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Abstract—We introduce a novel bags-of-features framework
based on relative position descriptors, modeling both spatial
relations and shape information between the pairwise structural
subparts of objects. First, we propose a hierarchical approach for
the decomposition of complex objects into structural subparts,
as well as their description using the concept of Force Histogram
Decomposition (FHD). Then, an original learning methodology
is presented, in order to produce discriminative hierarchical
spatial features for object classification tasks. The cornerstone
is to build an homogeneous vocabulary of shapes and spatial
configurations occurring across the objects at different scales
of decomposition. An advantage of this learning procedure is
its compatibility with traditional bags-of-features frameworks,
allowing for hybrid representations of both structural and local
features. Classification results obtained on two datasets of images
highlight the interest of this approach based on hierarchical
spatial relations descriptors to recognize structured objects.

I. INTRODUCTION

The development of discriminative image representations is
a challenging problem in various fields related to image anal-
ysis and pattern recognition. Classical methods dedicated to
the recognition of complex objects usually rely on a structural
or statistical description of the object content, summarizing
different image features such as outer contour, geometry
or texture and color effects. A limit of these methods is
that these different types of features (and combinations) are
sometimes not discriminant enough to successfully describe
image contents composed of complex objects.

In recent years, the spatial disposition of objects in a
scene (or between object sub-components) has received much
attention in the domain of image analysis. In fact, it can
be stated that structural relations between image components
are fundamental in the human perception of image similarity.
Therefore, the spatial relations between the regions composing
an object can be considered as important features to recognize
the nature of the object itself. However, as far as we know they
are seldom used for object recognition, mostly because they
often suffer from strong structural constraint issues.

In parallel, bags-of-features strategies have been proposed
in the computer vision community to efficiently exploit the
discriminative aspects of local features in images. Such strate-
gies have led to encouraging results in image classification
tasks, but one of their inherent downside is the lack of spa-
tial information, because images are represented as orderless
collections of local features.

In this article, we present a novel bags-of-features frame-
work based on spatial relations descriptors for the description
and recognition of complex objects. Section II reviews some
related work in the context of this paper. Our first contribution,
presented in Section III, is a hierarchical approach for the
decomposition of complex objects, as well as their multilevel
structural description using the concept of Force Histogram
Decomposition (FHD) [14], [7]. Our second contribution,
presented in Section IV, is the introduction of a novel learn-
ing framework, inspired from bags-of-features strategies, to
learn discriminative hierarchical spatial features for object
classification tasks. The main originality of this approach is
to build an homogeneous vocabulary of shapes and spatial
configurations occurring in the objects at different hierarchical
scales. In Section V, we propose an experimental study, where
two datasets of complex objects are considered to illustrate
the robustness of our proposed approach. We show that the
combination of this structural method with a classical local
features framework allows to better recognize complex objects.
Finally, a conclusion that emphasizes the perspectives of this
work is found in Section VI.

II. RELATED WORK

A. Spatial Relations

Many studies have been conducted for the analysis of
spatial relations in different application domains of pattern
recognition and computer vision, with the common objective
of describing the relative position of objects in images [3]. We
can distinguish in the literature two main research axes based
on strong dual concepts [19]: the concept of spatial relation,
and the relative position of an object with regards to another.

In the first axis, a spatial relation such as “to the left
of ” is considered, and a fuzzy evaluation of this relation
is obtained for given two objects. For instance, the fuzzy
landscape framework [2] is oriented towards this type of eval-
uations. This approach is based on a fuzzy modeling of spatial
relations directly in the image space, using morphological
operations. Typical applications include for example graph-
based face recognition [6], brain segmentation from MRI [8],
or handwritten text recognition [12].

In the second axis, the relative position of an object
with regards to another one can have a representation of its
own, from which it is then possible to derive evaluations
of spatial relations. A typical relative position descriptor is



the Force Histograms [18], which was itself inspired by
Angle Histograms [20]. Force Histograms are used in several
application domains such as linguistic descriptions [17], scene
matching [5] or content-based image retrieval [23], [14], [7].

In this particular context of image retrieval, the authors
of [14], [7] proposed a structural object descriptor called
Force Histogram Decomposition (FHD). The key idea of
this descriptor is to encode the pairwise spatial relations
between disjoint layers of pixels composing an object, ob-
tained with a segmentation strategy, using an homogeneous
set of F-Histograms. These works showed the interest of
this representation based on directional spatial relations for
structured object description. However, this approach suffers
from different problems. First, it is required to a priori fix the
number of object subparts to run the decomposition step of this
descriptor. Secondly, the comparison of two objects described
with FHD descriptors is viewed as a (costly) graph matching
problem – where nodes represent object subparts and edges
represent pairwise spatial relations – implying strong structural
constraints on the object subparts and a high sensitivity to
segmentation issues.

B. Towards Bags-of-Relations

Bags-of-features (BoF) strategies, have recently attracted
numerous research attentions for object recognition and image
classification tasks [26], [13]. The typical BoF model uses
local features (e.g., SIFT [15] or HOG [11] descriptors), either
based on sparse interest points or in a dense grid, to build a
vocabulary of visual words, with a clustering technique. An
image is then represented by a composition histogram of such
visual words, and these feature vectors form the basic visual
entity for image classification, using a supervised machine
learning procedure (e.g., SVM [10] or Random Forests [4]).
An inherent downside of the BoF frameworks is the lack of
spatial information, because images are represented as order-
less collections of local features. Some approaches have tried
to incorporate spatial information, but only few approaches
use the inner structure of objects.

In the field of symbol recognition, recent works [21], [22]
introduced bags-of-relations (BoR), an original way to produce
composite vocabularies of spatial configurations. The approach
was applied on a well-controlled set of visual primitives
specific to the application domain (e.g., circles, corners or
extremities). In this work, our goal is to leverage this type
of approach, extending it to the more generic application of
complex objects in color images.

III. HIERARCHICAL DESCRIPTION OF OBJECTS

This section presents our framework for the description of
complex objects depicted in images. First, we introduce how
to decompose an object into its inner structural subparts with
a hierarchical image segmentation. Then, given this structural
decomposition, we present an original extension of the Force
Histogram Decomposition (FHD) descriptor [14], [7] used to
characterize both the shapes and the pairwise spatial relations
between the hierarchical subparts of the object.

Input I L1 L2 L3 L4

Fig. 1. Hierarchical decomposition of a typical structured object into its inner
subparts. For illustration purposes, only the top four levels of the hierarchy
are represented.

A. Hierarchical Object Segmentation

Given an object to be described, our objective is first to
decompose it into its different structural subparts according
to the image content. We define a structural subpart of an
object as a set of pixels in the image, potentially composed of
multiple connected components (e.g., two wheels form a single
structural subpart of a motorbike). As object subparts can
emerge at various levels of image interpretation, we propose to
consider a hierarchical image segmentation strategy to extract
the structural subparts at different scales. The hierarchical
object segmentation algorithm starts with an initial over-
segmentation of the image and uses this level as a base for
the construction of subsequent significant levels.

From the input image, we first apply the Mean Shift
segmentation algorithm [9], which yields a set of s non-
overlapping segments Si (modeling a partition of the input
image), delineating small regions exposing homogeneous color
properties. The Mean Shift algorithm works with a set of
intuitive parameters allowing to control the granularity of
the segmentation. We then consider that each segment Si
represents an initial structural subpart of the object.

To reconstruct the structural layers of the object at different
complementary scales, we then apply the Ascendant Hierar-
chical Clustering (AHC) algorithm [24] (using the Euclidean
metric, with an average linkage criteria) on the RGB values
of the s segments obtained with the Mean Shift segmenta-
tion. One advantage of considering a clustering algorithm,
as opposed to a more classical hierarchical segmentation
algorithm with spatial constraints [1], is that it enables to build
structural layers potentially composed of multiple connected
components. The AHC procedure builds a hierarchy of image
segments (by successive binary merging of the most similar,
but not necessarily adjacent, subparts of the object), that can
be represented as a binary tree structure, commonly called a
dendrogram D of s levels. Each level of D models a partic-
ular scale of structural layers of the object: the “leaf” level
corresponds to the s initial structural subparts while the root
level is the cluster that contains one single structural subpart
composed of all the image segments. Each intermediate level



Fig. 2. Computation of a Force Histogram between two objects. The
histogram FAB describes the relative position of the object A with regards
to the object B, considering all directions.

Li with i ∈ [1, s] of D can be represented as an independent
set of structural subparts (|Li| = i) of the object whose union
is a partition of the input image.

These dendrogram levels model a hierarchical decomposi-
tion of the object into different (but complementary) structural
inner subparts. Such a hierarchical decomposition of a typical
structured object is presented in Fig. 1, showing the top
four levels of decomposition. The next step will consist in
homogeneously characterizing both the shape and the pair-
wise spatial relations between theses subparts to provide a
multilevel description of the object.

B. Force Histogram Decomposition (FHD)

A Force Histogram (thereafter noted F-Histogram) allows
to describe the directional spatial relations between a couple
of objects A and B depicted in an image [18]. It relies on the
definition of a force of attraction between points. Given two
points located at a distance d from each other, their force of
attraction is defined by ϕr(d) = 1

dr where r characterizes the
kind of force processed. When r = 0, all points are treated
with equal importance (constant force), whereas when r = 2,
more importance is given to closer points (gravitational force).
Instead of directly studying all pairs of points between the
two objects, the force of attraction between two segments is
considered. Let I and J be two segments on a line of angle
θ, Dθ

IJ the distance between them and |.| the segment length.
The force of attraction fr of I with regard to J is given by:

fr(I, J) =

∫ |I|+DθIJ+|J|
DθIJ+|J|

∫ |J|
0

ϕr(u− v) dv du. (1)

Given two binary objects A and B, a θ-oriented line in the
image forms two sets of segments belonging to each object:
CA = ∪{Ii}i=1..n and CB = ∪{Jj}j=1..m (see Fig. 2). The
mutual attraction between these segments is defined as:

F (θ, CA, CB) =
∑
I∈CA

∑
J∈CB

fr(I, J). (2)

Then, the set of all θ-oriented parallel lines Cθ going through
the whole image, gives us the global attraction FAB(θ)
between A and B along a direction θ.

Finally, the F-Histogram descriptor FAB is obtained by
computing FAB onto a set of angles θ ∈ [−π,+π], sum-
marizing the relative position of A with regards to B. The

model highlights useful theoretical properties: it is invariant
with regards to translations and scaling transformations, quasi-
invariant to rotations, and periodic. Besides, a notable property
is that F-Histograms are bilinear, that is, for any objects A1,
A2, B1 and B2, we have:

F (A1∪A2)(B1∪B2) = FA1B1+FA1B2+FA2B1+FA2B2 . (3)

This property is particularly interesting when considering
objects composed of multiple connected components, allow-
ing for a particularly efficient computation of pairwise F-
Histogram in our hierarchical agglomerative framework.

Given a “flat” (non-hierarchical) decomposition of an object
in an image into a fixed number of subparts, the key idea of
the initial FHD descriptor was to encode the pairwise spatial
relations between all these image layers using F-Histograms.
When applied to each layer with itself, the spatial self-relations
encode shape information (“shape” F-Histograms) whereas for
two different structural subparts, the spatial relations encode
relative structural aspects (“spatial relations” F-Histograms).
The object can finally be represented as a complete attributed
relational graph (ARG) of F-Histograms modeling the spatial
relations (and self-relations) between all the possible couples
of image layers. To extend the FHD descriptor to our hierar-
chical object decomposition, we propose to relax the structural
constraint of this initial ARG model, that is, we create order-
less sets of F-Histograms between all the couples of object
structural subparts at each scale of image decomposition. This
allows both to benefit from the hierarchical segmentation as
we obtain a coarse-to-fine description of the object, and to
overcome the limitations of the static graph model.

To this end, starting from a given stage Lk of the image
dendrogram (where k ≥ 2 denotes the considered maximum
depth of decomposition), we compute two different sets of F-
Histograms to describe the object. On the one hand, the set
Sshapes is composed of shape F-Histograms, each being com-
puted between a subpart and itself, resulting for each object in
a set of shape descriptors at different levels of decomposition
Li with i ∈ [1, k]. This results in a total of |Sshapes| = k(k+1)

2
F-Histograms (i.e., i shape descriptors for each stage Li).
On the other hand, the set Srelations is composed of spatial
relation F-Histograms, each being computed between all pairs
of subparts at all levels of decomposition. This results in a
total of |Srelations| =

∑k
i=2

i(i−1)
2 F-Histograms (i.e., i(i−1)

2
spatial relations descriptors for each stage Li). Note that,
given the bilinear property of F-Histogram, the generation
of these two sets is particularly efficient, because we only
need to compute F-Histograms at the maximum depth stage
Lk, and then the F-Histograms for the successive stages
are automatically obtained from the previous ones (without
running the algorithm again).

The two sets Sshapes and Srelations of F-Histograms, com-
puted on different objects, homogeneously represent two in-
dependent feature spaces in which the learning procedure to
build bags of features will be realized.
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Fig. 3. Some representative samples from our vocabulary of spatial configura-
tions issued from the vector quantization step. Each row represents a cluster,
or vocabulary word, obtained using our bags-of-features learning strategy:
(left) centroid of the cluster, (right) representative object subparts attached to
this centroid. The two object subparts whose spatial relations are computed
are depicted in white and gray.

IV. BAGS OF SPATIAL RELATIONS AND SHAPES

In this section, we introduce our learning framework based
on the previously described hierarchical spatial relations and
shapes features. This approach is inspired by traditional bags-
of-features strategies usually applied with local descriptors.
Given a training set of images containing objects from differ-
ent categories, our objective is to build a vocabulary of typical
shapes, as well as spatial configurations occurring across the
objects subparts at different scales. During the learning phase,
we first apply the hierarchical object description strategy to
construct sets Sshapes and Srelations for each object of the
training set. We then apply a vector quantization strategy in
the feature space spanned by our spatial relations and shapes
features, followed by a pooling step to finally represent each
object by an histogram of vocabulary words composition.

For vector quantization, we use the K-Means clustering
algorithm [16] in order to build clusters of similar features in
the training set. We perform two distinct K-Means clusterings:
the first one with the accumulated set Sshapes of shape F-
Histograms, therefore building clusters of similar occurring
subparts in the dendrograms of the training images (see
Fig. 4), while the second one is with the accumulated set
Srelations of spatial relations F-Histograms, building clusters
of similar spatial configurations between subparts (see Fig. 3),
at different scales of the dendrograms. In a similar fashion to
the “visual words” produced by the clustering of local features,
we produce a structural vocabulary of shapes and spatial
configurations occurring across the objects in the training set.
The number of clusters Kshapes and Krelations determine the
respective sizes of the shapes and spatial relations vocabular-
ies. The influence of these parameters will be studied in the
following experimental section.

Once the vocabularies have been built, we apply a pooling
step: training images are subsequently represented by sparse
composition histograms, modeling the count of each detected
vocabulary word in the objects (shapes and spatial relations).
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Fig. 4. Some representative samples from our vocabulary of shapes issued
from the vector quantization step. Each row represents a cluster, or vocabulary
word, obtained using our bags-of-features learning strategy: (left) centroid of
the cluster; (right) representative object subparts attached to this centroid.

A given test image follows the same hierarchical decom-
position strategy, and its composition histogram is built by
assigning its F-Histograms to the vocabulary words obtained
during the training phase. Finally, classification is performed
using Support Vector Machines (SVM). Given the fact that
we build two distinct vocabularies, we also produce two
types of composition histograms: one for shapes and one for
spatial relations. We name bags-of-shapes (BoS) and bags-
of-relations (BoR) the respective consideration of shapes or
spatial relations only. Subsequently, The concatenation of
shapes and spatial relations composition histograms is called
bags-of-shapes-and-relations (BoSR).

Besides, even though the semantics of our structural ap-
proach and of local features are different (descriptors are
extracted from images with very different methodologies), the
applied clustering and pooling procedures result in feature
vectors of the same nature (sparse composition histograms),
allowing them to be combined into hybrid feature vectors by
concatenating them. This combination strategy is studied in
the experimental section.

V. EXPERIMENTAL RESULTS

A. Datasets

We used two datasets of color images: a collection of but-
terfly images and a collection of motorbike images. Samples
of these datasets are shown in Fig. 6. As we focus on the
proposition of a new descriptor for object classification, we
validate our approach on specific datasets where objects are
depicted on an homogeneous background, avoiding object
detection issues. The recognition of complex scenes in natural
color images will constitute a perspective of this work.

The Peale dataset is a subset of the Peale collection1.
Our representative subset is composed of 114 color butterfly
images grouped into 11 classes according to their species,
each class containing a variable number of butterflies (5 to 20
samples per class). Butterflies are a typical case where inner

1http://clade.ansp.org/entomology



50 100 150 200 250 300 350 400 450 500

Vocabulary size

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

BoS

BoR

BoSR

HOG

BoSR+HOG

(a) Peale dataset
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(b) Motorbikes dataset

Fig. 5. Classification accuracy scores obtained for different vocabulary sizes on the two datasets. Vocabulary size correspond to the number of clusters formed
during the training phase. BoS: Bags-of-Shapes, BoR: Bags-of-Relations, BoSR: Bags-of-Shapes-and-Relations, HOG: Histogram of Oriented Gradients.

Fig. 6. Samples from the Peale and the Motorbikes datasets: butterfly from
different species and motorbikes from different categories.

spatial relations are a distinguishing feature making the wings
patterns a direct link with the species.

The Motorbikes dataset is a subset of a collection of various
motorcycles from the side made available by Caltech2. Our
subset is composed of 265 motorbikes images with an homo-
geneous background. As for the butterflies, motorbikes are an
interesting case where the shape and spatial disposition of the
wheels, body and engine parts are discriminative features. We
manually labeled the motorbikes into five categories: cross,
cruiser, moped, sport and standard.

B. Experimental Protocol

The parameters of the Mean Shift segmentation have been
fixed according to a previous study with these datasets in [7].
The spatial and range radiuses are set to (hs, hr) = (8, 8)
and the minimum size of the regions is set to M = 100.
Then, our hierarchical FHD descriptors are computed starting
with a maximum depth of k = 5, resulting in a structural
coarse-to-fine description of the objects (from 1 to 5 subparts).
F-Histograms along a discrete set of 180 directions, with a
constant force, and are normalized onto [0, 1] to achieve scale
invariance across the hierarchy of subparts.

2http://vision.caltech.edu/archive.html

For each dataset, we apply our proposed bags-of-features
approach to perform object classification. We train the compo-
sition histograms using Support Vector Machines (SVM) [10]
with a linear kernel, using a one-against-all approach for mul-
ticlass classification. Cross validation is achieved following
a leave-one-out strategy. We then compute several statistics
(accuracy, precision, recall and F1-score), in order to evaluate
the quality of the classification results.

As for the comparative study, we compare our results with
the following approaches:
• The initial FHD descriptors for color images [7]. We

report the best results obtained for this approach (fixed
decomposition of objects into 3 layers) ;

• The GFD shape descriptors [25], which only encode
global shape information (with R = 4 radial and T = 9
angular frequencies). For this approach, classification is
performed using k-NN and the Euclidean metric ;

• Local HOG [11] features sampled in a dense grid, and
pooled with a bags-of-features framework. We used HOG
with 9 discrete orientations, and cell size of 32×32 with-
out cross-cell normalization. Classification is performed
using the same linear SVM classifier as our approach.

C. Quantitative Results

Fig. 5 shows the classification accuracy scores obtained
on the two datasets, for varying vocabulary sizes on our
proposed approaches: BoS, BoR, and BoSR. We also present
the results obtained for HOG, as well as the combination
BoSR+HOG. From these results, we can observe a relative
robustness of the accuracy scores with regards to the size
of the vocabulary. Besides, an important result is that the
combination of shapes and spatial relations (BoSR) seems
to always improve the performance as opposed to shapes
(BoS) and spatial relations (BoR) considered individually. The
BoSR method yields comparable results to the semantically
different HOG features. In addition, another important result



TABLE I
COMPARATIVE CLASSIFICATION RESULTS ON THE PEALE DATASET.

FHD [7] GFD [25] HOG [11] BoSR BoSR+HOG
F1-score 0.77 0.44 0.70 0.70 0.78
Accuracy 0.77 0.44 0.70 0.71 0.80

is that the BoSR+HOG combination significantly increases the
classification accuracy. This shows that, on these datasets, the
combination of semantically different features (structural spa-
tial relations and local feature descriptors) allows to improve
the recognition process.

For comparative purposes, Tab. I and II show results for
different approaches (GFD and FHD) on the two datasets.
For HOG, BoSR and BoSR+HOG, we report the best results
obtained in the previous vocabulary size study. The results
show the interest of considering spatial relations features (FHD
and BoSR) as opposed to global shape descriptors (GFD) to
describe structural objects. They also show that our proposed
BoSR+HOG hybrid representation outperforms the results of
FHD on these datasets.

VI. CONCLUSION

In this article, we proposed a new object description ap-
proach based on hierarchical spatial relations features. The
main originality of this proposition is a bags-of-features strat-
egy allowing to learn a vocabulary of shapes and spatial con-
figurations between structural subparts composing the objects.
We also proposed hybrid representations, combining classical
local features with our structural spatial relations descriptors.
The results obtained on two datasets highlight the interest of
such representations for the classification of complex objects
depicted in images.

In the future, we plan to incorporate other types of spatial re-
lations descriptors into our approach (e.g., topological or other
specific relations such as the surrounding or the interlacement
of objects), providing composite elements of vocabulary in this
learning strategy. Another perspective relies on an adaptive
pruning of the spatial configurations vocabulary, with the goal
to perform high-level semantic queries from images.
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