
HAL Id: hal-01496859
https://hal.science/hal-01496859v1

Submitted on 30 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis and evaluation of the performance of CAPE
van Long Tran, Eric Renault, Viet Hai Ha

To cite this version:
van Long Tran, Eric Renault, Viet Hai Ha. Analysis and evaluation of the performance of
CAPE. SCALCOM 2016 : International Conference on Scalable Computing and Communica-
tions, IEEE, Jul 2016, Toulouse, France. pp.620-627, �10.1109/UIC-ATC-ScalCom-CBDCom-IoP-
SmartWorld.2016.0104�. �hal-01496859�

https://hal.science/hal-01496859v1
https://hal.archives-ouvertes.fr

Analysis and evaluation
of the performance of CAPE

Van Long Tran and Eric Renault
SAMOVA, Telecom SudParis,
CNRS, Universite Paris-Saclay

9 rue Charles Fourier - 91011 Evry Cedex, France
Email: van long.tran@telecom-sudparis.eu

and eric.renault@telecom-sudparis.eu

Viet Hai Ha
College of Education

Hue University
Hue, Vietnam

Email: haviethai@gmail.com

Abstract—MPI (Message Passing Interface) and OpenMP are
two tools broadly used to develop parallel programs. On the one
hand, MPI has the advantage of high performance while being
difficult to use. On the other hand, OpenMP is very easy to use
but is restricted to shared-memory architectures. CAPE is an
approach based on checkpoints to allow the execution of OpenMP
programs on distributed-memory architectures. This paper aims
at presenting both an in-depth analysis and an evaluation of the
performance of CAPE by comparing the execution model of both
CAPE and MPI. Some suggestions are also provided to improve
the use of CAPE.

Index Terms—CAPE, OpenMP, MPI, high performance com-
puting, parallel programming.

I. INTRODUCTION

In order to minimize programmers’ difficulties when de-
veloping parallel applications, a parallel programming tool at
a higher level should be as easy-to-use as possible. MPI [1]
(which stands for Message Passing Interface) and OpenMP [2]
are two widely-used tools that meet this requirement. MPI
is a tool for high-performance computing on distributed-
memory environments, while OpenMP has been developed for
shared-memory architectures. If MPI is quite difficult to use,
especially for non programmers, OpenMP is very easy to use,
requesting the programmer to tag the pieces of the code to
execute in parallel.

Some efforts have been made to port OpenMP on
distributed-memory architectures. However, no solution has
successfully met both requirements: 1) to be fully compli-
ant with the OpenMP standard and 2) high performance.
Most prominent approaches include the use of an SSI [3],
SCASH [4], the use of the RC model [5], performing a
source-to-source translation to a tool like MPI [6][7] or Global
Array [8], or Cluster OpenMP [9].

Among all these solutions, using SSI (for Single System
Image) is the most straightforward approach. An SSI in-
cludes a DSM (for Distributed Shared Memory) to provide an
abstracted shared-memory view over a physical distributed-
memory architecture. The main advantage of this approach
is its ability to easily provide a fully-compliant version of
OpenMP. Thanks to their shared-memory nature, OpenMP
programs can easily be compiled and run as processes on
different computers in the SSI. However, as the shared memory

is accessed through the network, the synchronization between
the memories involves an important delay access time which
makes this approach hardly scalable. Some experiments [3]
show that the larger the number of threads, the lower the
performance. As a result, in order to reduce the execution
time overhead involved by the use of an SSI, other approaches
have been proposed, like SCASH that maps only the shared
variables of the processes onto a shared-memory area at-
tached to each process, the other variables being stored in
a private memory, and the RC model that uses the relaxed
consistency memory model. However, these approaches have
difficulties to identify the shared variables automatically. As a
result, no fully-compliant implementation of OpenMP based
on these approaches has been released so far. Some other
approaches aim at performing a source-to-source translation of
the OpenMP code to an MPI code. This approach allows the
generation of high-performance codes on distributed-memory
architectures. However, not all OpenMP directives and con-
structs can be implemented. Cluster OpenMP, proposed by
Intel, also requires the use of additional indicators of its own
(ie. not included in the OpenMP standard). As a result, this
one cannot be considered as a fully-compliant implementation
of the OpenMP standard.

To execute programs including OpenMP directives on
distributed-memory architectures, CAPE (which stands for
Checkpointing-Aided Parallel Execution) adopts a completely
different approach based on the use of checkpointing tech-
niques. This allows to distribute the work of the parallel
block programs to the different processes of the system, and
to handle the exchange of shared data automatically. Two
versions of CAPE [10][11] have been released that proves the
effectiveness of the approach and the high-performance.

This paper focuses on the in-depth analysis of the CAPE
architecture and an evaluation of its performance. A compari-
son with MPI is proposed and some remarks are also provided
for a better use of CAPE.

The next section presents an overview of some related work
and serves as an introduction to MPI, OpenMP and check-
pointing techniques. Section III introduces CAPE using the
discontinuous incremental checkpointer. Section IV compares
the operational model of both CAPE and MPI. Section V

presents some experimental results to support the analysis
in Sec. IV. The last section outlines some conclusions and
directions for future research.

II. RELATED WORK

A. MPI

MPI [1] is an Application Programming Interface (API)
developed during the 90s. This interface provides essential
point-to-point communications, collective operations, synchro-
nization, virtual topologies, and other communication facilities
for a set of processes in a language-independent way, with a
language-specific syntax, plus a small set of language-specific
features. MPI uses the SPMD (Single Program Multiple Data)
programming model where a single program is run indepen-
dently on each node. A starter program is used to launch all
processes, with one or more processes on each node and all
processes first synchronize before executing any instructions.
At the end of the execution, before exiting, processes all
synchronize again. Any exchange of information can occur
in between these two synchronizations. A typical example is
the master-slave paradigm where the master distributes the
computations among the slaves and each slave returns its result
to master after the job complete.

Although it is capable of providing high performance and
running on both shared- and distributed-memory architectures,
MPI programs require programmers to explicitly divide the
program into blocks, one for the master process and the others
for slave processes. Moreover, some tasks, like sending and
receiving data or the synchronization of processes, must be
explicitly specified in the program. This makes it difficult
for programmers for two main reasons. First, it requires the
programmer to organize the program into parallel structures
which are bit more complex structures than in sequential
programs. This is even more difficult for the parallelization
of a sequential program, as it severely disrupt the original
structure of the program. Second, some MPI functions are
difficult to understand and use. For these reasons, and despite
the fact that MPI achieves high performance and provides a
good abstraction of communications, MPI is still considered
as assembly for parallel programming.

B. OpenMP

OpenMP [2] provides a higher level of abstraction than
MPI for the development of parallel programs. It consists
in a set of directives, functions and environment variables
to easily support the transformation of a C, C++ or Fortran
sequential program into a parallel program. A programmer
can start writing a program on the basis of one of the
supported languages, compile it, test it, and then gradually
introduce parallelism by the mean of OpenMP directives. For
C, C++ or Fortran compilers supporting OpenMP, directives
are taken into consideration through the execution of specific
codes. OpenMP offers directives for the parallelization of most
classical parallel operations including loops, parallel sections,
etc.

OpenMP follows the fork-join execution model with
threads. When the program starts, it runs only one thread
(the master thread) and executes the code sequentially. When
it reaches an OpenMP parallel directive, the master thread
spawns a team work including itself and a set of secondary
threads (the fork phase), and the work allocated to each thread
in this team starts. After secondary threads complete their
allocated work, results are updated in the memory space of
the master thread and all secondary threads are suspended (the
join phase). Thus, after the join phase, the program executes
only one thread as per the original. Fork-join phases can be
carried out several times in a program and can be nested.

OpenMP is based on the use of threads. Thus, it can
only run on shared-memory architectures as all threads use
the same memory area. However, in order to speed up the
computations, OpenMP uses the relaxed-consistency memory
model. With this memory model, threads can use a local
memory to improve memory accesses. The synchronization of
the memory space of the threads is performed automatically
both at the beginning and at the end of each parallel construct,
or can be performed manually by specifying flush directives.

C. Checkpointing

Checkpointing aims at saving the state of a running program
so that its execution can be resumed from that point later
in time [12]. Checkpoints are used in many applications, for
example to enable fault-tolerance or for backing up systems.

Checkpointing techniques can be divided into two groups.
Complete checkpointing is a technique for which all the mem-
ory space and the associated information of a process is saved
in each checkpoint. Its major drawbacks are the redundancy of
data when several checkpoints are taken consecutively without
many changes in the process memory space, and the large
size of the checkpoints. Incremental checkpointing aims at
saving only the part of the memory space and the associated
information that have been updated since the initialization
of the program or the last checkpoint. In order to identify
the updated memory area, a checkpointed program is usually
monitored by another one that performs the saving regularly.

CAPE requires taking checkpoints of each part of the
continuing process. As a result, in order to serve CAPE in an
optimal way, we developed a checkpointing technique called
DICKPT [13] (which stands for Discontinuous Incremental
Checkpointing). DICKPT is based on incremental checkpoints
with additional image capabilities for discrete segments of the
process. The analysis of experimental data has demonstrated
the superior performance of this new capability both in terms
of the reduction of the size of checkpoints and the reduction
of the time to generate them.

III. CAPE BASE ON DISCONTINUOUS INCREMENTAL
CHECKPOINTING

A. Execution model

CAPE is the alternative approach to allow the execution
of OpenMP programs on distributed-memory systems. CAPE
is based on a process as a parallel unit, which is different

Fig. 1. The execution model of CAPE.

from the traditional implementations of OpenMP where the
parallel unit is a thread. All the important tasks of the fork-
join model are automatically generated by CAPE based on
checkpointing techniques, such as task division, reception of
results, updating results into the main process, etc. In its first
version, CAPE used complete checkpoints so as to prove the
concept. However, as the size of complete checkpoints is very
large, it takes a lot of traffic on the network to transfer data
between processes and involves a high cost for the comparison
of the data from the different complete checkpoints to extract
the modifications. These factors have significantly reduced the
performance and the scalability of our solution. Fortunately,
these drawbacks have been overcome in the second version of
CAPE based on DICKPT.

Figure 1 describes the execution model of the second ver-
sion of CAPE using three nodes. At the beginning, the program
is initialized on all nodes and the same sequential code block
is executed on all nodes. When reaching an OpenMP parallel
structure, the master process divides the tasks into several parts
and sends them to slave processes using DICKPT. Note that
these checkpoints are very small in size, typically very few
bytes, as they only contain the results of some very simple
instructions to make the difference between the threads, which
do not change the memory space that much. At each slave
node, after receiving a checkpoint, it is injected into the local
memory space and initialized for resuming. Then, the slave
process executes the assigned task, extracts the result, and
creates a resulting checkpoint. This last checkpoint is sent back
to the master process. The master process then combines them
altogether, injects the result into its memory space, sends it to
all the other slave processes to synchronize the memory space
of all processes and prepares for the execution of the next
instruction of the program.

Fig. 2. Translation OpenMP programs with CAPE

B. Source-to-source translation template for the parallel
for construct

In order to translate OpenMP programs, CAPE uses a set
of templates. After the source-to-source translation of the
OpenMP program, the code is regularly compiled by a C/C++
compiler. Figure 2 shows the different steps of the CAPE com-
pilation process for a C/C++ OpenMP program. The current
version of CAPE assumes that the parallel statements satisfy
the Bernstein’s conditions, which mean that all components of
the code can be executed independently, no input and output
data are common, and there is no communication between
nodes during the execution.

Among all OpenMP parallel constructs, parallel for
is probably the most important one, as 1) this is the most
used construct in user programs and 2) it can act as an
intermediate structure to convert other OpenMP parallel con-
structs including for example the parallel sections
one. As a result, instead of building a complete template for
each construct, some are first translated into the parallel
for construct. CAPE automatically translates the parallel
for construct to a set of function calls that contains the funda-
mental operations of CAPE. The template for the parallel
for construct is shown in Figure 3. In order to make the
presentation easier to understand, the template is presented in
a version where the number of iterations of the for statement
is equal to the number of threads. Below is the list of basic
functions used by CAPE.

1) start () set the environment to create DICKPT.
2) stop () suspends the environment to create check-

points.
3) create (file) create a checkpoint and save it to

file.
4) inject (file) updates the current process with

the information contained in checkpoint file provided as
a parameter.

5) send (file, node) sends the content of file to
node.

6) wait_for (file) waits and merges all the com-
ponents of the file .

7) last_parallel () returns TRUE when the current
parallel block is the last one of the entire program and
FALSE otherwise.

8) merge (file1 , file2) applies the list of modifi-
cations from file2 to checkpoint file1.

9) broadcast (file) sends file to all slave nodes.
10) receive (file) waits for file to be available.

The main steps of CAPE can be explained as follows:
On the master side (lines 1 to 12), the first statement of the

for loop is executed. At each for loop iteration, the master
distributes jobs to each slave by generating and sending it as
an incremental checkpoint. Then, it waits for the results from
the slave process. After the result is received, it updates the
memory. Finally, the master node broadcasts the result to all
slave nodes to guarantee the memory consistency if necessary.

On the slave process side (lines 13 to 25), each process
receives a DICKPT from the master. Then, the checkpoint is
injected into the memory process space which executes the
assigned tasks. At last, the result of the execution on the slave
node is extracted into an incremental checkpoint and sent back
to the master node to update its memory.

pragma omp parallel for
for (A ; B ; C)

D ;

↓ automatically translated into ↓

1 if (master ())
2 start ()
3 for (A ; B ; C)
4 create (before)
5 send (before, slavex)
6 create (final)
7 stop ()
8 wait for (after)
9 inject (after)
10 if (! last parallel ())
11 merge (final, after)
12 broadcast (final)
13 else
14 receive (before)
15 inject (before)
16 start ()
17 D
18 create (afteri)
19 stop ()
20 send (afteri, master)
21 if (! last parallel ())
22 receive (final)
23 inject (final)
24 else
25 exit

Fig. 3. Template for the parallel for with incremental checkpoints.

IV. ANALYSIS AND PERFORMANCE EVALUATION

A. MPI and CAPE are almost the same...

Similarities between CAPE and MPI are many including
the architectural background, organizational models, and ex-
ecution models. From the architectural point of view, MPI
and CAPE both have the ability to execute on multi-processor

architectures, and the most important goal for both is to sup-
port systems based on a distributed memory such as clusters,
grids, and clouds. From the organizational- and programming-
model point of view, both use processes and the master-
slave paradigm, with a single process attached to a node.
Execution models for CAPE and MPI contain similar steps.
To execute a program that contains parallel and sequential
code alternatively, the steps are i) the initialization of the
program, and then ii) the execution of both sequential and
parallel sections on a set of processes. The initialization is
the same for CAPE and MPI. All nodes are initialized at the
beginning of the execution and one of the nodes is chosen as
the master, the others being considered as slaves.

B. ... but not exactly

The main difference between CAPE and MPI is the de-
termination of the data to exchange and the way data in the
memory space of a process are updated. MPI was defined in
the scope of a third generation language. The user is required
to explicitly define what (the address, the length and the data
type) and when (send and receive) to transfer the memory
areas. In order to do so, MPI is based on a set of functions
which requires the user to specify the operations that have
to be executed step by step. However, CAPE is based on
OpenMP which was defined as a fourth generation language.
In this case, the user specifies the expected result and it is the
compiler work to automatically translate this objective into
effective code. For the specific case of CAPE, everything is
automatically done through the use of checkpoints. The result
of the execution of a code block is saved in a discontinuous
incremental checkpoint initialized before executing the block
and saved at the end of the block. The checkpoint is injected
into the memory space of the target process using the inject
function (as shown above).

The ability for CAPE to automatically distribute the work,
to extract and inject the results into the memory space of
the process, creates an advantage in the transparency of the
communication of data between processes for the program-
mer. This definitively helps the implementation of a fully-
compatible version of OpenMP for distributed-memory archi-
tectures. At the same time, the use of checkpoints is also the
main drawback of CAPE as it slows down the execution.

C. Qualitative comparison

Table I presents a qualitative comparison of the different
steps when executing a parallel code with both MPI and
CAPE. As mentioned above, steps for initialization and ex-
ecution are similar for both CAPE and MPI. As a result, they
are not mentioned on the table.

From Table I, let tb be the time for work division and
distribution to the slaves, tc be the computation time, tu be the
time for result extraction and returning the data to the master,
and ts be the time for the memory update on all processes.

TABLE I
THE STEPS THAT EXECUTE A PARALLEL CODE BLOCK OF CAPE AND MPI

Steps CAPE MPI
Approach Pros and cons Approach Pros and cons

Work division
and distribution
to slaves.
(tb)

The master automatically di-
vides the task using DICKPT
and sends them to the slaves.

Transparent to the program-
mer. Not much time wasted
on running.

The programmer divides the
code into tasks for all pro-
cesses.

Not straightforward.

Computation.
(tc)

Slaves execute the application
code under the supervision of
DICKPT.

Overhead due to the moni-
toring of the process by the
checkpointer.

Processes execute the applica-
tion code independently.

High performance

Result extraction
and return to the
master.
(tu)

Results automatically
extracted and sent back
using DICKPT.

Transparent for the program-
mer. Accurate extraction of
results. Overhead spent on fil-
tering results.

The programmer writes the
code to determine data to send
and where to store the results.

High performance. Difficult
for the programmer.

Memory update
on all processes.
(ts)

Memory space of all pro-
cesses automatically updated
by DICKPT.

Transparent for the program-
mer. Automatic synchroniza-
tion. Faster than MPI.

The programmer writes the
synchronization code.

Difficult for the programmer.

For any given program, let ttt and tss be the execution
time of the sequential part and the parallel part of the code
respectively. Let t be the total amount of time to execute the
program. It is given by:

t =
∑

ttt +
∑

tss (1)

=
∑

ttt +
∑

(tb + tc + tu + ts) (2)

Note that executing a program in parallel is meaningful
when the execution time of the parallel part of a program
is far greater than the execution time for the initialization
and the communication between the nodes. It is the same for
the time spent in the synchronization of the memory space
of the processes. As a result, in the following, the time for
initialization and communication as negligible as compared to
the time for computation and synchronization, ie. tb = ts = 0.
This leads to:

t =
∑

ttt +
∑

(tc + tu) (3)

Then, it is fair to consider that the sequential code executed
on all the nodes with both MPI and CAPE is the same and thus
that the time is equal for both techniques. The time difference
between CAPE and MPI becomes:

∆t =
∑

∆(tc + tu) (4)

Basically, the computation of the parallel code should be
the same for MPI and CAPE, and so the time difference in
tc as the cost of monitoring and generating DICKPT, in the
application process is always monitored by a checkpointer
process. Therefore, the execution time of CAPE applications
is higher than the one of MPI. According to [14], the time
difference is in the 2% to 20%. The time difference in tu
caused by the process update via DICKPT is more complex.
However, for the problems have the high tc, so the tu is too
small in the total time of the program. Therefore we can ignore
that time.

TABLE II
EXECUTION TIME (IN SECONDS) ON A SINGLE NODE.

Size Sequential OpenMP
3000 x 3000 258.9 142.4
6000 x 6000 1852.7 1048.7
9000 x 9000 7314.5 3986.2

12000 x 12000 14990.5 8999.4

V. EXPERIMENTAL RESULTS

In order to validate our approach, some performance mea-
surements have been conducted on a Desktop Cluster. This
testbed is composed of nodes including Intel(R) Core(TM)2 Duo
E8400 CPUs running at 3 GHz and 2 GB RAM, operated by
Linux kernel 2.6.35 with the Ubuntu 10.10 flavor, and con-
nected by a standard Ethernet at 100 Mb/s. In order to avoid
as much as possible external influences, the entire system was
dedicated to the tests during performance measurements.

The program used for tests is a matrix-matrix product for
which the size varies from 3,000×3,000 to 12,000×12,000.
Matrices are supposed to be dense and no specific algorithm
has been implemented to take into account sparse matrices.
Each experiment has been performed at least 10 times and a
confidence interval of at least 90% has always been achieved
for the measures. Data reported here are the means of the
10 measures.

The execution of both the sequential version and the
OpenMP version of the program on one of the nodes gives
the result provided in Table II. A single core was used for
the sequential execution of the program, while the OpenMP
program takes benefits of the two cores. One can check that
results in Table II are consistent as the execution time for
both sequential and OpenMP versions are directly proportional
to the cube of the matrix size. Typically, this means that no
important cache effects have polluted the performance mea-
surements, probably because almost all data fit into memory.
Moreover, the speedup obtained by OpenMP is 1.8 for the
first three matrix sizes and 1.65 for the last one, which are
expected values.

Fig. 4. Execution time (in seconds) vs. number of nodes.

The next part of the experiment consists in comparing
CAPE and MPI. Figure 4 and 5 present the execution time
in seconds of the matrix-matrix program for various numbers
of nodes and matrix sizes. Note that, despite the fact that
processors are dual core, a single core was used during the
experiments. Two measures are represented each time: the left
one is associated with CAPE using incremental checkpoints,
and the right one is associated with MPI. Both Figure 4 and 5
contain two groups of graphs. The group above belongs to the
master node, while the one below belongs to the slaves. The
line numbers for the code refer to Figure 3. Each group shows
four graphs and the meaning is as follows:

• Init is the elapsed time between the beginning of the
program and the beginning of the parallel for loop in
the matrix-matrix product. On Fig. 3, these are all lines
before the first one. In the modeling above, this is time
ttt.

• Before is the time spent to create and send checkpoints
(lines 2 to 5) on the master node. On slave nodes, this
includes waiting for and receiving the checkpoint, and
then updating the slave process using the checkpoint
(lines 16 and 17). For the case of MPI, this is the time
to send data to slave nodes. In the modeling above, this
is time tb.

• Compute is the time to generate the last checkpoint on
the master node (lines 7 and 8) and the time to do the
job (execute the code of matrix-matrix product) on the
slaves (lines 18 and 19). In the modeling above, this is

time tc.
• Update is the time spend in waiting for and receiving

all updates from the slave nodes and inject them into the
master process memory (lines 9 and 10). On slave nodes,
this is the time to generate the incremental checkpoints
and send them to the master node (lines 20 to 22). For the
case of MPI, this is the time to send results from slave
nodes to the master node. In the modelling above, this is
time tu.

Figure 4 presents the execution time in the detailed phases
with different numbers of nodes. The size of matrices are
9,000×9,000. However, similar trends are observed for the
other matrix sizes. In the master node, the execution times
for the Init, Before and Compute steps are small as
compared to step Update (ttt, tb and tc are very small as
compared to tu). This is because step Update waits for the
results computed in the slaves. This means that tu includes the
computation time of the slaves to do the assigned tasks. Then,
one can see that t is similar to tu on the master node. Similarly
to the slaves, the execution times of both Before and Init
steps are too small and can be ignored. As a result, the total
execution time consists in both the computation time and the
update time. This clearly conforms to equations 3 and 4.

Graphs in Figure 4 also show that, for the case with three
nodes, the execution time for CAPE is always larger than
the one for MPI. This is due to the fact that slaves compute
and update the result of half of the matrix, and the size of
the checkpoint takes a large part of the total memory space

Fig. 5. Execution time (in seconds) vs. problem size.

of the process. Therefore, the impact of the checkpointer on
the total execution time is very important. However, when
increasing the number of machines, the size the checkpoints
decreases together with ∆t. When increasing the number of
nodes to 31, this time is approximately the same for both
CAPE and MPI. This shows that the performance of CAPE is
poor in systems with a very small number of nodes. However,
no one would use a distributed-memory machine to run a
program requiring a small number of threads. Any shared-
memory machine would be sufficient in that case. On the other
hand, the same graphs also show that CAPE has the ability
to achieve high performance when the size of checkpoints is
small. This is involved by the fact that slaves only update a
small amount of memory space.

Figure 5 presents the execution time for different matrix
sizes for a matrix-matrix product. Thirty one computers have
been used to perform the parallel computations. However, the
results tend to be similar to the experimental system when
the numbers of nodes is different (except for the case with
3 nodes). Comments to chart in Figure 4 are also true for
this one. The data on the graph shows that the execution time
for both MPI and CAPE are proportional to the size of the
matrix. As both MPI and CAPE are only using the data transfer
mechanism to update the computation results, the execution
speed is also quite similar. In a more detailed analysis, data
show that the total execution time for CAPE based on DICKPT
is only about 10% higher than the execution time for MPI,
except for matrices with a size of 3000x3000 which rate is 1.3.

Fig. 6. Speedup vs. number of nodes.

Figure 6 shows the speedup of CAPE using incremental
checkpoints for various number of nodes and matrix sizes. The
dotted line represents the maximum theoretical speedup. The
figure clearly shows that the solution provides an efficiency
(the ratio of the speedup over the number of nodes) in the
range from 75% to 90% which is very good. Also, it highlights
that the larger the size of matrices, the higher the speedup.

VI. CONCLUSION AND FUTURE WORK

CAPE, with its ability to automatically divide the task
and establish data communication between processes, has
demonstrated its ability to install a conforming implementation
of OpenMP on distributed-memory systems. Moreover, the
comparison of the performance results of MPI and CAPE by
means of both a theoretical and an experimental analysis has
proven that the efficiency of CAPE programs is very close to
the one of MPI programs, and that the difference between both
is getting smaller and smaller as the size of the problem and
the number of nodes in the system increases.

For the near future, we will keep on developing CAPE to
support the OpenMP constructs that have not been ported yet.
Besides, we would like to study other models to take benefits
of CAPE so that our model can improve the flexibility of the
execution of many more sequential programs.

REFERENCES

[1] “Message passing interface forum.” [Online]. Available:
http://www.mpi-forum.org/

[2] A. OpenMP, “Openmp application program interface version 4.0,” 2013.
[3] C. Morin, R. Lottiaux, G. Vallée, P. Gallard, G. Utard, R. Badrinath, and

L. Rilling, “Kerrighed: a single system image cluster operating system
for high performance computing,” in Euro-Par 2003 Parallel Processing.
Springer, 2003, pp. 1291–1294.

[4] M. Sato, H. Harada, A. Hasegawa, and Y. Ishikawa, “Cluster-enabled
openmp: An openmp compiler for the scash software distributed shared
memory system,” Scientific Programming, vol. 9, no. 2, 3, pp. 123–130,
2001.

[5] S. Karlsson, S.-W. Lee, and M. Brorsson, “A fully compliant openmp
implementation on software distributed shared memory,” in High Per-
formance ComputingHiPC 2002. Springer, 2002, pp. 195–206.

[6] A. Basumallik and R. Eigenmann, “Towards automatic translation of
openmp to mpi,” in Proceedings of the 19th annual international
conference on Supercomputing. ACM, 2005, pp. 189–198.

[7] A. J. Dorta, J. M. Badı́a, E. S. Quintana, and F. de Sande, “Implementing
openmp for clusters on top of mpi,” in Recent Advances in Parallel
Virtual Machine and Message Passing Interface. Springer, 2005, pp.
148–155.

[8] L. Huang, B. Chapman, and Z. Liu, “Towards a more efficient implemen-
tation of openmp for clusters via translation to global arrays,” Parallel
Computing, vol. 31, no. 10, pp. 1114–1139, 2005.

[9] J. P. Hoeflinger, “Extending openmp to clusters,” White Paper, Intel
Corporation, 2006.

[10] É. Renault, “Distributed implementation of openmp based on check-
pointing aided parallel execution,” in A Practical Programming Model
for the Multi-Core Era. Springer, 2007, pp. 195–206.

[11] V. H. Ha and E. Renault, “Improving performance of cape using
discontinuous incremental checkpointing,” in High Performance Com-
puting and Communications (HPCC), 2011 IEEE 13th International
Conference on. IEEE, 2011, pp. 802–807.

[12] J. S. Plank, “An overview of checkpointing in uniprocessor and dis-
tributed systems, focusing on implementation and performance,” Tech-
nical Report UTCS-97-372, Tech. Rep., 1997.

[13] V. H. Ha and É. Renault, “Discontinuous incremental: A new approach
towards extremely lightweight checkpoints,” in Computer Networks and
Distributed Systems (CNDS), 2011 International Symposium on. IEEE,
2011, pp. 227–232.

[14] R. Gioiosa, J. C. Sancho, S. Jiang, F. Petrini, and K. Davis, “Trans-
parent, incremental checkpointing at kernel level: a foundation for fault
tolerance for parallel computers,” in Proceedings of the 2005 ACM/IEEE
conference on Supercomputing. IEEE Computer Society, 2005, p. 9.

