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ON NAVIER-STOKES-KORTEWEG AND EULER-KORTEWEG SYSTEMS:
APPLICATION TO QUANTUM FLUIDS MODELS

D. BRESCH, M. GISCLON, AND I. LACROIX-VIOLET

ABSTRACT. In this paper, the main objective is to generalize to the Navier-Stokes-Korteweg
(with density dependent viscosities satisfying the BD relation) and Euler-Korteweg systems
a recent relative entropy [proposed by D. BRESCH, P. NOBLE and J—P. VILA, (2016)] intro-
duced for the compressible Navier-Stokes equations with a linear density dependent shear
viscosity and a zero bulk viscosity. As a concrete application, this helps to justify mathemat-
ically the convergence between global weak solutions of the quantum Navier-Stokes system
[recently obtained by I. LACROIX-VIOLET and A. VASSEUR (2016)] and dissipative solutions
of the quantum Euler system when the viscosity coefficient tends to zero. This selects a
dissipative solution as the limit of a viscous system. Our results are based on the fact that
Euler-Korteweg systems and corresponding Navier—Stokes-Korteweg systems can be reformu-
lated through an augmented system as the compressible Navier-Stokes system with density
dependent viscosities satisfying the BD algebraic relation. This was also observed recently
[by D. BREscH, F. CoUDERC, P. NOBLE and J.-P. VILA, (2016)] for the Euler-Korteweg
system. As a by-product of our analysis, we show that this augmented formulation helps to
define relative entropy estimates for the Euler-Korteweg systems in a simplest way compared
to recent works [See D. DONATELLI, E. FEIREISL, P. MARCATI (2015) and J. GIESSELMANN,
C. LATTANZIO, A.-E. TZAVARAS (2017)] and with less hypothesis required on the capillary
coefficient: no concavity assumption needed in our result.

AMS Classification. 35B40, 35B45, 35K35, 76Y05.

Keywords. Euler-Korteweg system, Navier-Stokes-Korteweg equations, quantum FEuler and Navier-
Stokes system, relative entropy estimates, dissipative solutions, weak-strong uniqueness.

1. INTRODUCTION

Quantum fluid models have attracted a lot of attention in the last decades due to te
variety of applications. Indeed, such models can be used to describe superfluids [37], quantum
semiconductors [24], weakly interacting Bose gases [29] and quantum trajectories of Bohmian
mechanics [44]. Recently some dissipative quantum fluid models have been derived. In par-
ticular, under some assumptions and using a Chapman-FEnskog expansion in Wigner equation,
the authors have obtained in [16] the so-called quantum Navier-Stokes model. Roughly spea-
king, it corresponds to the classical Navier-Stokes equations with a quantum correction term.
The main difficulties of such models lie in the highly nonlinear structure of the third order
quantum term and the proof of positivity (or non-negativity) of the particle density. Note
that formally, the quantum Euler system corresponds to the limit of the quantum Navier-
Stokes model when the viscosity coefficient tends to zero. This type of models belong to
more general classes of models: the Navier-Stokes-Korteweg and the Euler-Korteweg systems.
Readers interested by Korteweg type systems are referred to the following articles and books:
[34, 41, 17, 19, 39, 38, 31] and references cited therein.
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2 D. BRESCH, M. GISCLON, AND I. VIOLET

The goal of this paper is to extend to these two Korteweg systems a recent relative entropy
proposed in [13] introduced for the compressible Navier-Stokes equations with a linear density
dependent shear viscosity and a zero bulk viscosity. This leads for each system to the definition
of what we call a dissipative solution following the concept introduced by P.-L. Lions in
the incompressible setting (see [36]) and later extended to the compressible framework (see
[23, 22, 5, 40] for constant viscosities and [30, 13| for density dependent viscosities). As a
consequence we obtain some weak-strong uniqueness results and as an application, we can
use it to show that a global weak solution (proved in [4, 35], which is also a disspative one) of
the quantum Navier-Stokes system converges to a dissipative solution of the quantum Euler
system. Our results will be compared to recent results in [20, 26] showing that we relax one
hypothesis on the capillarity coefficient.

Let us now present in more details the models of interest here. Note that for the convenience
of the reader all the operators are defined in Section 6.2. Let Q = T% be the torus in dimension
d (in this article 1 < d < 3).

Euler-Korteweg system. Following the framework of the paper, we first present the Euler-
Kortewg system and then the Navier-Stokes Korteweg one. Note that in all the paper, the
systems are supplemented with the following initial conditions

(1) pli=o = po, (pu)|=0 = poup for x € Q.

with the regularity pg > 0, po € LY(Q), po |uo|? € LY(Q), /K (po)Vpo € L*(R2). The Euler-
Korteweg system describe the time evolution, for ¢ > 0 of the density p = p(t,z) and the
momentum J = J(t,z) = p(t,z)u(t,z) (with u the velocity), for z € Q, of an inviscid fluid.
The equations can be written in the form (][20]):

(3) Oy J + div (%) +V(p(p)) = € pV (K(p)Ap + %K’(p)\VpP) :

where K : (0,00) — (0,00) is a smooth function and p is the pressure function given by
p(p) = p7 for v > 1. Note that it could be interesting to consider non-monotone pressure
laws as in [27] and [26]. The coefficient ¢ stands for the Planck constant. In this paper we
will consider a function K (p) which behaves as p® with s € R. As mentioned in [20],

% (K(0)Ap+ 5K DIV = div(i)
with
K= (p div(K (p)Vp) + %(K(p) - pK’(p))!Vp!2> Iga — K(p)Vp® Vp.
Following the ideas of [8] with
(4) 1 (p) =/ pK(p),
we can define the drift velocity v by

Y MW _ V(ulp)
p p

and show the following generalization of the Bohm identity:

div(K) = div(u(p)Vv) + %V()\(p)divv)
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with
Ap) = 2(1(p)p — 1(p))-

Remark 1. Note that the relation between A and p is exactly the BD relation found in [9] in
the Navier-Stokes setting: see the Navier-Stokes-Korteweg part below.

We will choose K (p) as:

(s +3)?
4
This multiplicative constant in the definition of K does not affect any generality, it suffices
to change the definition of €. Then we obtain the following augmented formulation for the

Euler-Korteweg Equations (2)-(3):

K(p) = p° with s € R in order to get w(p) = ptst3)/2,

(5) Op + div(pu) =0,

(6) Oi(pu) +div(pu @ u) + Vp(p) = € |div(u(p)Vv) + %V(A(p) divo)|,
(7) O (pv) + div(pv @ u) + div(u(p) 'Vu) + %V(A(p) divu) =0,
with

Ap)=2(pp'(p) — u(p)),  v=Vulp)/p.

System (5)-(7) is called the Euler-Korteweg augmented system in all the sequel. It has
been firstly introduced in this conservative form in [8] to propose a useful construction of a
numerical scheme with entropy stability property under a hyperbolic CFL condition for such
dispersive PDEs. Remark that in the Euler-Korteweg augmented system, the second order
operator matrix is skew-symetric.

The Quantum Euler Equations. Note that the choice K(p) = 1/p (which gives u(p) = p and
A(p) = 0) leads to the Bohm identity

pV (K (p)Ap + %K’(p)!VpP) = div(pVv) = 2pV (%) :

In that case the system (5)-(7) becomes

s) Oup + div(pu) =0,
9) A(pu) +div(pu @ u) + V(p(p)) = € div(p Vo),
(10) O (pv) +div(pv ® u) + div(ptVu) = 0,

with v = Vlogp which corresponds to the augmented formulation of the quantum Euler
System:

(11) Op + div(pu) =0,

(12) O (pu) + div(pu ® u) + Vp(p) =2e2pV (%) .

Then such a choice gives rise the so called quantum fluid system for which the global existence
of weak solutions has been shown in [2, 3] and more recently in [18] assuming the initial
velocity irrotational namely curl(poug) = 0. The existence of local strong solutions has also
been proved (see [6]) and global well-posedness for small irrotational data has been performed
recently in [1] assuming a natural stability condition on the pressure. We refer to (8)-(10) as
the quantum Euler augmented system in all the paper.



4 D. BRESCH, M. GISCLON, AND I. VIOLET

Note that the quantum correction (A,/p)/./p can be interpreted as a quantum potential,
the so-called Bohm potential, which is well known in quantum mechanics. This Bohm poten-
tial arises from the fluid dynamical formulation of the single-state Schrodinger equation. The
non-locality of quantum mechanics is approximated by the fact that the equations of state
do not only depend on the particle density but also on its gradient. These equations were
employed to model field emissions from metals and steady-state tunneling in metal-insulator-
metal structures and to simulate ultra-small semiconductor devices.

Navier-Stokes-Korteweg system. Let us consider the compressible Navier-Stokes-Korteweg
system with density dependent viscosities p(p) and A(p) satisfying the BD relation

Ap) =2(1'(p)p — 1(p)),

and with the capillarity coefficient K (p) linked to the shear viscosity u(p) in the following
manner
K(p) = i/ (p)]*/p with p(p) = p*¥7? with s € R.

Remark 2. With this choice of shear viscosity, the relation between the capillarity coefficient
and the viscosity gives a capillarity coefficient proportional to p°.

Then using the identity given in the Euler-Korteweg part, the Navier-Stokes-Korteweg
system can be written for z € Q and ¢ > 0,

(13) Op + div(pu) = 0,
O (pu) + div(pu @ u) + Vp(p) — 2v div(u(p)D(u)) — vV (A(p) div )

(14) = 22 | (div(n(p)! Vo) + 5V (p) dive) |

1
in which the symmetric part of the velocity gradient is D(u) = 5(Vu +!Vu). The parameter

v > 0 stands for the viscosity constant. Multiplying (13) by p/(p) and taking the gradient,
we have the following equation on v:

(15) Ai(pv) +div(pv @ u) + div(u(p) ‘Vu) + %V(A(p) divu) = 0.

Moreover defining the intermediate velocity, called effective velocity, w = u + v v, equations
(14) and (15) lead to

Or(pw) +div(pw & u) + V(p(p)) — v div(u(p)Ver) = ZV(A(p) divw)

= (&~ ) [div(u(p) Vo) + 5 VA (p) divo)].

Then (13)-(14) may be reformulated through the following augmented system:

(16) Op + div(pu) = 0,

Au(pw) +div(pw @ u) + V(p(p)) - v div(u(p)Ver) — ZV(A(p) divw)
(1) = (2 2 [div(u(p) V) + 5V (A (p) divo)],
(18) A (pv) +div(pv ® u) + div(u(p) *Vu) + %V(A(p) divu) =0,

with w =u+vVu(p)/p, v=Vu(p)/p which we call the Navier-Stokes-Korteweg augmented
system in all the sequel.
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The Quantum Navier-Stokes Equations. Note that with the choice K (p) = 1/p, which gives
wu(p) = p and A(p) = 0, system (16)-(18) becomes

(19) Op + div(pu) = 0,
(20) O (pw) + div(pw @ u) + V(p(p)) — v div(pVw) = (¢2 — v?) div(pVv),
(21) A (pv) +div(pv @ u) + div(ptVu) = 0,

with w = u + vV log p, v = Vlog p which is the augmented formulation of the compressible
barotropic quantum Navier-Stokes system:

(22) Op + div(pu) =0,

(23) O (pu) + div(pu ® u) + Vp(p) — 2v div(pD(u)) = 2e2pV (%) .

In [21, 32, 33], the global existence of weak solutions to (22)-(23) has been shown following
the idea introduced in [11] by testing the momentum equation by p ¢ with ¢ a test function.
The problem of such formulation is that it requires v > 3 for d = 3 which is not a suitable
assumption for physical cases. In [12] the authors show the existence of solutions for (22)-(23)
without quantum term (i.e. for ¢ = 0) by adding a cold pressure term in the momentum
equation. The cold pressure is a suitable increasing function p. satisfying lii% pe(n) = +o0.

n

The key element of the proof is a k-entropy estimate. In [28], using the same strategy and a
k-entropy with k = 1/2, the existence of global weak solutions for (22)-(23) is proven without
any extra assumption on 7 and the semi-classical limit ¢ tends to zero is performed. In [42],
A. Vasseur and C. Yu consider the compressible barotropic quantum Navier-Stokes equations
with damping i.e. system (22)-(23) with additional terms in the right hand side of (23):
—rou — r1plu/?u. They prove the global-in-time existence of weak solutions and their result
is still valuable in the case 71 = 0 . Their proof is based on a Faedo-Galerkin approximation
(following the ideas of [33]) and a Bresch-Desjardins entropy (see [10, 11]). In [43], the authors
use the result obtained in [42] and pass to the limits €, 79, 71 tend to zero to prove the existence
of global-in-time weak solutions to degenerate compressible Navier-Stokes equations. Note
that to prove such a result they need uniform (with respect to 7o, r;) estimates to pass to the
limit 7o, 71 tend to 0. To this end they have to firstly pass to the limit € tends to 0. Recently
in [35], global existence of weak solutions for the quantum Navier-Stokes equations (22)-(23)
has been proved without drag terms and without any cold pressure. The method is based on
the construction of weak solutions that are renormalized in the velocity variable. Note that
the construction being uniform with respect to the Planck constant, the authors also perform
the semi-classical limit to the associated compressible Navier-Stokes equations. Note also the
recent paper [4] concerning the global existence for the quantum Navier-Stokes system. It is
important to remark that a global weak solutions of the quantum Navier-Stokes equations in
the sense of [35] is also weak solution of the augmented system (due to the regularity which
is envolved allowing to write the equation on the drift velocity v). Remark also that there
exists no global existence result of weak solutions for the compressible Navier-Stokes-Korteweg
system with constant viscosities even in the two-dimensional in space case.

Main objectives of the paper. In this paper, to the author’s point of view, there are several
interesting and new results. First starting with the global weak solutions of the quantum
Navier-Stokes equations constructed in [35] (which is a 1/2-entropy solution in the sense of
[12]) we show at the viscous limit the existence of a dissipative solution for the quantum
Euler system letting the viscosity goes to zero. This gives the first global existence result of
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dissipative solution for the quantum Euler system obtained from a quantum Navier-Stokes
type system. Note that in [20], it is proved the existence of infinite dissipative solutions of such
inviscid quantum system. Here we present a way to select one starting from a Navier-Stokes
type system. Secondly, we develop relative entropy estimates for general cases of the Euler-
Korteweg and the Navier-Stokes-Korteweg systems extending the augmented formulations
introduced recently in [13] and [14]: more general viscosities and third order dispersive terms.
This gives a more simple procedure to perform relative entropy than the one developped in
[26, 20] for the Euler-Korteweg system. This also helps to get rid the concavity assumption
on K(p) which is strongly used in [26]. For the interested readers, we provide a comparison
of the quantities appearing in our relative entropy to the ones introduced in [26] and remark
that they are equivalent under the assumptions made in [26]. Note that to perform our
calculations for the Navier-Stokes-Korteweg system, we need to generalize in a non-trivial
way the identity (5) in [13]: see Proposition 30 for the generalized identity.

For reader’s convenience, let us explain the simple idea behind all the calculations. The
kinetic energy corresponding to the Euler-Korteweg system reads

[ (Gotat + )+ K177

Hip) =p [P

22

with

In [26], they consider that it is an energy written in terms of (p,u,Vp) and they write
a relative entropy playing with these unknowns. In our calculations, we write the kinetic

energy as follows
1
[ (Gotur + 60+ plo?)
Q

with v = /K (p)Vp/,/p and we consider three quantities p, u and v. This motivates to write
an augmented system (p,u,v) and to modulate the energy through these three unknowns.
This gives a simplest way to define an appropriate relative entropy quantity compared to [26]
and [20] and allows to relax the concavity assumption on K (p) made in the part concerning
Euler-Korteweg system in [26]. Our result covers capillarity coefficient under the form

K(p) = p® with s +2 <~ and s > —1.

Finally our result makes the link between Euler-Korteweg system and Navier-Stokes-Korteweg
system. After proving the global existence of 1/2-entropy solutions of the general Navier-
Stokes-Korteweg system (this is the subject of a forthcoming paper [15] still in progress:
the case K(p) = 1/p has been recently proved in [35]), this could give the mathematical
justification of a physical dissipative solution of the Euler-Korteweg equations obtained from
1/2-entropy solutions of the Navier-Stokes-Korteweg equations in the spirit of [12]. Let us
also mention that our relative entropies could be helpful for other singular limits as explained
in the book [23] in the case of constant viscosities.

The paper is organized as follows. Section 2 is devoted to notations and preliminary
results. In section 3, we give the definition of the relative entropy formula and we established
the associated estimate. This one is used to define what we call a dissipative solution for
the Euler-Korteweg system and we established a weak/strong uniqueness result. The same
results are obtained for the Navier-Stokes-Korteweg system in section 4. In section 5 we
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use the previous results to show the limit when the viscosity tends to zero in the quantum
Navier-Stokes system. Finally we give in Appendix, a comparaison between the formula used
here and the one used in [26, 20], and we state the definitions used for the operators.

2. NOTATIONS AND PRELIMINARY RESULTS

In this section we give some notations, technical lemmas and energy estimates which will
be used in the next sections.

2.1. Notations and technical lemmas. Let us first give some notations that will be used
all along the paper.

Enthalpy modulation. First of all, let us define the function H called the enthalpy by

H(p)zpe(p)zp/lngdz

Namely we have:

pH' ()~ 1) = plp), H'(p) = L,

1
To be more precise, since p(p) = p? with v > 1, this yields to H(p) = —1p(p). As usually

for compressible flows, linked to H we define the modulated enthalpy
H(p|r) = H(p) — H(r) — H'(r)(p — 1),
with 7 a smooth bounded function of (¢,z) on Rt x Q.

Drift velocities. As mentioned in the introduction, we define the drift velocity by

o= Yp) _ [K(p) V).
P

oY) _ K0,

T T

still for 7 a smooth bounded function of (¢,2) on RT x Q. Note that by definition Vv and
VV are symmetric matrices because v, V are gradient of functions.

Some important properties on various modulated quantities. We introduce the function ¢
defined by

T o (u-L(s
(24) Mﬂ=Af%%%%w

and the two functions

(25) $1(plr) = d(u(p)) — d(u(r)) — ¢ (u(r)) (u(p) — p(r)),
(26) G2(plr) = ¢" (u(r)) (u(p) — p(r)) r = p (¢ (u(p)) — &' (u(r))).
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Remark 3. Note that in the case K(p) = 1/p, which gives (using (4)) u(p) = p, these two
functions are directly linked to H(p|r). Indeed, in this case we have

o1(plr) = plp) —p(r) —p'(r)(p—r)= (v = 1)H(p|r),
pa(plr) = pp'(r) — pp'(p) + 0" (r)(p— 1) = —v(y — 1)H(p|r).O

As usually in compressible flows (see [23]) let us define the set F by
]—":{pggorpzw}.

Let us now give some technical lemmas which will be used in the following. First of all,
following (4.1) of [22] we have

_P(p)
Lemma 4. Assuming p smooth, p(0) = 0, p'(p) > 0 Vp > 0, lim =a > 0 for

p—00 pa*1

a > 3/2, we have:
H(plr) > C(r)(p—r) if p€ F¢ and H(plr) > C(r)(1+ p)7 otherwise,
with C(r) uniformly bounded for r belonging to compact sets in RT x Q.
Concerning the functions ¢; and ¢, we can show

Lemma 5. Let us assume that u(p) = pBt3/2 with v > s+ 2 and s > —1. Assume ¢; with
i =1,2 defined by (24)—(26). Then
1pi(plr)| < C(r)lp—r|* if p € F¢ and |éi(p|r)| < C(r)(1 + p)? otherwise,

with C(r) uniformly bounded for r belonging to compact sets in RT x Q.

Remark 6. Let us remark that the choice p(p) = p+t3)/2 with s € R and the assumption
v > 2+ s correspond to the case considered in [26] because K(p) is of order p5. Moreover,
for the particular case of interest in this paper K(p) = 1/p (i.e. s = —1), the assumption
2 4+ s < 7 is trivially satisfied since we have v > 1.

Proof of the lemma for ¢1. Using Taylor expansions and the fact that ¢”(u(c)), p'(c) are
bounded with ¢ in a compact we easily obtain

B1(plr)| < C(r)|p(p) — p(r)? < C(r)lp—r[* on F*.
Moreover, since

s 2
p(p) = p”, K(p)=( 23) p°, 1'(p) =/ pK(p),

we have ¢(7) = 727/(+3) and then by definition

2’)/ 2y—(s4+3) s+3 s+3
__r p)

o] = |0 = - =

which gives

[91(p|r)| < C(r)(1+ p)” on F,
since by assumption 2y > 2(s +2) > s + 3 with s > —1.
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Proof of the lemma for ¢o. Let us write 6 = % then p(p) = p? and ¢(p) = p?/?. Then

2v [( 2v e - -

oa2lplr) = 5 <s+3 —1> P73 =y = p(p7 0 =17 9)}
2v [( 2v e - -

- s+3 <8+3_1>ﬂ82(p0_r6)_p1+70+pﬂ 6]

2y [( 2v _ _

- s+3 <S+3_1> e 2(p9—7’0)—f(,tz(p))—|-p7“7 6]

Flolr) = flulp)) = fu(r)) = f'(u(r) (1(p) — u(r))

= flule) - 61 = (T 1) 0982 =)
Then
Ba(plr) = 5213 [(Sajg - 1> P52 (00 — 1) — F(plr) — (yﬂ)”?ll]
- 5 Kﬁs B 1) T =) = Helr) = 6]
_5233 K2(J++31) 1) =1 _pwe]

- 52:3 [_%M”(Pe — %) = f(plr) + pr77° r”’”}
This can be written s (p|r) = S%(— F(olr) + glplr)) with
I e [ ]

_ 0 [(pe)l/e ()M %(Te)l/e—l(pa _ re)} _

In the case p € F¢, using Taylor expansions this leads to
£ (plr)| < C(r)|ulp) — u(r)? < C(r)lp —rf?,
lg(plr)| < C@)|p” =P < C(r)lp—rP,
and then
|b2(plr)| < C(r)lp —r[*.
When p € F, since 2y >2s+4>s+3 and s+ 3 > 2,
Ga(plr)] < CENrEPE T (e

This completes the proof of Lemma 5.

) < Cr)(1+p)7.

Using Lemmas 4 and 5, we directly obtain



10 D. BRESCH, M. GISCLON, AND I. VIOLET

Lemma 7. Let us assume that p(p) = pt3/2 with v > s+ 2 and s > —1. We have

01(plr)| < C(r)H(plr) and |¢2(plr)| < C(r)H (plr),
with C(r) uniformly bounded for r belonging to compact sets in RT x Q.

Let us now prove the following lemma

Lemma 8. Let us assume that pu(p) = p+3)/2 with v > s +2 and s > —1. We have
pli'(p) = p'(r)? < C(r)H (plr),

with C(r) uniformly bounded for r belonging to compact sets in RT x Q.

Proof.
Pl (p) = 1 (r)[> = pli (p) — 1/ (M) P15 + plid' (p) — 1 (r) P 1 7.
We have
(s +3)2
2

Using p*t2 < (1 + p)**2 and the assumption v > s+ 2 in the first term, and, the assumption
v > 1 in the second one, we obtain:

pli (p) — 1/ (r)P1r < 2p(1 (p)P + 11 (r) )17 < PP E+20(r)p1F.

s+ 3)?
Pl (p) — ' (r)P1x < %(1 + ) 1E 4201 + p) 1y < C(r)(1 + p) 1.
Moreover,
s+3 | st s+1 )2 s+ 3 |pstl — pstl2
Pl (p) = W (1)PLre = —=p|p™s =1 | 1pe = At

2 pE AP
and then

s4+3 ’p3+1—7“s+1‘2

s+1

1re < C(M)p* = 171 21ze < O(r)|p — 117,
2 |r 2 |2

pli(p) — 1 (r)[P15e <

Using lemma 4, we finally obtain the result. O

An important relation. The last technical and important lemma is

Lemma 9. Let us assume that p(p) = pt3/2 with v > s+ 2 and s > —1. We have

P, PN vy = . AV @)y o2
p (L0 = B0V ) (0= V) = [901(6l) + dalplr)V]- V 4+ o2y o

with ¢1 and ¢o defined by (24)—(26).
Remark 10. This lemma generalizes to general u(p) the relation (5) established in [13] when

w(p) = p. This is an important lemma which helps to control the terms coming from the
pressure in the relative entropy at the Navier-Stokes level.

Proof. Remark first that

ACOIN A GNP NSRS V) S P(p
'O<u’(p) u’(r)v> =) pu’(p)“/ "o <M’(p) w(r)

~—~
’E\
—
=
~—
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We have
(15 -2) e
= (9 7)o e¥
e R (e i a) )

Moreover, it is easy to see that by definition
V(gi(plr)) = ¢'(ulp)Valp) — &" (u(r))(ulp) — u(r))Vu(r) — ¢ (u(r))Viulp)
(22— 210 (o) — " u) ) — ) Vi),

wp)  pw(r)
and then using the definition of ¢9(p|r),

YO PO o o oo
(8~ B0 ) (0= V) = Vnlpir) + V.

0

2.2. Energy estimates. In this subsection we give the energy equalities for the augmented
Euler-Korteweg and Navier-Stokes-Korteweg systems. They will be used in the following to
establish the estimates for the relative entropy associated to each one.

Euler-Korteweg system. For the augmented Euler-Korteweg system we can show the
following proposition.

Proposition 11. All weak solution (p,u,v) of system (5)—(7) satisfies:

dEpuk (p,u,v)
dt

where Ep, i is the natural energy density given by

:07

1 1
(27) Epuk(t) = Epuk (p,u,v) = /Q (5 plul® + 5 e K(p)|Vol* + H(P)) :
Proof. We remark that

1 1
20K (p)IV Vol = 5K (p)IVpl* = Splvf?

and refer to [20] for the proof of this proposition. O

Navier-Stokes-Korteweg system. Concerning the augmented Navier-Stokes-Korteweg
system, defining the energy

V2 +e?
Bwsw(®) = Exsc(pow) = [ (S ol + Lu + 1))
Q

we have the following energy-dissipation result:
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Proposition 12. Let (p,v,w) be a weak solution of (16)-(18) we have

ENSK (5 0,w) + v /Q (1(p) (IVul? + 2|V0P) + W (o) H" (9)|Vpl?)

it
o /Q (@ ((div(u))2+€2(div(v))2)> 0.

Before proving the result, let us remark that
Vul* = [D(w)]* + |A(w) .

Let us point out that this estimate corresponds to the 1/2-entropy estimate introduced in
[12] and is linked to the so called BD-entropy introduced in [9]. We recall how to get it for
reader’s convenience.

Proof. Multiplying (17) by w, (18) by v v, integrating with respect to space and summing,
we obtain:

V2 /Q O (pv) - v+ /Q A (pw) - wHv? /Q (div(pv ® u) + div(u(p)'Vu) + %V (Ap) div(u))) ‘v
+/Q (div(pw ®@u) 4+ Vp(p) — vdiv(u(p)Vw) — gV()\(p) div(w))> W

(28) —(e2 =% /Q [div(,u(p)Vv) + %V(A(p) div(v))} cw = 0.

Using integrations by parts and the definition of w and v,
1 .
o/ O (pw) - w = / Oy <g|w|2) - 5/ div(pu)|w|?,
Q Q Q

1
o/ div(pw @ u) - w = —/ div(pu)|w|?,
0 2 Ja

./Q(at@v)).v:/ﬂat (21P) —%/Qdiv(puml?,

. 1 .
o/ﬂdlv(pv@)u)-v: §/Qd1v(pu)|v|2,
o [ Vo) w= [ atio) +v [ W VP

._52/Q [div(,u(p)Vv)—i—%V()\(p) div(v))] -w:e2/96t (S1P?)
w2 [ ()Ivof + GAeav)?).

To obtain this equality, we use (8) in [8] since v here corresponds to V(p) in [8] and p/(p)
here corresponds to F’(p) in [8].

o v [ divu(pVu) w = [ w@IVuP+ 207 [ uo)Vus Vot [ (el
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1/2/Qdiv(u(p)tVu) ‘v = —VQ/Q,u(p)tVu : Vo,

o= % [ Vi) -w =7 [ (M) iv()? + 2A()div()div() + 1A div(0)?).

._/v ) div(u :_—/A ) (div(w))(div(v),

v [ @iv(up) Vo) w = =2 [ (u(p)V0: Tut vl Vol

Q

o—/ V(A(p)div(v :——/ ) div(v) div(u) + vA(p)(div(v))?).

Using all the previous equalities in (28), we obtain

dENsK (

52
P ) v [ (ST +d GE IV + AP () + 5 () )

+v / (,u(,0)|Vu|2 +vp(p)Vu: Vo —vpu(p)'Vu : Vo) = 0.
Q

Using the fact that Vv is symmetric, we show :
Vu:Vv—"'Vu:Vo=0
and we obtain the proposition. O

Note that, in order to pass to the limit v tends to zero, the real variable of interest is not

v but v defined by: ¥ = V&2 — v2 v under the assumption € > v. With this new variable the
augmented System (16)-(18) becomes:

(29) Byp + div (pu) = 0, )
Oc(pw) + div(pw ® u) + Vp(p) — v div(u(p) V) = 5V (A(p) divw)
(30) /=y (dw( (0) VD) + %V(A(p) dm)> ,
4(pv) + div(p® ® u) — v div(u(p)Vv) — gV(A(p) div 7)
(31) /=y <div(,u(p)ti) + 5V (p) div w)> 0.

The energy associated to this new formulation is

BNE(®) = [ (B + S + 1)

and we have the following estimate:
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Proposition 13. Let (p,v,w) be a weak solution of (29)-(31) we have
sup ENE(r) +v / JRECLECI

T€[0,t]
—i—l// / < Y(|Vw|? + |Vo]?) + ¥ (Jdivol* + |divw|2)>

< EN§x(0).

Proof : We multiply (30) by w and (31) by v and we integrate with respect to the space
variable. Summing and using analogous computations than the ones did for the proof of
Proposition 12, we obtain the result.

Remark 14. Note that € doesn’t appear explicitly in this new formulation of the energy.
Indeed it is hidden in the terms containing v.

3. THE EULER-KORTEWG SYSTEM : RELATIVE ENTROPY AND DISSIPATIVE SOLUTION

In this section, we consider the problem (2)—(3) through its augmented formulation (5)—(7).
The goal of this section is to give the definition of what we call a dissipative solution for this
problem. To this end we have to establish a relative entropy inequality.

3.1. Relative entropy inequality. In [22], E. Feireisl, B.-J. Jin and A. Novotny have in-
troduced relative entropies, suitable weak solutions and weak-strong uniqueness properties
for the compressible Navier-Stokes equations with constant viscosities. The goal of this sub-
section is to establish a relative entropy inequality for the Euler-Korteweg System using the
augmented formulation introduced in [8] and extending the ideas in [13] and [14] to such
system in order to be able to define what is called a dissipative solution.

Let us consider the following relative entropy functional, denoted Egy i (p, u, v|r,U, V) and
defined by

Epur (t) = Epur (p, u, v|r, U, V)(

(32) 5 Lo |lu-vP+

1
- 5/p(|u—U|2+eQ|v—V|2) +/H<p|r>,
Q Q

where (p,u,v) is a weak solution of System (5)—(7). Note that the definition used here is
different from the one used in [26] but we can show that the twice are equivalent in some
sense. We refer to appendix 6.1 for more details. Let us just say that such an energy measures
the distance between an entropic weak solution (p,u,v) to any smooth enough test function
(r,U, V). The goal here is to prove an inequality of type

t
Epur(t) — Epuk(0) < C/o Erur (§)dE,

with C' a positive constant. To this end let us first prove the following proposition.
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Proposition 15. Let (p,u,v) be a weak solution to System (5)-(7). We have:

Epur (t) — Epurc (0 // —U)'atU+//P(VUU)'(U—U)+€2/t/P(V—
+82/0/Q,0(VVU) —v) 4 ¢? // p)Vu : VU — &2 // p)VV :tVu
—//A (dive divU — divu divV) // )Y divU

N / /Q [0:(H'(r))(p — 1) + pVH'(r) - u] ,
0
for all t € [0,T] and for all smooth test functions (r,U, V') with
reCl0,T]xQ), r>0 UVeCY0,T]xQ).
Proof. Thanks to Proposition 11 we have

gEuK(t) — 5EuK(0) = /Q <g’[]‘2 —pu-U+ %ngQ‘VTP _ ng /@Vp . \/@VT) (t)
- (gw ~ pu K e - pe2 [ Eely 5L )

- [ (e + H ) r>)<t>+/(H< )+ H () —) (0)
Q Q

i.e.

trd 1
Epurc(t) — Epur(0) = //E<£|U|2—pu-U+§p62|V|2—p62v-V>

(34) //dt r)+ H () (p— 7).

We multiply (6) by U, (7) by €2V and we integrate with respect to time and space. Writting
O(pu-U)=0(pu) -U+pu-0U, O(pv-V)=0(pv) -V +pv-0,V

and thanks to integrations by parts, we obtain

Epuk (t) — Epur (0 / / |U|2 —/t/pu-atU—/t/p(VUu)-u
+s// ) Vo VU+//—)\ Jdivo div
+52/ /at 2vp2) //pv %

_5// (VV ) v—e// PVV - 'V
//—)\ ) divu divV - // )divU
//at r)+ H () (p — 7).
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Using (5) and

1 1
O <§!U\2) = 50U+ pU-0U, 0, <§!V\2) = =5 div(pu) [V + pV - 01V,

thanks to integrations by parts we have

Epurc(t) — Epurc (0 // U - u) 6tU+5//
// (VUu) - (U —wu) +€// (VVu) - (
+€// )V : VU—&// YVV . 'Yu

—// (dive divU — divu divV)

// ) divU — //at r) 4 H () (p—1)).

This last inequality gives the result since with Equation (5) we have:

[ ot @ o= = [ @ @) =)+ H ) -u).

0

Proposition 16. Let (p,u,v) be a weak solution of (5)—~(7) and (r,U, V') be a strong solution

of

(35) Or +div (rU) =0,

(36) r(OU +VUU) + Vp(r) — &2 [div(u(r)VV) + %V(A(r) div V)] =
(37) POV + YV V) + div(a(r) 'VD) + SV divD) =

We have

Epurc(t) — Epuc (0 // w—U) - (VUU — ) —e// )
_/O/QW —p(r) = (p =) (F) divU
—&[?A (v=V)- VU@ -V +€/p/ v—V)-VV(u—-U)
—sQ/Ot/Qp(M"(p Vo — W (V) - (0 — V) divU + (U — u) div V)
[ ot

) (v —V) - V(divU) + (U —u) - V(divV)).
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Proof. Multiplying (36) by £ (U — u) and (37) by &2 N (V —v) and integrating with respect
r r

to time and space we have:

Epuk (t) — Epur (0 / / (VU (U —u)) - (U — )
—e// (VV(U —w)) - (V —wv)
2 (1B 4 [Pu) 4 [P
with

/ / P div(u(r)VV) - (U = u) — gdiv(,u(r)tVU) (V- v))

+/0 /Q,u(p)(Vv:VU—VV:tVu),
2 [Fv — /t/ﬂg(U—u)-V()\(r) divV)—/Ot/Qg(V—v)-V()\(r) div U)

/ / (dive divU — divu divV),

i =[] (plo) divU = £Vp(0) - (U =) = 9 ) p =) = p ') ).
Using rH" (r) = p/(r), we have
EVp(r) = pV(H'(r)).
Mutiplying (35) by H”(r) and using rH” (r) = p/(r) we obtain
OH'(r)+VH (r)-U+p(r)divU = 0.

Using rH”(r) = p/(r) and an integration by parts, we have

//TVH' W = — // ) div U.

Then,
= [ [6)=50) - ¢ = e v
We have
P = I
where

. /Ot /Q w(r)V (£) - (VUV ~ ) = IV(U ~ ).
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and using the symmetry of Vv and VV,

Fe = // ('VU : V(V —v) — VV:V(U—u))+u(,o)(w:VU—VV:tvu)}

//T NVV : Vu— VU : Vo) // v: VU = VV 1 'Vu)
Q

/ / (VV : Vu— VU : V)

- /O/Q<M(p)—$u( ))( VV :Vu+ VU : Vo' VU : VV + VU : VV)
= [ [ (10) = 2utr) (V0 V= V) - V- 0) W)
_ /:/J(@_MY))( (0= V) - div(*VU) + (u — U) - div(VV))

_ /t/ V (1)~ Lar)) - (VU ~ V) = TV (u — 1),
0 JQ

Then using the definitions of v and V,

P = /t/ (M_M) —(v=V)-div(*VU) 4 (u — U) - div(VV))

// (V“ Vilr >VU(U V)= VV(u—U))
- [ fo (-
[ [oe-vr-vue-vi+ [ [ po-v)-v-u)

Let us recall that A\(s) = 2(s p/(s) — u(s)). Then

t
2IFv = //B(U—u) r)divV) // (V —v) r)divU)
0oJar Qf

t
//)\ ) (dive divU — divu divV)

— orPu // d1vV+/Ot/QV<$)-(V—v))\(r)divU,

. ) — V) -div(*VU) + (u — U) - div(VV))
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21" = / / (div(v) divU — divu divV)

—//—le —u)A d1VV+// div(V —v)A(r)divU
QT QT

_ / / (div(v — V) divU + div(U — u) divV)
—//Q;dlv —u)\ leV—f-//Qrle —v)A(r)divU

_ / / o) = 2Aw) ) (@iv(e = V) divU + div(U — ) divV)

_ // A(p—BA ((v—V)divU—i—(U—u)divV)
_/0 /J(%_T) (v =V)-V(AivU) + (U — ) - V(div V).

Since X (p) = 2 p u”(p), which leads to
Y (Me) = 2an)) =20 (0" () V- 1" (1)7) = 7 (2) A,

r

we have
2IFv = 2 / / 1" (p)Vp — " (r)Vr) - (v = V) divU 4+ (U —u) divV)
/ / = 2A) (0 = V) Vdiv D) + (U~ u) - V(div V)
and
[Pu g [Pu / / ( ) (0= V) - div('VU) + (u— U) - div(VV))

/O/Qp(v— VU@ -V // v—V) - VV(u-1U)

[ [ o Ve - w6 (= V) U+ =) i)

: t (Mo) = 2A0)) (0 = V) - V{div D) + (U — ) - V(dliv V)

/Ot/ﬂp(v_ -VU(v -V // v=V)-VV(u—-"U)

_/Ot/ﬂp (1" ())Vp — W)V () - (v = V) divU + (U — ) div V)
J

(W (p) = 1 (1) (v = V) - V(div T) + (U — ) - V(div V).

“
S~
b
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This concludes the proof. ]

Theorem 17. Let us assume pu(p) = p+3)/2 with v > s+ 2 and s > —1. Let (p,u,v) be a
weak solution of (5)-(7) and (r,U, V') be a strong solution of (35)-(37). We have

Epuk (t) — Epuk (0) < C(r,U,V) /OtAEEuK(E)dfa

where C(r,U, V') is a uniformly bounded constant on RT x Q.
Using the Gronwall’s Lemma, we directly obtain:

Corollary 18. Let us assume p(p) = ptt3)/2 with v > s +2 and s > —1. Let (p,u,v) be a
weak solution of (5)-(7) and (r,U, V') a strong solution of (35)-(37). Then

Epuk (t) < Epuk (0) exp(C'1),
with C = C(r,U,V) a uniformly bounded constant on RT x Q.
Note that theorem 17 is a direct consequence of proposition 16 and the following lemma.

Lemma 19. We assume that u(p) = p+3)/2 with s > —1. Let (p,u,v) be a weak solution of
(5)~(7) and (r,U, V') be a strong solution of (35)—(37). Then

1 (p)Vp =" (r)V(r)) - ((v=V)divU + (U — u) divV)'

s+1
<o //p<rv—w2+\u—m2>,
0 (9]

and, if v > 2+ s, we have

'r) (v =V) -V(divU) + (U — u) - V(div V))‘

t
<c [ | o)+ ollo = VE +u=UP)).
where C' = C(r,U,V) is a uniformly bounded constant on R x Q.

Proof. Since pu(p) = p®*3/2 and v = V(u(p))/p, V = V(u(r))/r, we have

s+ 1
W (p)Vp—p'(r)Vr = ——=@-=V),

which gives the first part of the lemma using Young inequality. For the second one, using
Young inequality, we have:

/0 /Q (1 (p) = 1 (1) (v = V) - V(div ) + (U — ) - V(div V)|

gc(% /Ot/g,o“/(p) (r)* + / /plv—V|2 / /p|u_U|2>

with C = C(U,V) a uniformly bounded constant on R* x €. Using Lemma 8 in the first
integral, we obtain the result. g
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Let U be a given and smooth function. We define r as the strong solution of equation (35)
and we introduce the functions & and & such that

(38) 1 (QU+U-VU)+ Vplr) —div(u(r) 'VV) + V) div V) = (U, V),

(39) P (OV + U -VV) + div(u(r) 'VU) + %V()\(r) divU) = &(r,U,V),

with V' =V (u(r))/r.
Using the proof of Theorem 17, it is easy to see that the following proposition is true.

Proposition 20. Let us assume pu(p) = pC+t3/2 with v > s +2 and s > —1. Let (p,u,v) be
a weak solution of (5)—~(7) and (r,U, V') a strong solution of (35), (38)- (39). Then

Erurclt) < Epu0)+C [ Epuc€)de +bpur(t)
where
bt //Q—ygl (U —w)+e2 8- (V -0),
and C = C(e%,r,U,V) is a uniformly bounded constant on R* x €.

Using the Gronwall’s Lemma we immediately obtain the next corollary.

Corollary 21. Let us assume pu(p) = pt3)/2 with v > s+2, v > 1 and s > —1. Let (p,u,v)
be a weak solution of (5)-(7) and (r,U,V') a strong solution of (35), (38)-(39). Then

Epuk (t) < Epuk(0) exp(C't) + bpuk (t) + C /Ot biuk (§) exp(C (t —§)) d¢,
where
bt / /Q—\(ga (U —u) +e26 - (V - )|,
and C = C(e%,r,U,V) is a uniformly bounded constant on R* x €.

3.2. Dissipative solutions and weak-strong uniqueness result. In this subsection, we
give the definition of what we call a dissipative solution for the Euler-Korteweg System. We
recall that g,k (t) stands for

gEuK(t) = EEuK (P, u, U|T, U’ V)(t)

defined in (32).
We introduce the function & given by

(10) F(OU + U - VU) 4 Vp(r) — & div(u(r) ') + SV A0) div V) = £(r, D),

with U a given smooth enough function and r a strong solution of equation (35). Using
rV = V(u(r)) and equation (35) we obtain

(41) r (0, V +U - VV) +div(u(r) 'VU) + %V(A(r) divU) =
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Definition 22. Let us assume u(p) = pt3/2 (ie. K(p) = (8+3) p°) with v > s + 2 and
s > —1. Let py and uy smooth enough. The pair (p,u) is a dzsszpatwe solution of the
Euler-Korteweg System (2)-(3) satisfying the initial conditions (1), if the triplet (p,u,v) with
pv =V (u(p)) satisfies

t
Epuk (t) < Epur (0) exp(C't) + bpur (t) + C / bpuk (§) exp(C (t — £)) dg,
0
with C = C(2,r,U, V) a uniformly bounded constant on Rt x Q, and where

bpuk (t / /Q—|éa —u),

for all strong solution (r,U, V') of (35), (
(s +3)?

Remark 23. Note that by definition, for u(p) = ptt3/2 (ie. K(p) = p°) with

v>s+2 and s > —1, using Corollary 21, all weak solution of (2)-(3) satisfying the initial
conditions (1), is also a dissipative solution in the sense of Definition 22.

As a direct consequence, we can establish the following weak-strong uniqueness property
(see [25]).

3 2
Theorem 24. Let us assume pu(p) = p+3/2 (ie. K(p) = (s +3) p°) with v > s 4+ 2 and
s > —1. Let us consider a dissipative solution (p,u) to the Euler-Korteweg system (2)-(3)
satisfying the initial conditions (1). We define pv =V (u(p)). Let us assume that (r,U) is a
strong solution of (35) and

(42) r (U +VUU) + Vp(r) — rV (K(r)m + %K'(T)yw‘?) =0.

We define vV = V(u(r)). If r|i=0 = po, Ult=o = uop then p = r,w = U and v =V, which
means that the problem satisfies a weak-strong uniqueness property.

Proof. If (r,U) is a strong solution of (35), (42) then & = 0 and bg,x(t) = 0. The function
H being convex this gives

1
(43) 0< 5/ p(lu—UP+e*v—V?) dz < Epuk(t) < Epur(0) exp(C't).
Q

If r(t =0) = po, U(t = 0) = ugp then v(t = 0) = V(¢t = 0) and Erux(0) = 0. This leads to
u=U, v="V and p = r using (43). O

Note that, as already mentioned before, all the results and definitions of this section are still
valid for the compressible quantum Euler System. Indeed it corresponds to the special case
K(p) = 1/p in the Euler-Korteweg System for which the assumption 2 + s < « is satisfied
since s = —1 and v > 1. In particular we have the following definition of what we call a
dissipative solution of the quantum Euler system. This one will be used in section 5.

Definition 25. Let py and ug smooth enough. The pair (p,u) is a dissipative solution of the
quantum Euler system (11)-(12) satisfying the initial conditions (1) if the triplet (p,u,v) with
v = Vlogp satisfies

EpuQ(t) < Epuq(0) exp(C't) + bruq(t) + C /O bpuq(§) exp(C (t — £)) dé,
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with a constant C = C(e%,r,U, V) uniformly bounded on R* x 2, and

Eru(t) = Epuk(t), for K(p) =1/p,

t
o) = [ [ 216 0=,
0oJarT
for all strong solution (r,U,V') of (35) and

(44) r(OU +U -VU) + Vp(r) — e2div (rVV) = &(r,U),
(45) r(0V +U -VV)+div(r'VU) =0,

with V= Vlogr.

4. THE NAVIER-STOKES-KORTEWEG SYSTEM: RELATIVE ENTROPY AND DISSIPATIVE
SOLUTION

The goal of this section is to define what we call a dissipative solution for the Navier-
Stokes-Korteweg System. To this end, we consider the augmented System (16)-(18) and we
establish a relative entropy estimate. Here the viscous term adds some difficulties compare
to the case of the Euler-Korteweg system.

4.1. Relative entropy inequality. In this section, we establish a relative entropy inequality
for a weak solution (p, v, w) of the augmented System (29)-(31). This will then be used to give
the definition of what is called a dissipative solution for the Navier-Stokes-Korteweg system.
We define the following relative entropy functional

Ensk(t) = Ensk(p,v,w|r,V,W)
1 _
= 5 Lo Go=VP el WP+ [ Hi)
Q Q

+v/0 /QM(p) (Vo = VVP + [Vw - VW)
v t ivo —divV)? ivw — div W)?
5 [ 30 (@i = a4 @ive —aiviw)?).

Proposition 26. Any weak solution (p,v,w) of System (29)-(31) satisfies the following ine-
quality for all t € [0,T] and for any test functions

reCH0,T)xQ), r>0, V,WeCY[0,T]x9Q),
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Ensk (p,v,w|r, V. W)(t) < Enskl(p,v,wlr,V,W)(0)
/ / O - (V=) + (VT u)- (V —0)
+//p(atW-(W—w)HVWu)-(W—w))
+u/ / ) (IVVP+ |VW|? = Vo : VV — VIV : V)
+\/7y2/ / (p) (VO : VW ="V : VV)
+\/ﬁ/ / (div o div W — divw div V)

/ / ((div V)? — divo div V + (div W)? — divw div W)

- / [ @ @) =)+ p ) - ut plp) div V)

—V/ / HI/ ‘VP‘Q

Proof. Thanks to Proposition 13, we have
Ensk(t) — Ensk(0) < /Q <§|V|2 I §|W|2 —pw- W) (1)
~ [(GVE oV 4 B WP = o) 0)
- [+ T e=) 0+ [ (1) + 5 @)p=) 0

Q
(16) v / L O )0 o (1 4 1),
where
(47) oINS = / / ) (|divV[* — 2divodivV + |[div IV | — 2divwdiv W),
(48) VS = / / ) (IVV]?=2Vo: VV + |[VW|* —2Vw : VIV) .
Using (30)
Hpw-W) = Opw) - W+pw- oW
= (—div(pw@u)—Vp( )+ vdiv(u(p)Vw) + Ve? — v2div(p )W
+A1- W+ pw- W,
where
v . 52 — 1/2 -
A= §V()\(p)dlvw) + TV(A(p)dlvv).
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Using (31),
O(pv - V) = 8(pv) -V +pv -0,V
= <—div(p17® w) + vdiv(p — /2 — 2 div(p( ))-V—{—AQ-V—FpT) RS
where
Ay = 5 V()\ )divo) — = \/7V p)divw).
Then,

' . P
Ensic(t) — Ensi(0) < / o (LIVP) — oo a7 + 2, (—ywy2) —pw-@tW]
0 Jo 2
(le (pv@u) —vdiv(u(p)Vo) + Ve? —v2div(p )) -V
t
+//(d1va®u + Vp(p) — vdiv(p —ve2 —v2div(p >W
Q

t
//Bt )Y+ H(r)(p—7) —y// p)H" (p)|Vp|*
0 JQ

t
// W+ Ay V) +v (I + 1079) .
0

Using an integration by parts, we obtain

//A1 W+ A - // (—vAs + Ve2 — 12Ay),

where

2 A3 = Ap) (divodivV +divwdiviV) ,
244 = Xp) (divwdivV —divodivIW) .
Using (29) and an integration by parts
/ / W(H(r)+H (r)(p—1)) = /0 /Q (H'(r)0r + 0(H'(r))(p — ) + H'(r) 0p — H'(r) 8yr)
= [ [ @ oo -r) - H )i (o)
0o Jo
- /0 /Q (Oe(H'(r))(p — 1) + pV (H'(r)) - w) .

Since

_ 1 _ _ _ 1
O <g|V|2) = §atﬂ|V|2 +pV -0V, O (g|W|2) = §atP|W|2 +pW - oW,
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and since Vo, VV are symmetric matrices (recall that v and V are gradient of functions),
thanks to (29) and integrations by parts we obtain

Ensic(t) — Ensi(0) < /t/p 0tV-(V—U)+/t/p(VVu)-(V—U)
//p@t Ww// (VW) - (W —w)

—i—y/o /Qu(p) (Vo:VV +Vuw: VW)
+y/e2 — 12 /t/,u(p) (Vi : VW — 'V : VV)

// de—y// p)H" (p)|Vp|?
//@H’ p—7) //pVH’

—i—/ /(VAg—\/82—V2A4)+V(I{VS+I£VS),
0 JQ

which gives the proposition. O
Let us introduce the following system

(49) Or +div (rU) =0,

r QW + VW U) + Vp(r) — v div(u(r) VW) — gV()\(r) div W)

(50) =+e2 -2 <div(,u(r) VV) + %V()\(T) div V)> ,

r (0 + VYV U) — v div(u(r) VV) — gV(A(r) div V)

(51) +ve? —v? (div(,u(r) 'YW) + %V()\(’I“) div W)> =
with
U=W —vV, V=+e2-12V.
Defining
(52) Vs = /t/ Ap) ((div V)? + (div W)? — divodiv V — divw div W)
0 JQ
+ /0 /Q g(V(A(r) div V) - (V = @) + VOA(r) div V) - (W — w)),
(53) IS = /t /Q w(p) (IVV> + |[VIW > = Vo : VV — VW : V)
0
+ /O /Q §<div (u(r)VV) - (V = 0) + div (u(r) VW) - (W — w)),
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t
(w — t PV . (v -5
// vvv ) (w W)+//,u(r) VWV<T>) (V — o)
(54) / / (Vo: VW —'Vw: VV) / /

— 'YW : Vo),

(55) 215 = //m r)divV) - (W —w) = VOA(r)div W) - (V — 7))

—/ /)\(p) (divwdivV — divodiv W),

we have

Proposition 27. Let (r,V,W) be a strong solution of (49)-(51). Any weak solution (p,v,w)
of System (29)—(31) satisfies the following inequality

Ensw(t) = Ensic0) < [ [ p [TV (@=1) (7 =5) + (VW (u=1)) - (W =)

- /0 /Q (p(p) — p(r) — () (p — 1)) div U
vt [ Ve =) =p) v )

—7// / H// |Vp|2

+ I + IS 4+ \/e? —VQ(IéVS+IéVS),

where IN® for i = 3,4,5,6 are given by (52)-(55).
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Proof. Multiplying (50) by = (W w) and (51) by = (V ), integrating with respect to time
r

and space, and using (49), we obtain
1 _ _
Ensk(t) — Ensk(0) < 1// / . |:le V—T))—|—§V()\(T) divV) -(V—T})}
Q

ﬁ/ / [dlv YY) - (7 — 0) + %V(A(r) div W) - (V — 6)}

+/0 /Q,o (VV (u—0U))-(V —2) +/Ot/g,o(VW(u—U))-(W—w)

+y/t/Q§ [div V) -(W—w)+%V(A(T)divW)-(W_w)]
ﬂ/ﬂ/ / [dw PV - (W—w)—i—%V(A(r) divV)-(W—w)]

—i—u// ) (IVV]2+ [VW|? = Vo : VV — VIV : V)
ﬂ/ﬂ/ /,u(p o: VW — 'V : V)
ﬂ/ﬂf/ﬁ@(dwvdww divw div V)
—g/t/QA( ) ((div V)2 — div o div V + (div W)? — div w div W)
//(()dlvU p(p) divv) —y// p)H" (p)|Vp|> + IV3,
where
(56) 25 = = [ [ 2506y v -w - [ [ awrme-

—/Ot/QpV(H’(r))-u—i—/ot/QH/(r)Btr.

Using (49) H'(r)0yr + H'(r)div(r U) = 0 which leads, with an integration by parts, to

/ot [ @ar =) ) -

Then

/ / r)oyr — Vp(r)-U) =0,
or
(57) / / r)0r + p(r)div(U)) = 0.
Moreover

Oy(H'(r)) = —=p'(r)divU — H"(r)Vr - U = —p/(r)divU — V(H'(r)) - U.
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Then
AR //pv (H'(r) - (=W +w+U —u) + // r)divU (p
//pv H'(r // r)divU (p

Therefore

Ensk(t) — Ensx (0 / / (VV (u—U)) - (V= 0) + (VW (u—U)) - (W — )]
//[p )divU — p(p) divU — v p(p) divV] —V// p)H" (p)|Vp|*
// ((divV)? = divedivV + (divIW)? — divw div V)

HINS Ly IS 4 uIlS /22— 02 (1S 4+ 1))
where
(58) Vs = / QT (V) div V) - (V =) + V(A(r) div W) - (W — w)) ,

and INS for i = 4,5,6,7 are given by (53)-(56). Finally
Ensk(t) — Ensk (0 / / (VV(u=0)) (V=0)+p(VW (u=T)) (W —w)]

/ / p(p) +p(r)) divU — v p(p) div V]

//pVH’ (V —1) —y// p)H" (p)|Vp|?
(

Ap) ((divV)?* — divodivV + (divIWV)? — divw div W)
Q

/Q E(VOG)div V) - (V =) + V) div W) - (W = w))

t
/ (o) (IVV 4+ VW2 = Vo : VV — VIV : V)

with 129 and I}"® given by (54) and (55). This gives the proposition. O
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Lemma 28. Let IS given by (54) and IY® given by (55). Under the assumptions of Propo-
sitton 27, we have

s = // ( ) iv(VV) - (W—w)+div(tVW)-(z7—V)>
—/O/Q VVW—w + VW (G —V))-(U—V),

and

t
2 VS = _2// W ()N p — i (1)VF) - (W —w) div ¥ + (5 — V) div W)

/ / - L) w) - V(div V) + (5 — V) - V(div V).

Proof. We recall that

s = // vvv (w—W)+ (VWV(g))-(V—ﬁ))}JrIéVS

where, using the symmetry of VV and Vo (V and o being gradients of functions),

t
1% = // (p) (Vo : VW =V : VV) // (VV : Vw —'VW : V0)
(%—%) —VV : Vw+ 'YW : Vo — VV VW + YV - V)
(#—”E}“) (VW — Vw) + VWV : (Vi — VT))

=

- / / (47 (> (Aiv(VV) - (W =)+ dv (V) - (7= V)
/ / (VV(W = w) + VW (@ =V))- ¥ (o) = Zu(r))

- [ [o(e ;")) (@diV(VT) - (W = w) + div("VWV) - (35— )

// (VV(W —w) + VW (5 —V)) - (wp@)_v;;&))
// (V79 (2) - w-w)+ (vwv(g))-(v—@)]
and then
s~ // <“ > W(VT) - (W = w) + div(tVIV) - (5 — 7))

// w)+VW(@—-V))-(v-V).
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We recall that
/ /Q 2 (V) div V) - (W — ) — V) div ) - (V )
- / / AMp) (divwdivV —divodiv V).

An integration by parts gives

215 = // r)divV - (W —w) // r)div W - (V —9),

where

21 =

e o~
S
>a

(p)(divo divW — divw div V)

+
30D

A(r) (div W div(V — 0) — div V div(W — w))

~+

Ap) (div V div(w — W) + div V div W)

_l’_

Ap) (div W div(s — V) + div W div V)

~+

S— 5— 55—,
S— — 55— 55—

3D

A(r) (div V div(W — w) — div W div(V — 7))

Il
S~
S—

<)\(p) - g)\(r)> div V div(W — w) + <)\(p) - g)\(r)> div W div(s — V)]

V(A( ) — —)\( )) (W = w)div V + (o — V) div V)

hh
S— S~

Ap) — —)\ ) (W = w) - V(div V) + (5 — V) - V(div V) .

Since A(p) = 2(pi'(p) — p(p)), we have X'(p) = 2ppu”(p), and then
V) = 2x) = 2o (Vo =V (Z) M) =2 (1),

which gives the result for Iév 3, O

Lemma 29. Let INS given by (54) and IS given by (55). Let us assume p(p) = plst3)/2
with v > s+ 2 and s > —1. Under the assumptions of Proposition 27 we have

t
s+ 1| < 0/0 /Q(p|w_W|2+,o|v—V|2+p|@—V|2+H<p|r>>,

where C = C(r,V,W) is a uniformly bounded constant on Rt x Q.
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Proof. By definition of A(p), lemma 28 directly leads to
S 4 1Ys = // -+ [ oW -o)-w-v)
- / Lo @090 = )90 - (W =) div V -+ @ = V) div )
/ / ') (W = w) - V(divT) + (o — V) - V(divIV)) .

Moreover in an analogous way than for lemma 19, we can show that

‘/Ot /Q p (W' (p)Vp — W (P)V(r)) - (W = w) divV + (o — V) div W)'

t
<c [ [ o(w-ul+lo-VP)
0 JQ

/0 /Q p(1!(p) = /(1) (W = w) - V(div V) + (o — V) - V(div W))\

and

< [ [ (Hl) + oo - WE+]o- V).
0 JO
Ol

Lemma 30. Let IS given by (52) and I)® given by (53). Under the assumptions of Propo-
sition 27, we have

= —2/ / (W' (p)Vp — " (r)Vr) - (V —0)divV + (W — w) div W)
- /O /Q (A0) 2\ (V(iv V) - (7 = ) + V(i ) - (W~ w),
and
—/0 /Qp(v — V) (VV(V =0) + 'VW (W —w))
—/ / ) <M - M) (div(VV) - (V = 0) + div(VW) - (W — w)).
0 JQ P r
Proof. By definition in Proposition 27, we have

= / / Ap) ((div V)2 + (divW)? — divodivV — divwdiv W)

/ /Q . r)divV) - (V —0) + VA(r)divIV) - (W —w)) .

The first integral can be written

/t/ Ap) (div V div(V — o) + div W div(W — w)) ,
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and, using integrations by parts, the second one becomes

/ / A(r (div(V)(V — ) + div(W)(W — w))
/ /Q (div V div(V — 0) + div W div(W — w)) .
Then
s = / / - BA (div V div(V — 9) + div W div(W — w))
/ / (div(V)(V — 0) + div(W)(W — w)).

Using integrations by parts we obtain

/ / <)\ - BA dldeiv(V—T))—|—dideiv(W—w))

r

= / /V<A(p)—3A(r)> (V= 0)divV + (W — w) div V)
0 JQ
—/O/Q Mp) — X)) (V(div V) - (V = 5) + V(div W) - (W~ w))
(p), we have
_/ Y (Mo) — M) - ((V = 5)div V + (W — w) div W)
0 JQ
= —2/0 /Qp(,u"(p)v,o—,u”(r)Vr) ((V=0)divV + (W —w)divI¥)
t Py. iv(V)(V — iv —w
[ X0V (£) - @) =)+ div(W) OV ).
Then
s = —/ /2 (ot (p)Vp — pu" (1)V7r) - (V = 0) divV + (W — w) div W)
/ / o) = ZN() (Vdi(V) - (V = 2) + V(div W) - (W — w)).

This concludes the proof for Iév s,
For IS, let us recall the definition:

Vs = / / Y(IVVP + VW2 = V5 : VV — VIV : V)

—i—/o /Q - (div(p(r)VV) - (V =) + div(u(r) VW) - (W — w)) .

The first integral can be written

/Ot/ﬂ,u(p) (VV : (VV = V) + VW : (VIV — Vuw)),



34 D. BRESCH, M. GISCLON, AND I. VIOLET

and, using integrations by parts, the second one becomes

//wv (VV(V —0) + 'VW(W — w))

//QT (VV 2 V(V — ) + VIV : V(W — w)) .

Then
// —gﬂ ))(VV:V(V—T)H—VW:V(W—w))
// v(i (VV(V =)+t VIV (W — w)).

Using integrations by parts and the symmetry of VV (V being a gradient of function), we

have
/t/ (np) — Lu(n) (VV - 9V = 5) + YW : V(W — w))
0 JQ
= [ [V (o)~ Zu) - (VU — )+ TWW )

0 JQ

_/0 /QP <%p) - @> (div(VV) - (V = 2) + div(VIV) - (W — w)).

Then
INS _ _/Ot/gp <V/;(P) _ V,ljﬂ(r)> ] (VV(V — ) —{—tVW(W . w))

_ /Ot/gp <@ - M@) (div(VV) - (V = 3) + div (VW) - (W — w)),

which gives the result.

Using the previous lemma and the symmetry of VV, we obtain the following lemma

Lemma 31. Let I3 given by (52) and I)S given by (53). We assume p(p) = pt+3)/2 with
v >s+2and s> —1. Under the assumptions of Proposition 27, we have

1 t _
SIS 1Y) < C/O /Q(p\v—V!2+p!v—V\2+p!w—W\2+H(p\r))a

where C = C(r,V,W) is a uniformly bounded constant on Rt x Q.
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Proof. We have:
—INS = / / v=V)- (VV(V =0)+ 'VW(W — w))
// P)Vp — " (P)Vr) - (V = 0)divV + (W — w) div W)
- /0 /Q p (4 (p) — 1/ (1) (V(div V) - (V — ) + V(div W) - (W — w))
! plp)  p(r)\ o :
—/0 /Qp (T - T) (div(VW) = V(divW)) - (W — w).

In an analogous way than for the lemma 19, we can show

/Ot/ﬂp <@ B @> (dv(VW) = Vidiv W) (W —w) < C/Ot/Q (H(plr) + p|W — wf?).

Then using an analogous result than the one used in the proof of lemma 29 we obtain the
result. O

Let us now define

t
INS:—#// V(H'(r)) - (V =)+ p( leV—l/// p)H" (p)|Vp|?.
Using the definition of H and an integration by parts, we obtain
t / /
(59) H =2 )y Jo" ¥ " w?) VY

with v = V(u(p))/p, v = Vez —v2v, V. = V(u(r))/r, V = Ve2 —12V. We can show the

following proposition.

Proposition 32. Let IN® given by (59). Assuming u(p) = pt3)/2 with 7; s+2, s> -1
and the hypothesis of Proposition 27, there exists a contant C = C(r,U,V, W) uniformly

bounded on RT x Q such that
t
ms<o Y / / H(plr).
11 = 2 — 12 o Ja (p|’l“)

Proof. Using Lemma 9, we can write

NS _ ¥ ! ) e NS
(60) i = 52—1/2/0/9’);/(;)) oF - iz
where

1) B =2 [ [ (VE=500i0) + a7

Using an integration by parts

v t o v ¢ o
B =~ [ o an)+ 520 [ [ satoiv-v.

Now using lemma 7 we obtain

INS < —1/2/ /H plr) + C_”VQ /Ot/QH(ﬂIT) < 626;1/”2 /Ot/QH(P"”)
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which gives the result due to the expression (60) and the sign of the first quantity in the
right-hand side. g

Theorem 33. Assuming p(p) = pC+3/2, 4 > s +2 and s > —1, any weak solution (p,v,w)
of System (29)-(31) satisfies the following inequality

(62) Ensk(t) —Ensk(0) < C(H—ﬁ)/{) Ensk(§)de

where (r,V, W) is a strong solution of (49)-(51) and where C = C(r,U,V , W) is a constant
uniformly bounded on RT x Q.

Proof. Thanks to Proposition 27 we have
t — —
Ensilt) = Exs0) < [ [ p [V =0 (7= 0) + (FW (w=0)- (W - w]
0 JQ

- / / (p(p) — p(r) — P'(r) (p — 1)) div U
0 Q

14
+IN° + §I§V5 + IS 4 e2 — 2 (IS + 1Y),

with IV for i = 3,4,5,6 given by (52)-(55) and INS given by (59). This gives with the
regularity of U, V and W and the previous lemmas

Ensk(t) — Ensk(0) < C/Ot/ﬂp (ju=UP+=VP+o -V +w—W?)
- [ 6o =) =5/0) (p =) aiv U

oY /t/H(])
e =12 Jo Jo a

t
< C <1+62—Ll/2>/0 5NSK(§)d§-

0

Corollary 34. Let (r,V,W) be a strong solution of (49)-(51). Assuming u(p) = p+3)/2,
v > s+2 and s > —1 any weak solution (p,w,v) of (29)-(31) satisfies the following inequality

Evsicp 00l V. W) < Ensc(pouln VW) O esp (€ (14 575) o).

where C = C(r,U,V,W) is a constant uniformly bounded on R™ x €.

Proof. Thanks to the previous proposition and the Gronwall’s Lemma, we have the inequality.
O
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Let U be a given and smooth function. We define r as the strong solution of (35), and we
introduce the functions &7 and &3 such that

(63) r (W +U - VW) + Vp(r) — v div(u(r) VIV) — gV()\(r) div W)

—Ve? —v? <div(,u(7") vV) + %V(A(r) div V)) =& (r,V,W),

(64) r OV +U-VV) — v div(u(r)VV) — gV(A(r) div V)

1 _
+ve? — 12 <div(,u(7") W) + §V(A(r) div W)> =& (r,V,W).
In a same way than for the proof of Theorem 33, we have the following result.

3 2
Proposition 35. Let us assume p(p) = pBt3/2 (ie. K(p) = ﬂp“’), v > s+ 2 and

s> —1. Let (p,v,w) be a weak solution of System (29)-(31) and (r,V,W) a strong solution
of (35), (63)-(64). Then
t
_ _ v
gNSK([),T),U)’T,V,W)(t)—gNSK([),@,w,T,V7W)(O) < C <1+€27V2> / 5NSK+bV(t)7
- 0
with .
v P v P v [/ =~
vy = [ [ [Lar v —w)+ Ley v -9
0o Jaltr r
and where C = C(r,U,V,W) is a constant uniformly bounded on R* x Q.

Using the Gronwall’s Lemma, we immediately obtain the following corollary.

2
Corollary 36. Let us assume u(p) = p+3)/2 (i.e. K(p) = Mp“”) with v > s+ 2 and

s> —1. Let (p,,w) be a weak solution of System (29)-(31) and (r,V,W) a strong solution
of (35), (63)-(64). Then

Exsi(t) < Enskl0) exp(F” 1)+ F /0 b (€) exp(FY (t — ) dé + (1),

where b” is defined in Proposition 35 and

14
F"=C|1
(v a5).

with C = C(r,U,V,W) a constant uniformly bounded on Rt x Q.

4.2. Dissipative solution and weak-strong uniqueness result. Let us now give the
definition of what is called a dissipative solution of the compressible Navier-Stokes-Korteweg
System. To this end, let us first introduce the function &% given by

r(OU + U -VU) + Vp(r) —2vdiv(u(r)D(U)) — vV (A(p)divU)
(65) 42 [ (@iv(u(r)' TV) + SV div V)| = 67, D),

with U a given smooth enough function and r a strong solution of equation (35). Using

rV =Vu(r), V=+ve2 -2V, W=U+vV,



38 D. BRESCH, M. GISCLON, AND I. VIOLET

and equation (35) we obtain
(66) r (W +U-VW)+ Vp(r) — v div(u(r) VIV)

—gV()\(r) divW) — Ve? — 2 (div(,u(r) VV) + %V()\(r) div V)) =& (r,U),

(67) r (OV +U-VV) +e2—1? (div(,u(r) tVU) + %V(A(r) div U> =0.

Before giving the definition let us recall that Ensk(t) stands for
gNSK(t) = ENSK(pa v, ’U)|’I", V’ W)(t)

Definition 37. Let us assume p(p) = pBt3/2 ~ > g4 2 and s > —1. Let po and ug smooth
enough. The pair (p,u) is a dissipative solution of (13)-(14), (1) if the triplet (p,v,w) (with
pv=Vu(p), v = Ve —1v2v, w=u+vv) satisfies for all strong solution (r,U) of (35), (68)
or in other words (r,V,W) strong solution of (35), (69)-(70)

SNSK(t) S gNSK(O) exp(F”t) + FV /Ot bNSK(f) eXp(FV (t — 5)) d§ + bNSK(t),

with FY given in Corollary 36 and

bNSK(t):/Ot/Q [gngv—w) .

As in the case of the Euler-Korteweg system, a direct consequence of the method is the
following weak-strong uniqueness result.

Theorem 38. Let us assume pu(p) = p+3/2, v > s+ 2 and s > —1. Let us consider
(p,u) an entropic solution to the compressible Navier-Stokes-Korteweg system and define w =

\Y \Y
u+v (p) and v = v/e? —v? M_(P) Let us assume that there exists (r,U) a strong solution
p P v
of the compressible Navier-Stokes-Korteweg System and assume that W = U + I/M and
r

V= v Vi),
r _
If (po,up) = (r,U)(t = 0) then (p,v,w) = (r,V,W) or (p,u) = (r,U), which corresponds

to a weak-strong uniqueness property.

Finally, let us give the definition 37 in the particular case of K (p) = 1/p which corresponds
to the quantum Navier-Stokes system. This one will be used in Section 5. To this end we
introduce the function &%, given by

(68) 1 (U +U-VU)+ Vp(r) —2vdiv(rD(U)) + *(div(r'VV) = Exgo(r, U),
with U a given smooth enough function and r a strong solution of Equation (35). Using
rV =Vulr), V=+ve2 -2V, W=U+vV,
and Equation (35) we obtain
(69) 7 (W +U-VW) 4+ Vp(r) — v div(r VW) — V2 — 2div(r VV) = & (r,U),
(70) r (V +U-VV)+Ve2 =12 div(r'VU) = 0.
We define Engg(t) by
Ensq(t) = Ensk(t) with K(p) =1/p.
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Definition 39. Let py and ug smooth enough. The pair (p,u) is a dissipative solution of
(22), (23), (1) if the triplet (p,v,w) (with pv = Vu(p), v = Ve? — v2v, w = u+vv) satisfies
for all strong solution (r,U) of (35), (68) or in other words (r,V, W) strong solution of (35),
(69)-(70) with K(p) = 1/p,

Ensolt) < Ensg(0) exp(Ft) + F” /0 byso(€) exp(FY (t — €)) de + byso(t),

with FY given in Corollary 36 and

bwsal) = [ [ [Latsq-0v - w].

Remark 40. Note that by definition, using Corollary 36, all weak solution of (22)-(23), (1)
is also a dissipative solution in the sense of Definition 39.

5. FROM THE QUANTUM NAVIER-STOKES SYSTEM TO THE QUANTUM EULER SYSTEM:
THE VISCOUS LIMIT

We can now perform the limit of a dissipative solution of the quantum Navier-Stokes system
to one of the quantum Euler system when the viscosity constant v tends to zero. Thanks to
the entropies, we have the following regularities on the global weak solution of the quantum
Navier-Stokes equations:

VPPt € L®(0,T; LA(Q)), V¥ w” € L®(0,T; L*()), H(p") € L=(0,T, L' (Q)),
where
v’ =+ve2—1v2Vliogp”, w'=u"+vVliogp”.
Let (r,U,V,W) such that
0<c<r rVeL®0,T;L*Q)), VT W € L™(0,T; L*()), H(r) € L*=(0,T; L*()),
VW, VV € L>(0,T; L>(Q)), r € L>=(0,T; W (Q)).
The goal of this section is then to prove the following result:
Theorem 41. Let py and ug smooth enough. Let (p¥,u”) be a weak entropic solution to the

quantum Navier-Stokes system (22)-(23) with initial conditions (1). Let (p,u) be the weak
limit of (p”,u") when v tends to 0 in the sense

P’ — p weaklyx in L*°(0,T;L7(Q)),
Vi w” — \/pu weaklyx in L=(0,T; L*(Q)),
VP " — e \/pu weaklyx in L=(0,T; L*(Q)),
with pv = Vp. Then (p,u) is a dissipative solution of the quantum Euler system (11)-(12)
with initial conditions (1).

Proof : According to Remark 40, the pair (p”,u”) being an entropic weak solution, it is
also a dissipative one. We want to prove that (p,w), which is the limit of (p”,v”) when v
tends to zero, is a dissipative solution of (11)-(12) satisfying the initial conditions (1). The
goal is then to prove that (p,u) satisfies Definition 25. Let us define v = Vlog p (because in
this case u(p) = p). Let (r,U,V) (with V = Vlogr) be a strong solution of (35), (44)-(45).

We define
VV=+e2 -2V, WY =U+vV.



40 D. BRESCH, M. GISCLON, AND I. VIOLET

Then it is easy to see that (r, V¥, W") is solution of (35), (69)-(70) with
é‘}’\’,SQ(r, U)=8&(r,U)—2vdiv(rD(U)).

Then using Definition 39, (p”,u") being a dissipative solution we have

t
(71) Ensq(t) < Ensq(0) exp(F¥t) + F” /O bivsq(€) exp(F” (t — &) d€ + biyso(t),
with
o= C (1 + ﬁ) :

byst(t):/ot/Q [g (éa—QVdiv(rD(U)))-(W—w)].

Since by definition we have

and

vV =V v Va4 v 1 v —V Va4 v v
ENSQ(/) , U ,w ‘7"7V 7W )(t)zi/ﬂp (‘U -V ’2+’w -W ‘2)

v ! v ¢ v —v (72 v 2
o [ @) =0 =10 =) v [ (9 = VVE Ve W),

we easily obtain
1 v 4 VaZ v v v v

3 [0 =V W)+ [ ()~ ) - ) =)
S 5NSQ(pV7®V7wV’T7 VV’WV)(t)

and

_ 1 _
Ensalp o IV W0 = 5 [ 7 (0" = V7P 4w’ = W) 0)

+/XHW0—HW—HWMM—@MM
Q

Then (71) gives

3 |7 0 =V W) 0+ [ (H) - HO) = B =) (0

t
< Ensq(p”, 0", w”|r, VY, W)(0) eXP(F”t)+F”/O bsqQ(&) exp(F (t —&)) d§ + biysq(t)-

It remains now to pass to the limit v tends to zero in this inequality. Clearly, using the lower
semi-continuity of the term Engg(p”, v, w”|r, V¥, W), the left-hand side is greater than

5 [0 @lo=VE+lu=UP) @+ [ Hipln),

Q Q

which is Egug(p, u, v|r, U, V)(t) (i.e. Epur(p,u,v|r,U,V)(t) given by (32) with K(p) =1/p).
For the right hand side, we use the direct limit of the term Ensg(p”, ", w”|r, V¥, W")(0)
(through the expression of the initial data) and by tends to

beuq(t) :/Ot/ﬂ [55'(U—U)],
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to conclude that
t
Epuq(t) < Epuq(0) exp(C't) + bpuq(t) + C /0 exp(C (t — €))bruq(§) d€,

where C' = C(¢2,r,U,V) is a uniformly bounded constant on R* x €. Therefore we finally
obtain that (p,u) satisfies the Definition 25 and then is a dissipative solution of (11)-(12),
(1). d

6. APPENDIX

6.1. Equivalence of g,k and the relative entropy in [26]. Let us consider the relative
entropy functional, denoted Egy i (p, u,v|r, U, V') and defined by (32). The goal of this section
is to prove that this relative entropy is equivalent to the relative entropy defined by (2.23)
in [26] under the concavity assumption on K with K (p) = p°. Let us first recall the relative
entropy ESLL defined in [26]. It reads

1 1
(72) Efut (pyu, Vplr, U, Vr) = = / plu—U? + 5¢? / Ir + / H(plr)
2 Ja 2 Ja Q
where
It = K(p)|[Vp|> = K(r)|Vr|? = K'(r)|Vr|*(p — 7) = 2K (r)Vr(Vp — V7).

Note that Ir corresponds to the term K (p)|Vp|? linearized in the variables (p,q) where
q = Vp. Let us now introduce the quantity

oE - K |

Then our Euler-Korteweg modulated energy reads

1 1
Epuk (pyu,v|r,U, V) = / \u—U!Q—i— 5 /IEUK—i—/H plr)

where v = /K (p)Vp/\/p and V = \/K(r)Vr/\/r. Let us prove that under the hypothesis
on K introduced in [26]

Epur(puvr,UV)=0 &  EGLE(p,u,Vp|r,UVr) = 0.

If so, we prove by this way that our relative entropy and the one in [26] are equivalent under
the hypothesis in [26]. Our convergence result will therefore be more general that the one
in [26] because it does not asked for concavity hypothesis on K(p). First let us prove the
following lemma:

2
IE’uK

'J—Vp \fJ—w

Lemma 42. We have the equality

T’

I + K(r)|Vr|? K(p)

2 11 K'(r) .
P Ivr <K<p> w0 T wme” )>

:MQWWEHK( K(r) _ B)
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Proof. After computations, we check that

Ihue = Ir+K'@)VrP(p—r)+ LK ()| Vrf

o\ [EVRGIRGI- 9r 4 2K ()% 9 K)o

= Ir+15

I = K()|Vrf? <§ 14 f;é; (p—1)+2 V%; \ﬁ - z§> 5,

K(r) \/E
Ib =2\/K(r)Vrisglg, and I3 = — /=
2 VK (r) 31puK 3 Kp) "

Corollary 43. Let K(p) = p® with —1 < s <0, then
quf%(p,u, Vplr,U,Vr) =0 & Eruk (pyu,v|r,U, V) = 0.

where

with

Proof. Under the assumption on K, we check that
2
12— K(r) \/E
2 = _/F
K(p) Vr
2
_ PNTP_ [P
- (Vo)

2 2
< 2( (3> —1) +2<1— 3)
T T
1 2
< 2T_5(vp*s—vrfs)2+;(ﬁ—x/ﬁ)2
2 .2
< —lp =17+ =l —pl
T T

with 0 < —s < 1. Assume EGEL(p,u, Vp|r, U, Vr) = 0, then I3 = 0 and
1 1 K'(r) )
- + p—r)|=0.
(75~ 70 * ore )

Therefore using Lemma 42 we conclude Egyx (p, u, v|r, U, V') = 0 (the inverse follows the same
lines). This ends the proof. O

6.2. Definition of the operators. For the convenience of the reader we recall in this Section
all the definitions of the operators used in this article. The definitions used here are the ones
presented in [7] in Appendix A.

Let f be a scalar, u,v two vectors and o = (045)1<i j<d & tensor field defined on 2 C R4
smooth enough.
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Denoting by vy, --- ,vq the coordinates of v, we call divergence of v the scalar given

by:
ov;
div(v Z 0z,

e We call laplacian of f the scalar given by
d 2f
Af =div(Vf) = Z B

We call gradient of v the tensor given by:

Vv = <8v¢> .
Ox; 1<i,j<d

We call divergence of o the vector given by:

0oij
div(o Z oz,

= 1<i<d

We call laplacian of v the vector given by:
Av = div(Vv).

We call tensor product of u and v the tensor given by:

u®v = (V) <; j<q-

Proposition 44. Let u,v,w three smooth enough vectors on § and r a scalar smooth enough
on . We have the following properties.

(u@v)w = (v-w)u,

div(u ® v) = (divo)u + (v - V)u,

div(ru) = Vr-u+r divu,

diviru®@wv) = (Vr-v)u+r(v-V)u+r div(v)u.

Definition 45. Let 7 and o be two tensors of order 2. We call scalar product of the two
tensors the real defined by:

1<i,j<d
The norm associated to this scalar product is simply denoted by | - | in such a way that
lof* =0 :0.

Remark 46. By definition we have
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