Stokes equations and its semi-classical limit[END_REF]. By the way we cannot use such global weak solutions because capillarity and viscosity magnitudes are linked together in their study. Let us also the interesting new paper [START_REF] Carles | Rigidity results in generalized isothermal fluids[END_REF] where the authors investigate the long-time behavior of solutions to the isothermal Euler-Korteweg system.

Let us now present in more details the models of interest here. Note that for the convenience of the reader all the operators are defined in Section 6.3. Let Ω = T d be the torus in dimension d (in this article 1 ≤ d ≤ 3). Euler-Korteweg system. Following the framework of the paper, we first present the Euler-Kortewg system and then the Navier-Stokes Korteweg one. Note that in all the paper, the systems are supplemented with the following initial conditions [START_REF] Audiard | Global well-posedness of the Euler Korteweg system for small irrotational data[END_REF] ρ| t=0 = ρ 0 , (ρ u)| t=0 = ρ 0 u 0 for x ∈ Ω.

with the regularity ρ 0 ≥ 0, ρ 0 ∈ L γ (Ω), ρ 0 |u 0 | 2 ∈ L 1 (Ω), K(ρ 0 )∇ρ 0 ∈ L 2 (Ω). The Euler-Korteweg system describe the time evolution, for t > 0 of the density ρ = ρ(t, x) and the momentum J = J(t, x) = ρ(t, x)u(t, x) (with u the velocity), for x ∈ Ω, of an inviscid fluid. The equations can be written in the form ( [START_REF] Donatelli | Well/ill posedness for the Euler-Korteweg-Poisson system and related problems[END_REF]):

∂ t ρ + div J = 0, (2) 
∂ t J + div J ⊗ J ρ + ∇(p(ρ)) = ε 2 ρ∇ K(ρ)∆ρ + 1 2 K ′ (ρ)|∇ρ| 2 , (3) 
where K : (0, ∞) → (0, ∞) is a smooth function and p is the pressure function given by p(ρ) = ρ γ for γ > 1. Note that it could be interesting to consider non-monotone pressure laws as in [START_REF] Giesselmann | Stability properties of the Euler-Korteweg system with nonmonotone pressures[END_REF] and [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF]. The coefficient ε stands for the Planck constant. In this paper we will consider a function K(ρ) which behaves as ρ s with s ∈ R. As mentioned in [START_REF] Donatelli | Well/ill posedness for the Euler-Korteweg-Poisson system and related problems[END_REF],

ρ∇ K(ρ)∆ρ + 1 2 K ′ (ρ)|∇ρ| 2 = div(K), with K = ρ div(K(ρ)∇ρ) + 1 2 (K(ρ) -ρK ′ (ρ))|∇ρ| 2 I R d -K(ρ)∇ρ ⊗ ∇ρ.
Observing that K may be written (4) K = div(ρK(ρ)∇ρ) -1 2 (K(ρ) + ρK ′ (ρ))|∇ρ| 2 I R d -K(ρ)∇ρ ⊗ ∇ρ.

and following the ideas of [START_REF] Bresch | A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler-Korteweg equations[END_REF] with

(5) µ ′ (ρ) = ρ K(ρ),
we can define the drift velocity v by

v = K(ρ) ρ ∇ρ = ∇(µ(ρ)) ρ
and show the following generalization of the Bohm identity:

div(K) = div(µ(ρ)∇v) + 1 2 ∇(λ(ρ)divv) with λ(ρ) = 2(µ ′ (ρ)ρ -µ(ρ)).
Remark 1. Note that the relation between λ and µ is exactly the BD relation found in [START_REF] Bresch | Quelques modèles diffusifs capillaires de type Korteweg[END_REF] in the Navier-Stokes setting: see the Navier-Stokes-Korteweg part below.

We will choose K(ρ) as:

K(ρ) = (s + 3) 2 4 ρ s with s ∈ R in order to get µ(ρ) = ρ (s+3)/2 .
This multiplicative constant in the definition of K does not affect any generality, it suffices to change the definition of ε. Then, we obtain the following augmented formulation for the Euler-Korteweg Equations ( 2)-(3):

∂ t ρ + div(ρ u) = 0, (6) 
∂ t (ρ u) + div(ρ u ⊗ u) + ∇p(ρ) = ε div(µ(ρ)∇v) + 1 2 ∇(λ(ρ) div v) , (7) 
∂ t (ρ v) + div(ρ v ⊗ u) = ε -div(µ(ρ) t ∇u) - 1 2 ∇(λ(ρ) div u) , (8) 
with [START_REF] Bresch | Quelques modèles diffusifs capillaires de type Korteweg[END_REF] λ(ρ) = 2(ρ µ ′ (ρ) -µ(ρ)), v = ε∇µ(ρ)/ρ.

System (6)-( 9) is called the Euler-Korteweg augmented system in all the sequel. It has been firstly introduced in this conservative form in [START_REF] Bresch | A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler-Korteweg equations[END_REF] to propose a useful construction of a numerical scheme with entropy stability property under a hyperbolic CFL condition for such dispersive PDEs. augmented system, the second order operator matrix is skew-symetric.

The Quantum Euler Equations. Note that the choice K(ρ) = 1/ρ (which gives µ(ρ) = ρ and λ(ρ) = 0) leads to the Bohm identity

ρ∇(K(ρ)∆ρ + 1 2 K ′ (ρ)|∇ρ| 2 ) = div(ρ∇v) = 2ρ∇ ∆ √ ρ √ ρ .
In that case the system (6)-( 9) becomes ∂ t ρ + div(ρ u) = 0, [START_REF] Bresch | Existence of global weak solutions for 2D viscous shallow water equations and convergence to the quasi-geostrophic model[END_REF] ∂ t (ρ u) + div(ρ u ⊗ u) + ∇(p(ρ)) = ε div(ρ ∇v), [START_REF] Bresch | On some compressible fluid models: Korteweg, lubrication and shallow wate systems[END_REF] ∂ t (ρ v) + div(ρ v ⊗ u) = -ε div(ρ t ∇u), [START_REF] Bresch | Two-velocity hydrodynamics in fluid mechanics : Part II Existence of global κ-entropy solutions to compressible Navier-Stokes systems with degenerate viscosities[END_REF] with [START_REF] Bresch | Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and applications[END_REF] v = ε∇ log ρ which corresponds to the augmented formulation of the quantum Euler system:

∂ t ρ + div(ρu) = 0, ( 14 
)
∂ t (ρu) + div(ρu ⊗ u) + ∇p(ρ) = 2 ε 2 ρ ∇ ∆ √ ρ √ ρ . ( 15 
)
Then such a choice gives rise the so called quantum fluid system for which the global existence of weak solutions of ( 14)-( 15) has been shown in [START_REF] Antonelli | On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics[END_REF][START_REF] Antonelli | The Quantum Hydrodynamics System in Two Space Dimensions[END_REF] and more recently in [18] assuming the initial velocity irrotational namely curl(ρ 0 u 0 ) = 0. Note that the quantum term is written as (4) in these papers, namely

2ρ ∇ ∆ √ ρ √ ρ = div ∇(ρ∇ log ρ) -ρ∇ log ρ ⊗ ∇ log ρ (16) observing that √ ρ∇ log ρ = 2∇ √ ρ.
The existence of local strong solutions has also been proved (see [START_REF] Benzoni-Gavage | On the well-posedness for the Euler-Korteweg model in several space dimensions[END_REF]) and global well-posedness for small irrotational data has been performed recently in [START_REF] Audiard | Global well-posedness of the Euler Korteweg system for small irrotational data[END_REF] assuming a natural stability condition on the pressure. We refer to (10)- [START_REF] Bresch | Two-velocity hydrodynamics in fluid mechanics : Part II Existence of global κ-entropy solutions to compressible Navier-Stokes systems with degenerate viscosities[END_REF] as the quantum Euler augmented system in all the paper.

Important remark. Differentiating in space the mass equation in D ′ ((0, T ) × Ω) we get

∂ t ∇ρ + ∇ div(ρu) = ∂ t ∇ρ + div( t ∇(ρu)) = 0
which may be written

∂ t ∇ρ + div(ρ∇ log ρ ⊗ u) + div t ∇(ρu) -ρ∇ log ρ ⊗ u) = 0
This formula will be used to show that global weak solutions of the Quantum-Euler system ( 14)-( 15) with the quantum term written as ( 16) will be global weak solutions of the Quantum-Euler system in its augmented form.

Note that the quantum correction (∆ √ ρ)/ √ ρ can be interpreted as a quantum potential, the so-called Bohm potential, which is well known in quantum mechanics. This Bohm potential arises from the fluid dynamical formulation of the single-state Schrödinger equation. The non-locality of quantum mechanics is approximated by the fact that the equations of state do not only depend on the particle density but also on its gradient. These equations were employed to model field emissions from metals and steady-state tunneling in metal-insulatormetal structures and to simulate ultra-small semiconductor devices.

Navier-Stokes-Korteweg system. Let us consider the compressible Navier-Stokes-Korteweg system with density dependent viscosities µ(ρ) and λ(ρ) satisfying the BD relation

λ(ρ) = 2(µ ′ (ρ)ρ -µ(ρ)),
and with the capillarity coefficient K(ρ) linked to the shear viscosity µ(ρ) in the following manner

K(ρ) = [µ ′ (ρ)] 2 /ρ with µ(ρ) = ρ (s+3)/2 with s ∈ R.
Remark 2. With this choice of shear viscosity, the relation between the capillarity coefficient and the viscosity gives a capillarity coefficient proportional to ρ s .

Then using the identity given in the Euler-Korteweg part, the Navier-Stokes-Korteweg system can be written for x ∈ Ω and t > 0,

∂ t ρ + div(ρu) = 0, (17) ∂ t (ρu) + div(ρu ⊗ u) + ∇p(ρ) -2 ν div(µ(ρ)D(u)) -ν∇(λ(ρ) div u) = ε 2 (div(µ(ρ) t ∇v) + 1 2 ∇(λ(ρ) div v) , (18) 
in which the symmetric part of the velocity gradient is D(u) = 1 2 (∇u + t ∇u). The parameter ν > 0 stands for the viscosity constant. Multiplying ( 17) by µ ′ (ρ) and taking the gradient, we have the following equation on v:

∂ t (ρ v) + div(ρ v ⊗ u) + div(µ(ρ) t ∇u) + 1 2 ∇(λ(ρ) div u) = 0. ( 19 
)
Moreover defining the intermediate velocity, called effective velocity, w = u + ν v, equations ( 18) and ( 19) lead to

∂ t (ρ w) + div(ρ w ⊗ u) + ∇(p(ρ)) -ν div(µ(ρ)∇w) - ν 2 ∇(λ(ρ) div w) = (ε 2 -ν 2 ) [div(µ(ρ)∇v) + 1 2 ∇(λ(ρ) div v)].
Then ( 17)-( 18) may be reformulated through the following augmented system:

∂ t ρ + div(ρu) = 0, ( 20 
)
∂ t (ρ w) + div(ρ w ⊗ u) + ∇(p(ρ)) -ν div(µ(ρ)∇w) - ν 2 ∇(λ(ρ) div w) = (ε 2 -ν 2 ) [div(µ(ρ)∇v) + 1 2 ∇(λ(ρ) div v)], (21) 
∂ t (ρ v) + div(ρ v ⊗ u) + div(µ(ρ) t ∇u) + 1 2 ∇(λ(ρ) div u) = 0, (22) with (23) w = u + ν∇µ(ρ)/ρ, v = ∇µ(ρ)/ρ
which we call the Navier-Stokes-Korteweg augmented system in all the sequel.

The Quantum Navier-Stokes Equations. Note that with the choice K(ρ) = 1/ρ, which gives µ(ρ) = ρ and λ(ρ) = 0, system (20)-( 23) becomes

∂ t ρ + div(ρu) = 0, (24) ∂ t (ρ w) + div(ρ w ⊗ u) + ∇(p(ρ)) -ν div(ρ∇w) = (ε 2 -ν 2 ) div(ρ∇v), ( 25 
) ∂ t (ρ v) + div(ρ v ⊗ u) + div(ρ t ∇u) = 0, ( 26 
)
with the constraints [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF] w = u + ν∇ log ρ, v = ∇ log ρ which is the augmented formulation of the compressible barotropic quantum Navier-Stokes system:

∂ t ρ + div(ρu) = 0, ( 28 
)
∂ t (ρu) + div(ρu ⊗ u) + ∇p(ρ) -2 ν div(ρD(u)) = 2 ε 2 ρ ∇ ∆ √ ρ √ ρ . (29) 
In [START_REF] Dong | A note on barotropic compressible quantum navier-Stokes equations[END_REF][START_REF] Jiang | A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations[END_REF][START_REF] Jüngel | Global weak solutions to compressible Navier-Stokes equations for quantum fluids[END_REF], the global existence of weak solutions to ( 28)-( 29) has been shown following the idea introduced in [START_REF] Bresch | On some compressible fluid models: Korteweg, lubrication and shallow wate systems[END_REF] by testing the momentum equation by ρ φ with φ a test function. The problem of such formulation is that it requires γ > 3 for d = 3 which is not a suitable assumption for physical cases. In [START_REF] Bresch | Two-velocity hydrodynamics in fluid mechanics : Part II Existence of global κ-entropy solutions to compressible Navier-Stokes systems with degenerate viscosities[END_REF] the authors show the existence of solutions for ( 28)- [START_REF] Gisclon | About the barotropic compressible quantum Navier-Stokes equations[END_REF] without quantum term (i.e. for ε = 0) by adding a cold pressure term in the momentum equation. The cold pressure is a suitable increasing function p c satisfying lim

n→0 p c (n) = +∞.
The key element of the proof is a κ-entropy estimate. In [START_REF] Gisclon | About the barotropic compressible quantum Navier-Stokes equations[END_REF], using the same strategy and a κ-entropy with κ = 1/2, the existence of global weak solutions for ( 28)-( 29) is proven without any extra assumption on γ and the semi-classical limit ε tends to zero is performed. In [START_REF] Vasseur | Global weak solutions to compressible quantum Navier-Stokes equations with damping[END_REF], A. Vasseur and C. Yu consider the compressible barotropic quantum Navier-Stokes equations with damping i.e. system ( 28)-( 29) with additional terms in the right hand side of (29): -r 0 u -r 1 ρ|u| 2 u. They prove the global-in-time existence of weak solutions and their result is still valuable in the case r 1 = 0 . Their proof is based on a Faedo-Galerkin approximation (following the ideas of [START_REF] Jüngel | Global weak solutions to compressible Navier-Stokes equations for quantum fluids[END_REF]) and a Bresch-Desjardins entropy (see [START_REF] Bresch | Existence of global weak solutions for 2D viscous shallow water equations and convergence to the quasi-geostrophic model[END_REF][START_REF] Bresch | On some compressible fluid models: Korteweg, lubrication and shallow wate systems[END_REF]). In [START_REF] Vasseur | Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations[END_REF], the authors use the result obtained in [START_REF] Vasseur | Global weak solutions to compressible quantum Navier-Stokes equations with damping[END_REF] and pass to the limits ε, r 0 , r 1 tend to zero to prove the existence of global-in-time weak solutions to degenerate compressible Navier-Stokes equations. Note that to prove such a result they need uniform (with respect to r 0 , r 1 ) estimates to pass to the limit r 0 , r 1 tend to 0. To this end they have to firstly pass to the limit ε tends to 0. The reader interested by the compressible Navier-Stokes equations with density dependent viscosities is also referred to the interesting paper [START_REF] Li | Global Existence of Weak Solutions to the Barotropic Compressible Navier-Stokes Flows with Degenerate Viscosities[END_REF]. Recently in [START_REF] Lacroix-Violet | Global weak solutions to the compressible quantum Navier-Stokes equations and its semi-classical limit[END_REF] and [START_REF] Antonelli | Global existence of finite energy weak solutions of the quantum Navier-Stokes equations[END_REF], global existence of weak solutions for the quantum Navier-Stokes equations ( 28)- [START_REF] Gisclon | About the barotropic compressible quantum Navier-Stokes equations[END_REF] has been proved without drag terms and without any cold pressure. In the first paper, the method is based on the construction of weak solutions that are renormalized in the velocity variable. Note that the construction being uniform with respect to the Planck constant, the authors also perform the semi-classical limit to the associated compressible Navier-Stokes equations. Note also the recent paper [START_REF] Antonelli | Global existence of finite energy weak solutions of the quantum Navier-Stokes equations[END_REF] concerning the global existence for the quantum Navier-Stokes system where they use in a very nice way the mathematical structure of the equations. It is important to remark that a global weak solutions of the quantum Navier-Stokes equations in the sense of [START_REF] Lacroix-Violet | Global weak solutions to the compressible quantum Navier-Stokes equations and its semi-classical limit[END_REF] is also weak solution of the augmented system (due to the regularity which is envolved allowing to write the equation on the drift velocity v). Remark also that there exists no global existence result of weak solutions for the compressible Navier-Stokes-Korteweg system with constant viscosities even in the two-dimensional in space case.

Main objectives of the paper. In this paper, to the author's point of view, there are several interesting and new results. First starting with the global weak solutions of the quantum Navier-Stokes equations constructed in [START_REF] Lacroix-Violet | Global weak solutions to the compressible quantum Navier-Stokes equations and its semi-classical limit[END_REF] (which is a 1/2-entropy solution in the sense of [START_REF] Bresch | Two-velocity hydrodynamics in fluid mechanics : Part II Existence of global κ-entropy solutions to compressible Navier-Stokes systems with degenerate viscosities[END_REF]) we show at the viscous limit the existence of a dissipative solution for the quantum Euler system letting the viscosity goes to zero. This gives the first global existence result of dissipative solution for the quantum Euler system obtained from a quantum Navier-Stokes type system. Note that in [START_REF] Donatelli | Well/ill posedness for the Euler-Korteweg-Poisson system and related problems[END_REF], it is proved the existence of infinite dissipative solutions of such inviscid quantum system. Here we present a way to select one starting from a Navier-Stokes type system. Secondly, we develop relative entropy estimates for general cases of the Euler-Korteweg and the Navier-Stokes-Korteweg systems extending the augmented formulations introduced recently in [START_REF] Bresch | Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and applications[END_REF] and [START_REF] Bresch | Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and various applications[END_REF]: more general viscosities and third order dispersive terms. This gives a more simple procedure to perform relative entropy than the one developped in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF][START_REF] Donatelli | Well/ill posedness for the Euler-Korteweg-Poisson system and related problems[END_REF] for the Euler-Korteweg system but asks to start with an augmented version of the Euler-Korteweg system. This allows us to provide a weak-strong uniqueness result for the Euler-Korteweg and Navier-Stokes-Korteweg systems.

This also helps to get rid the concavity assumption on 1/K(ρ) which is strongly used in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF]. For the interested readers, we provide a comparison of the quantities appearing in our relative entropy to the ones introduced in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF] and remark that they are equivalent under the assumptions made in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF]. Note that to perform our calculations for the Navier-Stokes-Korteweg system, we need to generalize in a non-trivial way the identity (5) in [START_REF] Bresch | Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and applications[END_REF]: see Proposition 30 for the generalized identity. For reader's convenience, let us explain the simple idea behind all the calculations. The kinetic energy corresponding to the Euler-Korteweg system reads

Ω 1 2 ρ|u| 2 + H(ρ) + K(ρ)|∇ρ| 2 with H(ρ) = ρ ρ 1 p(z) z 2 dz.
In [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF], they consider that it is an energy written in terms of (ρ, u, ∇ρ) and they write a relative entropy playing with these unknowns. In our calculations, we write the kinetic energy as follows

Ω 1 2 ρ|u| 2 + H(ρ) + ρ|v| 2
with v = K(ρ)∇ρ/ √ ρ and we consider three quantities ρ, u and v. This motivates to write an augmented system (ρ, u, v) and to modulate the energy through these three unknowns. This gives a simplest way to define an appropriate relative entropy quantity compared to [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF] and [START_REF] Donatelli | Well/ill posedness for the Euler-Korteweg-Poisson system and related problems[END_REF] and allows to relax the concavity assumption on 1/K(ρ) made in the part concerning Euler-Korteweg system in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF]. Our result covers capillarity coefficient under the form K(ρ) ≈ ρ s with s + 2 ≤ γ and s ≥ -1.

Finally our result makes the link between Euler-Korteweg system and Navier-Stokes-Korteweg system. After proving the global existence of 1/2-entropy solutions of the general Navier-Stokes-Korteweg system (this is the subject of a forthcoming paper [START_REF] Bresch | A remark on the existence of κ-entropy solutions to compressible Navier-Stokes systems[END_REF] still in progress: the case K(ρ) = 1/ρ has been recently proved in [START_REF] Lacroix-Violet | Global weak solutions to the compressible quantum Navier-Stokes equations and its semi-classical limit[END_REF]), this could give the mathematical justification of a physical dissipative solution of the Euler-Korteweg equations obtained from 1/2-entropy solutions of the Navier-Stokes-Korteweg equations in the spirit of [START_REF] Bresch | Two-velocity hydrodynamics in fluid mechanics : Part II Existence of global κ-entropy solutions to compressible Navier-Stokes systems with degenerate viscosities[END_REF]. Note also the other interesting result in [START_REF] Antonelli | Global existence of finite energy weak solutions of the quantum Navier-Stokes equations[END_REF] on the Quantum-Navier-Stokes equations but under hypothesis between the magnitude of the viscous and capillarity coefficients. Let us also mention that our relative entropies could be helpful for other singular limits as explained in the book [START_REF] Feireisl | Singular Limits in Thermodynamics of Viscous Fluids[END_REF] in the case of constant viscosities.

The paper is organized as follows. In Section 2, we provide energy estimates and the definition of weak solutions for the augmented Euler-Korteweg and Navier-Stokes-Korteweg systems. In Section 3, we give the definition of the relative entropy formula and we established the associated estimate. This one is used to define what we call a dissipative solution for the Euler-Korteweg system and we established a weak/strong uniqueness result. The same results are obtained for the Navier-Stokes-Korteweg system in Section 4. In Section 5 we use the previous results to show the limit when the viscosity tends to zero in the quantum Navier-Stokes system. Finally we give in Appendix some technical lemmas on modulated quantities and a comparaison between the relative entropy developed here and the one used in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF][START_REF] Donatelli | Well/ill posedness for the Euler-Korteweg-Poisson system and related problems[END_REF], and we state the definitions used for the operators.

Energy estimates and definition of weak solutions.

In this subsection we give the energy equalities for the augmented Euler-Korteweg and Navier-Stokes-Korteweg systems. They will be used in the following to establish the estimates for the relative entropy associated to each one. We also define weak solutions concept for the two augmented systems. First of all, let us recall the definition of the function H called the enthalpy by

H(ρ) = ρe(ρ) = ρ ρ 1 p(z) z 2 dz.
Namely we have:

ρH ′ (ρ) -H(ρ) = p(ρ), H ′′ (ρ) = p ′ (ρ) ρ .
To be more precise, since p(ρ) = ρ γ with γ > 1, this yields to

H(ρ) = 1 γ -1 p(ρ).
Euler-Korteweg system. For the augmented Euler-Korteweg system we can show the following formal proposition.

Proposition 3. All strong enough solution (ρ, u, v) of system (6)-( 9) satisfies:

dE EuK (ρ, u, v) dt = 0,
where E EuK is the natural energy density given by

E EuK (t) = E EuK (ρ, u, v) = Ω 1 2 ρ |u| 2 + 1 2 ε 2 K(ρ)|∇ρ| 2 + H(ρ) . (30) 
Proof. It suffices to take the scalar product of the equation related to u by u and the equation related to v by v and integrate in space using the mass equation, the symmetry of ∇v and the relation

ρ|v| 2 = K(ρ)|∇ρ| 2 .
Global weak solutions of the augmented system. Assumption between K(ρ) and p(ρ) will be required to define global weak solutions of the augmented version of the Euler-Korteweg system namely:

K(ρ) = [µ ′ (ρ)] 2 /ρ with µ(ρ) = ρ (s+3)/2 and p(ρ) = ρ γ with s + 2 ≤ γ, s ≥ -1 and γ > 1.
Assume the initial density ρ 0 positive and in L 1 (Ω) namely

ρ 0 ≥ 0 and Ω ρ 0 < +∞ and E EuK (ρ 0 , u 0 , v0 ) < +∞
where v0 and u 0 is zero where ρ 0 vanishes. We can define global weak solutions of the augmented version of the Euler-Korteweg system as solutions satisfying for a.e t ∈ [0, T ]:

E EuK (ρ, u, v)(t) ≤ E EuK (ρ, u, v)| t=0 < +∞ with ρ ≥ 0 and Ω ρ = Ω ρ 0 and sup t∈(0,T ) Ω µ(ρ) < +∞
and satisfying the following augmented system in a distribution sense

∂ t ρ + div(ρ u) = 0, ( 31 
)
∂ t (ρ u) + div(ρ u ⊗ u) + ∇p(ρ) = ε div T EuK (v) + λ(ρ) 2µ(ρ) Tr (T EuK (v)) (32) ∂ t (ρ v) + div(ρ v ⊗ u) = -ε div (T EuK (u)) t + λ(ρ) 2µ(ρ) Tr (T EuK (u)) (33) with (34) λ(ρ) = 2(ρ µ ′ (ρ) -µ(ρ)), v = ε∇µ(ρ)/ρ.
where the tensor valued function T EuK (θ) (for θ = u and v) is defined through the following relation

T EuK (θ) = ∇(µ(ρ) θ) - 1 ε ρθ ⊗ v) with T EuK (θ) ∈ L ∞ (0, T ; W -1,1 (Ω)).
Important property. Note that the Energy estimate provides the bound L ∞ (0, T ; L γ (Ω)) on ρ and thus µ(ρ)/ (ρ) ∈ L ∞ (0, T ; L 2 (Ω)) and thus using the mass quation µ(ρ) ∈ L ∞ (0, T ; L 1 (Ω)).

Navier-Stokes-Korteweg system. Concerning the augmented Navier-Stokes-Korteweg system ( 20)-( 23), defining the energy

E ε,ν N SK (t) = E ε,ν N SK (ρ, v, w) = Ω ε 2 -ν 2 2 ρ |v| 2 + ρ 2 |w| 2 + H(ρ) ,
we have the following formal equality Proposition 4. Let (ρ, v, w) be a strong enough solution of (20)-( 23) we have

dE ε,ν N SK dt (ρ, v, w) + ν Ω µ(ρ) |∇u| 2 + (ε 2 -ν 2 )|∇v| 2 + µ ′ (ρ)H ′′ (ρ)|∇ρ| 2 +ν Ω λ(ρ) 2 (div(u)) 2 + (ε 2 -ν 2 )(div(v)) 2 = 0.
It suffices to take the scalar product of ( 21) with w and to take the scalar product of ( 22) by (ε 2 -ν 2 )v, using the expressions of w and v, integrate in space and sum to prove the result using the mass equation.

Global weak solutions of the augmented system. Looking at new unknowns (ρ, v, w) with v = √ ε 2 -ν 2 , assumption between K(ρ) and p(ρ) will be required to define global weak solutions of the augmented version of the Navier-Korteweg system namely:

K(ρ) = [µ ′ (ρ)] 2 /ρ with µ(ρ) = ρ (s+3)/2
and p(ρ) = ρ γ with s + 2 ≤ γ, s ≥ -1 and γ > 1. Note that with this constraint on µ(ρ), we have

λ(ρ)/µ(ρ) = 2(µ ′ (ρ)ρ -µ(ρ))/µ(ρ) = (s + 1) = Cst ≥ 0
Assume the initial density ρ 0 positive and in L 1 (Ω) namely

ρ 0 ≥ 0, Ω ρ 0 < +∞ and E NSK (ρ 0 , v0 , w 0 ) < +∞ with E NSK (ρ 0 , v0 , w 0 ) = [E NSK (ρ, v, w)] t=0 = Ω ρ|v| 2 +ρ|w| 2 +H(ρ) t=0 = Ω ρ 0 |v 0 | 2 +ρ 0 |w 0 | 2 +H(ρ 0 ).
We can define global weak solutions of the Augmented version of the Navier-Korteweg system as solutions satisfying, for t ∈ [0, T ], it satisfies a.e τ ∈ [0, t]

E N SK (ρ, v, w)(τ ) + ν t 0 Ω |T(w)| 2 + |T(v)| 2 + 1 ε 2 -ν 2 ρ p ′ (ρ) µ ′ (ρ) |v| 2 +ν t 0 Ω λ(ρ) 2µ(ρ) |Tr (T(w))| 2 + |Tr (T(v))| 2 ≤ E N SK (ρ, v, w)(0) (35) 
where

E N SK (ρ, v, w) = Ω ρ|v| 2 + ρ|w| 2 + H(ρ) ρ ≥ 0, Ω ρ = Ω ρ 0 < +∞, sup t∈(0,T ) Ω µ(ρ) < +∞.
The augmented system in the distribution senses as follows

∂ t ρ + div(ρu) = 0, ( 36 
)
∂ t (ρ w) + div(ρ w ⊗ u) + ∇(p(ρ)) -ν div µ(ρ)T(w) - λ(ρ) 2µ(ρ) µ(ρ)Tr(T(w))Id = √ ε 2 -ν 2 div µ(ρ)T(v) + λ(ρ) 2µ(ρ) µ(ρ)Tr(T(v))Id , (37) 
∂ t (ρ v) + div(ρ v ⊗ u) -ν div µ(ρ)T (v) + λ(ρ) 2µ(ρ) µ(ρ)Tr (T (v))Id = - √ ε 2 -ν 2 div µ(ρ)(T(w)) t + λ(ρ) 2µ(ρ) µ(ρ)Tr(T(w))Id , (38) with 
(39) w = u + ν∇µ(ρ)/ρ, v = ε 2 -ν 2 ∇µ(ρ)/ρ
and where the tensor valued function T (θ) (for θ = w and v) satisfies √ ν T (θ) is bounded in L 2 (0, T ; L 2 (Ω)) and satisfies the following relation

µ(ρ)T (θ) = ∇(µ(ρ) θ) - 1 √ ε 2 -ν 2 ρθ ⊗ v
and is chosen equal to zero when ρ vanishes.

1) Important property. Note that the Energy estimate provides the bound L ∞ (0, T ; L γ (Ω)) on ρ and thus µ(ρ)/ √ ρ ∈ L ∞ (0, T ; L 2 (Ω)) and thus using the mass quation µ(ρ) ∈ L ∞ (0, T ; L 1 (Ω)).

2) Important Remark. Let us remark that for the global weak solutions of the Navier-Stokes-Korteweg, the following equation is satisfied in the distribution sense

ν[∂ t µ(ρ) + div(µ(ρ) u) + λ(ρ) 2µ(ρ) µ(ρ)Tr (T(u))] = 0 (40) where u = w -ν v/ √ ε 2 -ν 2 .
Taking the gradient of Equation ( 40), we get

ν[∂ t ∇µ(ρ) + div( t ∇(µ(ρ)u)) + ∇ λ(ρ) 2µ(ρ) µ(ρ)Tr(T(u)) ] = 0
and therefore by definition of µ(ρ)T(u) and expression of v, we can write

ν[∂ t (ρv) + div(ρv ⊗ u) + div( µ(ρ)(T(u)) t ) + ∇ λ(ρ) 2µ(ρ) µ(ρ)Tr(T(u)) ] = 0.
This explain why a global weak solution of the Navier-Stokes-Korteweg system is also global weak solution of the augmented Navier-Stokes-Korteweg system.

The Euler-Kortewg System : relative entropy and dissipative solution

In this section, we consider the problem ( 2)-( 3) through its augmented formulation ( 31)- [START_REF] Jiang | A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations[END_REF]. The main goal of this section is to give the definition of what we call a dissipative solution for this problem. To this end we have to establish a relative entropy inequality.

3.1. Relative entropy inequality. In [START_REF] Feireisl | Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system[END_REF], E. Feireisl, B.-J. Jin and A. Novotny have introduced relative entropies, suitable weak solutions and weak-strong uniqueness properties for the compressible Navier-Stokes equations with constant viscosities. The goal of this subsection is to establish a relative entropy inequality for the Euler-Korteweg System using the augmented formulation introduced in [START_REF] Bresch | A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler-Korteweg equations[END_REF] and extending the ideas in [START_REF] Bresch | Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and applications[END_REF] and [START_REF] Bresch | Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and various applications[END_REF] to such system in order to be able to define what is called a dissipative solution.

Let us consider the following relative entropy functional, denoted E EuK (ρ, u, v|r, U, V ) and defined by

E EuK (t) = E EuK (ρ, u, v|r, U, V )(t) = 1 2 Ω ρ   |u -U | 2 + ε 2 K(ρ) ρ ∇ρ - K(r) r ∇r 2   + Ω H(ρ|r) (41) = 1 2 Ω ρ |u -U | 2 + ε 2 |v -V | 2 + Ω H(ρ|r), with H(ρ|r) = H(ρ) -H(r) -H ′ (r)(ρ -r).
where (ρ, u, v) is a weak solution of System (31)-( 34) and (r, U, V ) smooth enough target functions. Note that the definitionof the relative entropy used here is different from the one used in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF] but we can show that the twice are equivalent in some sense for some range of the capillary coefficient. We refer to appendix 6.2 for more details. Let us just say that such an energy measures the distance between a weak solution (ρ, u, v) of ( 31)- [START_REF] Jüngel | Global weak solutions to compressible Navier-Stokes equations for quantum fluids[END_REF] to any smooth enough test function (r, U, V ). The goal here is to prove an inequality of type

E EuK (t) -E EuK (0) ≤ C t 0 E EuK (ξ)dξ,
with C a positive constant. To this end let us first prove the following proposition.

Proposition 5. Let us assume that µ(ρ) = ρ (s+3)/2 with γ ≥ s + 2 and s ≥ -1. Let (ρ, u, v) be a global weak solution to the augmented system (31)- [START_REF] Jüngel | Global weak solutions to compressible Navier-Stokes equations for quantum fluids[END_REF]. We have:

E EuK (t) -E EuK (0) ≤ t 0 Ω ρ (U -u) • ∂ t U + t 0 Ω ρ(∇U u) • (U -u) + t 0 Ω ρ ( V -v) • ∂ t V + t 0 Ω ρ(∇ V u) • ( V -v) + ε t 0 T EuK (v) + λ(ρ) 2µ(ρ) Tr(T EuK (v))Id; ∇U W -1,1 (Ω)×W 1,+∞ (Ω) -ε t 0 (T EuK (u)) t + λ(ρ) 2µ(ρ) Tr(T EuK (u))Id; ∇ V W -1,1 (Ω)×W 1,+∞ (Ω) - t 0 Ω p(ρ) div U - t 0 Ω ∂ t (H ′ (r))(ρ -r) + ρ∇H ′ (r) • u ,
for all t ∈ [0, T ] and for all smooth test functions (r, U, V ) with

r ∈ C 1 ([0, T ] × Ω), r > 0, U, V ∈ C 2 ([0, T ] × Ω).
Proof. Thanks to the global weak solutions definition given after Proposition 3 we have

E EuK (t) -E EuK (0) ≤ Ω ρ 2 |U | 2 -ρ u • U + 1 2 ρε 2 K(r) r |∇r| 2 -ρε 2 K(ρ) ρ ∇ρ • K(r) r ∇r (t) - Ω ρ 2 |U | 2 -ρ u • U + 1 2 ρε 2 K(r) r |∇r| 2 -ρε 2 K(ρ) ρ ∇ρ • K(r) r ∇r (0) 
-

Ω H(r) + H ′ (r)(ρ -r) (t) + Ω H(r) + H ′ (r)(ρ -r) (0) i.e. E EuK (t) -E EuK (0) ≤ t 0 Ω d dt ρ 2 |U | 2 -ρ u • U + 1 2 ρ | V | 2 -ρ v • V - t 0 Ω d dt H(r) + H ′ (r)(ρ -r) . ( 42 
)
We multiply (32) by U , (33) by V and we integrate with respect to time and space. Writting

∂ t (ρ u • U ) = ∂ t (ρ u) • U + Ω ρ u • ∂ t U, and 
∂ t (ρ v • V ) = ∂ t (ρv) • V + ρ v • ∂ t V
and thanks to integrations by parts, we obtain

E EuK (t) -E EuK (0) ≤ t 0 Ω ∂ t ρ 2 |U | 2 - t 0 Ω ρ u • ∂ t U - t 0 Ω ρ(∇U u) • u +ε t 0 T EuK (v) + λ(ρ) 2µ(ρ) Tr(T EuK (v))Id; ∇U W -1,1 (Ω)×W 1,∞ (Ω) + t 0 Ω ∂ t ρ 2 | V | 2 - t 0 Ω ρ v • ∂ t V - t 0 Ω ρ ∇ V u • v -ε t 0 (T EuK (u)) t + λ(ρ) 2µ(ρ) Tr(T EuK (u))Id; ∇ V W -1,1 (Ω)×W 1,∞ (Ω) - t 0 Ω p(ρ) div U - t 0 Ω ∂ t (H(r) + H ′ (r)(ρ -r)).
Using [START_REF] Haspot | Weak-Strong uniqueness for compressible Navier-Stokes system with degenerate viscosity coefficient and vacuum in one dimension[END_REF] and

∂ t ρ 2 |U | 2 = 1 2 ∂ t ρ |U | 2 + ρ U • ∂ t U, ∂ t ρ 2 |V | 2 = - 1 2 div(ρu)|V | 2 + ρ V • ∂ t V,
thanks to integrations by parts we have

E EuK (t) -E EuK (0) ≤ t 0 Ω ρ (U -u) • ∂ t U + t 0 Ω ρ ( V -v) • ∂ t V + t 0 Ω ρ (∇U u) • (U -u) + t 0 Ω ρ (∇ V u) • ( V -v) +ε t 0 T EuK (v); ∇U W -1,1 (Ω)×W 1,∞ (Ω) -ε t 0 (T EuK (u)) t ; ∇ V W -1,1 (Ω)×W 1,∞ (Ω) + ε 2 t 0 λ(ρ) µ(ρ) Tr (T EuK (v))Id; ∇U W -1,1 (Ω)×W 1,∞ (Ω) - ε 2 t 0 λ(ρ) µ(ρ) Tr (T EuK (u))Id; ∇ V W -1,1 (Ω)×W 1,∞ (Ω) - t 0 Ω p(ρ) div U - t 0 Ω ∂ t (H(r) + H ′ (r)(ρ -r)).
This last inequality gives the result since with Equation (31) we have:

Ω ∂ t (H ′ (r)(ρ -r)) = Ω ∂ t (H ′ (r))(ρ -r) + ρ∇(H ′ (r)) • u .
Proposition 6. Let (ρ, u, v) be a global weak solution of the augmented system (31)-( 34) and (r, U, V ) be a strong solution of

∂ t r + div (r U ) = 0, (43) r (∂ t U + U • ∇U ) + ∇p(r) -ε div(µ(r)∇ V ) + 1 2 ∇(λ(r) div V ) = 0, (44) r ∂ t V + U • ∇ V + ε div(µ(r) t ∇U ) + 1 2 ∇(λ(r) div U ) = 0 (45) belonging to the class 0 < inf (0,T )×Ω r ≤ r ≤ sup (0,T )×Ω r < +∞ ∇r ∈ L 2 (0, T ; L ∞ (Ω) ∩ L 1 (0, T ; W 1,∞ (Ω)) U ∈ L ∞ (0, T ; W 2,∞ (Ω)) ∩ W 1,∞ (0, T ; L ∞ (Ω)), V ∈ L ∞ (0, T ; W 2,∞ (Ω)) ∩ W 1,∞ (0, T ; L ∞ (Ω)), ∂ t H ′ (r) ∈ L 1 (0, T ; L γ/(γ-1) (Ω)), ∇H ′ (r) ∈ L 1 (0, T ; L 2γ/(γ-1) (Ω)) and V | t=0 = ε∇µ(r 0 )/r 0 . Then we have E EuK (t) -E EuK (0) ≤ t 0 Ω ρ(u -U ) • (∇U (U -u)) - t 0 Ω ρ( V -v) • (∇ V (U -u)) - t 0 Ω (p(ρ) -p(r) -(ρ -r)p ′ (r)) div U - t 0 Ω ρ (v -V ) • ∇U (v -V ) + t 0 Ω ρ(v -V ) • ∇ V (u -U ) -ε t 0 Ω ρ µ ′′ (ρ)∇ρ -µ ′′ (r)∇(r) • (v -V ) div U + (U -u) div V -ε t 0 Ω ρ (µ ′ (ρ) -µ ′ (r)) (v -V ) • ∇(div U ) + (U -u) • ∇(div V ) .
Proof. First remark that due to the initial condition hypothesis and the regularity hypothesis on U , we can prove that V = ε∇µ(r)/r. Multiplying (44) by ρ r (U -u) and ( 45) by ρ r ( V -v) and integrating with respect to time and space we have:

E EuK (t) -E EuK (0) ≤ - t 0 Ω ρ (∇U (U -u)) • (U -u) - t 0 Ω ρ (∇ V (U -u)) • ( V -v) +ε (I EuK 1 + I EuK 2 ) + I EuK 3 with I EuK 1 = t 0 Ω ρ r div(µ(r)∇ V ) • (U -u) - ρ r div(µ(r) t ∇U ) • ( V -v) + t 0 T EuK (v); ∇U W -1,1 (Ω)×W 1,∞ (Ω) - t 0 (T EuK (u)) t ; ∇ V W -1,1 (Ω)×W 1,∞ (Ω) 2 I EuK 2 = t 0 Ω ρ r (U -u) • ∇ λ(r) div V - t 0 Ω ρ r ( V -v) • ∇ (λ(r) div U ) + t 0 λ(ρ) µ(ρ) Tr(T EuK (v))Id; ∇U W -1,1 (Ω)×W 1,∞ (Ω) - t 0 λ(ρ) µ(ρ) Tr(T EuK (u))Id; ∇ V W -1,1 (Ω)×W 1,∞ (Ω) I EuK 3 = t 0 Ω -p(ρ) div U - ρ r ∇p(r) • (U -u) -∂ t (H ′ (r))(ρ -r) -ρ ∇(H ′ (r)) • u . Using rH ′′ (r) = p ′ (r), we have ρ r ∇p(r) = ρ∇(H ′ (r)).
Mutiplying ( 43) by H ′′ (r) and using rH ′′ (r) = p ′ (r) we obtain

∂ t H ′ (r) + ∇H ′ (r) • U + p ′ (r) div U = 0.
Using rH ′′ (r) = p ′ (r) and an integration by parts, we have

t 0 Ω r∇H ′ (r)U = - t 0 Ω p(r) div U.
Then,

I EuK 3 = t 0 Ω (p(r) -p(ρ) -(r -ρ)p ′ (r)) div U.
We have

I EuK 1 = I EuK 4 + I EuK 5 , (46) 
where

εI EuK 4 = ε t 0 Ω ρ r µ(r) ∆ V • (U -u) -∇divU • ( V -v) t 0 Ω ρ( V • ∇ V ) • (U -u) -ρ(( V -v) • ∇U ) • V ,
and using the symmetry of ∇v and ∇ V and the definition the tensor value function T EuK (u) and T EuK (v) which may be also written for U and V (recalling that µ(ρ) ∈ L ∞ (0, T ; L 1 (Ω))),

εI EuK 5 = ε t 0 T EuK (v); ∇U W -1,1 (Ω)×W 1,∞ (Ω) -ε t 0 (T EuK (u)) t ; ∇ V W -1,1 (Ω)×W 1,∞ (Ω) = ε t 0 (T EuK (v)) t ; ∇U W -1,1 (Ω)×W 1,∞ (Ω) -ε t 0 T EuK (u); ∇ V W -1,1 (Ω)×W 1,∞ (Ω) -ε t 0 ((T EuK ( V )) t ; ∇U W -1,1 (Ω)×W 1,∞ (Ω) + ε t 0 T EuK (U ); ∇ V W -1,1 (Ω)×W 1,∞ (Ω) = ε t 0 Ω µ(ρ) ( V -v) • ∇divU + (u -U )∆ V + t 0 ρ(( V -v) • ∇U ) • v -ρ(v • ∇ V ) • (U -u)
Then we get

εI EuK 1 = ε t 0 Ω ρ µ(ρ) ρ - µ(r) r ((v -V ) • div( t ∇U ) + (u -U ) • div(∇ V )) - t 0 Ω ρ(v -V ) • ∇U (v -V ) + t 0 Ω ρ(v -V ) • ∇ V (u -U ).
Let us now look at I EuK

2

, we have

2I EuK 2 = t 0 Ω ρ r (U -u) • ∇(λ(r) div V ) - t 0 Ω ρ r ( V -v) • ∇(λ(r) div U ) + t 0 λ(ρ) µ(ρ) Tr(T EuK (v))Id; ∇U W -1,1 (Ω)×W 1,∞ (Ω) -+ t 0 λ(ρ) µ(ρ) Tr(T EuK (u))Id; ∇ V W -1,1 (Ω)×W 1,∞ (Ω)
and therefore recalling that λ ′ (ρ) = 2ρµ ′′ (ρ) and playing as for

I EuK 1 , we get 2I EuK 2 = -2 t 0 Ω ρ µ ′′ (ρ)∇ρ -µ ′′ (r)∇r • (v -V ) div U + (U -u) div V - t 0 Ω λ(ρ) - ρ r λ(r) (v -V ) • ∇(div U ) + (U -u) • ∇(div V )
and therefore because λ(ρ) = 2(µ ′ (ρ)ρ -µ(ρ)), we get

ε(I EuK 1 + I EuK 2 ) = - t 0 Ω ρ(v -V ) • ∇U (v -V ) + t 0 Ω ρ(v -V ) • ∇ V (u -U ) -ε t 0 Ω ρ µ ′′ (ρ)∇ρ -µ ′′ (r)∇(r) • (v -V ) div U + (U -u) div V -ε t 0 Ω ρ(µ ′ (ρ) -µ ′ (r)) (v -V ) • ∇(div U ) + (U -u) • ∇(div V ) .
This concludes the proof.

Theorem 7. Let us assume µ(ρ) = ρ (s+3)/2 with γ ≥ s + 2 and s ≥ -1. Let (ρ, u, v) be a global weak solution of the augmented system (31)-( 34) and (r, U, V ) be a strong solution of (43)-( 45) in the sense of Proposition 6. We have

E EuK (t) -E EuK (0) ≤ C(r, U, V ) t 0 Ω E EuK (ξ)dξ,
where C(r, U, V ) is a uniformly bounded constant on R + × Ω.

Using the Gronwall's Lemma, we directly obtain:

Corollary 8. Let us assume µ(ρ) = ρ (s+3)/2 with γ ≥ s + 2 and s ≥ -1. Let (ρ, u, v) be a global weak solution of (31)-( 34) and (r, U, V ) a strong solution of (43)- [START_REF] Vasseur | Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations[END_REF] in the sense of proposition 6. Then

E EuK (t) ≤ E EuK (0) exp(C t),
with C = C(r, U, V ) a uniformly bounded constant on R + ×Ω. It the initial conditions coincide for (ρ, u, v) and (r, U, V )

then ρ = r, u = U , v = V .
Note that theorem 7 is a direct consequence of proposition 6 and the following lemma.

Lemma 9. We assume that µ(ρ) = ρ (s+3)/2 with s ≥ -1. Let (ρ, u, v) be a global weak solution of (31)-( 34) and (r, U, V ) be a strong solution of (43)-( 45) in the sense of Proposition 6 . Then

ε t 0 Ω ρ µ ′′ (ρ)∇ρ -µ ′′ (r)∇(r) • (v -V ) div U + (U -u) div V ≤ C s + 1 2 t 0 Ω ρ(|v -V | 2 + |u -U | 2 ),
and, if γ ≥ 2 + s, we have

t 0 Ω ρ(µ ′ (ρ) -µ ′ (r)) (v -V ) • ∇(div U ) + (U -u) • ∇(div V ) ≤ C t 0 Ω H(ρ|r) + ρ(|v -V | 2 + |u -U | 2 ) ,
where

C = C(r, U, V ) is a uniformly bounded constant on R + × Ω.
Proof. As (r, U, V ) is a strong solution of ( 43)-( 45) then we can prove that V = ε∇(µ(r))/r. Since µ(ρ) = ρ (s+3)/2 and v = ε∇(µ(ρ))/ρ we have

ε(µ ′′ (ρ)∇ρ -µ ′′ (r)∇r) = s + 1 2 (v -V ),
which gives the first part of the lemma using Young inequality. For the second one, using Young inequality, we have:

t 0 Ω ρ(µ ′ (ρ) -µ ′ (r)) (v -V ) • ∇(div U ) + (U -u) • ∇(div V ) ≤ C 1 2 t 0 Ω ρ|µ ′ (ρ) -µ ′ (r)| 2 + t 0 Ω ρ|v -V | 2 + t 0 Ω ρ|u -U | 2 ,
with C = C(U, V ) a uniformly bounded constant on R + × Ω. Using Lemma 35 in the first integral, we obtain the result.

Let us now give a weak-strong uniqueness result based on solutions that has been already constructed in [START_REF] Antonelli | The Quantum Hydrodynamics System in Two Space Dimensions[END_REF]- [18] and [START_REF] Benzoni-Gavage | On the well-posedness for the Euler-Korteweg model in several space dimensions[END_REF].

Theorem 10. Let (r 0 , u 0 ) ∈ H s+1 (Ω) × H s (Ω) with s > 2 + d/2 with r 0 > 0 such that curl(r 0 u 0 ) = 0. Let (ρ, u) be a global weak solution in (0, T ) × Ω of the Quantum-Euler system ∂ t ρ + div(ρu) = 0 (47) ∂ t (ρu) + div(ρu ⊗ u) = ε 2 div (∇∇ρ -ρ∇ log ρ ⊗ ∇ log ρ) (48)
b corresponding to the initial data (r 0 , r 0 u 0 ) and let (r, U ) a local strong solution in (0, T * )×Ω of this system for the same initial data with

0 < c ≤ r ≤ c -1 < +∞
where c is a constant and

r ∈ C([0, T ] × H s+1 (Ω)) × C 1 ([0, T ] × H s-1 (Ω)) U ∈ C([0, T ] × H s (Ω)) × C 1 ([0, T ] × H s-2 (Ω))
then ρ = r, u = U and w = W on (0, min {T, T * }) × Ω.

Proof. Let us first remark that such existence of local strong solution has been proved for instance in [START_REF] Benzoni-Gavage | On the well-posedness for the Euler-Korteweg model in several space dimensions[END_REF] in the whole space without the constraint on curl(ρ 0 u 0 ) = 0 but may be considered in the periodic case. The global existence of weak solution for the Quantum-Euler System with the constraint curl(ρ 0 u 0 ) = 0 has been obtained in two papers namely [START_REF] Antonelli | The Quantum Hydrodynamics System in Two Space Dimensions[END_REF] and [18]. For a strong solution, it is not difficult to prove that it also satisfies the augmented system. Concerning the global weak solution, it suffices to recall the important remark given in the introduction. Differentiating in space the mass equation in D ′ ((0, T ) × Ω) we get

∂ t ∇ρ + ∇ div(ρu) = ∂ t ∇ρ + div( t ∇(ρu)) = ε 2 div[∆ρ -∇ √ ρ ⊗ √ ρ]
which may be written

∂ t ∇ρ + div(ρ∇ log ρ ⊗ u) + div t ∇(ρu) -ρ∇ log ρ ⊗ u) = 0
and therefore

∂ t ∇ρ + div(ρ∇ log ρ ⊗ u) + div T(u) t ) = 0.
Using the definition ρv = ε∇ρ, we can rewrite the Quantum-Euler system and the previous relation in its augmented form

∂ t ρ + div(ρu) = 0 (49) ∂ t (ρu) + div(ρu ⊗ u) = ε div T(v) (50) ∂ t ρv + div(ρv ⊗ u) + ε div T(u) t ) = 0 (51)
which is the augmented version of the Quantum-Euler equations. Thus a global weak solution of the Quantum-Euler system is a global weak solution of the augmented Quantum-Euler system and therefore the weak-strong uniqueness corollary 8 may be applied due to the regularity of the strong solution.

3.2. Dissipative solutions and weak-strong uniqueness result. In this subsection, we give the definition of what we call a dissipative solution for the Euler-Korteweg System. We recall that E EuK (t) stands for

E EuK (t) = E EuK (ρ, u, v|r, U, V )(t)
defined in [START_REF] Rowlinson | Molecula theory of capillarity[END_REF]. Let U be a smooth function, then we solve the transport equation for r for the initial data r 0 such that 0 < r 0 < +∞. We then define the function E as

(52) E (r, U ) = r (∂ t U + U • ∇U ) + ∇p(r) -ε 2 div(µ(r) t ∇V ) + 1 2 ∇(λ(r) div V ),
with r V = ∇(µ(r)). Then we can prove differentiating [START_REF] Van Der Waals | Thermodynamische theorie der capillariteit in de onderstelling van continue dichteisverandering[END_REF], that

(53) 0 = r (∂ t V + U • ∇V ) + div(µ(r) t ∇U ) + 1 2 ∇(λ(r) div U ).
Definition 11. Let us assume µ(ρ) = ρ (s+3)/2 (i.e. K(ρ) = (s+3) 2 4 ρ s ) with γ ≥ s + 2 and s ≥ -1. Let ρ 0 and u 0 smooth enough. The pair (ρ, u, v) is a dissipative solution of the Euler-Korteweg System corresponding to the initial conditions

ρ| t=0 = ρ 0 , ρu| t=0 = ρ 0 u 0 , ρv| t=0 = ρ 0 K(ρ 0 )∇ρ 0 . if the triplet (ρ, u, v) satisfies E EuK (t) ≤ E EuK (0) exp(C t) + b EuK (t) + C t 0 b EuK (ξ) exp(C (t -ξ)) dξ,
with C = C(ε 2 , r, U, V ) a uniformly bounded constant on R + × Ω, and where

b EuK (t) = t 0 Ω ρ r | E • (U -u)|,
for all strong enough U test function and (r, E ) given respectively through (43) and (52) and the identity (53).

As a direct consequence, we can establish the following weak-strong uniqueness property (see [START_REF] Germain | Weak-strong uniqueness for the isentropic compressible Navier-Stokes system[END_REF]).

Theorem 12. Let us assume µ(ρ) = ρ (s+3)/2 (i.e. K(ρ) = (s + 3) 2 4 ρ s ) with γ ≥ s + 2 and s ≥ -1. Let us consider a dissipative solution (ρ, u, v) to the Euler-Korteweg system satisfying the initial conditions

ρ| t=0 = ρ 0 , ρu| t=0 = ρ 0 u 0 , ρv| t=0 = ρ 0 K(ρ 0 )∇ρ 0 .
Let us assume that (r, U ) is a strong solution of (43) and

(54) r (∂ t U + ∇U U ) + ∇p(r) -ε 2 r∇ K(r)∆r + 1 2 K ′ (r)|∇r| 2 = 0
with the regularity given in proposition 6 where we denote V = ε∇(µ(r))/r and with (ρ 0 , u 0 ) ∈ W 2,∞ (Ω) × W 1,∞ (Ω). If r| t=0 = ρ 0 , U | t=0 = u 0 then ρ = r, u = U and v = V , which means that the problem satisfies a dissipative-strong uniqueness property.

Proof. If (r, U ) is a strong solution of ( 43), ( 54) then E = 0 and b EuK (t) = 0. We have

(55) 0 ≤ E EuK (t) ≤ E EuK (0) exp(C t).
If r(t = 0) = ρ 0 , U (t = 0) = u 0 then v(t = 0) = V (t = 0) and E EuK (0) = 0, then this leads to ρ = r, u = U, v = V using (55).

Note that, as already mentioned before, all the results and definitions of this section are still valid for the compressible quantum Euler System. Indeed it corresponds to the special case K(ρ) = 1/ρ in the Euler-Korteweg System for which the assumption 2 + s ≤ γ is satisfied since s = -1 and γ > 1. In particular we have the following definition of what we call a dissipative solution of the quantum Euler system. This one will be used in section 5.

Definition 13. Let ρ 0 and u 0 smooth enough. The triple (ρ, u, v) is a dissipative solution of the quantum Euler system (14)-( 15) corresponding to the initial conditions

ρ| t=0 = ρ 0 , ρu| t=0 = ρ 0 u 0 , ρv| t=0 = ρ 0 ∇ log ρ 0 . if the triplet (ρ, u, v) satisfies E EuQ (t) ≤ E EuQ (0) exp(C t) + b EuQ (t) + C t 0 b EuQ (ξ) exp(C (t -ξ)) dξ,
where E EuQ (0) = E EuQ | t=0 and with a constant C = C(ε 2 , r, U, V ) uniformly bounded on R + × Ω, and

E EuQ (t) = E EuK (t), for K(ρ) = 1/ρ, b EuQ (t) = t 0 Ω ρ r | E • (U -u)|,
for all smooth U and (r, V, E ) defined respectively through [START_REF] Van Der Waals | Thermodynamische theorie der capillariteit in de onderstelling van continue dichteisverandering[END_REF] and

V = ∇ log r, (56) 
E (r, U ) = (∂ t U + U • ∇U ) + ∇p(r) -ε 2 div (r∇V ), (57) 
Remark. Note that, in the definition above, since U is regular and also r, we have V which satisfies

(58) r (∂ t V + U • ∇V ) + div (r t ∇U ) = 0.

The Navier-Stokes-Korteweg System: relative entropy and dissipative solution

The goal of this section is to define what we call a dissipative solution for the Navier-Stokes-Korteweg System. To this end, we consider the augmented System (20)-( 22) and we establish a relative entropy estimate. Here the viscous term adds some difficulties compare to the case of the Euler-Korteweg system. 4.1. Relative entropy inequality. In this section, we establish a relative entropy inequality for a weak solution (ρ, v, w) of the augmented System (36)-( 38). This will then be used to give the definition of what is called a dissipative solution for the Navier-Stokes-Korteweg system. We define the following relative entropy functional

E N SK (t) = E N SK (ρ, v, w|r, V , W ) = 1 2 Ω ρ |v -V | 2 + |w -W | 2 + Ω H(ρ|r) +ν t 0 Ω µ(ρ) | T(v) µ(ρ) -∇ V | 2 + | T( w) µ(ρ) -∇W | 2 + ν 2 t 0 Ω λ(ρ) ( Tr T(v) µ(ρ) -div V ) 2 + ( Tr T(w) µ(ρ) -div W ) 2 .
Proposition 14. Any global weak solution (ρ, v, w) of the augmented system (36)-( 39) satisfies the following inequality for all t ∈ [0, T ] and for any test functions

r ∈ C 1 ([0, T ] × Ω), r > 0, V , W ∈ C 2 ([0, T ] × Ω), E N SK (ρ, v, w|r, V , W )(t) ≤ E N SK (ρ, v, w|r, V , W )(0) + t 0 Ω ρ ∂ t V • ( V -v) + (∇ V u) • ( V -v) + t 0 Ω ρ (∂ t W • (W -w) + (∇W u) • (W -w)) +ν t 0 Ω µ(ρ) |∇ V | 2 + |∇W | 2 -µ(ρ) T(v) : ∇ V + T(w) : ∇W + ε 2 -ν 2 t 0 Ω µ(ρ) T(v) : ∇W -(T( w)) t : ∇ V + ε 2 -ν 2 t 0 Ω λ(ρ) 2 µ(ρ) Tr(T(v) div W -Tr(T(w)) div V + ν 2 t 0 Ω λ(ρ) (div V ) 2 + (div W ) 2 (59) - ν 2 t 0 Ω λ(ρ) µ(ρ) Tr(T(v) div V + Tr(T(w)) div W - t 0 Ω ∂ t (H ′ (r))(ρ -r) + ρ ∇(H ′ (r)) • u + p(ρ) div W -ν t 0 Ω µ ′ (ρ)H ′′ (ρ)|∇ρ| 2 .
Remark. Note that each quantities are defined in the usual sense for weak solution (ρ, v, w) and regular test functions (r, V , W ) as chosen in the proposition above. The main difference compared to the Euler-Korteweg system is that here we control

√ ν T(v) and √ ν T(w) in L 2 (0, T ; L 2 (Ω)) and µ(ρ) ∈ L ∞ (0, T ; L 2 (Ω))
to define in the usual way the first order derivative quantities.

Proof. Thanks to [START_REF] Korteweg | Sur la forme que prennent les équations du mouvement si l'on tient compte de forces capillaires causées par les variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité[END_REF] , we have

E N SK (t) -E N SK (0) ≤ Ω ρ 2 | V | 2 -ρv • V + ρ 2 |W | 2 -ρw • W (t) - Ω ρ 2 | V | 2 -ρv • V + ρ 2 |W | 2 -ρw • W (0) - Ω H(r) + H ′ (r)(ρ -r) (t) + Ω H(r) + H ′ (r)(ρ -r) (0) -ν t 0 Ω µ ′ (ρ)H ′′ (ρ)|∇ρ| 2 + ν I N S 1 + I N S 2 , (60) 
where

2I N S 1 = t 0 Ω λ(ρ) µ(ρ) | div V | 2 + | div W | 2 , (61) -2 t 0 Ω λ(ρ) µ(ρ) Tr(T(v)) div V + Tr(T(w)) div W , I N S 2 = t 0 Ω µ(ρ) |∇ V | 2 + |∇W | 2 (62) -2 t 0 Ω µ(ρ) T(v) : ∇ V + T(w) : ∇W (63) Using (37), ∂ t (ρ w • W ) = ∂ t (ρ w) • W + ρ w • ∂ t W = -div(ρ w ⊗ u) -∇p(ρ) + ν div( µ(ρ)T(w)) + ε 2 -ν 2 div( µ(ρ)T(v)); W W -2,1 (Ω)×W 2,∞ (Ω + < A 1 ; W > W -2,1 (Ω)×W 2,∞ (Ω) +ρ w • ∂ t W,
where

A 1 = ν 2 ∇( λ(ρ) µ(ρ) Tr(T(w)) + √ ε 2 -ν 2 2 ∇( λ(ρ) µ(ρ) Tr(T(v)).
Using [START_REF] Lions | Mathematical topics in fluid mechanics[END_REF],

∂ t (ρ v • V ) = ∂ t (ρ v) • V + ρ v • ∂ t V = -div(ρ v ⊗ u) + ν div( µ(ρ)T(v)) -ε 2 -ν 2 div( µ(ρ)(T(w)) t ); V W -2,1 (Ω)×W 2,∞ (Ω) + < A 2 ; V > W -2,1 (Ω)×W 2,∞ (Ω) +ρ v • ∂ t V , (64) 
where

A 2 = ν 2 ∇( λ(ρ) µ(ρ) Tr(T(v))) - 1 2 ε 2 -ν 2 ∇( λ(ρ) µ(ρ) Tr(T(w))).
Then, Using (36)

t 0 Ω ∂ t (H(r) + H ′ (r)(ρ -r)) = t 0 Ω H ′ (r) ∂ t r + ∂ t (H ′ (r))(ρ -r) + H ′ (r) ∂ t ρ -H ′ (r) ∂ t r = t 0 Ω ∂ t (H ′ (r))(ρ -r) -H ′ (r)div (ρ u) = t 0 Ω ∂ t (H ′ (r))(ρ -r) + ρ∇(H ′ (r)) • u . Since ∂ t ρ 2 | V | 2 = 1 2 ∂ t ρ| V | 2 + ρ V • ∂ t V , ∂ t ρ 2 |W | 2 = 1 2 ∂ t ρ|W | 2 + ρW • ∂ t W,
and since ∇v, ∇ V are symmetric matrices (recall that v and V are gradient of functions), thanks to [START_REF] Lacroix-Violet | Global weak solutions to the compressible quantum Navier-Stokes equations and its semi-classical limit[END_REF] and integrations by parts we obtain Let us introduce that there exists a strong solution of

E N SK (t) -E N SK (0) ≤ t 0 Ω ρ ∂ t V • ( V -v) + t 0 Ω ρ (∇ V u) • ( V -v) + t 0 Ω ρ ∂ t W • (W -w) + t 0 Ω ρ (∇W u) • (W -w) +ν t 0 Ω µ(ρ) T(v) : ∇ V + T(w) : ∇W + ε 2 -ν 2 t 0 Ω µ(ρ) T(v) : ∇W -(T(w)) t : ∇ V - t 0 Ω p(ρ) divW -ν t 0 Ω µ ′ (ρ)H ′′ (ρ)|∇ρ| 2 - t 0 Ω ∂ t (H ′ (r))(ρ -r) - t 0 Ω ρ∇(H ′ (r)) • u + t 0 Ω (ν A 3 -ε 2 -ν 2 A 4 ) + ν I N S 1 + I N S 2 , where 2 A 3 = λ(ρ) µ(ρ) Tr(T(v)) div V + Tr(T(w)) div W , 2 A 4 = λ(ρ) µ ( 
∂ t r + div (r U ) = 0, (65) r (∂ t W + ∇W U ) + ∇p(r) -ν div(µ(r) ∇W ) - ν 2 ∇(λ(r) div W ) = √ ε 2 -ν 2 div(µ(r) ∇ V ) + 1 2 ∇(λ(r) div V ) , (66) r ∂ t V + ∇ V U -ν div(µ(r) ∇ V ) - ν 2 ∇(λ(r) div V ) + √ ε 2 -ν 2 div(µ(r) t ∇W ) + 1 2 ∇(λ(r) div W ) = 0, (67) with U = W -ν V, V = ε 2 -ν 2 V belonging to the class 0 < inf (0,T )×Ω r ≤ r ≤ sup (0,T )×Ω r < +∞ ∇r ∈ L 2 (0, T ; L ∞ (Ω) ∩ L 1 (0, T ; W 1,∞ (Ω)) W ∈ L ∞ (0, T ; W 2,∞ (Ω)) ∩ W 1,∞ (0, T ; L ∞ (Ω)), (68) V ∈ L ∞ (0, T ; W 2,∞ (Ω)) ∩ W 1,∞ (0, T ; L ∞ (Ω)), ∂ t H ′ (r) ∈ L 1 (0, T ; L γ/(γ-1) (Ω)), ∇H ′ (r) ∈ L 1 (0, T ; L 2γ/(γ-1) (Ω))
and where V | t=0 = √ ε 2 -ν 2 ∇µ(r 0 )/r 0 . Defining

I N S 3 = t 0 Ω λ(ρ) (div V ) 2 + (div W ) 2 (69) - t 0 Ω λ(ρ) µ(ρ) Tr(T(v)) div V + Tr(T(w)) div W + t 0 Ω ρ r ∇(λ(r) div V ) • ( V -v) + ∇(λ(r) div W ) • (W -w) , I N S 4 = t 0 Ω µ(ρ) |∇ V | 2 + |∇W | 2 (70) - t 0 Ω µ(ρ) T(v) : ∇ V + ∇W : T(w) + t 0 Ω ρ r div µ(r)∇ V • ( V -v) + div (µ(r)∇W ) • (W -w) , I N S 5 = t 0 Ω ρ r div µ(r)∇ V • (W -w) -div µ(r) t ∇W • ( V -v) (71) + t 0 Ω µ(ρ) T(v) : ∇W -(T(w)) t : ∇ V , 2 I N S 6 = t 0 Ω ρ r ∇(λ(r) div V ) • (W -w) -∇(λ(r) div W ) • ( V -v) (72) - t 0 Ω λ(ρ) µ(ρ) Tr(T(w)) div V -Tr(T(v)) div W ,
we have Proposition 15. Let (r, V , W ) be a strong solution of (65)-( 67) belonging to the class (68).

Let us assume that V0 = √ ε 2 -ν 2 ∇µ(r 0 )/r 0 . Any weak solution (ρ, v, w) of the augmented system (36)-( 39) satisfies the following inequality Proof. Multiplying (66) by ρ r (W -w) and ( 67) by ρ r ( V -v), integrating with respect to time and space, and using (65), we obtain

E N SK (t) -E N SK (0) ≤ t 0 Ω ρ (∇ V (u -U )) • ( V -v) + (∇W (u -U )) • (W -w) - t 0 Ω p(ρ) -p(r) -p ′ (r) (ρ -r) div U + ν √ ε 2 -ν 2 t 0 Ω ρ ∇(H ′ (r)) • (v -V ) -p(ρ) div V -ν t 0 Ω µ ′ (ρ)H ′′ (ρ)|∇ρ| 2 + ν 2 I N S 3 + νI N S 4 + ε 2 -ν 2 I N S
E N SK (t) -E N SK (0) ≤ ν t 0 Ω ρ r div(µ(r)∇ V ) • ( V -v) + 1 2 ∇(λ(r) div V ) • ( V -v) -ε 2 -ν 2 t 0 Ω ρ r div(µ(r) t ∇W ) • ( V -v) + 1 2 ∇(λ(r) div W ) • ( V -v) + t 0 Ω ρ (∇ V (u -U )) • ( V -v) + t 0 Ω ρ (∇W (u -U )) • (W -w) +ν t 0 Ω ρ r div(µ(r)∇W ) • (W -w) + 1 2 ∇(λ(r) div W ) • (W -w) + ε 2 -ν 2 t 0 Ω ρ r div(µ(r)∇ V ) • (W -w) + 1 2 ∇(λ(r) div V ) • (W -w) +ν t 0 Ω µ(ρ) |∇ V | 2 + |∇W | 2 -ν t 0 Ω µ(ρ) T(v) : ∇ V + T(w) : ∇W + ε 2 -ν 2 t 0 Ω µ(ρ) T(v) : ∇W -(T(w)) t : ∇ V + ε 2 -ν 2 t 0 Ω λ(ρ) 2 µ(ρ) Tr(T(v)) div W -Tr(T(w)) div V - ν 2 t 0 Ω λ(ρ) (div V ) 2 + (div W ) 2 + ν 2 t 0 Ω λ(ρ) µ(ρ) Tr(T(v)) div V + Tr(T(w) div W + t 0 Ω (p(r) div U -p(ρ) div W ) -ν t 0 Ω µ ′ (ρ)H ′′ (ρ)|∇ρ| 2 + I N S 7 ,
where

I N S 7 = - t 0 Ω ρ r ∇(p(r)) • (W -w) - t 0 Ω ∂ t (H ′ (r))(ρ -r) (73) - t 0 Ω ρ∇(H ′ (r)) • u + t 0 Ω H ′ (r) ∂ t r.
Using (65) H ′ (r)∂ t r + H ′ (r)div(r U ) = 0 which leads, with an integration by parts, to

t 0 Ω (H ′ (r)∂ t r -r∇(H ′ (r)) • U ) = 0. Then t 0 Ω (H ′ (r)∂ t r -∇p(r) • U ) = 0, or (74) 
t 0 Ω (H ′ (r)∂ t r + p(r)div(U )) = 0. Moreover ∂ t (H ′ (r)) = -p ′ (r)divU -H ′′ (r)∇r • U = -p ′ (r)divU -∇(H ′ (r)) • U.
Then

I N S 7 = t 0 Ω ρ ∇(H ′ (r)) • (-W + w + U -u) + t 0 Ω p ′ (r)divU (ρ -r) = ν t 0 Ω ρ∇(H ′ (r)) • (v -V ) + t 0 Ω p ′ (r)divU (ρ -r).
Therefore

E N SK (t) -E N SK (0) ≤ t 0 Ω ρ (∇ V (u -U )) • ( V -v) + (∇W (u -U )) • (W -w) + t 0 Ω [p(r) divU -p(ρ) divU -ν p(ρ) divV ] -ν t 0 Ω µ ′ (ρ)H ′′ (ρ)|∇ρ| 2 + ν 2 t 0 Ω λ(ρ) (div V ) 2 + (div W ) 2 - ν 2 t 0 Ω λ(ρ) µ(ρ) Tr(T(v)) div V + Tr(T(w)) div W +I N S 7 + ν I N S 4 + νI N S 8 + ε 2 -ν 2 (I N S 5 + I N S 6 )
where (75)

I N S 8 = 1 2 t 0 Ω ρ r ∇(λ(r) div V ) • ( V -v) + ∇(λ(r) div W ) • (W -w) ,
and I N S i for i = 4, 5, 6, 7 are given by ( 70)-( 73). Finally given by ( 71) and (72). This gives the proposition. given by (72). Under the assumptions of Proposition 15, we have

E N SK (t) -E N SK (0) ≤ t 0 Ω ρ (∇ V (u -U )) • ( V -v) + ρ (∇W (u -U )) • (W -w) + t 0 Ω (p ′ (r)(ρ -r) -p(ρ) + p(r)) div U -ν p(ρ) div V - ν √ ε 2 -ν 2 t 0 Ω ρ∇(H ′ (r)) • ( V -v) -ν t 0 Ω µ ′ (ρ)H ′′ (ρ)|∇ρ| 2 + ν 2 t 0 Ω λ(ρ) (div V ) 2 + (div W ) 2 - ν 2 t 0 Ω λ(ρ) µ(ρ) Tr(T(v)) div V + Tr(T(w)) div W + ν 2 t 0 Ω ρ r ∇(λ(r) div V ) • ( V -v) + ∇(λ(r) div W ) • (W -w) +ν t 0 Ω µ(ρ) |∇ V | 2 + |∇W | 2 -ν t 0 Ω µ(ρ) T(v) : ∇ V + ∇W : T(w) +ν t 0 Ω ρ r div µ(r)∇ V • ( V -v) + div (µ(r)∇W ) • (W -w) + ε 2 -ν 2 I N S
I N S 5 = - t 0 Ω ρ µ(ρ) ρ - µ(r) r div(∇ V ) • (W -w) + div( t ∇W ) • (v -V ) - t 0 Ω ρ ∇ V (W -w) + ∇W (v -V ) • (v -V ), and 
2 I N S 6 = -2 t 0 Ω ρ µ ′′ (ρ)∇ρ -µ ′′ (r)∇r • (W -w) div V + (v -V ) div W - t 0 Ω λ(ρ) - ρ r λ(r) (W -w) • ∇(div V ) + (v -V ) • ∇(div W ) .
Proof. The proof follows the same lines that the ones for [START_REF] Wyatt | Quantum Dynamics with Trajectories[END_REF] in the Euler-Korteweg section.

Lemma 17. Let I N S
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given by (71) and

I N S 6
given by (72). Let us assume µ(ρ) = ρ (s+3)/2 with γ ≥ s + 2 and s ≥ -1. Under the assumptions of Proposition 15 we have

I N S 5 + I N S 6 ≤ C t 0 Ω ρ|w -W | 2 + ρ|v -V | 2 + ρ|v -V | 2 + H(ρ|r) ,
where

C = C(r, V , W ) is a uniformly bounded constant on R + × Ω.
Proof. By definition of λ(ρ), lemma 16 directly leads to

I N S 5 + I N S 6 = - t 0 Ω ρ (∇ V (W -w)) • (v -V ) + t 0 Ω ρ (∇W ( V -v)) • (v -V ) - t 0 Ω ρ µ ′′ (ρ)∇ρ -µ ′′ (r)∇(r) • (W -w) div V + (v -V ) div W - t 0 Ω ρ(µ ′ (ρ) -µ ′ (r)) (W -w) • ∇(div V ) + (v -V ) • ∇(div W ) .
Moreover in an analogous way than for lemma 9, we can show that

t 0 Ω ρ µ ′′ (ρ)∇ρ -µ ′′ (r)∇(r) • (W -w) div V + (v -V ) div W ≤ C t 0 Ω ρ |W -w| 2 + |v -V | 2 and t 0 Ω ρ(µ ′ (ρ) -µ ′ (r)) (W -w) • ∇(div V ) + (v -V ) • ∇(div W ) ≤ C t 0 Ω H(ρ|r) + ρ(|w -W | 2 + |v -V | 2 ) . Lemma 18. Let I N S 3
given by (69) and I N S

4

given by (70). Under the assumptions of Proposition 15, we have

I N S 3 = -2 t 0 Ω ρ(µ ′′ (ρ)∇ρ -µ ′′ (r)∇r) • (( V -v) div V + (W -w) div W ) - t 0 Ω λ(ρ) - ρ r λ(r) (∇(div V ) • ( V -v) + ∇(div W ) • (W -w)),
and

I N S 4 = - t 0 Ω ρ(v -V ) • ∇ V ( V -v) + t ∇W (W -w) - t 0 Ω ρ µ(ρ) ρ - µ(r) r (div(∇ V ) • ( V -v) + div(∇W ) • (W -w)).
Proof. The proof follows the same lines that the ones for [START_REF] Wyatt | Quantum Dynamics with Trajectories[END_REF] in the Euler-Korteweg section.

Using the previous lemma and the symmetry of ∇ V , we obtain the following lemma

Lemma 19. Let I N S 3
given by (69) and

I N S 4
given by (70). We assume µ(ρ) = ρ (s+3)/2 with γ ≥ s + 2 and s ≥ -1. Under the assumptions of Proposition 15, we have

1 2 I N S 3 + I N S 4 ≤ C t 0 Ω ρ|v -V | 2 + ρ|v -V | 2 + ρ|w -W | 2 + H(ρ|r) ,
where

C = C(r, V , W ) is a uniformly bounded constant on R + × Ω.
Proof. We have:

1 2 I N S 3 + I N S 4 = - t 0 Ω ρ (v -V ) • ∇ V ( V -v) + t ∇W (W -w) - t 0 Ω ρ (µ ′′ (ρ)∇ρ -µ ′′ (r)∇r) • (( V -v) div V + (W -w) div W ) - t 0 Ω ρ (µ ′ (ρ) -µ ′ (r)) ∇(div V ) • ( V -v) + ∇(div W ) • (W -w) - t 0 Ω ρ µ(ρ) ρ - µ(r) r (div(∇W ) -∇(div W )) • (W -w).
In an analogous way than for the lemma 9, we can show

t 0 Ω ρ µ(ρ) ρ - µ(r) r (div(∇W ) -∇(div W )) • (W -w) ≤ C t 0 Ω H(ρ|r) + ρ |W -w| 2 .
Then using an analogous result than the one used in the proof of lemma 17 we obtain the result.

Let us now define

I N S 11 = - ν √ ε 2 -ν 2 t 0 Ω ρ∇(H ′ (r)) • ( V -v) + p(ρ) div V -ν t 0 Ω µ ′ (ρ)H ′′ (ρ)|∇ρ| 2 .
Using the definition of H and an integration by parts, we obtain

I N S 11 = - ν ε 2 -ν 2 t 0 Ω ρ p ′ (r) µ ′ (r) V - p ′ (ρ) µ ′ (ρ) v • ( V -v), ( 76 
) with v = ∇(µ(ρ))/ρ, v = √ ε 2 -ν 2 v, V = ∇(µ(r))/r, V = √ ε 2 -ν 2 V .
We can show the following proposition. Proposition 20. Let I N S 11 given by (76). Assuming µ(ρ) = ρ (s+3)/2 with γ ≥ s + 2, s ≥ -1 and the hypothesis of Proposition 15, there exists a contant C = C(r, U, V , W ) uniformly bounded on R + × Ω such that

I N S 11 ≤ C ν ε 2 -ν 2 t 0 Ω H(ρ|r).
Proof. Using Lemma 36, we can write (77)

I N S 11 = - ν ε 2 -ν 2 t 0 Ω ρ p ′ (ρ) µ ′ (ρ) | V -v| 2 -I N S 12
where (78)

I N S 12 = ν ε 2 -ν 2 t 0 Ω ε 2 -ν 2 ∇φ 1 (ρ|r) + φ 2 (ρ|r) V • V .
Using an integration by parts

I N S 12 = - ν √ ε 2 -ν 2 t 0 Ω φ 1 (ρ|r) div( V ) + ν ε 2 -ν 2 t 0 Ω φ 2 (ρ|r) V • V .
Now using lemma 34 we obtain

I N S 12 ≤ C ν √ ε 2 -ν 2 t 0 Ω H(ρ|r) + C ν ε 2 -ν 2 t 0 Ω H(ρ|r) ≤ C ν ε 2 -ν 2 t 0 Ω H(ρ|r),
which gives the result due to the expression (77) and the sign of the first quantity in the right-hand side.

Theorem 21. Assuming µ(ρ) = ρ (s+3)/2 , γ ≥ s + 2 and s ≥ -1, any weak solution (ρ, v, w) of System (36)-( 39) satisfies the following inequality

E N SK (t) -E N SK (0) ≤ C 1 + ν ε 2 -ν 2 t 0 E N SK (ξ)dξ (79)
where (r, V , W ) is a strong solution of (65)-(67) belonging to the class (68) and where C = C(r, U, V , W ) is a constant uniformly bounded on R + × Ω.

Proof. Thanks to Proposition 15 we have

E N SK (t) -E N SK (0) ≤ t 0 Ω ρ (∇ V (u -U )) • ( V -v) + (∇W (u -U )) • (W -w) - t 0 Ω p(ρ) -p(r) -p ′ (r) (ρ -r) div U +I N S 11 + ν 2 I N S 3 + νI N S 4 + ε 2 -ν 2 I N S 5 + I N S 6 ,
with I N S i for i = 3, 4, 5, 6 given by ( 69)-( 72) and I N S 11 given by (76). This gives with the regularity of U, V and W and the previous lemmas

E N SK (t) -E N SK (0) ≤ C t 0 Ω ρ |u -U | 2 + |v -V | 2 + |w -W | 2 - t 0 Ω p(ρ) -p(r) -p ′ (r) (ρ -r) div U +C ν ε 2 -ν 2 t 0 Ω H(ρ|r) ≤ C 1 + ν ε 2 -ν 2 t 0 E N SK (ξ)dξ.
Corollary 22. Let (r, V , W ) be a strong solution of (65)-(67) in the class belonging to the class (68). Assuming µ(ρ) = ρ (s+3)/2 , γ ≥ s + 2 and s ≥ -1 any weak solution (ρ, w, v) of (36)-( 39) satisfies the following inequality

E N SK (ρ, v, w|r, V , W )(t) ≤ E N SK (ρ, v, w|r, V , W )(0) exp C 1 + ν ε 2 -ν 2 t , where C = C(r, U, V , W ) is a constant uniformly bounded on R + × Ω.
Proof. Thanks to the previous proposition and the Gronwall's Lemma, we have the inequality.

Let U be a given and smooth function. We define r as the strong solution of ( 43), and we introduce the functions E ν 1 and E ν 2 such that

E ν 1 (r, V , W ), = r (∂ t W + U • ∇W ) + ∇p(r) -ν div(µ(r) ∇W ) - ν 2 ∇(λ(r) div W ) (80) - √ ε 2 -ν 2 div(µ(r) ∇ V ) + 1 2 ∇(λ(r) div V ) 0 = r ∂ t V + U • ∇ V -ν div(µ(r)∇ V ) - ν 2 ∇(λ(r) div V ) (81) + √ ε 2 -ν 2 div(µ(r) t ∇W ) + 1 2 ∇(λ(r) div W )
where V = √ ε 2 -ν 2 ∇µ(r)/r. In a same way than for the proof of Theorem 21, we have the following result. Then

E N SK (ρ, v, w|r, V , W )(t) -E N SK (ρ, v, w|r, V , W )(0) ≤ C 1 + ν ε 2 -ν 2 t 0 E N SK + b ν (t), with b ν (t) = t 0 Ω ρ r E ν 1 • (W -w) ,
and where C = C(r, U, V , W ) is a constant uniformly bounded on R + × Ω.

Using the Gronwall's Lemma, we immediately obtain the following corollary.

Corollary 24. Let us assume µ(ρ) = ρ (s+3)/2 (i.e. K(ρ) = (s + 3) 2 4 ρ s ) with γ ≥ s + 2 and s ≥ -1. Let (ρ, v, w) be a weak solution of System (36)-( 39) and (r, V , W ) a strong solution of (43), ( 80)-(81) in the class (68). Then

E N SK (t) ≤ E N SK (0) exp(F ν t) + F ν t 0 b ν (ξ) exp(F ν (t -ξ)) dξ + b ν (t),
where b ν is defined in Proposition 23 and To this end, let U be a smooth function, then (r, E ν (r, U )) defined through Equation ( 43) and

F ν = C 1 + ν ε 2 -ν 2 , with C = C(r, U, V , W ) a constant uniformly bounded on R + × Ω.
E ν (r, U ) = r (∂ t U + U • ∇U ) + ∇p(r) -2 ν div(µ(r)D(U )) -ν∇(λ(ρ) div U ) +ε 2 (div(µ(r) t ∇V ) + 1 2 ∇(λ(r) div V ) , (82) 
where V = ∇µ(r)/r.

Denoting V = ε 2 -ν 2 V, W = U + ν V,
, we then have the following

E ν (r, U ) = r (∂ t W + U • ∇W ) + ∇p(r) -ν div(µ(r) ∇W ) (83) - ν 2 ∇(λ(r) div W ) - √ ε 2 -ν 2 div(µ(r) ∇ V ) + 1 2 ∇(λ(r) div V ) , 0 = r ∂ t V + U • ∇ V + √ ε 2 -ν 2 div(µ(r) t ∇U ) + 1 2 ∇(λ(r) div U . (84) 
Before giving the definition let us recall that E N SK (t) stands for

E N SK (t) = E N SK (ρ, v, w|r, V , W )(t).
Definition 25. Let us assume µ(ρ) = ρ (s+3)/2 , γ ≥ s + 2 and s ≥ -1. Let ρ 0 and u 0 smooth enough. The pair (ρ, u) is a dissipative solution of (17)-( 18), (1) if the triplet (ρ, v, w) (with

ρ v = ∇µ(ρ), v = √ ε 2 -ν 2 v, w = u + ν v) satisfies E N SK (t) ≤ E N SK (0) exp(F ν t) + F ν t 0 b N SK (ξ) exp(F ν (t -ξ)) dξ + b N SK (t),
with F ν given in Corollary 24 and

b N SK (t) = t 0 Ω ρ r E ν • (W -w)
with (r, V , W ) and E ν are defined as mentioned above from all given smooth function U .

Noticing that each global weak solutions of the Navier-Stokes-Korteweg is global weak solutions of the augmented Navier-Stokes-Korteweg system, a direct consequence of the method is the following weak-strong uniqueness result.

Theorem 26. Let us assume µ(ρ) = ρ (s+3)/2 , γ ≥ s + 2 and s ≥ -1. Let us consider (ρ, u) a global weak solution to the compressible Navier-Stokes-Korteweg system and define w = u + ν ∇µ(ρ)/ρ and v = √ ε 2 -ν 2 ∇µ(ρ)/ρ. Let us assume that there exists (r, U ) a strong solution of the compressible Navier-Stokes-Korteweg System and let us define W = U + ν∇µ(r)/r and V = √ ε 2 -ν 2 ∇µ(r)/r. Assume that (r, W, V ) satisfies hypothesis (68). If (ρ 0 , u 0 ) = (r, U )(t = 0) then (ρ, v, w) = (r, V , W ) or (ρ, u) = (r, U ), which corresponds to a weak-strong uniqueness property.

Finally, let us give the definition 25 in the particular case of K(ρ) = 1/ρ which corresponds to the quantum Navier-Stokes system. This one will be used in Section 5. To this end we introduce the function E ν N SQ given by

E ν N SQ (r, U ) = r (∂ t U + U • ∇U ) + ∇p(r) -2 ν div(rD(U )) + ε 2 (div(r t ∇V ), (85) 
with U a given smooth enough function, r a strong solution of the mass equation ( 43) and rV = ∇µ(r). Defining V = ε 2 -ν 2 V, W = U + ν V, and Equation [START_REF] Van Der Waals | Thermodynamische theorie der capillariteit in de onderstelling van continue dichteisverandering[END_REF] we obtain

E ν (r, U ) = r (∂ t W + U • ∇W ) + ∇p(r) -ν div(r ∇W ) - √ ε 2 -ν 2 div(r ∇ V ), (86) 0 = r ∂ t V + U • ∇ V + √ ε 2 -ν 2 div(r t ∇U ). (87) 
We define E N SQ (t) by E N SQ (t) = E N SK (t) with K(ρ) = 1/ρ.

Definition 27. Let ρ 0 and u 0 smooth enough. The pair (ρ, u) is a dissipative solution of (28), ( 29), (1) if the triplet (ρ, v, w) (with

ρ v = ∇µ(ρ), v = √ ε 2 -ν 2 v, w = u + ν v) satisfies E N SQ (t) ≤ E N SQ (0) exp(F ν t) + F ν t 0 b N SQ (ξ) exp(F ν (t -ξ)) dξ + b N SQ (t),
with F ν given in Corollary 24 and

b N SQ (t) = t 0 Ω ρ r E ν N SQ • (W -w)
with (r, V , W ) and E ν N SQ are defined as mentioned above from all given smooth function U . Remark 28. Note that by definition, using Corollary 24, all weak solution of (28)-( 29), ( 1) is also a dissipative solution in the sense of Definition 27.

5.

From the quantum Navier-Stokes system to the quantum Euler system: the viscous limit

We can now perform the limit of a dissipative solution of the quantum Navier-Stokes system to one of the quantum Euler system when the viscosity constant ν tends to zero. Thanks to the entropies, we have the following regularities on the global weak solution of the quantum Navier-Stokes equations:

√ ρ ν vν ∈ L ∞ (0, T ; L 2 (Ω)), √ ρ ν w ν ∈ L ∞ (0, T ; L 2 (Ω)), H(ρ ν ) ∈ L ∞ (0, T, L 1 (Ω)), where vν = ε 2 -ν 2 ∇ log ρ ν , w ν = u ν + ν ∇ log ρ ν .
The goal of this section is then to prove the following result:

Theorem 29. Let ρ 0 and u 0 smooth enough. Let (ρ ν , u ν ) be a global weak solution to the quantum Navier-Stokes system (28)-( 29) with initial conditions (1). Let (ρ, u) be the weak limit of (ρ ν , u ν ) when ν tends to 0 in the sense

ρ ν ⇀ ρ weakly ⋆ in L ∞ (0, T ; L γ (Ω)), √ ρ ν w ν ⇀ √ ρu weakly ⋆ in L ∞ (0, T ; L 2 (Ω)), √ ρ ν vν ⇀ ε √ ρv weakly ⋆ in L ∞ (0, T ; L 2 (Ω)),
with ρ v = ∇ρ. Then (ρ, u) is a dissipative solution of the quantum Euler system ( 14)-( 15) with initial conditions (1).

Proof : According to Remark 28, the pair (ρ ν , u ν ) being an entropic weak solution, is also a dissipative one. We want to prove that (ρ, u), which is the limit of ν , u ν ) when ν tends to zero, is a dissipative solution of ( 14)-( 15) satisfying the initial conditions (1). The goal is then to prove that (ρ, u) satisfies Definition 13. Let us define v = ∇ log ρ (because in this case µ(ρ) = ρ). Let U be smooth function and let (r, E (r, U ), V ) be defined with V = ∇ log r, (43) and (57). We define

V ν = ε 2 -ν 2 V, W ν = U + ν V.
Then it is easy to see that (r, V ν , W ν ) is candidate for ( 43), ( 86)-( 87) with E ν N SQ (r, U ) = E (r, U ) -2 ν div(rD(U )). Then using Definition 27, (ρ ν , u ν ) being a dissipative solution we have

(88) E N SQ (t) ≤ E N SQ (0) exp(F ν t) + F ν t 0 b ν N SQ (ξ) exp(F ν (t -ξ)) dξ + b ν N SQ (t),
with

F ν = C 1 + ν ε 2 -ν 2 , and b ν N SQ (t) = t 0 Ω ρ r (E -2 ν div(rD(U ))) • (W -w) .
Since by definition we have

E N SQ (ρ ν , vν , w ν |r, V ν , W ν )(t) = 1 2 Ω ρ ν |v ν -V ν | 2 + |w ν -W ν | 2 + Ω H(ρ ν ) -H(r) -H ′ (r)(ρ ν -r) + ν t 0 Ω ρ ν |∇v ν -∇ V | 2 + |∇w ν -∇W | 2 ,
we easily obtain

1 2 Ω ρ ν |v ν -V ν | 2 + |w ν -W ν | 2 + Ω H(ρ ν ) -H(r) -H ′ (r)(ρ ν -r) ≤ E N SQ (ρ ν , vν , w ν |r, V ν , W ν )(t)
and

E N SQ (ρ ν , vν , w ν |r, V ν , W ν )(0) = 1 2 Ω ρ ν |v ν -V ν | 2 + |w ν -W ν | 2 (0) + Ω H(ρ ν ) -H(r) -H ′ (r)(ρ ν -r) (0). Then (88) gives 1 2 Ω ρ ν |v ν -V ν | 2 + |w ν -W ν | 2 (t) + Ω H(ρ ν ) -H(r) -H ′ (r)(ρ ν -r) (t) ≤ E N SQ (ρ ν , vν , w ν |r, V ν , W ν )(0) exp(F ν t) + F ν t 0 b ν N SQ (ξ) exp(F ν (t -ξ)) dξ + b ν N (t).
It remains now to pass to the limit ν tends to zero in this inequality. Clearly, using the lower semi-continuity of the term E N SQ (ρ ν , vν , w ν |r, V ν , W ν ), the left-hand side is greater than

1 2 Ω ρ ε 2 | v -V | 2 + |u -U | 2 (t) + Ω H(ρ|r)(t),
which is E EuQ (ρ, u, v|r, U, V )(t) (i.e. E EuK (ρ, u, v|r, U, V )(t) given by ( 41) with K(ρ) = 1/ρ).

For the right hand side, we use the direct limit of the term E N SQ (ρ ν , vν , w ν |r, V ν , W ν )(0) (through the expression of the initial data) and b

ν N SQ tends to b EuQ (t) = t 0 Ω ρ r E • (U -u) , to conclude that E EuQ (t) ≤ E EuQ (0) exp(C t) + b EuQ (t) + C t 0 exp(C (t -ξ))b EuQ (ξ) dξ,
where C = C(ε 2 , r, U, V ) is a uniformly bounded constant on R + × Ω. Therefore we finally obtain that (ρ, u) satisfies the Definition 13 and then is a dissipative solution of ( 14)-( 15),

.

6. Appendix 6.1. Technical lemmas on modulated quantities. In this section we give some technical lemmas which are used in the paper.

We introduce the function φ defined by

(89) φ(τ ) = τ 0 p ′ (µ -1 (s)) µ ′ (µ -1 (s)) ds,
and the two functions

(90) φ 1 (ρ|r) = φ(µ(ρ)) -φ(µ(r)) -φ ′ (µ(r))(µ(ρ) -µ(r)), (91) 
φ 2 (ρ|r) = φ ′′ (µ(r))(µ(ρ) -µ(r)) r -ρ (φ ′ (µ(ρ)) -φ ′ (µ(r))).
Remark 30. Note that in the case K(ρ) = 1/ρ, which gives (using (5)) µ(ρ) = ρ, these two functions are directly linked to H(ρ|r). Indeed, in this case we have

φ 1 (ρ|r) = p(ρ) -p(r) -p ′ (r)(ρ -r) = (γ -1)H(ρ|r), φ 2 (ρ|r) = ρp ′ (r) -ρp ′ (ρ) + rp ′′ (r)(ρ -r) = -γ(γ -1)H(ρ|r).
As usually in compressible flows (see [START_REF] Feireisl | Singular Limits in Thermodynamics of Viscous Fluids[END_REF]) let us define the set F by

F = ρ ≤ r 2 or ρ ≥ 2r .
Let us now give some technical lemmas which will be used in the following. First of all, following [START_REF] Feireisl | Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system[END_REF] we have

Lemma 31. Assuming p smooth, p(0) = 0, p ′ (ρ) > 0 ∀ρ > 0, lim ρ→∞ p ′ (ρ) ρ α-1 = a > 0 for α > 1,
we have:

H(ρ|r) ≥ C(r)(ρ -r) 2 if ρ ∈ F c and H(ρ|r) ≥ C(r)(1 + ρ) γ otherwise,
with C(r) uniformly bounded for r belonging to compact sets in R + × Ω.

Concerning the functions φ 1 and φ 2 , we can show Lemma 32. Let us assume that µ(ρ) = ρ (s+3)/2 with γ ≥ s + 2 and s ≥ -1. Assume φ i with i = 1, 2 defined by (89)-(91). Then

|φ i (ρ|r)| ≤ C(r)|ρ -r| 2 if ρ ∈ F c and |φ i (ρ|r)| ≤ C(r)(1 + ρ) γ otherwise,
with C(r) uniformly bounded for r belonging to compact sets in R + × Ω.

Remark 33. Let us remark that the choice µ(ρ) = ρ (s+3)/2 with s ∈ R and the assumption γ ≥ 2 + s correspond to the case considered in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF] because K(ρ) is of order ρ s . Moreover, for the particular case of interest in this paper K(ρ) = 1/ρ (i.e. s = -1), the assumption 2 + s ≤ γ is trivially satisfied since we have γ > 1.

Proof of the lemma for φ 1 . Using Taylor expansions and the fact that φ ′′ (µ(c)), µ ′ (c) are bounded with c in a compact we easily obtain

|φ 1 (ρ|r)| ≤ C(r)|µ(ρ) -µ(r)| 2 ≤ C(r)|ρ -r| 2 on F c . Moreover, since p(ρ) = ρ γ , K(ρ) = (s + 3) 2 4 ρ s , µ ′ (ρ) = ρK(ρ),
we have φ(τ ) = τ 2γ/(s+3) and then by definition

|φ 1 (ρ|r)| = ρ γ -r γ - 2γ s + 3 r 2γ-(s+3) 2 (ρ s+3 2 -r s+3 
2 ) , which gives

|φ 1 (ρ|r)| ≤ C(r)(1 + ρ) γ on F,
since by assumption 2γ ≥ 2(s + 2) ≥ s + 3 with s ≥ -1.

Proof of the lemma for φ 2 . Let us write θ = s + 3 2 then µ(ρ) = ρ θ and φ(ρ) = ρ γ/θ . Then

φ 2 (ρ|r) = 2γ s + 3 2γ s + 3 -1 r γ-s-3 (ρ θ -r θ )r -ρ(ρ γ-θ -r γ-θ ) = 2γ s + 3 2γ s + 3 -1 r γ-s-2 (ρ θ -r θ ) -ρ 1+γ-θ + ρ r γ-θ = 2γ s + 3 2γ s + 3 -1 r γ-s-2 (ρ θ -r θ ) -f (µ(ρ)) + ρ r γ-θ with f (ρ) = ρ γ+1 θ -1 . Note that we have f (ρ|r) = f (µ(ρ)) -f (µ(r)) -f ′ (µ(r))(µ(ρ) -µ(r)) = f (µ(ρ)) -(r θ ) γ+1 θ-1 - γ + 1 θ -1 (r θ ) γ+1 θ -2 (ρ θ -r θ ).
Then

φ 2 (ρ|r) = 2γ s + 3 2γ s + 3 -1 r γ-s-2 (ρ θ -r θ ) -f (ρ|r) -(r θ ) γ+1 θ -1 - 2γ s + 3 2(γ + 1) s + 3 -1 (r θ ) γ+1 θ -2 (ρ θ -r θ ) -ρ r γ-θ = 2γ s + 3 2γ s + 3 -1 r γ-s-2 (ρ θ -r θ ) -f (ρ|r) -r 1+γ-θ - 2γ s + 3 2(γ + 1) s + 3 -1 (r γ-s-2 (ρ θ -r θ ) -ρ r γ-θ = 2γ s + 3 - 1 θ r γ-s-2 (ρ θ -r θ ) -f (ρ|r) + ρ r γ-θ -r 1+γ-θ .
This can be written φ 2 (ρ|r) = 2γ s + 3 (-f (ρ|r) + g(ρ|r)) with

g(ρ|r) = r γ-θ ρ -r - 1 θ r τ -s-2 (ρ θ -r θ ) = r γ-θ (ρ θ ) 1/θ -(r θ ) 1/θ - 1 θ (r θ ) 1/θ-1 (ρ θ -r θ ) .
In the case ρ ∈ F c , using Taylor expansions this leads to Proof.

ρ|µ

′ (ρ) -µ ′ (r)| 2 = ρ|µ ′ (ρ) -µ ′ (r)| 2 1 F + ρ|µ ′ (ρ) -µ ′ (r)| 2 1 F c .
We have

ρ|µ ′ (ρ) -µ ′ (r)| 2 1 F ≤ 2ρ(|µ ′ (ρ)| 2 + |µ ′ (r)| 2 )1 F ≤ (s + 3) 2 2 ρ s+2 1 F + 2C(r)ρ 1 F .
Using ρ s+2 ≤ (1 + ρ) s+2 and the assumption γ ≥ s + 2 in the first term, and, the assumption γ > 1 in the second one, we obtain: We have

ρ|µ ′ (ρ) -µ ′ (r)| 2 1 F ≤ (s + 3) 2 2 (1 + ρ) γ 1 F + 2C(r)(1 + ρ) γ 1 F ≤ C(r)(1 + ρ) γ 1 F .
ρ p ′ (ρ) µ ′ (ρ) - p ′ (r) µ ′ (r) (v -V ) = p ′ (ρ) µ ′ (ρ) - p ′ (r) µ ′ (r) (ρ v -ρ V ) = p ′ (ρ) µ ′ (ρ) - p ′ (r) µ ′ (r) ∇(µ(ρ)) - ρ r p ′ (ρ) µ ′ (ρ) - p ′ (r) µ ′ (r) ∇(µ(r)).
Moreover, it is easy to see that by definition ∇(φ 1 (ρ|r)) = φ ′ (µ(ρ))∇µ(ρ) -φ ′′ (µ(r))(µ(ρ) -µ(r))∇µ(r) -φ ′ (µ(r))∇µ(ρ) = p ′ (ρ) µ ′ (ρ) -p ′ (r) µ ′ (r) ∇µ(ρ) -φ ′′ (µ(r))(µ(ρ) -µ(r))∇µ(r), and then using the definition of φ 2 (ρ|r), ρ p ′ (ρ) µ ′ (ρ) -p ′ (r) µ ′ (r) (v -V ) = ∇φ 1 (ρ|r) + φ 2 (ρ|r)V.

6.2.

Equivalence of E EuK and the relative entropy in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF]. Let us consider the relative entropy functional, denoted E EuK (ρ, u, v|r, U, V ) and defined by [START_REF] Rowlinson | Molecula theory of capillarity[END_REF]. The goal of this section is to prove that this relative entropy is equivalent to the relative entropy defined by (2.23) in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF] under the concavity assumption on K with K(ρ) = ρ s . Let us first recall the relative entropy E GLT EuK defined in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF]. It reads Note that I T corresponds to the term K(ρ)|∇ρ| 2 linearized in the variables (ρ, q) where q = ∇ρ. Let us now introduce the quantity E EuK (ρ, u, v|r, U, V ) = 0 ⇔ E GLT EuK (ρ, u, ∇ρ|r, U, ∇r) = 0. If so, we prove by this way that our relative entropy and the one in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF] are equivalent under the hypothesis in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF]. Our convergence result will therefore be more general that the one in [START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF] because it does not asked for concavity hypothesis on K(ρ). First let us prove the following lemma: Proof. Under the assumption on K, we check that

I 2 3 = K(r) K(ρ) - ρ r 2 = ρ r -s - ρ r 2 ≤ 2 ρ r -s -1 2 + 2 1 - ρ r 2 ≤ 2 1 r -s ( ρ -s - √ r -s ) 2 + 2 r ( √ r - √ ρ) 2 ≤ 2 r -s |ρ -s -r -s | + 2 r
|r -ρ| with 0 ≤ -s ≤ 1. Assume E GLT EuK (ρ, u, ∇ρ|r, U, ∇r) = 0, then I 3 = 0 and 1 K(ρ) -1 K(r) + K ′ (r) K(r) 2 (ρ -r) = 0.

Therefore using Lemma 38 we conclude E EuK (ρ, u, v|r, U, V ) = 0 (the inverse follows the same lines). This ends the proof.

6.3. Definition of the operators. For the convenience of the reader we recall in this Section all the definitions of the operators used in this article. The definitions used here are the ones presented in [START_REF] Boyer | Éléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles[END_REF] in Appendix A.

Let f be a scalar, u, v two vectors and σ = (σ ij ) 1≤i,j≤d a tensor field defined on Ω ⊂ R d smooth enough.

• Denoting by v 1 , • • • , v d the coordinates of v, we call divergence of v the scalar given by: div(v) = d i=1 ∂v i ∂x i .

• We call laplacian of f the scalar given by:

∆f = div(∇f ) = d i=1 ∂ 2 f ∂x 2 i .
• We call gradient of v the tensor given by: ∇v = ∂v i ∂x j 1≤i,j≤d .

• We call divergence of σ the vector given by:

div(σ) =   d j=1 ∂σ ij ∂x j   1≤i≤d .
• We call laplacian of v the vector given by: ∆v = div(∇v).

• We call tensor product of u and v the tensor given by: u ⊗ v = (u i v j ) 1≤i,j≤d .

Proposition 40. Let u, v, w three smooth enough vectors on Ω and r a scalar smooth enough on Ω. We have the following properties.

• (u ⊗ v)w = (v • w)u, • div(u ⊗ v) = (div v)u + (v • ∇)u, • div(r u) = ∇r • u + r div u, • div(r u ⊗ v) = (∇r • v)u + r(v • ∇)u + r div(v)u.
Definition 41. Let τ and σ be two tensors of order 2. We call scalar product of the two tensors the real defined by: σ : τ = 

1 and I N S 2 are

 12 ρ) Tr(T(w)) div V -Tr(T(v)) div W and I N S given through (61)-(62) which gives the proposition.

5 + I N S 6 ,

 56 where I N S i for i = 3, 4, 5, 6 are given by (69)-(72).

5 + I N S 6 ,with I N S 5 and I N S 6

 5656 

Lemma 16 .

 16 Let I N S 5given by (71) and I N S 6

Proposition 23 .

 23 Let us assume µ(ρ) = ρ (s+3)/2 (i.e. K(ρ) = (s + 3) 2 4 ρ s ), γ ≥ s + 2 and s ≥ -1.Let (ρ, v, w) be a global weak solution of System (36)-(39) and (r, V , W ) a strong solution of (43), (80)-(81) in the clas (68).

4. 2 .

 2 Dissipative solution and weak-strong uniqueness result. Let us now give the definition of what is called a dissipative solution of the compressible Navier-Stokes-Korteweg System.

2 -r s+3 2 )

 22 |f (ρ|r)| ≤ C(r)|µ(ρ) -µ(r)] 2 ≤ C(r)|ρ -r| 2 , |g(ρ|r)| ≤ C(r)|ρ θ -r θ | 2 ≤ C(r)|ρ -r| 2 , and then |φ 2 (ρ|r)| ≤ C(r)|ρ -r| 2 . When ρ ∈ F, since 2γ ≥ 2s + 4 ≥ s + 3 and s + 3 ≥ 2, |φ 2 (ρ|r)| ≤ C(r)|r γ-(s+3) (ρ s+3 -ρ(ρ γ-s+3 2 -r γ-s+3 2 )| ≤ C(r)(1 + ρ) γ .This completes the proof of Lemma 32.Using Lemmas 31 and 32, we directly obtain Lemma 34. Let us assume that µ(ρ) = ρ (s+3)/2 with γ ≥ s + 2 and s ≥ -1. We have |φ 1 (ρ|r)| ≤ C(r)H(ρ|r) and |φ 2 (ρ|r)| ≤ C(r)H(ρ|r), with C(r) uniformly bounded for r belonging to compact sets in R + × Ω.Let us now prove the following lemma Lemma 35. Let us assume that µ(ρ) = ρ (s+3)/2 with γ ≥ s + 2 and s ≥ -1. We haveρ|µ ′ (ρ) -µ ′ (r)| 2 ≤ C(r)H(ρ|r),with C(r) uniformly bounded for r belonging to compact sets in R + × Ω.

2 1+ 3 2 ρ |ρ s+1 -r s+1 | 2 |r s+1 2 | 2 1 F

 221 Moreover,ρ|µ ′ (ρ) -µ ′ (r)| 2 1 F c = s F c ,and thenρ|µ ′ (ρ) -µ ′ (r)| 2 1 F c ≤ s c ≤ C(r)|ρ s+1 -r s+1 | 2 1 F c ≤ C(r)|ρ -r| 2 1 F c .

EI

  GLT EuK (ρ, u, ∇ρ|r, U, ∇r) T = K(ρ)|∇ρ| 2 -K(r)|∇r| 2 -K ′ (r)|∇r| 2 (ρ -r) -2K(r)∇r(∇ρ -∇r).

2 . 2 ρ|u -U | 2 + 1 2 ε 2 I 2

 222 Then our Euler-Korteweg modulated energy readsE EuK (ρ, u, v|r, U, V ) = 1 EuK + H(ρ|r),where v = K(ρ)∇ρ/ √ ρ and V = K(r)∇r/ √ r. Let us prove that under the hypothesis on K introduced in[START_REF] Giesselmann | relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF] 

Lemma 38 . 2 K 2 2 = I T + I 1 whereI 1 =I 2 = 2 K 3 Corollary 39 .

 382221122339 We have the equality I 2 EuK + K(r) |∇r| After computations, we check thatI EuK = I T + K ′ (r)|∇r| 2 (ρ -r) ) K(r)∇ρ • ∇r + 2K(r)∇r • ∇ρ -K(r)|∇r| K(r)|∇r| 2 ρ r -1 + K ′ (r) K(r) (ρ -r) (r) ∇r I 3 I EuK and I Let K(ρ) = ρ s with -1 ≤ s ≤ 0, then E GLTEuK (ρ, u, ∇ρ|r, U, ∇r) = 0 ⇔ E EuK (ρ, u, v|r, U, V ) = 0.

σ

  ij τ ij . The norm associated to this scalar product is simply denoted by | • | in such a way that |σ| 2 = σ : σ. Remark 42. By definition we have σ : τ = t σ : t τ
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Using lemma 31, we finally obtain the result.

An important relation. The last technical and important lemma is

Lemma 36. Let us assume that µ(ρ) = ρ (s+3)/2 with γ ≥ s + 2 and s ≥ -1. We have

with φ 1 and φ 2 defined by (89)-(91).

Remark 37. This lemma generalizes to general µ(ρ) the relation (5) established in [START_REF] Bresch | Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and applications[END_REF] when µ(ρ) = ρ. This is an important lemma which helps to control the terms coming from the pressure in the relative entropy at the Navier-Stokes level.

Proof. Remark first that
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