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ON NAVIER-STOKES-KORTEWEG AND EULER-KORTEWEG SYSTEMS:
APPLICATION TO QUANTUM FLUIDS MODELS

D. BRESCH, M. GISCLON, AND I. LACROIX-VIOLET

ABSTRACT. In this paper, the main objective is to generalize to the Navier-Stokes-Korteweg
(with density dependent viscosities satisfying the BD relation) and Euler-Korteweg systems
a recent relative entropy [proposed by D. BRESCH, P. NOBLE and J—P. ViLA, (2016)] intro-
duced for the compressible Navier-Stokes equations with a linear density dependent shear
viscosity and a zero bulk viscosity. As a concrete application, this helps to justify math-
ematically the convergence between global weak solutions of the quantum Navier-Stokes
system [recently obtained simultaneously by I. LACROIX-VIOLET and A. VASSEUR (2017)]
and dissipative solutions of the quantum Euler system when the viscosity coefficient tends
to zero: This selects a dissipative solution as the limit of a viscous system. We also get
weak-strong uniqueness for the Quantum-Euler and for the Quantum-Navier-Stokes equa-
tions. Our results are based on the fact that Euler-Korteweg systems and corresponding
Navier—Stokes-Korteweg systems can be reformulated through an augmented system such
as the compressible Navier-Stokes system with density dependent viscosities satisfying the
BD algebraic relation. This was also observed recently [by D. BrEscH, F. COUDERC, P.
NoOBLE and J.—P. ViLA, (2016)] for the Euler-Korteweg system for numerical purposes. As a
by-product of our analysis, we show that this augmented formulation helps to define relative
entropy estimates for the Euler-Korteweg systems in a simplest way compared to recent works
[See D. DONATELLI, E. FEIREISL, P. MARCATI (2015) and J. GIESSELMANN, C. LATTANZIO,
A.-E. TZAVARAS (2017)] with less hypothesis required on the capillary coefficient.

AMS Classification. 35B40, 35B45, 35K35, 76Y05.

Keywords. Euler-Korteweg system, Navier-Stokes-Korteweg equations, quantum FEuler and Navier-
Stokes system, relative entropy estimates, dissipative solutions, entropy /weak-strong uniqueness, aug-
mented systems.

1. INTRODUCTION

Quantum fluid models have attracted a lot of attention in the last decades due to te
variety of applications. Indeed, such models can be used to describe superfluids [39], quantum
semiconductors [25], weakly interacting Bose gases [30] and quantum trajectories of Bohmian
mechanics [46]. Recently some dissipative quantum fluid models have been derived. In par-
ticular, under some assumptions and using a Chapman-Enskog expansion in Wigner equation,
the authors have obtained in [16] the so-called quantum Navier-Stokes model. Roughly spea-
king, it corresponds to the classical Navier-Stokes equations with a quantum correction term.
The main difficulties of such models lie in the highly nonlinear structure of the third order
quantum term and the proof of positivity (or non-negativity) of the particle density. Note
that formally, the quantum Euler system corresponds to the limit of the quantum Navier-
Stokes model when the viscosity coefficient tends to zero. This type of models belong to
more general classes of models: the Navier-Stokes-Korteweg and the Euler-Korteweg systems.
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2 D. BRESCH, M. GISCLON, AND I. VIOLET

Readers interested by Korteweg type systems are referred to the following articles and books:
[35, 43, 17, 20, 41, 40, 32] and references cited therein.

The goal of this paper is to extend to these two Korteweg systems a recent relative entropy
proposed in [13] introduced for the compressible Navier-Stokes equations with a linear density
dependent shear viscosity and a zero bulk viscosity. This leads for each system to the definition
of what we call a dissipative solution following the concept introduced by P.-L. Lions in
the incompressible setting (see [38]) and later extended to the compressible framework (see
[24, 23, 5, 42] for constant viscosities and [31, 13] for density dependent viscosities). As a
consequence we obtain some weak-strong uniqueness results and as an application, we can
use it to show that a global weak solution (proved in [36], which is also a dissipative one) of
the quantum Navier-Stokes system converges to a dissipative solution of the quantum Euler
system. Our results will be compared to recent results in [21, 27] showing that we relax
one hypothesis on the capillarity coefficient by introducing entropy-relative solutions of an
augmented system. Note also the interesting paper [4] where the authors prove the existence
of global weak solutions of the quantum-Navier-Stokes equations with a different method
compared to [36]. By the way we cannot use such global weak solutions because capillarity
and viscosity magnitudes are linked together in their study. Let us also the interesting new
paper [19] where the authors investigate the long-time behavior of solutions to the isothermal
Euler-Korteweg system.

Let us now present in more details the models of interest here. Note that for the convenience
of the reader all the operators are defined in Section 6.3. Let © = T¢ be the torus in dimension
d (in this article 1 < d < 3).

Euler-Korteweg system. Following the framework of the paper, we first present the Euler-
Kortewg system and then the Navier-Stokes Korteweg one. Note that in all the paper, the
systems are supplemented with the following initial conditions

(1) pli=o = po,  (pu)|i=0 = poug for x € Q.

with the regularity pg > 0, po € LY(Q), po |uo|? € LY(Q), VK (po)Vpo € L*(R2). The Euler-
Korteweg system describe the time evolution, for ¢ > 0 of the density p = p(¢,x) and the
momentum J = J(t,x) = p(t,z)u(t,z) (with u the velocity), for z € Q, of an inviscid fluid.
The equations can be written in the form ([21]):

(2) Op + div J =0,
3) o0 + div (%) V() = 2V <K<p>Ap T %K%p)mﬁ) ,

where K : (0,00) — (0,00) is a smooth function and p is the pressure function given by
p(p) = p7 for v > 1. Note that it could be interesting to consider non-monotone pressure
laws as in [28] and [27]. The coefficient ¢ stands for the Planck constant. In this paper we
will consider a function K (p) which behaves as p® with s € R. As mentioned in [21],

pV <K(0)Ap + %K’(p)!VpP) = div(K),
with
K= (p div(K (p)Vp) + %(K(p) - pK’(ﬂ))!Vp!2> Iga — K(p)Vp® Vp.
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Observing that K may be written

. 1
(4) K = ( div(pK (p)Vp) — 5(K(p) + pK'(p))|Vp[* | Ipa — K(p)Vp & Vp.
2
and following the ideas of [8] with

(5) w(p) =/ pK(p),

we can define the drift velocity v by

and show the following generalization of the Bohm identity:
1
div(K) = div(u(p)Vv) + §V(/\(p)divv)
with
Ap) = 2(1(p)p — 1(p))-

Remark 1. Note that the relation between \ and p is exactly the BD relation found in [9] in
the Navier-Stokes setting: see the Navier-Stokes-Korteweg part below.

We will choose K (p) as:

(s +3)?
4
This multiplicative constant in the definition of K does not affect any generality, it suffices

to change the definition of €. Then, we obtain the following augmented formulation for the
Euler-Korteweg Equations (2)-(3):

K(p) = p° with s € R in order to get w(p) = ptet3)/2,

(6) Op +div(pu) =0,

0 Bl +divpusn) + Vo) = A o) + ;YOG dive))
(8) O(pv) +div(pt ®@u) =¢ [— div(p(p) 'Vu) — %V(/\(p) div u)} ,
with

9) Ap) =2(pi (p) — u(p)),  ©=eVulp)/p-

System (6)-(9) is called the Euler-Korteweg augmented system in all the sequel. It has
been firstly introduced in this conservative form in [8] to propose a useful construction of a
numerical scheme with entropy stability property under a hyperbolic CFL condition for such
dispersive PDEs. augmented system, the second order operator matrix is skew-symetric.

The Quantum Euler Equations. Note that the choice K(p) = 1/p (which gives u(p) = p and
A(p) = 0) leads to the Bohm identity

pV (K (p)Ap + %K’(p)!VPIQ) = div(pVv) = 2pV <%> :
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In that case the system (6)-(9) becomes

(10) Op +div(pu) =0,

(11) F(pu) +div(pu ®u) + V(p(p)) = & div(p Vo),

(12) O (p0) +div(pv @ u) = —ediv(p'Vu),

with

(13) v=¢eVliogp

which corresponds to the augmented formulation of the quantum Euler system:
(14) Op + div(pu) =0,

(15) O (pu) + div(pu ® u) + Vp(p) =22 pV (%) .

Then such a choice gives rise the so called quantum fluid system for which the global existence
of weak solutions of (14)—(15) has been shown in [2, 3] and more recently in [18] assuming the
initial velocity irrotational namely curl(poug) = 0. Note that the quantum term is written as
(4) in these papers, namely

(16) 2pV <A\/\[> = div(V(pVlogp) — pVlog p @ Vlog p)

observing that

VpVlogp =2V,/p.
The existence of local strong solutions has also been proved (see [6]) and global well-posedness
for small irrotational data has been performed recently in [1] assuming a natural stability
condition on the pressure. We refer to (10)-(12) as the quantum Euler augmented system in
all the paper.

Important remark. Differentiating in space the mass equation in D'((0,T) x Q) we get
OV p+ Vdiv(pu) = 9,V + div(*V(pu)) = 0
which may be written
O Vp+ div(pVlog p @ u) + div(*V(pu) — pVlog p®@ u) = 0

This formula will be used to show that global weak solutions of the Quantum-Euler system
(14)—(15) with the quantum term written as (16) will be global weak solutions of the Quantum-
Euler system in its augmented form.

Note that the quantum correction (A,/p)/,/p can be interpreted as a quantum potential,
the so-called Bohm potential, which is well known in quantum mechanics. This Bohm poten-
tial arises from the fluid dynamical formulation of the single-state Schrodinger equation. The
non-locality of quantum mechanics is approximated by the fact that the equations of state
do not only depend on the particle density but also on its gradient. These equations were
employed to model field emissions from metals and steady-state tunneling in metal-insulator-
metal structures and to simulate ultra-small semiconductor devices.

Navier-Stokes-Korteweg system. Let us consider the compressible Navier-Stokes-Korteweg
system with density dependent viscosities p(p) and A(p) satisfying the BD relation

Ap) =2(1 (p)p — 1(p)),
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and with the capillarity coefficient K(p) linked to the shear viscosity u(p) in the following
manner
K(p) = i/ (p)]*/p with p(p) = p+¥7? with s € R.

Remark 2. With this choice of shear viscosity, the relation between the capillarity coefficient
and the viscosity gives a capillarity coefficient proportional to p°.

Then using the identity given in the Euler-Korteweg part, the Navier-Stokes-Korteweg
system can be written for z € Q and ¢ > 0,

(17) Op + div(pu) = 0,
O(pu) + div(pu @ u) + Vp(p) — 2v div(u(p)D(u)) — vV (A(p) divu)

(18) = 2 | (@iv(u(p)' Vo) + 5 V(A(p) dive) |

(Vu+tVu). The parameter
(p) and taking the gradient,

N =

in which the symmetric part of the velocity gradient is D(u) =

~

v > 0 stands for the viscosity constant. Multiplying (17) by u
we have the following equation on v:

(19) D(pv) + divipv @ u) + div(u(p) V) + %V(A(p) divu) = 0.

Moreover defining the intermediate velocity, called effective velocity, w = u + v v, equations
(18) and (19) lead to

d(pw) +div(pw ®u) + V(p(p)) — v div(u(p) Vw) — %V(A(p) div w)
1
= (e =) [div(u(p) Vv) + SV (A(p) div v)].
Then (17)-(18) may be reformulated through the following augmented system:
(20) Op + div(pu) = 0,
Orlpw) +divpw ® w) + V(p(p)) — v div((p) V) = SV ((p) divw)

(1) = (£ — ) [div(u(p) Vo) + 3 V(A () div)],

(22) O (pv) +div(pv @ u) + div(u(p) ' Vu) + %V(/\(p) divu) =0,
with

(23) w=u+vVu(p)/p,  v=Vulp)/p

which we call the Navier-Stokes-Korteweg augmented system in all the sequel.

The Quantum Navier-Stokes Equations. Note that with the choice K(p) = 1/p, which gives
w(p) = p and A(p) = 0, system (20)-(23) becomes

(24) Op + div(pu) = 0,
(25) O(pw) +div(pw ® u) + V(p(p)) — v div(pVw) = (2 — v?) div(pVv),
(26) O (pv) +div(pv @ u) + div(p*Vu) =0,

with the constraints

(27) w=u+ vV log p, v=Vlogp
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which is the augmented formulation of the compressible barotropic quantum Navier-Stokes
system:

(28) Op + div(pu) = 0,

(29) O (pu) + div(pu ®@ u) + Vp(p) — 2v div(pD(u)) = 22 pV <%ﬁ> .

In [22, 33, 34], the global existence of weak solutions to (28)-(29) has been shown following
the idea introduced in [11] by testing the momentum equation by p ¢ with ¢ a test function.
The problem of such formulation is that it requires v > 3 for d = 3 which is not a suitable
assumption for physical cases. In [12] the authors show the existence of solutions for (28)-(29)
without quantum term (i.e. for ¢ = 0) by adding a cold pressure term in the momentum
equation. The cold pressure is a suitable increasing function p. satisfying 71113%) pe(n) = 4o0.

The key element of the proof is a k-entropy estimate. In [29], using the same strategy and
a k-entropy with k = 1/2, the existence of global weak solutions for (28)-(29) is proven
without any extra assumption on v and the semi-classical limit € tends to zero is performed.
In [44], A. Vasseur and C. Yu consider the compressible barotropic quantum Navier-Stokes
equations with damping i.e. system (28)-(29) with additional terms in the right hand side
of (29): —rou — riplu/>u. They prove the global-in-time existence of weak solutions and
their result is still valuable in the case r1 = 0 . Their proof is based on a Faedo-Galerkin
approximation (following the ideas of [34]) and a Bresch-Desjardins entropy (see [10, 11]). In
[45], the authors use the result obtained in [44] and pass to the limits €,79,r tend to zero
to prove the existence of global-in-time weak solutions to degenerate compressible Navier-
Stokes equations. Note that to prove such a result they need uniform (with respect to g, 71)
estimates to pass to the limit 7o, r; tend to 0. To this end they have to firstly pass to the limit
¢ tends to 0. The reader interested by the compressible Navier-Stokes equations with density
dependent viscosities is also referred to the interesting paper [37]. Recently in [36] and [4],
global existence of weak solutions for the quantum Navier-Stokes equations (28)-(29) has been
proved without drag terms and without any cold pressure. In the first paper, the method is
based on the construction of weak solutions that are renormalized in the velocity variable.
Note that the construction being uniform with respect to the Planck constant, the authors
also perform the semi-classical limit to the associated compressible Navier-Stokes equations.
Note also the recent paper [4] concerning the global existence for the quantum Navier-Stokes
system where they use in a very nice way the mathematical structure of the equations. It is
important to remark that a global weak solutions of the quantum Navier-Stokes equations in
the sense of [36] is also weak solution of the augmented system (due to the regularity which
is envolved allowing to write the equation on the drift velocity v). Remark also that there
exists no global existence result of weak solutions for the compressible Navier-Stokes-Korteweg
system with constant viscosities even in the two-dimensional in space case.

Main objectives of the paper. In this paper, to the author’s point of view, there are several
interesting and new results. First starting with the global weak solutions of the quantum
Navier-Stokes equations constructed in [36] (which is a 1/2-entropy solution in the sense of
[12]) we show at the viscous limit the existence of a dissipative solution for the quantum
Euler system letting the viscosity goes to zero. This gives the first global existence result of
dissipative solution for the quantum Euler system obtained from a quantum Navier-Stokes
type system. Note that in [21], it is proved the existence of infinite dissipative solutions of such
inviscid quantum system. Here we present a way to select one starting from a Navier-Stokes
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type system. Secondly, we develop relative entropy estimates for general cases of the Euler-
Korteweg and the Navier-Stokes-Korteweg systems extending the augmented formulations
introduced recently in [13] and [14]: more general viscosities and third order dispersive terms.
This gives a more simple procedure to perform relative entropy than the one developped in
[27, 21] for the Euler-Korteweg system but asks to start with an augmented version of the
Euler-Korteweg system. This allows us to provide a weak-strong uniqueness result for the
Euler-Korteweg and Navier-Stokes-Korteweg systems.

This also helps to get rid the concavity assumption on 1/K(p) which is strongly used in
[27]. For the interested readers, we provide a comparison of the quantities appearing in our
relative entropy to the ones introduced in [27] and remark that they are equivalent under
the assumptions made in [27]. Note that to perform our calculations for the Navier-Stokes-
Korteweg system, we need to generalize in a non-trivial way the identity (5) in [13]: see
Proposition 30 for the generalized identity.

For reader’s convenience, let us explain the simple idea behind all the calculations. The
kinetic energy corresponding to the Euler-Korteweg system reads

[ (Gotat + 1)+ K177

H(p)zp/lp%dzx

In [27], they consider that it is an energy written in terms of (p,u,Vp) and they write
a relative entropy playing with these unknowns. In our calculations, we write the kinetic

energy as follows
1
[ (Gotur + 60 + plo?)
Q

with v = /K (p)Vp/\/p and we consider three quantities p, u and v. This motivates to write
an augmented system (p,u,v) and to modulate the energy through these three unknowns.
This gives a simplest way to define an appropriate relative entropy quantity compared to [27]
and [21] and allows to relax the concavity assumption on 1/K (p) made in the part concerning
Euler-Korteweg system in [27]. Our result covers capillarity coefficient under the form

K(p) ~ p® with s +2 <~ and s > —1.

with

Finally our result makes the link between Euler-Korteweg system and Navier-Stokes-Korteweg
system. After proving the global existence of 1/2-entropy solutions of the general Navier-
Stokes-Korteweg system (this is the subject of a forthcoming paper [15] still in progress:
the case K(p) = 1/p has been recently proved in [36]), this could give the mathematical
justification of a physical dissipative solution of the Euler-Korteweg equations obtained from
1/2-entropy solutions of the Navier-Stokes-Korteweg equations in the spirit of [12]. Note
also the other interesting result in [4] on the Quantum-Navier-Stokes equations but under
hypothesis between the magnitude of the viscous and capillarity coefficients. Let us also
mention that our relative entropies could be helpful for other singular limits as explained in
the book [24] in the case of constant viscosities.

The paper is organized as follows. In Section 2, we provide energy estimates and the
definition of weak solutions for the augmented Euler-Korteweg and Navier-Stokes-Korteweg
systems. In Section 3, we give the definition of the relative entropy formula and we established
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the associated estimate. This one is used to define what we call a dissipative solution for the
Euler-Korteweg system and we established a weak/strong uniqueness result. The same results
are obtained for the Navier-Stokes-Korteweg system in Section 4. In Section 5 we use the
previous results to show the limit when the viscosity tends to zero in the quantum Navier-
Stokes system. Finally we give in Appendix some technical lemmas on modulated quantities
and a comparaison between the relative entropy developed here and the one used in [27, 21],
and we state the definitions used for the operators.

2. ENERGY ESTIMATES AND DEFINITION OF WEAK SOLUTIONS.

In this subsection we give the energy equalities for the augmented Euler-Korteweg and
Navier-Stokes-Korteweg systems. They will be used in the following to establish the estimates
for the relative entropy associated to each one. We also define weak solutions concept for the
two augmented systems. First of all, let us recall the definition of the function H called the

enthalpy by b p(2)
p(z
H(p) = pe(p) = P/l 76&-

Namely we have:

P'(p
pH'(0) o) =plp). () =L
1
To be more precise, since p(p) = p? with v > 1, this yields to H(p) = —1p(p).
ry —

Euler-Korteweg system. For the augmented Euler-Korteweg system we can show the
following formal proposition.

Proposition 3. All strong enough solution (p,u,v) of system (6)—(9) satisfies:

dEguk (p,u; v)
dt
where Ep, i is the natural energy density given by

30 Eeul) = Brupuo) = | @p\ur?+§¥K<p>\vm2+ﬂ<p>).

=0,

Proof. 1t suffices to take the scalar product of the equation related to u by u and the equation
related to v by v and integrate in space using the mass equation, the symmetry of Vv and
the relation p|v|? = K(p)|Vpl|>. O

Global weak solutions of the augmented system. Assumption between K(p) and p(p) will
be required to define global weak solutions of the augmented version of the Euler-Korteweg
system namely:

K(p) = [/ (p))*/p with p(p) = p*™/2 and  p(p) = p?
with
s+2 <7, s> —1and vy > 1.
Assume the initial density py positive and in L'(2) namely

po >0 and /po<+oo
Q

and
Exuk(po, uo, vp) < +00
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where vy and wg is zero where py vanishes. We can define global weak solutions of the
augmented version of the Euler-Korteweg system as solutions satisfying for a.e ¢t € [0,T:

Erux (p,u,0)(t) < Egpuk (p,u, 0)|i=0 < +00

p>0 and /p:/po and sup /,u(p)<—|—oo
Q Q te(0,1) JQ

and satisfying the following augmented system in a distribution sense

with

(31) Op + div(pu) =0,
3 — 3 EuK (- M EuK (>
(32) O(pu) +divipu®@u) + Vp(p) = edw(’]I‘ (v) + 2100) Tr (T (v))>
e : u ¢, AMp) u
(33) 8 (pB) + div(p7 ® u) = —adw((']I‘E K (w))t + 0] (T K(u))>
with
(34) Ap) =2(pi (p) — u(p)),  ©=eVulp)/p-

where the tensor valued function T#“%(6) (for § = u and ©) is defined through the following
relation

u 1 —
TEK(9) = | V) 9) - 200 00)]

with

TEU(9) € L0, T; W H1(Q)).
Important property. Note that the Energy estimate provides the bound L*°(0,7%; L7(2)) on p
and thus 11(p)/+/(p) € L>=(0,T; L?(Q)) and thus using the mass quation u(p) € L>(0,T; L(1)).
Navier-Stokes-Korteweg system. Concerning the augmented Navier-Stokes-Korteweg
system (20)—(23), defining the energy

e,V €,V g2 —1? 2, P, 2
Eysi(t) = Engg(p,v,w) = . 5 p vl +§|w| +H(p) |,

we have the following formal equality

Proposition 4. Let (p,v,w) be a strong enough solution of (20)-(23) we have

dEﬂ(p,v,w) Yy /Q (1(p) (IVul* + (€2 = ) |Vol?) + 1/ (0)H" (p)|V p|?)

dt
AP) (o 2 2 2\(d; 2) ) _
+v /Q (T ((div(w)* + (¢ — v*)(div(v)) )> = 0.

It suffices to take the scalar product of (21) with w and to take the scalar product of (22) by
(e2 — v?)v, using the expressions of w and v, integrate in space and sum to prove the result
using the mass equation.

Global weak solutions of the augmented system. Looking at new unknowns (p,v,w) with
v = Ve? — 12, assumption between K(p) and p(p) will be required to define global weak
solutions of the augmented version of the Navier-Korteweg system namely:

K(p) = [ (p))?/p with p(p) = p**/2 and  p(p) = p?
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with
s+2 <7, s> —1and vy > 1.
Note that with this constraint on u(p), we have

Ap)/1p) = 2(1 (p)p — u(p))/u(p) = (s +1) = Cst > 0
Assume the initial density po positive and in L'(£2) namely

POZOa /PO<+OO
Q

and
Ensk (po, Y0, wp) < +00
with

Exsk(po, 00, wo) = [Exsk(p, 0, w)]i—0 = [/ P!5\2+P\w\2+H(P)L 0 / po|To|>+polwol*+H (po).-
Q 0

We can define global weak solutions of the Augmented version of the Navier-Korteweg system
as solutions satisfying, for ¢t € [0, T, it satisfies a.e 7 € [0, ]

Bnslpo@+v [ [ (1@ + TP +

t Mrfwzr@2 v, W
@) o [ (G (TR + 11 (T@)P) ) < Exsilp. )0

1 pp'(p) W)
e2—v2 1/(p)

where

EWK@wwo=AQMP+MwP+H@>

p =0, /pZ/po<—|—oo, Sup/,u(p)<+oo.
Q Q te(0,1) JO

The augmented system in the distribution senses as follows

(36) Dup + div(pu) = 0,
Ou(pw) + divipw ) + o) — v V[T (w) ~ £ /HI (T )]
(37) = VeZ =12 div[\/mqr(@) + %MTr(T(ﬁ))Id],
O (pv) + div(pv @ u) — vdiv[\/u(p)T () + % Vil(p)Tr (T (9))1d]
(39) — —VE R aiv [ VR (T) + 5 /T (Rl
:;1;1 w=u+vVulp)/p, =2 —12Vu(p)/p

and where the tensor valued function 7'(0) (for § = w and v) satisfies /v T'(f) is bounded in
L2(0,T; L?(2)) and satisfies the following relation

w(p)T(0) = V(u(p) ) —

and is chosen equal to zero when p vanishes.

1
—=—p ®
vz, 2
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1) Important property. Note that the Energy estimate provides the bound L*(0,7; L7 (€2)) on
p and thus p(p)/,/p € L°°(0,T; L?(2)) and thus using the mass quation p(p) € L>(0,T; L*(12)).

2) Important Remark. Let us remark that for the global weak solutions of the Navier-Stokes-
Korteweg, the following equation is satisfied in the distribution sense

(40) V[Ouulp) + div(ulp) w) + % ()T (T(w))] = 0

where u = w — v v/v/e? — 2. Taking the gradient of Equation (40), we get
OTulp) + AT (u(p)u) + ¥ (Ol ()] =0

and therefore by definition of /u(p)T(u) and expression of v, we can write

VIBu(po) + divipy @ w) + div( u(p)(ﬂr(u))t)w(%)) () Tx(T(w)))] = 0.

This explain why a global weak solution of the Navier-Stokes-Korteweg system is also global
weak solution of the augmented Navier-Stokes-Korteweg system.

3. THE EULER-KORTEWG SYSTEM : RELATIVE ENTROPY AND DISSIPATIVE SOLUTION

In this section, we consider the problem (2)—(3) through its augmented formulation (31)—
(33). The main goal of this section is to give the definition of what we call a dissipative
solution for this problem. To this end we have to establish a relative entropy inequality.

3.1. Relative entropy inequality. In [23], E. Feireisl, B.-J. Jin and A. Novotny have in-
troduced relative entropies, suitable weak solutions and weak-strong uniqueness properties
for the compressible Navier-Stokes equations with constant viscosities. The goal of this sub-
section is to establish a relative entropy inequality for the Euler-Korteweg System using the
augmented formulation introduced in [8] and extending the ideas in [13] and [14] to such
system in order to be able to define what is called a dissipative solution.

Let us consider the following relative entropy functional, denoted Egyx (p, u,v|r,U, V) and
defined by

gEuK(t) = 5EuK (P, u, U|7", U7 V)(t)

Koy, /K0
P

2

1
(41) = 5/ pl|u— U|2 + &2 Vr + / H(p|r)
Q Q

T
1
- §/p(|u—U|2+e2|v—V|2) +/H<p|r>,
Q Q

H(plr) = H(p) — H(r) — H'(r)(p — 7).

where (p,u,v) is a weak solution of System (31)—(34) and (r,U, V) smooth enough target
functions. Note that the definitionof the relative entropy used here is different from the one
used in [27] but we can show that the twice are equivalent in some sense for some range of
the capillary coefficient. We refer to appendix 6.2 for more details. Let us just say that such

with
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an energy measures the distance between a weak solution (p,u,v) of (31)—(34) to any smooth
enough test function (r,U, V). The goal here is to prove an inequality of type

t
Epur(t) — Epuk(0) < C/o Epuk (§)dE,

with C a positive constant. To this end let us first prove the following proposition.

Proposition 5. Let us assume that u(p) = P32 with v > s +2 and s > —1. Let (p,u, )
be a global weak solution to the augmented system (31)-(34). We have:

SEuK(t)—EEuK(O)S/Ot/ﬂp(U—u)-Z?tU—F/Ot/Qp(VUu)-(U—u)+/0t/9p(‘7—v)-8tv

v t L o7 (7 -0+ /0 (1505 ) - 2L B 510 w0

21(p) W11 (Q)x W+ (Q)
! Ap) -
- EuK t EuK .
e /0 <(1r (1) + 5 5 TR )1, VV>W71,1(Q o / / ) divU
t

- / / [0:(H'(r))(p — 1) + pVH'(r) - u] ,

0 /o

for all t € [0,T] and for all smooth test functions (r,U, V') with

reCl0,T]xQ), r>0 UV eC*0,T]xQ).

Proof. Thanks to the global weak solutions definition given after Proposition 3 we have

Erut) ~ Epuc0) < [ (gw—pu-U+§p52@\wr?—pa? @vm/@w) 0
—/Q<§!U\2—pu-U+%p B g2 \/ \/ ) 0)

- [+ HEO-r) O+ [ (H)+ HE6-) 0
Q Q

1.€.

Epur(t) — Epur (0) < /t/ % <£’U\2—PU‘U+%P V2 —p U"_/)
(42) //dt r)+H (r)(p—r)).

We multiply (32) by U, (33) by V and we integrate with respect to time and space. Writting

O(pu-U) =0(pu) - U+ / pu- U,
Q

and
O(pv-V)=0(pv) -V +pv-0V
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and thanks to integrations by parts, we obtain

Emurc(t) — Erurc(0 //a 21y —/Ot/qu-atU—/ot/QpWUu»u

+e /0 <TE“K( ) + %(p)) (TE“K(U))Id;VU>

+/0t/gat(gym2 —/0 /va-at‘_/
—/Ot/Qp(VVu)~v

—s/t<('1rE“K(u))t+ Alp) Tr(TE“K( ))Id; vv>

2u(p W-L1(Q)x W (Q)

// )divU — //8t )+ H'(r)(p—1)).

1 1.
0 (BIUR) = 500 [UP +pU - 04U, 0, (5IVI2) = —5div(pu)V 2+ pV - 01V,

W—11(Q)x Wl (Q)

Using (31) and

thanks to integrations by parts we have

o)~ o) < [ [o@-w-ovs [ [
+/ /p(VUu)-(U—u)—F/Ot/Qp(VVu)-(V—v)
e [ (TEOU),
. /0 t<(1rEuK(u))t;vV>WMm)xwm(m
5[ GG
/<Agp§Tr(TEuK( METT ), oniaymainoniy
p(p)

// p(p) divU — //at )+ H'(r)(p—7)).

This last inequality gives the result since with Equation (31) we have:

FuK
Tr (TEUK (3))1d; VU>W71V1(Q)XWWQ)

/ O(H'(r)(p— 1)) = / (Ou(H () (p — 1) + pV (H' (1)) - ) .
Q Q
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Proposition 6. Let (p,u,) be a global weak solution of the augmented system (31)~(34) and
(r,U, V) be a strong solution of

(43) Oyr +div (rU) =0,
(44) r(OU+U-VU)+ Vp(r)—e {div(,u(r)VV) + %V()\(r) div V)] =
(45) F (7 + U - VV) + e|div(u(r) VD) + %V(/\(r) aiv )] =

belonging to the class
0 <inf(gr)xar <7 < sup(grxar < +00

Vr e L*0,T; L®(Q) N L0, T; WhH>(Q))
U e L0, T; W2%°(Q)) n W0, T; L®(Q)),
V e L0, T; W2>(Q)) N WhH>(0,T; L= (Q)),
O,H'(r) € LY(0,T; LY/~ (Q)), VH'(r) € L}0,T; L2/ 0D ()
and V|i—o = eVu(ro)/ro. Then we have

Epuk (t) — Epuk (0 // u—U)- (VUU —u)) // VV(U —u))
- /O [ 00 =50) = (=) v
_/Ot/Qp(U_V). // (v-V)-VV(u-1U)

—c /Ot/ﬂp (M//(P)V,O — N”(T)V(T)) . ((?7 — V) divU + (U . u) div V)
_g/o /Qp(w(p) — W' (m) (@ =V) - V(divU) + (U —u) - V(divV)).

Proof. First remark that due to the initial condition hypothesw and the regularity hypothesis
on U, we can prove that V = eVu(r)/r. Multiplying (44) by = (U u) and (45) by p (V —)

and integrating with respect to time and space we have:

Epuk (t) — Epux (0 / / (VU (U —u)) - (U —u)

// (VV (U —u)) - (V — )

IEuK IEuK) IEuK
with

e / / 2 div(p(r)VV) - (U — ) ~ 2 div(u(r)VO) - (V ~ 0))

o) <TE“K > —

t
. FuK t. 7
/0 <(T (w) ’VV>W*“( Q)x W1 (Q)
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9 [PvK  — /Ot/ﬂg(U—u).v(A(r) divV)—/Ot/Qg(V—v)~V()\(r) div U)

+/Ot<MTr(']I‘E“K( )Id; VU )

w(p) WLL(Q)x W oo ()
- / t<MTr(’]I‘E“K(u))Id; vv>
0 Vu(p) W= LL(Q)xWLoo ()

1K / [ (=pt0) divt = £9p(r) - (U =) = (1 (1)) o =) = p V(1)) ).
Using rH"(r) = p/(r), we have
EVp(r) = oV (H'(r)).
Mutiplying (43) by H”(r) and using rH"(r) = p/(r) we obtain
O H'(r)+VH'(r) - U +p'(r)divU = 0.
Using rH”(r) = p/(r) and an integration by parts, we have

//TVH/ W =— // )div U.

Then,
t
1 = [ [ ) = (o) (= p)f ()i U
We have
(46) IlEuK — 4E'uK IEuK,
where

eIFul — E/Ot/ﬂgu(r)[AV-(U—u)—VdivU-(V—fu)
[ [ e == v =) w0y ¥,

and using the symmetry of Vo and VV and the definition the tensor value function T#“¥ (v)
and TP“X () which may be also written for U and V (recalling that u(p) € L>(0,T; L*(R))),

t t
EuK __ EuK o FEuK t.x7Y/
<15 B /0 <T (0); VU>W*l»l(ﬂ)xVV1»°°(Q) E/o <(T (1)) ’VV>W*1’1(Q)><W1»°°(Q)
t t
= 5/ <(TEuK( )) VU> —E/ <TEHK(U)VV>
0 W-L1(Q)x W10 (Q) 0 ’ W-LL(Q)xWLoe(Q)

t t
o FEuK (Y, FuK . Y/
E/<((T V)" VU>W1»1(Q>xw1»w(m+€/o<T (U)’VV>W*1’1(Q>xW1»°°<Q)
_ / / deU+(u—U)AV}

+/p<<v 3)-VU) 5 — p(v- VV) - (U — )
0
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Then we get
c[EuK E/Ot/ﬂp (@ - “Ef")> (5= V) - div(*'VU) + (u - U) - div(VT))
—/t/p(v—V)- // v—V)-VV(u-TU).
Let us now look at I2“X we have

[PuK //QrU r) div V) //QT — %) - V(A(r)divU)

(
+/< Ep) H(TFK (3))1d; VU>

p) W=LL(Q)x Wheo ()
! A(p) EuK ¥,
— — LTy (T 1d;
+/o <M(P) r (w)d; VV>W*171(Q)><WL°°(Q)

and therefore recalling that \'(p) = 2pu”(p) and playing as for IF*K | we get
t
orFuk — 9 / / p (1" (p)Vp—p"(r)Vr) - (0= V) divU + (U — u) divV)
o Jo

_/t/ (A(p)_gw)) (0=V)-V(divU) + (U —u) - V(divV))
0 JQ

and therefore because \(p) = 2(1/(p)p — u(p)), we get

e(IPuE 4 [Puky = /Ot/gp VU(@—V)Jr/Ot/Qp(@—V)-VV(u—U)
e /Ot /Q p (W (9)Vp— 1)V () - (T — V) divU + (U — ) div¥)
E/Ot/gp CHE) (0 - T)-V(divD) + (U —u) - V(div 1)) .
This concludes the proof. 0

Theorem 7. Let us assume p(p) = pCt3/2 with v > s +2 and s > —1. Let (p,u,v) be a
global weak solution of the augmented system (31)—~(34) and (r,U, V') be a strong solution of
(43)—(45) in the sense of Proposition 6. We have

Epuk (t) — Epu (0) < C(r,U,V) /Ot/ﬂcf’EuK(ﬁ)d&

where C(r,U, V) is a uniformly bounded constant on R x (.
Using the Gronwall’s Lemma, we directly obtain:

Corollary 8. Let us assume pu(p) = p¥3/2 with v > s +2 and s > —1. Let (p,u,v) be a
global weak solution of (31)-(34) and (r,U, V') a strong solution of (43)-(45) in the sense of
proposition 6. Then

Epuk (t) < Epuk (0) exp(C't),
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with C = C(r,U, V) a uniformly bounded constant on R x Q. It the initial conditions coincide
for (p,u,v) and (r,U, V) thenp=r,u=U, v="V.

Note that theorem 7 is a direct consequence of proposition 6 and the following lemma.

Lemma 9. We assume that pi(p) = p3)/2 with s > —1. Let (p,u,v) be a global weak solution
of (31)—(34) and (r,U,V) be a strong solution of (43)—(45) in the sense of Proposition 6 .
Then

(1" (p)Vp =" (1V(r)) - ((©—V) divU + (U — u) div V)‘

1 [t _
<ot / /p<|@—V|2+|u—U|2>,
2 Jo Ja

and, if v > 2+ s, we have

W) (@ —V) - V(v D) + (U ) - V(div v>)'

t
<c [ [ o)+ ollo =V +u=UP)).
where C = C(r,U, V) is a uniformly bounded constant on Rt x Q.

Proof. As (r,U,V) is a strong solution of (43)—(45) then we can prove that V = eV (u(r))/r.
Since u(p) = p**+3)/2 and 5 = eV (u(p))/p we have
s+1

W' (p)Vp—p'(r)Vr) = ——=@=V),

which gives the first part of the lemma using Young inequality. For the second one, using
Young inequality, we have:

| [ 1660 =4t 0)) (5= ) - V@i 0) + 0 = ) - Vi 7))

gc(% /Ot/ﬂ,o“/(p) () + / /,olv—V|2 / /p|u_U|2>

with C' = C(U,V) a uniformly bounded constant on Rt x Q. Using Lemma 35 in the first
integral, we obtain the result. O

Let us now give a weak-strong uniqueness result based on solutions that has been already
constructed in [3]-[18] and [6].

Theorem 10. Let (rg,ug) € H*TH(Q) x H3(Q) with s > 2+ d/2 with g > 0 such that
curl(roug) = 0. Let (p,u) be a global weak solution in (0,T) x Q of the Quantum-FEuler system
(47) Op + div(pu) =0

(48) A (pu) + div(pu @ u) = 2 div (VVp — pVlog p ® V log p)

b corresponding to the initial data (ro,roug) and let (r,U) a local strong solution in (0,T*) x Q2
of this system for the same initial data with

0<c§r§c_1<+oo
where ¢ is a constant and
r e C([0,T] x H*TH(Q)) x ¢1([0,T] x H~1(Q))
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U €C([0,T] x H*(Q)) x C([0,T] x H*%(Q))
then p=r,u=U and w=W on (0,min {T,7*}) x Q.
Proof. Let us first remark that such existence of local strong solution has been proved for
instance in [6] in the whole space without the constraint on curl(ppup) = 0 but may be
considered in the periodic case. The global existence of weak solution for the Quantum—FEuler
System with the constraint curl(ppug) = 0 has been obtained in two papers namely [3] and
[18]. For a strong solution, it is not difficult to prove that it also satisfies the augmented

system. Concerning the global weak solution, it suffices to recall the important remark given
in the introduction. Differentiating in space the mass equation in D'((0,T) x ) we get

O Vp+ Vdiv(pu) = 0,Vp + div('V(pu)) = &2 div[Ap — V/p @ /7]
which may be written
O Vp+div(pVlog p @ u) + div(tV(pu) —pViogp®@u) =0

and therefore
O, Vp+div(pVlog p ® u) + div(T(u)") = 0.

Using the definition pv = eVp, we can rewrite the Quantum-Euler system and the previous
relation in its augmented form

(49) Op + div(pu) =0
(50) O(pu) + div(pu ® u) = e div T(v)
(51) A pv + div(pd @ u) + e div(T(u)") =0

which is the augmented version of the Quantum-Euler equations. Thus a global weak solution
of the Quantum-Euler system is a global weak solution of the augmented Quantum-FEuler
system and therefore the weak-strong uniqueness corollary 8 may be applied due to the
regularity of the strong solution.

3.2. Dissipative solutions and weak-strong uniqueness result. In this subsection, we
give the definition of what we call a dissipative solution for the Euler-Korteweg System. We
recall that Egyk(t) stands for

gEuK(t) = 5EuK (P, u, U|7", U7 V)(t)

defined in (41). Let U be a smooth function, then we solve the transport equation for r for
the initial data rg such that 0 < rg < +00. We then define the function & as

(52) Er,U) =1 (0,U + U -VU) + Vp(r) — e2div(u(r) 'VV) + %V(/\(r) divV),
with V' = V(u(r)). Then we can prove differentiating (43), that

(53) 0=r 0V +U-VV)+div(u(r)'VU) + %V()\(r) div U).

Definition 11. Let us assume pu(p) = pt+3/2 (ie. K(p) = %ps) with v > s + 2 and
s > —1. Let pg and ug smooth enough. The pair (p,u,v) is a dissipative solution of the
Euler-Korteweg System corresponding to the initial conditions

pli=0 = po, puli=0 = poo, pvli=0 = v/ poK (po)V po-
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if the triplet (p,u,v) satisfies

Epuk (t) < Epuk (0)exp(C't) + brur (t) + C /Ot beur (§) exp(C (t —§)) d§,

with C = C(2,r,U, V) a uniformly bounded constant on R* x Q, and where

bpuk (t / /Q—\@p —u)l,

for all strong enough U test function and (r,&) given respectively through (43) and (52) and
the identity (53).

As a direct consequence, we can establish the following weak-strong uniqueness property
(see [26]).

3 2
Theorem 12. Let us assume u(p) = p+3/2 (ie. K(p) = (sz ) p°) with v > s + 2

and s > —1. Let us consider a dissipative solution (p,u,v) to the Euler-Korteweg system
satisfying the initial conditions

pli=0 = po, puli—o = poto, pvli=0 = v/ oK (po)Vpo.
Let us assume that (r,U) is a strong solution of (43) and

(54) r(OU + VU U) + Vp(r) — %V (K(T)AT + %K’(T)WTP) =0

with the regularity given in proposition 6 where we denote V= eV (u(r))/r and with (pg,ug) €
W22(Q) x WEh(Q). If r|i—o = po, Uli=o = ug then p =7, u = U and v =V, which means
that the problem satisfies a dissipative-strong uniqueness property.

Proof. If (r,U) is a strong solution of (43), (54) then & = 0 and bg,x(t) = 0. We have

(55) 0 < Epur(t) < Erux(0)exp(C't).
If r(t =0) = po, U(t =0) = up then v(t = 0) = V(t = 0) and Egyux(0) = 0, then this leads
top=r,u=U,v=V using (55). O

Note that, as already mentioned before, all the results and definitions of this section are still
valid for the compressible quantum Euler System. Indeed it corresponds to the special case
K(p) = 1/p in the Euler-Korteweg System for which the assumption 2 + s < « is satisfied
since s = —1 and v > 1. In particular we have the following definition of what we call a
dissipative solution of the quantum Euler system. This one will be used in section 5.

Definition 13. Let pg and uy smooth enough. The triple (p,u,v) is a dissipative solution of
the quantum Euler system (14)-(15) corresponding to the initial conditions

pli=0 = po, puli=o0 = poto, pvli=0 = poV log po.
if the triplet (p,u,v) satisfies

EpuQ(t) < Epuq(0) exp(C't) + bpuq(t) + C /Ot bpuq(§) exp(C (t - £)) dé,

where Epuq(0) = Epuqlizo and with a constant €' = C(Ezﬂ’, U, V) uniformly bounded on
RT x Q, and
Epuq(t) = Epuk(t), for K(p) =1/p,
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brua(t) //Q—\cf _—)

for all smooth U and (r,V, &) defined respectively through (43) and
(56) V =Vlogr,
(57) E(r,U) = (0,U +U - VU) + Vp(r) — e2div (rVV),

Remark. Note that, in the definition above, since U is regular and also r, we have V which
satisfies

(58) r(0,V +U-VV) +div (r'VU) = 0.

4. THE NAVIER-STOKES-KORTEWEG SYSTEM: RELATIVE ENTROPY AND DISSIPATIVE
SOLUTION

The goal of this section is to define what we call a dissipative solution for the Navier-
Stokes-Korteweg System. To this end, we consider the augmented System (20)-(22) and we
establish a relative entropy estimate. Here the viscous term adds some difficulties compare
to the case of the Euler-Korteweg system.

4.1. Relative entropy inequality. In this section, we establish a relative entropy inequality
for a weak solution (p, U, w) of the augmented System (36)-(38). This will then be used to give
the definition of what is called a dissipative solution for the Navier-Stokes-Korteweg system.
We define the following relative entropy functional

Ensk(t) = Ensk(p,v,w|r,V,W)

- %/Qp(|z7—V|2—|—|w—W| /Hp|r
! T(v) g2, L) >
+V/0/Q/~c(p)<\ vl vwr)
/ / < TrT(©) —diVV)z—l—(TrT(w) —diVW)2> )
Vi(p) wip)

Proposition 14. Any global weak solution (p,v,w) of the augmented system (36)-(39) sat-
isfies the following inequality for all t € [0,T] and for any test functions

reCY[0,T]xQ), r>0, V,WeC*[0,T]xQ),

Ensk (p, v, w|r, V. W)(t) < Enskl(p,v,wlr,V,W)(0)
/ / (07 - (7 —0) + (V7 ) - (V — )
+/ /p((‘)tW-(W—w)—l—(VWu)'(W—w))

e // (IVV]2 + VW]?) = Valp) (T(2) : YV + T(w) : VW)
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t
VE 2 / / \/,u(p) (T(v) : VW — (T(w))' : V)
Tr(T(v) div W — Tr(T(w)) div V)

/ / ((div V)? + (div W)?)

/ / \/_ () div V + Tr(T(w)) div W)
- / / (O(H' (1) (p — 1) + pV(H' (1)) - u+ plp) div V')

—7// / H// |vp|2

g2 — 12

Remark. Note that each quantities are defined in the usual sense for weak solution (p, 0, w)
and regular test functions (r, V, W) as chosen in the proposition above. The main difference
compared to the Euler-Korteweg system is that here we control /v T(v) and /v T(w) in

L2(0,T; L*(92))

and /u(p) € L>®(0,T;L*(Q)) to define in the usual way the first order

derivative quantities.

Proof. Thanks to (35) , we have

Ensk(t) — Ensk(0) < / (g‘VF —pv-V + g’W’z — pw - W) (t)
Q

(60)

where

(61)

[ (5P = po-V + W = - W) 0
Q

—/ (H(r)+H'(r)(p = 7)) (t)+/ (H(r)+ H'(r)(p — 7)) (0)

Q

_,,// p)H" (p)|Vp|* + v (1% + 13'9) ,

+ | div W),

21Vs = /t/\jﬂ(
—2//\/_Tr 9)) div V" + Tr(T(w)) div W) ,

Vs = // (IVV]2+ VW)
//\/— ) : VV + T(w) : VW)
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Using (37),

Oh(pw-W) = Olpw) - W+ pw- oW
= <—div(pw®u) Vo(p) +vdiv(y/p(p)T(w)) + Ve? — v2div(y/ u(p)T(0)); W

+ <A W Sw-21(Q)xWw2e(Q) TPW oW,

>W*2,1(Q)XW2,OO(§

where

Using (38),

Z?t(p@ V) :8t(p17) -V—l—p’D 8t‘7

= <—diV(P?7 ® u) + v div(y/u(p)T(0)) — Ve? = v2div(y/u(p)(T(w))"); ‘7>

W=2.1(Q) x W22 ()

(64) + < Ay V >w-21(Q)xW2ee () TPU - oV,
where
45 = 2922 ey - L vz 2 v (A ny(rw))
2 1(p) 2 1(p)

Then, Using (36)

/ Late)+mwe=m = [ [ @@ear+o(me)e=n+ 6o 1w ar)
:/ (Ou(H'(r))(p — ) — H'(r)div (pu))
0 JQ
- / (Ou(H () (p — ) + pV (H' (1)) - ) .
0 JQ

Since

_ 1 _ _ _ 1
0 (SIVI2) = S0V +pV -0V, 0 (SIWE) = SoulW P + oW - 04,
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and since V4, VV are symmetric matrices (recall that v and V are gradient of functions),
thanks to (36) and integrations by parts we obtain

Ensic(t) — Ensi(0) < /t/p atx‘/-(v—u)+/t/p(vvu).(v—v)
//p@t Ww// (VW) - (W —w)

+y/ /vﬁ—‘ ) VV +T(w) : VW)
E / / Viulp) (T(0) : VW — (T(w))" : VV)

// dIVW—I/// p)H" (p)|Vp|?
- [ Jaweno-n-[ [ wure

¢
+/ /(VAg—\/52—V2A4)+V(IfVS+I£VS),
0 JO

where
_ ) I :
2A3 = (Tx(T(v)) div V + Tr(T(w)) div W),
p(p)
_ M) T ) di
244 = (Tr(T(w)) div V — Tr(T(v)) div W)
1)
and IS and I are given through (61)-(62) which gives the proposition. O

Let us introduce that there exists a strong solution of

(65) Oyr +div (rU) =0,

r QW + VW U) + Vp(r) — v div(u(r) VW) — %V(A(r) div W)

(66) =+e2 -2 <div(,u(r) VV) + %V(/\(T) div V)) ,

r (0V +VVU) — v div(u(r) VV) — gV()\(T) div V)

(67) +Ve2 — 1?2 <d1v( (r)IVW) + %V()\(T) div W)> =0,

U=W —-vV, V=+e2-12V
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belonging to the class

0< inf(07T)XQT <7 < sup(oryxor < +00
Vr e L?(0,T; L°°(Q) N LY (0, T; W1*°(Q))
(68) W e L0, T; W3 (Q)) nWhee(0,T; L>=(Q)),
V e L0, T; W2>(Q)) n WH>(0,T; L>(Q)),
OH'(r) e LY0,T; L/O0~Y(Q)),  VH'(r) e L'(0,T; L*/0~Y(Q))

and where V=g = Ve2 — 12V u(rg) /ro. Defining
(69) VS = / //\ leV + (divIv)?)

/ / ¢_ ))div ¥ + Te(T(w)) div V)
// r) div V) V—@)+V(A(T)divW).(W—w)),

() 1= / | o) (97 + 19w )
//\/— LYV + VW T(w))
+ /O/Q_ div (u(r)V -<V—@>+div<u<r>VW>-<W—w>),

(711) 1IN = /0 /Q §<div (u(r)VV) - (W — w) — div (u(r)! VW) - (V — @))
4[] VAl (2 YW - () V7).
0 JQ

(72)  2IS - // (V@) divT) - (W — w) — VO divIV) - (7 — )

//\/_ ) div V — Te(T(2)) div V),

we have

Proposition 15. Let (r,V,W) be a strong solution of (65)-(67) belonging to the class (68).
Let us assume that Vo = V&2 — v2Vu(rg)/ro. Any weak solution (p,v,w) of the augmented
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system (36)—(39) satisfies the following inequality

Ensk(t) — Ensk (0 / / VV (u—U V )+ (VW (u—-0)) -(W—w)]

—/O/Qp,o “p(r) — P () (p— 7)) divU
b [ V) - 7) - plp) V)

—7// / H// |Vp|2

+2I§VS+VI4 ez 2 (INS + 159,

where INS fori=3,4,5,6 are given by (69)-(72).
Proof. Multiplying (66) by T(W w) and (67) by = (V v), integrating with respect to time
and space, and using (65), we obtain
t _ B 1 B _
Ensic(t) — Ensic(0) < V/ /g [div PVV) - (V = 0) + 5 V) div ¥) (v—v)}
Q
—Ve2— 1/2/ / |:le VIVW) - (V —9) + %V()\(r) divWw) - (V — U):|

—i—/O/QpVVu— (V- ) +/0t/9p(VW(u—U))'(W—w)

+v /Ot/Q g [div(u(r)VW) (W —w) + % V(A(r) div V) - (W — w)]

+m// [dw VT (W—w)+%V(A(r)divvww—w>}
+1/// ) (IVV]? + [VW )

_,,//\/— LYV + T(w) : VW)
+¢ﬁ/0/ﬂm (@) : VW — (T(w)" : V)
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g2

Tr(T(v)) div W — Tr(T(w)) div V)

——/ / ((div V)2 de))
/ / \/_ ) div V + Tr(T(w) div W)

// r)divU — p(p)div W) —y// p)H" (p)|Vp|? + IV3,

where

(73) s = - /0 [ 29 ) - (W =) - /0 /Q B (H'(r)(p —

r e w)
—/Ot/QpV(H’(r))-u—l—/ot/QH'(r)&gr.

Using (65) H'(r)0yr + H'(r)div(r U) = 0 which leads, with an integration by parts, to

/Ot /Q(H/(r)(‘)tr —rV(H'(r))-U) =0.

Then
/0 t /Q (H'(r)ayr — Vp(r) - U) = 0,
(74) /0 t /Q (' (") + p(r)div(U)) = 0.
Moreover
Oy(H'(r)) = —p'(r)divU — H"(r)Vr - U = —p'(r)divU — V(H'(r)) - U.
Then

s = //pVH’ ~W4w+U—u)+ // r)divU (p
= //pVH’ // r)divU (p
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Therefore
Ensk(t) —Ensk (0 / / (VV (u=U))- (V=2)+ (VW (u—-U)) - (W — w)]
/ /[p Y divU — p(p) divU — v p(p) divV] —y/ / p)H" (p)|Vp|*
/ //\ ((div V)% + (div W)?)
——// (Tr(T(v)) div V + Tr(T(w)) div W)
+I§VS+uIiVS+u18 +Ve2 =2 (IS 4 19
where
(75) Vs = / /QT r)divV) - (V —3) + V\(r) divIV) - (W — w)),

and IN9 for i = 4,5,6,7 are given by (70)-(73). Finally
Ensic(t) — Ensi(0 // (VV (u—U)) - (V —0) + p (VW (u— U)) - (W — w)]

/ / p(p) + p(r)) divU — vp(p) divV]

//pVH' (V — ) —V// p)H" (p)|Vp|?

g / Alp) ((div 7)? + (div )?)
0 JQ
_r / Alp) (Tr(T(v)) div V + Tr(T(w)) div W)
2 Jo Jav/ulp)
—I—g / g (VA(r)divV) - (V = 0) + VA(r) divIV) - (W — w))
0 JQ
v /M( ) (VTP + VW)
0 JQ
—v ; /Q w(p) (T(v) : VV + VW : T(w))
t p v V-0 iv (u(r . —w
o /QT<d ) div ()W) - (W — )
+ve2 — 2 (IgVS+16 ),

with 129 and I}Y® given by (71) and (72). This gives the proposition. O
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Lemma 16. Let IS given by (71) and IY® given by (72). Under the assumptions of Propo-
sition 15, we have

// VW —w) + VW (o V))'(’U—V),

and

21N = -2 / / p (W' (p)Vp— " (r)Vr) - (W —w) divV + (v - V) divI¥)

/ / __>\ )) (W —w) - V(divV)+ (5 — V) - V(divIV)) .

Proof. The proof follows the same lines that the ones for (46) in the Euler-Korteweg section.
O

Lemma 17. Let INS given by (71) and INS given by (72). Let us assume p(p) = pts+3)/2
with v > s+ 2 and s > —1. Under the assumptions of Proposition 15 we have

t
15415 < 0 [ [ (o= WP+ plo— V4 plo - VP + H(pl).
0 JQ

where C = C(r,V,W) is a uniformly bounded constant on R™ x .
Proof. By definition of A(p), lemma 16 directly leads to

NS+ 1S = // (VVW —w))-(v—V // (VW(V —2))-(v—V)
_/ /p(uﬁ(p)vp—u”(r)wr)).((W—w) div ¥ + (o — V) div W)
// () (W - w) - V(div V) + (8 — V) - V(divIV)) .

Moreover in an analogous way than for lemma 9, we can show that

‘/Ot /Q p (W' (p)Vp — ' (r)V(r)) - (W —w) divV + (5 — V) div W)'

t
<c [ [ o(w-ul+lo-VP)
0 JQ

// ') (W - w) - V(divV)Jr(v—V)-V(divW))‘

and

<c /0 /Q (H(plr) + p(lw — W2+ |5~ V).
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Lemma 18. Let IS given by (69) and I given by (70). Under the assumptions of Propo-
sition 15, we have

s _2// o)p— i ()T - (V = 5)div 7 + (W — w) div 7))

—/O/Q (Ap) — 2A) (V(aiv V) - (V — ) + D(div V) - (W — ),

and
_/Ot/gp(v —V)- (VV(V —0) + 'VW(W — w))

Proof. The proof follows the same lines that the ones for (46) in the Euler-Korteweg section.
O

Using the previous lemma and the symmetry of VV, we obtain the following lemma,

Lemma 19. Let I3 given by (69) and I)S given by (70). We assume u(p) = pt+3)/2 with
v >s+2and s> —1. Under the assumptions of Proposition 15, we have

1 t _
] < [ [ (o= VP gl =V pho = W+ H(plr)

where C = C(r,V,W) is a uniformly bounded constant on RT x Q.

Proof. We have:

%IéVSJrIiVS = // v=V)- (VV(V =)+ 'VIW(W — w))

// p)Vp— ' (r)\Vr)- (V —20)divV + (W — w) div W)

- / /Q p (i (p) — 1 (1) (V(div V) - (V — ) + V(div W) - (W — w))
! ulp)  p(r)y o :
—/0 /Qp <T - T) (div(VIWV) = V(divIV)) - (W —w).

In an analogous way than for the lemma 9, we can show

[ o (22 80 daeww) - v w- vy < ¢ [ [ (610 oW )

Then using an analogous result than the one used in the proof of lemma 17 we obtain the
result. g

Let us now define

0 = s [ [ evare) @ -+ spany) v [ [ o orvs.

Using the definition of H and an integration by parts, we obtain

o [ e
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with v = V(u(p))/p, v = Ve —1v2v, V. = V(u(r))/r, V. = Ve2 —12V. We can show the

following proposition.

Proposition 20. Let IN® given by (76). Assuming u(p) = p3)/2 with Y>s5+2,5>—1
and the hypothesis of Proposition 15, there exists a contant C = C(r,U,V, W) uniformly

bounded on RY x Q such that
y t
s [ Gl

m<c
e

Proof. Using Lemma 36, we can write

t /
77 [NS:_ v / /pp(p) ‘7 172—[NS
( ) 11 62 — 2 o Ja /J/(p) ’ 12
where
(78) s = 22 (,o|r)17) v

Using an integration by parts

v t . v t o
B =~ [ o an)+ 52 [ satoiv .

Now using lemma 34 we obtain

n s L o 522 [ [ mom < 2255 [ [ o)

which gives the result due to the expression (77) and the sign of the first quantity in the
right-hand side. O

Theorem 21. Assuming p(p) = pt+3)/2, v > s+ 2 and s > —1, any weak solution (p, v, w)
of System (36)-(39) satisfies the following inequality

(79) Ensk(t) —Ensk(0) < C<1+€2_LU2>/0 Ensk(§)dg

where (r,V, W) is a strong solution of (65)-(67) belonging to the class (68) and where C' =
C(r,U,V,W) is a constant uniformly bounded on RT x Q.

Proof. Thanks to Proposition 15 we have

Ensk(t) —Ensk(0) < /0 /QP (VV (u=0))-(V=0)+ (VW (u—=T)) - (W —w)]

- / / (p(p) — p(r) — P'(r) (p — 1)) div U
0 JQ

14
+IN% + EI?{VS + IS+ Ve2 -2 (IS + 1),
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with IV for i = 3,4,5,6 given by (69)-(72) and INS given by (76). This gives with the
regularity of U, V and W and the previous lemmas

t
Ensk(t) — Ensk(0) < C/ /p (|’LL—U|2—|—|5—V|2+|1U—W|2)
0 JQ

- / / (p(p) — p(r) — P'(r) (p — 1)) div U
0 JQ

+o-Y /t/H(m
e2—v?Jo Jo g

t
C (1 + 503 Y V2> /0 Ensk (§)de.

IN

0

Corollary 22. Let (r,V,W) be a strong solution of (65)-(67) in the class belonging to the
class (68). Assuming p(p) = pBt3/2, v > s +2 and s > —1 any weak solution (p,w,v) of
(36)-(39) satisfies the following inequality

Evsic(p. 00l VW0 < Ensc(p ol V) O e (€ (14 52 ) o)),

where C = C(r,U,V,W) is a constant uniformly bounded on RT x €.

Proof. Thanks to the previous proposition and the Gronwall’s Lemma, we have the inequality.
O

Let U be a given and smooth function. We define 7 as the strong solution of (43), and we
introduce the functions &7 and &5 such that

(80) &(r,V,W),=r (OW + U - VW) + Vp(r) — v div(u(r) VW) — %V()\(r) div W)
—Ve2 -2 (div(,u(r) VV) + %V(A(r) div V)>
(81) 0=r BV +U-VV) v div(u(r)VV) — gV()\(r) div V)
+ve2 — 12 (div(,u(r) W) + %V(/\(T) div W)>

where V = v/e2 — 12V u(r)/r. In a same way than for the proof of Theorem 21, we have the
following result.

32
(S—Z ) p°), v > s+2 and

s > —1. Let (p,0,w) be a global weak solution of System (36)-(39) and (r,V,W) a strong
solution of (43), (80)-(81) in the clas (68). Then

Proposition 23. Let us assume p(p) = ptt3/2 (ie. K(p) =

t
_ _ 1%
gNSK(,O,’L_),’lU|T',V,W)(t)—5NSK(,(),’L_),’[U|T,V,W)(0) < C<1+27>/ gNSK"i'by(t)v
0

g2 —v?
vy = [ [ [Lar v -w],

and where C = C(r,U,V,W) is a constant uniformly bounded on R* x Q.

with
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Using the Gronwall’s Lemma, we immediately obtain the following corollary.

2
Corollary 24. Let us assume pu(p) = p+3)/2 (i.e. K(p) = @p“’) with v > s+ 2 and

s> —1. Let (p,v,w) be a weak solution of System (36)-(39) and (r,V,W) a strong solution
of (43), (80)-(81) in the class (68). Then

Ensk(t) < Ensk(0) exp(F"t)+ F” /Ot b (&) exp(F" (t —&))d& + b"(¢),

where b” is defined in Proposition 23 and

14
Fr=C|(1
(rat)

with C = C(r,U,V,W) a constant uniformly bounded on Rt x Q.

4.2. Dissipative solution and weak-strong uniqueness result. Let us now give the
definition of what is called a dissipative solution of the compressible Navier-Stokes-Korteweg
System. To this end, let U be a smooth function, then (r,E¥(r,U)) defined through Equation
(43) and

E(r,U) =r(0U+U-VU)+ Vp(r) —2vdiv(u(r)DU)) — vV (A(p) divU)
(82) +e2 | (div(pu(r)'VV) + %V(A(T) div V)|,

where V' = Vu(r)/r. Denoting

V=vVe2-12V, W=U+vV,

, we then have the following

(83) EV(r,U)=r (W +U-VW)+ Vp(r) — v div(u(r) VW)
—gV(/\(r) div W) — Ve? — 12 (div(,u(r) VV) + %V()\(r) div V)> ,

(84) 0=r (8V+U-VV)+ Ve — 12 <div(,u(r)tVU) + %V()\(T) div U> :

Before giving the definition let us recall that Exgk(t) stands for
gNSK(t) = gNSK(pa v, ’LU’T, ‘77 W)(t)

Definition 25. Let us assume p(p) = pBt3/2 ~ > g4 2 and s > —1. Let po and ug smooth
enough. The pair (p,u) is a dissipative solution of (17)-(18), (1) if the triplet (p,v,w) (with
pv=Vu(p), v =Ve2 —1v2v, w=u+rvv) satisfies

Ensk(t) < Ensk(0) exp(F¥t) 4+ F¥ /Ot bnsk (&) exp(FY (t —&)) d€ + bnsk (1),

with ¥ given in Corollary 24 and

bsic(t) = /0 t /Q Lo W —w)]

with (r,V, W) and &" are defined as mentioned above from all given smooth function U.
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Noticing that each global weak solutions of the Navier-Stokes-Korteweg is global weak so-
lutions of the augmented Navier-Stokes-Korteweg system, a direct consequence of the method
is the following weak-strong uniqueness result.

Theorem 26. Let us assume u(p) = p*+3/2, v > s+ 2 and s > —1. Let us consider
(p,u) a global weak solution to the compressible Navier-Stokes-Korteweg system and define
w=u+vVu(p)/p and © = Ve —v2Vu(p)/p. Let us assume that there exists (r,U) a
strong solution of the compressible Navier-Stokes-Korteweg System and let us define W =
U+vVu(r)/r and V =+/e2 — 12V u(r)/r. Assume that (r, W, V') satisfies hypothesis (68). If
(po,uo) = (r,U)(t = 0) then (p,v,w) = (r,V,W) or (p,u) = (r,U), which corresponds to a
weak-strong uniqueness property.

Finally, let us give the definition 25 in the particular case of K(p) = 1/p which corresponds
to the quantum Navier-Stokes system. This one will be used in Section 5. To this end we
introduce the function &% given by

(85)  EXso(r,U) =r(0U +U -VU)+ Vp(r) — 2vdiv(rD(U)) + e(div(r'VV),

with U a given smooth enough function, r a strong solution of the mass equation (43) and
rV = Vu(r). Defining
V =+veZ -2V, W=U+vV,

and Equation (43) we obtain
(86) &Y(r,U)=1r (W +U -VW) + Vp(r) — v div(r VW) — Ve2 — v2div(r VV),
(87) 0=r (8V+U-VV)+Ve2 -2 div(r'VU).
We define Engg(t) by

5N5Q(t) = Ensk(t) with K(p) =1/p.
Definition 27. Let py and ug smooth enough. The pair (p,u) is a dissipative solution of
(28), (29), (1) if the triplet (p,v,w) (with pv = Vu(p), v = Ve? — v2v, w = u+vv) satisfies

Ensq(t) < Ensq(0) exp(Ft) + F /0 bnsqQ(§) exp(F” (t —€)) d€ + bnsq(t),

with ¥ given in Corollary 24 and

bso)= [ [ [Ltsq-0v - w)]

with (r,V,W) and é"]’\’,SQ are defined as mentioned above from all given smooth function U.

Remark 28. Note that by definition, using Corollary 24, all weak solution of (28)-(29), (1)
is also a dissipative solution in the sense of Definition 27.

5. FROM THE QUANTUM NAVIER-STOKES SYSTEM TO THE QUANTUM EULER SYSTEM:
THE VISCOUS LIMIT

We can now perform the limit of a dissipative solution of the quantum Navier-Stokes system
to one of the quantum Euler system when the viscosity constant v tends to zero. Thanks to
the entropies, we have the following regularities on the global weak solution of the quantum
Navier-Stokes equations:

VPP e L®(0,T; L2(Q)), p” w” € L*®(0,T; L*()), H(p") € L=(0,T, L*(Q)),
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where
v’ =+ve2—1v2Vlogp”, w’=u"+vVliogp”.
The goal of this section is then to prove the following result:

Theorem 29. Let py and ug smooth enough. Let (p¥,u”) be a global weak solution to the
quantum Navier-Stokes system (28)-(29) with initial conditions (1). Let (p,u) be the weak
limit of (p¥,u”) when v tends to 0 in the sense

P’ — p weakly* in L°°(0,T;L7(Q)),
V¥ w’ = \/pu weaklyx in L>=(0,T; L*(Q)),
VP ¥ — e \/pu weaklyx in L=(0,T; L*(Q)),

with pv = Vp. Then (p,u) is a dissipative solution of the quantum Euler system (14)-(15)
with initial conditions (1).

Proof : According to Remark 28, the pair (p”,u”) being an entropic weak solution, it is
also a dissipative one. We want to prove that (p,w), which is the limit of (p”,v”) when v
tends to zero, is a dissipative solution of (14)-(15) satisfying the initial conditions (1). The
goal is then to prove that (p,u) satisfies Definition 13. Let us define v = Vlogp (because
in this case u(p) = p). Let U be smooth function and let (r,&(r,U),V) be defined with
V =Vlogr, (43) and (57). We define

VYV =Ve2 =12V, WY =U+vV.
Then it is easy to see that (r, V¥, W) is candidate for (43), (86)-(87) with
(f]’\’,SQ(T, U)=&(r,U)—2vdiv(rD(U)).

Then using Definition 27, (p”,u") being a dissipative solution we have

t
(88) Ensq(t) < Ensq(0) exp(F¥t) + F” /0 bso(§) exp(F” (t —€)) dE + biysq(t),
with
' = C (1 + &@—%) ,

Boso(t) = /Ot/Q 26~ 2vaiv(rD(@) - (W ~ ).

Since by definition we have

and

vV SV v Va4 v 1 v ~V [V v v
Ensole! 7w I VW0 = 5 [ o (7 = VR = W)

vy ) — H (r) (0" — r v ’ v - (7|2 w? — 2
w [ @)= =10 =)+ [ (9= VVE v W),

we easily obtain
1 14 Va4 v v v v
3 [0 =V W) [ (G = 1)~ 1) =)

< 5]\/5@(,0'/, 7, wV|T, VV, WV)(t)
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and

vV =V v Va4 v 1 v 4 Va4 v v
Ensalp’ o IV W0 = 5 [ 7 (9 = V7P + o’ = W) 0)

+ / (H(p") — H(r) — H'(r)(o" — 1)) (0).
Q

Then (88) gives

: /Q o (17 = TV + o’ — W) (1) + /Q (H(o") — H(r) — H'(r)(p" =) ()

t
< Ensq(p”, 0, w”|r, VY, W")(0) exp(F”t)JrF”/O bsq(§) exp(F” (t = &) d€ + biysq(t)-

It remains now to pass to the limit v tends to zero in this inequality. Clearly, using the lower
semi-continuity of the term Engg(p”, v, w”|r, V¥, W), the left-hand side is greater than

%/Qp (v V> + u—UP) (t)+/QH(pl7")(t),

which is Eguq(p, u, v|r, U, V)(t) (i.e. Epuk(p,u,v|r,U,V)(t) given by (41) with K(p) =1/p).
For the right hand side, we use the direct limit of the term Engq(p”,v”,w”|r, V¥, W¥)(0)
(through the expression of the initial data) and b7 ¢, tends to

beaal) = [ [ [L6 0 -],

to conclude that
t
Epu0(t) < Erug(0)exp(Ct) + bpug(t) + C /0 exp(C (t — €))bpuo(€) de,

where C' = C(¢2,r,U,V) is a uniformly bounded constant on RT x €. Therefore we finally
obtain that (p,u) satisfies the Definition 13 and then is a dissipative solution of (14)-(15),
(1). O

6. APPENDIX

6.1. Technical lemmas on modulated quantities. In this section we give some technical
lemmas which are used in the paper.

We introduce the function ¢ defined by
T o (,—1
(89) or) = [ B,
0

and the two functions

(90) $1(plr) = d(u(p)) — d(p(r)) — ¢ (u(r)) (up) — p(r)),
(91) $2(plr) = ¢" (u(r))((p) — p(r)r = p (&' (1(p)) — & (u(r)))-
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Remark 30. Note that in the case K(p) = 1/p, which gives (using (5)) u(p) = p, these two
functions are directly linked to H(p|r). Indeed, in this case we have

o1(plr) = plp) —p(r)—p'(r)(p—r)= (v —1)H(p|r),
ba(plr) = pp'(r) —pp'(p) +rp"(r)(p— 1) = —y(y — 1)H(plr).O

As usually in compressible flows (see [24]) let us define the set F by
]::{pggor,oZZT}.

Let us now give some technical lemmas which will be used in the following. First of all,
following [23] we have

P (p)
pa—l

Lemma 31. Assuming p smooth, p(0) =0, p'(p) >0 Vp >0, li_>m =a>0 fora>1,
pP—00

we have:
H(plr) > C(r)(p—7)* if pe F¢ and H(p|r) > C(r)(1+ p)? otherwise,
with C(r) uniformly bounded for r belonging to compact sets in RT x Q.
Concerning the functions ¢ and ¢2, we can show

Lemma 32. Let us assume that p(p) = pB /2 with v > s +2 and s > —1. Assume ¢; with
i =1,2 defined by (89)—(91). Then

|6i(plr)| < C(r)lp —r* if p € F* and |gi(plr)] < C(r)(1 + p)” otherwise,
with C(r) uniformly bounded for r belonging to compact sets in RT x Q.

Remark 33. Let us remark that the choice u(p) = pt3)/2 with s € R and the assumption
v > 2+ s correspond to the case considered in [27] because K (p) is of order p®. Moreover,
for the particular case of interest in this paper K(p) = 1/p (i.e. s = —1), the assumption
2+ s < is trivially satisfied since we have v > 1.

Proof of the lemma for ¢1. Using Taylor expansions and the fact that ¢”(u(c)), ¢'(c) are
bounded with ¢ in a compact we easily obtain

B1(plr)| < C(r)|p(p) — p(r)? < C(r)lp —r[* on F*.
Moreover, since

s 2
( 23) p°, 1 (p) =/ pK(p),

p(p) =p", K(p) =
we have ¢(7) = 727/(5*3) and then by definition

2y 2y=(s43) , s43 s+3
r 2 2 —7r 2 ,
o (p )

[P1(plr)] = |p7 =7 =

which gives
[¢1(plr)| < C(r)(1 +p)7 on F,
since by assumption 2y > 2(s +2) > s+ 3 with s > —1.
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3
Proof of the lemma for ¢o. Let us write 6 = % then u(p) = p? and ¢(p) = p"/?. Then

2y [( 2y e _ _
P2(plr) = 513 (S 3 1) 7 3(:09 - 7”9)7" —p(p” b7 0)}
2 i 2 el _ _
_ . 73 (S 73 B 1) " 2(,09 _Te) _pl—l—’y 60 o1 9]
2y i 2y e _
= s 13 (S 3—1> 7 2(/79—7‘6)—1?(#(/)))‘*‘/”’7 6]

with f(p) = p™@ ~'. Note that we have
flolr) = fulp)) = () = () (ulp) = u(r))

o) = 97 = (2 - 1) 0052 —19),

Then
oaolr) = 2L (=) =) = ) - (4
82—:3 [<2(87—:—31) B 1) (re)%l—z(pe — %) — o 9}
- 324—73 :(82—:/3 N 1> e 2(/)0 - TG) — f(plr) it 0]
_32—23 [<2(!-:_31) 1> 047_8_2(/)6 B 7“9) —er 6]

= 2 =) = ol + gt =]

This can be written go(p|r) = %(— Flplr) + g(plr)) with
o) = 7 o= r— g )]

1 _
E(TG)I/G l(pG o T’G):| )
In the case p € F¢, using Taylor expansions this leads to

£ (plr)| < C(r)ulp) — p(r))> < C@r)lp —rf?,

lg(plr)| < C(r)lp” =11 < Cr)lp -,

— 7,,7—9 |:(p9)1/9 o (TG)I/O o

and then
|2(plr)| < C(r)lp—r|*.

When p € F, since 2y >2s+4>s+3 and s+ 3 > 2,
[b2(plr)] < CY (o =1 ) = p(p7 = =

This completes the proof of Lemma 32.

) < C)(L+p).

Using Lemmas 31 and 32, we directly obtain
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Lemma 34. Let us assume that pu(p) = p®+3)/2 with v > s +2 and s > —1. We have
[¢1(plr)| < C(r)H(plr) and |¢2(plr)| < C(r)H(p|r),

with C(r) uniformly bounded for r belonging to compact sets in RT x Q.
Let us now prove the following lemma
Lemma 35. Let us assume that u(p) = P32 with v > s+ 2 and s > —1. We have
pli'(p) — W' (r)> < C(r)H(plr),

with C(r) uniformly bounded for r belonging to compact sets in RT x Q.

Proof.
Pl (p) = 1/ (r)* = pli (p) = 1/ (") P1r + pli' (p) — 1/ (r) P17
We have
/ T rroN2 1082 (s +3)° 4o
Pl (p) = W (r)I"Lr < 2p(|u (P)I” + W' (r)[F)1F < —————p"""1r + 2C(r)p 17.

Using p**2 < (1 + p)**2 and the assumption v > s+ 2 in the first term, and, the assumption
~v > 1 in the second one, we obtain:

5+ 3)2
ol ()~ P1r < CE g e 4200 (14 )1 < O+ )15
Moreover,
S+3 s+1 s+1 ]2 S+3 ]ps"'l —TS+1‘2
pli (p) — 1 ()P 15e = g PP e —r | lre = ——pTar e
lp 2 +r2?

and then

Lre < O(n)|p*™ = r* " Plre < O(r)lp - r[*1re.

pli (p) — 1 (r)P1re < — <
2 |r 7 |2

Using lemma 31, we finally obtain the result. ]

An important relation. The last technical and important lemma is

Lemma 36. Let us assume that pu(p) = p®+3)/2 with v > s +2 and s > —1. We have

), PN vy . AV Pe) 2
p (B8~ BV (0= V) = (Vortoin) + 6alolr)V] -V + o2V —o

with ¢1 and ¢2 defined by (89)—(91).
Remark 37. This lemma generalizes to general u(p) the relation (5) established in [13] when

wu(p) = p. This is an important lemma which helps to control the terms coming from the
pressure in the relative entropy at the Navier-Stokes level.

Proof. Remark first that

PO, PN vy = 20 P'(p
”<w<p> u’(r)v> =V =r gV Y “’(Mp) )

~
’6\
—~
=
~
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We have
(-5
e
- (52w -2 (-2 v

Moreover, it is easy to see that by definition
Vigi(olr)) = ¢'(u(p))Vulp) — ¢" (u(r)(ulp) — u(r))Viu(r) — ¢'(u(r))Vulp)
(23 = Z30) V) — &) (o) = ) Vo),
and then using the definition of ¢ (pr),

wp) w(r)
p'(p) B P (r) V)= ) )
g <N/(P) ,U/(T)> (v=V)=Voi(plr) + d2(plr)V.

O

6.2. Equivalence of g,k and the relative entropy in [27]. Let us consider the relative
entropy functional, denoted Egy i (p, u, v|r,U, V') and defined by (41). The goal of this section
is to prove that this relative entropy is equivalent to the relative entropy defined by (2.23)
in [27] under the concavity assumption on K with K (p) = p°. Let us first recall the relative
entropy ESLL defined in [27]. It reads

1 1
(92) 8o Vol U.9r) =3 [ plu=UP 4 32 [ 1+ [ Hol)
2 Ja 2 Ja Q
where
It = K(p)|Vp|* — K(r)|Vr]> = K'(r)|Vr|*(p — r) — 2K (r)Vr(Vp — Vr).

Note that I corresponds to the term K (p)|Vp|? linearized in the variables (p,q) where
q = Vp. Let us now introduce the quantity

o E - K |

Then our Euler-Korteweg modulated energy reads
1 1
EpucpuoirnUV) =5 [ o= UP+ 32 [ e+ [ 1)
where v = \/K(p)Vp/\/p and V = \/K(r)Vr/\/r. Let us prove that under the hypothesis
on K introduced in [27]
Epurc(pyu vl UV) =0 & EEugc(p,u, Vplr, U, Vr) = 0.

If so, we prove by this way that our relative entropy and the one in [27] are equivalent under
the hypothesis in [27]. Our convergence result will therefore be more general that the one
in [27] because it does not asked for concavity hypothesis on K(p). First let us prove the
following lemma:

2
IE'uK -

'J—Vp \fJ—w
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Lemma 38. We have the equality

K(r) [p
\ K(p) \[
=Ir+ 2\/K(T‘)VT’IEuK <’ / % — \/é)

Proof. After computations, we check that

B = Ir+K'@)VrP(p—r)+ LK)V

—2\/2\/W\/K(T)Vp - Vr 42K (r)Vr - Vp — K(r)|Vr|?

Ik + K (r) [Vr[®

2
1 1 K'(r
- K097 (55~ 7+ o)

= Ir+1
where
K'(r) VE() [p p
L=K@vr2|2 -1+ )42 L9l 4+ p,
1 (r)|Vr| <7, l{(r)(ﬂ ) ROV 2
with

ey K
I2 =2 K(T) Vr Ig IEuK and Ig = (T) — \/g

K(p)
Corollary 39. Let K(p) = p® with —1 < s <0, then
Efuc(pu, Vplr,U,Vr) =0 & Egur(p,u,v|r,U,V) =0.

Proof. Under the assumption on K, we check that

- (5
(e

2 2
< 2( (3> —1) +2<1— 3)
T T
1 2
< 2T_S(VP‘S—VT‘S)2+;(\/?—W)2
2 . .2
< —lp P =17+ =l —pl
T T

with 0 < —s < 1. Assume 5%5%(/),21, Vplr,U,Vr) =0, then I3 = 0 and

< 1 1 N K'(r) ( )> 0
- p—r)] =0.
K(p) K(r) K(r)?
Therefore using Lemma 38 we conclude Egyx (p, u, v|r,U, V') = 0 (the inverse follows the same
lines). This ends the proof. O
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6.3. Definition of the operators. For the convenience of the reader we recall in this Section
all the definitions of the operators used in this article. The definitions used here are the ones
presented in [7] in Appendix A.

Let f be a scalar, u,v two vectors and o = (0yj)1<; j<d a tensor field defined on Q C R
smooth enough.

e Denoting by v1,- - ,vg the coordinates of v, we call divergence of v the scalar given
by:

div(v Z g;l

We call laplacian of f the scalar given by.

2

kﬂ

d
Af = div(Vf) :Z

QD
@w

We call gradient of v the tensor given by:

Vv = <8vi> .
Ox; 1<i,j<d

We call divergence of o the vector given by:

30,]
div(o Z oz,
1<i<d
o We call laplacian of v the vector given by:
Av = div(Vv).

We call tensor product of u and v the tensor given by:
UR V= (uivj)lgi,jgd .

Proposition 40. Let u,v,w three smooth enough vectors on ) and r a scalar smooth enough
on . We have the following properties.

(uR@v)w = (v-w)u,

div(u ® v) = (divov)u + (v - V)u,

div(ru) = Vr-u+r divu,

diviru®@wv) = (Vr-v)u+r(v-V)u+r div(v)u.

Definition 41. Let 7 and o be two tensors of order 2. We call scalar product of the two
tensors the real defined by:
Z O'ijTij'

1<i,j<d
The norm associated to this scalar product is simply denoted by |- | in such a way that

o> =0:0.

Remark 42. By definition we have
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