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Numerical estimations of the cost of boundary controls

for the equation y_t -εy_xx + M y_x = 0 with respect to ε

Introduction -Problem statement

Let L > 0, T > 0 and Q T := (0, L) × (0, T ). This work is concerned with the null controllability problem for the parabolic equation    y t -εy xx + M y x = 0 in Q T , y(0, •) = v, y(L, •) = 0 on (0, T ), y(•, 0) = y 0 in (0, L).

(

Here we assume that y 0 ∈ H -1 (0, L). ε > 0 is the diffusion coefficient while M ∈ R is the transport coefficient; v = v(t) is the control (a function in L 2 (0, T )) and y = y(x, t) is the associated state.

In the sequel, we shall use the following notations :

L ε y := y t -εy xx + M y x , L ε ϕ := -ϕ t -εϕ xx -M ϕ x .
For any y 0 ∈ H -1 (0, L) and v ∈ L 2 (0, T ), there exists exactly one solution y to [START_REF] Amirat | Boundary controls for the equation y t -εy xx + M y x = 0: Asymptotic analysis with respect to ε[END_REF], with the regularity y ∈ L 2 (Q T ) ∩ C([0, T ]; H -1 (0, L)) (see for instance [START_REF] Fernández-Cara | Boundary controllability of parabolic coupled equations[END_REF]Prop. 2.2]). Accordingly, for any final time T > 0, the associated null controllability problem at time T > 0 is the following: for each y 0 ∈ H -1 (0, L), find v ∈ L 2 (0, T ) such that the corresponding solution to (1) satisfies y(•, T ) = 0 in H -1 (0, L).

(

) 2 
For any T > 0, M ∈ R and ε > 0, the null controllability for the parabolic type equation [START_REF] Amirat | Boundary controls for the equation y t -εy xx + M y x = 0: Asymptotic analysis with respect to ε[END_REF] holds true. We refer to [START_REF] Fursikov | Controllability of evolution equations[END_REF] and [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] using Carleman type estimates. We therefore introduce the non-empty set of null controls C(y 0 , T, ε, M ) := {(y, v) : v ∈ L 2 (0, T ); y solves (1) and satisfies (2)}.

For ε = 0, the system (1) degenerates into a transport equation and is uniformly controllable as soon as T is large enough, according to the speed |M | of transport, precisely as soon as T ≥ L/|M |.

On the other hand, for ε > 0, the asymptotic behavior of the null controls as ε → 0 + is less clear, depends on the sign of M , and has been the subject of several works in the last decade.

For any ε > 0, we define the cost of control by the following quantity :

K(ε, T, M ) := sup y0 L 2 (0,L) =1 min u∈C(y0,T,ε,M ) u L 2 (0,T ) , (3) 
and denote by T M the minimal time for which the cost K(ε, T, M ) is uniformly bounded with respect to the parameter ε. In other words, (1) is uniformly controllable with respect to ε if and only if T ≥ T M . In [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF], J-M. Coron and S. Guerrero proved, using spectral arguments coupled with Carleman type estimates, that

T M ∈        [1, 4.3] L M if M > 0, [2, 57.2] L |M | if M < 0.
The lower bounds are obtained using the initial condition y 0 (x) = sin(πx/L)e

M x
2ε . The upper bounds are deduced from Carleman type inequalities for the adjoint solution. Then, using complex analysis arguments, O. Glass improved in [START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF] the previous estimations: precisely, he obtained that

T M ∈        [1, 4.2] L M if M > 0, [2, 6.1] L |M | if M < 0.
These authors exhibit an exponential behavior of the L 2 -norm of the controls with respect to ε.

More recently, P. Lissy in [START_REF] Lissy | A link between the cost of fast controls for the 1-d heat equation and the uniform controllability of a 1-d transport-diffusion equation[END_REF][START_REF]Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF] yielded to the following conclusions:

T M ∈        [1, 2 √ 3] L M if M > 0, [2 √ 2, 2(1 + √ 3)] L |M | if M < 0. (4) 
Remark that 2(1 + √ 3) ≈ 5.46. The second lower bound 2 √ 2 is obtained by considering again the initial data y 0 (x) = sin(πx/L)e M x 2ε . The main goal of the present work is to approximate numerically the value of T M , for both M > 0 and M < 0. This can be done by approximating the cost K for various values of ε and T > 0, the ratio L/M being fixed.

In Section 2, we reformulate the cost of control K as the solution of a generalized eigenvalue problem, involving the control operator. In Section 3, we adapt [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF], present a robust method to approximate numerically the control of minimal L 2 -norm and discuss some experiments, for a given initial data y 0 . In Section 4, we solve at the finite dimensional level the related eigenvalue problem using the power iterate method: each iteration requires the resolution of a null controllability problem for [START_REF] Amirat | Boundary controls for the equation y t -εy xx + M y x = 0: Asymptotic analysis with respect to ε[END_REF]. We then discuss some experiments with respect to ε and T for L/M = 1 and L/M = -1 respectively.

Reformulation of the controllability cost K(ε, T, M )

We reformulate the cost of control K as the solution of a generalized eigenvalues problem involving the control operator (named as the HUM operator by J.-L. Lions for wave type equations). From

(3), we can write

K 2 (ε, T, M ) = sup y0∈L 2 (0,L) (v, v) L 2 (0,T ) (y 0 , y 0 ) L 2 (0,L)
where v = v(y 0 ) is the null control of minimal L 2 (0, T )-norm for [START_REF] Amirat | Boundary controls for the equation y t -εy xx + M y x = 0: Asymptotic analysis with respect to ε[END_REF] with initial data y 0 in L 2 (0, L).

Let us recall that any null control for (1) satisfies the following characterization

(v, εϕ x (0, •)) L 2 (0,T ) + (y 0 , ϕ(•, 0)) L 2 (0,L) = 0, (5) 
for any ϕ solution of the adjoint problem

   -ϕ t -εϕ xx -M ϕ x = 0 in Q T , ϕ(0, •) = ϕ(L, •) = 0 on (0, T ), ϕ(•, T ) = ϕ T in (0, L), (6) 
where ϕ T ∈ H 1 0 (0, L). In particular, the control of minimal L 2 -norm is given by v = ε φx (0, •) in (0, T ) where φ solves (6) associated to the initial φT , solution of the extremal sup

ϕ T ∈H 1 0 (0,L) J (ϕ T ) := 1 2 T 0 (εϕ x (0, •)) 2 dt + (y 0 , ϕ(•, 0)) L 2 (0,L) . (7) 
Taking ϕ = φ associated to φT in (5), we therefore have

(v, v) L 2 (0,T ) = (v, ε φx (0, t)) L 2 (0,T ) = -(y 0 , φ(•, 0)) L 2 (0,T ) . (8) 
Consequently, if we denote by A ε : L 2 (0, L) → L 2 (0, L) the control operator defined by A ε y 0 := -φ(•, 0), we finally obtain

K 2 (ε, T, M ) = sup y0∈L 2 (0,L) (A ε y 0 , y 0 ) L 2 (0,L) (y 0 , y 0 ) L 2 (0,L) (9) 
and conclude that K 2 (ε, T, M ) is solution of the following generalized eigenvalue problem :

sup λ ∈ R : ∃ y 0 ∈ L 2 (0, L), y 0 = 0, s.t. A ε y 0 = λy 0 in L 2 (0, L) . ( 10 
)
Remark 1 The controllability cost is related to the observability constant C obs (ε, T, M ) which appears in the observability inequality for ( 6)

ϕ(•, 0) 2 L 2 (0,L) ≤ C obs (ε, T, M ) εϕ x (0, •) 2 L 2 (0,T ) , ∀ϕ T ∈ H 1 0 (0, L) ∩ H 2 (0, L)
defined by

C obs (ε, T, M ) = sup ϕ T ∈H 1 0 (0,L) ϕ(•, 0) 2 L 2 (0,L) εϕ x (0, •) 2 L 2 (0,T ) . ( 11 
)
Precisely, we get that K(ε, T, M ) = C obs (ε, T, M ) (see [START_REF] Coron | Control and nonlinearity[END_REF], Remark 2.98).

Remark 2 We may reformulate as well the previous extremal problem over H 1 0 (0, L) (seen as the dual space of H -1 (0, L) y(•, T )) in term of a generalized eigenvalue problem; we proceed as follows.

We introduce the operators A ε and B ε given by

A ε : H 1 0 (0, L) → L 2 (0, L) ϕ T → ϕ(•, 0) and B ε : H 1 0 (0, L) → L 2 (0, T ) ϕ T → εϕ x (0, •),
where ϕ solves [START_REF] Chatelin | Eigenvalues of matrices[END_REF]. The adjoint operators A ε and B ε of A ε and B ε are given by :

A ε : L 2 (0, L) → H -1 (0, L) y 0 → y(T ; y 0 , 0) and B ε : L 2 (0, L) → H -1 (0, L) v → y(T ; 0, v),
where y(t; y 0 , v) is the solution to (1) at time t for the initial data y 0 and the control v. With these notations, we may rewrite C obs given by [START_REF] Fernández-Cara | Boundary controllability of parabolic coupled equations[END_REF] as follows

C obs (ε, T, M ) = sup ϕ T ∈H 1 0 (0,L) (A ε ϕ T , A ε ϕ T ) L 2 (0,L) (B ε ϕ T , B ε ϕ T ) L 2 (0,T ) = sup ϕ T ∈H 1 0 (0,L) ((-∆ -1 )A ε A ε ϕ T , ϕ T ) H 1 0 (0,L) ((-∆ -1 )B ε B ε ϕ T , ϕ T ) H 1 0 (0,L)
leading to an eigenvalue problem over H 1 0 (0, L). Remark that the operator B ε B ε from H 1 0 (0, L) to H -1 (0, L) associates to the initial state ϕ T of (6) the final state y(•, T ) of ( 1) with y 0 = 0 and v = εϕ x (0, •). v is therefore the control of minimal L 2 (0, T )-norm with drives the state y from 0 to the trajectory y(•, T ). B ε B ε is the so-called HUM operator.

Remark 3 Actually, the supremum of ϕ T ∈ H 1 0 (0, L) in ( 11) can be taken over ϕ(•, 0) ∈ L 2 (0, L) (or even over ϕ !) leading immediately to

C obs (ε, T, M ) = sup ϕ(•,0)∈L 2 (0,L) (ϕ(•, 0), ϕ(•, 0)) (A -1 ε ϕ(•, 0), ϕ(•, 0)) L 2 (0,L)
in full agreement with [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF] and the equality K(ε, T, M ) = C obs (ε, T, M ).

Remark 4

The sup-inf problem (3) may be solved by a gradient procedure. Let us consider the Lagrangien L :

L 2 (0, L) × R → R defined by L(y 0 , µ) := 1 2 v(y 0 ) 2 L 2 (0,T ) + 1 2 µ y 0 2 L 2 (0,L) -1
where v(y 0 ) is the control of minimal L 2 -norm associated to the initial data y 0 ∈ L 2 (0, L) and µ ∈ R a lagrange multiplier to enforce the constraint y 0 L 2 (0,L) = 1. v(y 0 ) satisfies [START_REF] Coron | Control and nonlinearity[END_REF]. The first variation of L is given by

DL(y 0 ) • y 0 = (µy 0 -ϕ(•, 0), y 0 ) L 2 (0,L) = (µ Id + A ε )y 0 , y 0 L 2 (0,L) (12) 
where ϕ solves ( 6)- [START_REF] Cîndea | A mixed formulation for the direct approximation of the control of minimal L 2 -norm for linear type wave equations[END_REF]. A maximizing sequence {y k 0 } k≥1 can be constructed as follows: given

y 0 0 ∈ L 2 (0, L) such that y 0 0 L 2 (0,L) = 1, compute iteratively y k+1 0 = y k 0 + η k (µ k y k 0 -ϕ k (•, 0)), k ≥ 0 with η k > 0 small enough and µ k such that y k+1 0 L 2 (0,L) = 1, that is, µ k = θ k -1 η k , θ k = η k (y k 0 , ϕ k (•, 0)) L 2 (0,L) ± 1 + (η k ) 2 (y k 0 -ϕ k (•, 0), ϕ k (•, 0)) L 2 (0,L) .
Remark that [START_REF] Fernández-Cara | Numerical exact controllability of the 1D heat equation: duality and Carleman weights[END_REF] implies that the optimal initial data y 0 is proportional to the optimal terminal state ϕ(•, 0) of ϕ solution of ( 6)- [START_REF] Cîndea | A mixed formulation for the direct approximation of the control of minimal L 2 -norm for linear type wave equations[END_REF]. Then, from the characterization (8), the sequence

µ k satisfies (v k , v k ) + µ k (y k 0 , ϕ k (•, 0)) L 2 (0,L) = 0 and converges toward -K 2 (ε, T, M ).
Remark that µ k defined above is always negative.

In order to solve the eigenvalue problem [START_REF] Duprez | Numerical estimations of the cost of boundary controls for the one dimensional heat equation[END_REF] and get the largest eigenvalue of the operator A , we may employ the power iterate method (see [START_REF] Chatelin | Eigenvalues of matrices[END_REF]), which reads as follows : given

y 0 0 ∈ L 2 (0, L) such that y 0 0 L 2 (0,L) = 1, compute      z k+1 0 = A y k 0 , k ≥ 0, y k+1 0 = z k+1 0 z k+1 0 L 2 (0,L)
, k ≥ 0.

The real sequence { z k 0 L 2 (0,L) } (k>0) then converges to the eigenvalue with largest modulus of the operator A ε , so that

z k 0 L 2 (0,L) → K(ε, T, M ) as k → ∞. The L 2 sequence {y k 0 } (k≥0)
then converges toward the corresponding eigenvector. The first step requires to compute the image of the control operator A ε : this is done by determining the control of minimal L 2 -norm, i.e. by solving the extremal problem [START_REF] Cîndea | A mixed formulation for the direct approximation of the control of minimal L 2 -norm for linear type wave equations[END_REF] with y k 0 as initial condition for (1).

Approximation of the control problem

The generalized eigenvalue problem [START_REF] Duprez | Numerical estimations of the cost of boundary controls for the one dimensional heat equation[END_REF] involves the null control operator A ε associated to [START_REF] Amirat | Boundary controls for the equation y t -εy xx + M y x = 0: Asymptotic analysis with respect to ε[END_REF].

At the finite dimensional level, this problem can be solved by the way of the power iterate method, which requires at each iterates, the approximation of the null control of minimal L 2 -norm for (1). We discuss in this section such approximation, the initial data y 0 in (1) being fixed.

The numerical approximation of null controls for parabolic equations is a not an easy task and has been first discussed in [START_REF] Carthel | On exact and approximate boundary controllabilities for the heat equation: a numerical approach[END_REF], and then in several works: we refer to the review [START_REF] Münch | Numerical approximation of null controls for the heat equation: ill-posedness and remedies[END_REF]. Duality theory reduces the problem to the resolution of the unconstrained extremal problem [START_REF] Cîndea | A mixed formulation for the direct approximation of the control of minimal L 2 -norm for linear type wave equations[END_REF]. In view of the regularization character of the parabolic operator, the extremal problem [START_REF] Cîndea | A mixed formulation for the direct approximation of the control of minimal L 2 -norm for linear type wave equations[END_REF] is ill-posed as the supremum is not reached in H 1 0 (0, L) but in a space, say H, defined as the completion of H 1 0 (0, L) for the norm ϕ T H := εϕ x (0, •) L 2 (0,T ) , much larger than H 1 0 (0, L) and difficult to approximate. We refer to the review paper [START_REF] Münch | Numerical approximation of null controls for the heat equation: ill-posedness and remedies[END_REF]. The usual "remedy" consists to enforce the regularity H 1 0 and replace [START_REF] Cîndea | A mixed formulation for the direct approximation of the control of minimal L 2 -norm for linear type wave equations[END_REF] by

min ϕ T ∈H 1 0 (0,L) J β (ϕ T ) := 1 2 εϕ x (0, •)) 2 L 2 (0,T ) + (y 0 , ϕ(•, 0)) L 2 (0,T ) + β 2 ϕ T 2 H 1 0 (0,L) (13) 
for any β > 0 small. The resulting approximate control v β = εϕ β,x (0, •) leads to a state y β solution of (1) satisfying the property

y β (•, T ) H -1 (0,L) ≤ C β y 0 L 2 (0,L) (14) 
(for a constant C > 0 independent of β). This penalty method is discussed in [START_REF] Carthel | On exact and approximate boundary controllabilities for the heat equation: a numerical approach[END_REF] for the boundary controllability of the heat equation (for the distributed case, we refer to [START_REF] Boyer | On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems[END_REF][START_REF] Fernández-Cara | Numerical exact controllability of the 1D heat equation: duality and Carleman weights[END_REF]15]). As in [START_REF] Carthel | On exact and approximate boundary controllabilities for the heat equation: a numerical approach[END_REF], problem (13) may be solved using a gradient iterative method: in view of the ill-posedness of [START_REF] Cîndea | A mixed formulation for the direct approximation of the control of minimal L 2 -norm for linear type wave equations[END_REF], such method requires an increasing number of iterates to reach convergence as β goes to zero. Moreover, in the context of the transport equation [START_REF] Amirat | Boundary controls for the equation y t -εy xx + M y x = 0: Asymptotic analysis with respect to ε[END_REF], it is necessary to take β small enough, in relation with the diffusion coefficient ε. Indeed, if β > 0 is fixed (independently of ε), then for ε > 0 small enough, the uncontrolled solution of (1) satisfies [START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF] as soon as T ≥ L/|M |. In that case, problem (13) leads to the minimizer ϕ T = 0 and then to the null control which is certainly not the optimal control we expect for negatives values of M (in view of (4))! Therefore, as ε tends to 0, the occurence of the transport term makes the approximation of the null control for (1) a challenging task. Consequently, instead of minimizing the functional J (or J β ), we adapt [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF] (devoted to the inner situation for M = 0 and ε = 1) and try to solve directly the corresponding optimality conditions. This leads to a mixed variational formulation (following the terminology used in [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF]).

Mixed variational formulation

We introduce the linear space Φ 0 := {ϕ ∈ C 2 (Q T ), ϕ = 0 on Σ T }. For any η > 0, we define the bilinear form

(ϕ, ϕ) Φ 0 := T 0 εϕ x (0, t) εϕ x (0, t) dt+β ϕ(•, T ), ϕ(•, T ) H 1 0 (0,L) +η Q T L ϕ L ϕ dx dt, ∀ϕ, ϕ ∈ Φ 0 .
From the unique continuation property for the transport equation, this bilinear form defines for any β ≥ 0 a scalar product. Let Φ β be the completion of Φ 0 for this scalar product. We denote the norm over Φ β by • Φ β such that

ϕ 2 Φ β := εϕ x (0, •) 2 L 2 (0,T ) + β ϕ(•, T ) 2 H 1 0 (0,L) + η L ϕ 2 L 2 (Q T ) , ∀ϕ ∈ Φ β . (15) 
Finally, we define the closed subset

W β of Φ β by W β = {ϕ ∈ Φ β : L ϕ = 0 in L 2 (Q T )} endowed
with the same norm than Φ β . Then, for any r ≥ 0, we define the following extremal problem :

min ϕ∈W β Ĵ β (ϕ) := 1 2 εϕ x (0, •) 2 L 2 (0,T ) + β 2 ϕ(•, T ) 2 H 1 0 (0,L) + (y 0 , ϕ(•, 0)) L 2 (0,L) + r 2 L ϕ 2 L 2 (Q T ) . ( 16 
)
Standard energy estimates for (1) imply that, for any 16) is equivalent to the extremal problem [START_REF] Fursikov | Controllability of evolution equations[END_REF]. The main variable is now ϕ submitted to the constraint equality (in L 2 (Q T )) L ϕ = 0, which is addressed through a Lagrange multiplier.

ϕ ∈ W β , ϕ(•, 0) ∈ L 2 (0, L) so that the functional Ĵ β is well-defined over W β . Moreover, since for any ϕ ∈ W β , ϕ(•, T ) belongs to H 1 0 (0, L), problem (

Mixed formulation

We consider the following mixed formulation : find (ϕ

β , λ β ) ∈ Φ β × L 2 (Q T ) solution of a β,r (ϕ β , ϕ) + b(ϕ, λ β ) = l(ϕ), ∀ϕ ∈ Φ β b(ϕ β , λ) = 0, ∀λ ∈ L 2 (Q T ), (17) 
where

a β,r : Φ β × Φ β → R, a β,r (ϕ, ϕ) := (εϕ x (0, •), εϕ x (0, •)) L 2 (0,T ) + β(ϕ(•, T ), ϕ(•, T )) H 1 0 (0,L) + r(L ϕ, L ϕ) L 2 (Q T ) b : Φ β × L 2 (Q T ) → R, b(ϕ, λ) := (L ϕ, λ) L 2 (Q T ) l : Φ β → R, l(ϕ) := -(y 0 , ϕ(•, 0)) L 2 (0,L) .
We have the following result :

Theorem 3.1 Assume that β > 0 and r ≥ 0.

1. The mixed formulation (17) is well-posed.

The unique solution

(ϕ β , λ β ) ∈ Φ β × L 2 (Q T ) is the unique saddle-point of the Lagrangian L β,r : Φ β × L 2 (Q T ) → R defined by L β,r (ϕ, λ) := 1 2 a β,r (ϕ, ϕ) + b(ϕ, λ) -l(ϕ). ( 18 
)
3. The optimal function ϕ β is the minimizer of Ĵ β over W β while λ β ∈ L 2 (Q T ) is the state of (1) in the weak sense.

Proof-The proof is very closed to the proof given in [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF], Section 2.1.1. The bilinear form a β,r is continuous, symmetric and positive over Φ β × Φ β . The bilinear form b is continuous over Φ β × L 2 (Q T ). Furthermore, for any β > 0, the continuity of the linear form l over Φ β is deduced from the energy estimate:

ϕ(•, 0) 2 L 2 (0,L) ≤ C Q T |L ϕ| 2 dx dt + ϕ(•, T ) 2 L 2 (0,L) , ∀ϕ ∈ Φ β , for some C > 0 so that ϕ(•, 0) 2 L 2 (0,L) ≤ max(Cη -1 , β -1 ) ϕ 2 Φ β .
Therefore, the well-posedness of the mixed formulation is a consequence of the following properties (see [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]):

• a β,r is coercive on N (b), where N (b) denotes the kernel of b :

N (b) := {ϕ ∈ Φ β : b(ϕ, λ) = 0 for every λ ∈ L 2 (Q T )}. • b satisfies the usual "inf-sup" condition over Φ β × L 2 (Q T ): there exists δ > 0 such that inf λ∈L 2 (Q T ) sup ϕ∈Φ β b(ϕ, λ) ϕ Φ β λ L 2 (Q T ) ≥ δ. (19) 
The first point follows from the definition. Concerning the inf-sup condition, for any fixed λ 0 ∈ L 2 (Q T ), we define the (unique) element ϕ 0 such that L ϕ 0 = λ 0 , ϕ = 0 on Σ T and ϕ 0 (•, T ) = 0 in L 2 (0, L). The function ϕ 0 is therefore solution of the backward transport equation with source term λ 0 ∈ L 2 (Q T ), null Dirichlet boundary condition and zero initial state. Moreover, since λ 0 ∈ L 2 (Q T ), the following estimate proved in the Appendix A of [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF] (more precisely, we refer to the inequality (94))

ε ϕ 0 x (0, •) L 2 (0,T ) ≤ C L,T,M λ 0 L 2 (Q T )
for a constant C L,T,M > 0 independent of ε, implies that ϕ 0 ∈ Φ β . In particular, we have b(ϕ

0 , λ 0 ) = λ 0 2 L 2 (Q T ) and sup ϕ∈Φ β b(ϕ, λ 0 ) ϕ Φ β λ 0 L 2 (Q T ) ≥ b(ϕ 0 , λ 0 ) ϕ 0 Φ β λ 0 L 2 (Q T ) = λ 0 2 L 2 (Q T ) εϕ 0 x (0, •) 2 L 2 (0,T ) + η λ 0 2 L 2 (Q T ) 1 2 λ 0 L 2 (Q T )
.

Combining the above two inequalities, we obtain sup

ϕ0∈Φ β b(ϕ 0 , λ 0 ) ϕ 0 Φ β λ 0 L 2 (Q T ) ≥ 1 C 2 L,T,M + η (20) 
and, hence, [START_REF]Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF] 

holds with δ = C 2 L,T,M + η -1/2 .
The second point is due to the symmetry and to the positivity of the bilinear form a β,r . Concerning the third point, the equality b(ϕ

β , λ) = 0 for all λ ∈ L 2 (Q T ) implies that L ϕ β = 0 as an L 2 (Q T )-function, so that if (ϕ β , λ β ) ∈ Φ β × L 2 (Q T ) solves the mixed formulation, then ϕ β ∈ W β and L β (ϕ β , λ β ) = Ĵ β (ϕ β ).
Finally, the first equation of the mixed formulation (taking r = 0) reads as follows:

T 0 ε(ϕ β ) x (0, t) εϕ x (0, t)dt + β ϕ β (•, T ), ϕ(•, T ) H 1 0 (0,L) - Q T L ϕ λ β dx dt = l(ϕ), ∀ϕ ∈ Φ β ,
or equivalently, since the control is given by v

β := ε(ϕ β ) x (0, •), T 0 v β (t) εϕ x (0, t) dt + β(ϕ β (•, T ), ϕ(•, T )) H 1 0 (0,L) - Q T L ϕ λ β dx dt = l(ϕ), ∀ϕ ∈ Φ β .
But this means that λ β ∈ L 2 (Q T ) is solution of (1) in the transposition sense. Since y 0 ∈ L 2 (0, L) and v β ∈ L 2 (0, T ), λ β coincides with the unique weak solution to [START_REF] Amirat | Boundary controls for the equation y t -εy xx + M y x = 0: Asymptotic analysis with respect to ε[END_REF] 

such that -∆ -1 λ β (•, T ) + βϕ β (•, T ) = 0.

Minimization with respect to the Lagrange multiplier

The augmented mixed formulation [START_REF] Lions | Perturbations singulières dans les problèmes aux limites et en contrôle optimal[END_REF] allows to solve simultaneously the dual variable ϕ β , argument of the conjugate functional [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], and the Lagrange multiplier λ β , qualified as the primal variable of the problem.

Assuming that the augmentation parameter r is strictly positive, we derive the corresponding extremal problem involving only the variable λ β . For any r > 0, let the linear operator A β,r from

L 2 (Q T ) into L 2 (Q T ) be defined by A β,r λ := L ϕ where ϕ = ϕ(λ) ∈ Φ β is the unique solution to a β,r (ϕ, ϕ) = b(ϕ, λ), ∀ϕ ∈ Φ β . (21) 
For any r > 0, the form a β,r defines a norm equivalent to the norm on Φ β (see (15)), so that ( 21) is well-posed. The following crucial lemma holds true.

Lemma 3.1 For any r > 0, the operator A β,r is a strongly elliptic, symmetric isomorphism from

L 2 (Q T ) into L 2 (Q T ).
It allows to get the following proposition which permits to replace the minimization of J β over W β to the minimization of the functional J β,r over L 2 (Q T ), which is a space much easier to approximate than W β .

Proposition 3.1 For any r > 0, let ϕ 0 ∈ Φ β be the unique solution of

a β,r (ϕ 0 , ϕ) = l(ϕ), ∀ϕ ∈ Φ β and let J β,r : L 2 (Q T ) → L 2 (Q T ) be the functional defined by J β,r (λ) := 1 2 (A β,r λ, λ) L 2 (Q T ) -b(ϕ 0 , λ).
The following equality holds :

sup λ∈L 2 (Q T ) inf ϕ∈Φ β L β,r (ϕ, λ) = -inf λ∈L 2 (Q T ) J β,r (λ) + L β,r (ϕ 0 , 0).
We refer to [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF], section 2.1 for the proof in the case M = 0.

Remark 5 By introducing appropriate weights functions (vanishing at the time t = T ) leading to optimal L 2 -weighted controls vanishing at time T , we may consider the case β = 0. We refer to [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF], section 2.3.

Numerical approximation

We now turn to the discretization of the mixed formulation (17) assuming r > 0. We follow [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF] for which we refer for the details. Let then Φ β,h and M β,h be two finite dimensional spaces parametrized by the variable h such that, for any β > 0,

Φ β,h ⊂ Φ β , M β,h ⊂ L 2 (Q T ), ∀h > 0.
Then, we can introduce the following approximated problems : find

(ϕ h , λ h ) ∈ Φ β,h ×M β,h solution of a β,r (ϕ h , ϕ h ) + b(ϕ h , λ h ) = l(ϕ h ), ∀ϕ h ∈ Φ β,h b(ϕ h , λ h ) = 0, ∀λ h ∈ M β,h . (22) 
The well-posedness of this mixed formulation is a consequence of two properties : the first one is the coercivity of the form a β,r on the subset

N h (b) = {ϕ h ∈ Φ β,h ; b(ϕ h , λ h ) = 0 ∀λ h ∈ M β,h }. Actually, from the relation a β,r (ϕ, ϕ) ≥ C r,η ϕ 2 Φ β , ∀ϕ ∈ Φ β ,
where C r,η = min{1, r/η}, the form a β,r is coercive on the full space Φ β , and so a fortiori on

N h (b) ⊂ Φ β,h ⊂ Φ β .
The second property is a discrete inf-sup condition :

δ r,h := inf λ h ∈M β,h sup ϕ h ∈Φ β,h b(ϕ h , λ h ) ϕ h Φ β,h λ h M β,h > 0 ∀h > 0. ( 23 
)
Let us assume that this property holds. Consequently, for any fixed h > 0, there exists a unique couple (ϕ h , λ h ) solution of [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF]. The property ( 23) is in general difficult to prove and strongly depends on the choice made for the approximated spaces M β,h and Φ β,h . We shall analyze numerically this property in the next section.

Remark 6 For r = 0, the discrete formulation ( 22) is not well-posed over Φ β,h × M β,h because the form a β,r=0 is not coercive over the discrete kernel of b:

the equality b(λ h , ϕ h ) = 0 for all λ h ∈ M β,h does not imply that L ϕ h vanishes. The term r L ϕ h 2 L 2 (Q T )
is a numerical stabilization term: for any h > 0, it ensures the uniform coercivity of the form a β,r and vanishes at the limit in h. We also emphasize that this term is not a regularization term as it does not add any regularity to the solution ϕ h .

The finite dimensional and conformal space Φ β,h must be chosen such that L ϕ h belongs to L 2 (Q T ) for any ϕ h ∈ Φ β,h . This is guaranteed as soon as ϕ h possesses second-order derivatives in L 2 (Q T ). Any conformal approximation based on standard triangulation of Q T achieves this sufficient property as soon as it is generated by spaces of functions continuously differentiable with respect to the variable x and spaces of continuous functions with respect to the variable t.

We introduce a triangulation T h such that Q T = ∪ K∈T h K and we assume that {T h } h>0 is a regular family. Then, we introduce the space Φ β,h as follows :

Φ β,h = {ϕ h ∈ C 1 (Q T ) : ϕ h | K ∈ P(K) ∀K ∈ T h , ϕ h = 0 on Σ T } (24) 
where P(K) denotes an appropriate space of polynomial functions in x and t. In this work, we consider for P(K) the so-called Bogner-Fox-Schmit (BFS for short) C 1 -element defined for rectangles. In the one dimensional setting (in space), P(K) = (P 3,x ⊗ P 3,t )(K) where P r,ξ is the space of polynomial functions of order r in the variable ξ.

We also define the finite dimensional space

M β,h = {λ h ∈ C 0 (Q T ) : λ h | K ∈ Q(K) ∀K ∈ T h },
where Q(K) denotes the space of affine functions both in x and t on the element K. In the one dimensional setting in space, K is a rectangle and we simply have

Q(K) = (P 1,x ⊗ P 1,t )(K).
The resulting approximation is conformal:

for any h > 0, Φ β,h ⊂ Φ β and M β,h ⊂ L 2 (Q T ). Let n h = dim Φ β,h , m h = dim M β,h and let the real matrices A β,r,h ∈ R n h ,n h , B h ∈ R m h ,n h , J h ∈ R m h ,m h and L h ∈ R n h be defined by                a β,r (ϕ h , ϕ h ) =< A β,r,h {ϕ h }, {ϕ h } > R n h ,R n h ∀ϕ h , ϕ h ∈ Φ β,h , b(ϕ h , λ h ) =< B h {ϕ h }, {λ h } > R m h ,R m h ∀ϕ h ∈ Φ β,h λ h ∈ M β,h , Q T λ h λ h dx dt =< J h {λ h }, {λ h } > R m h ,R m h ∀λ h , λ h ∈ M β,h , l(ϕ h ) =< L h , {ϕ h } > ∀ϕ h ∈ Φ β,h ,
where {ϕ h } ∈ R n h denotes the vector associated to ϕ h and < •, • > R n h ,R n h the usual scalar product over R n h . With these notations, Problem [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF] reads as follows : find

{ϕ h } ∈ R n h and {λ h } ∈ R m h such that A β,r,h B T h B h 0 R n h +m h ,n h +m h {ϕ h } {λ h } R n h +m h = L h 0 R n h +m h .

The discrete inf-sup test

Before to discuss some numerical experiments, we numerically test the discrete inf-sup condition [START_REF] Münch | Numerical approximation of null controls for the heat equation: ill-posedness and remedies[END_REF]. Taking η = r > 0 so that a β,r (ϕ, ϕ) = (ϕ, ϕ) Φ β exactly for all ϕ, ϕ ∈ Φ β , it is readily seen (see for instance [START_REF] Chapelle | The inf-sup test[END_REF]) that the discrete inf-sup constant satisfies

δ β,r,h = inf √ δ : B h A -1 β,r,h B T h {λ h } = δ J h {λ h }, ∀ {λ h } ∈ R m h \ {0} . (25) 
The matrix B h A -1 β,r,h B T h enjoys the same properties than the matrix A β,r,h : it is symmetric and positive definite so that the scalar δ β,r,h defined in term of the (generalized) eigenvalue problem (25) is strictly positive. This eigenvalue problem is solved using the power iterate algorithm (assuming that the lowest eigenvalue is simple): for any

{v 0 h } ∈ R n h such that {v 0 h } 2 = 1, compute for any n ≥ 0, {ϕ n h } ∈ R n h , {λ n h } ∈ R m h and {v n+1 h } ∈ R m h iteratively as follows : A β,r,h {ϕ n h } + B T h {λ n h } = 0 B h {ϕ n h } = -J h {v n h } , {v n+1 h } = {λ n h } {λ n h } 2 .
The scalar δ β,r,h defined by ( 25) is then given by δ β,r,h = lim n→∞ ( {λ n h } 2 ) -1/2 . We now reports some numerical values of δ β,r,h with respect to h for the C 1 -finite element introduced in Section 3.2. We use the value T = 1 and β = 10 -16 . Tables 1, 2 and 3 provides the value of δ β,r,h with respect to h and r for M = 1 for ε = 10 -1 , 10 -2 and ε = 10 -3 respectively. For a fixed value of the parameter ε, we observe as in [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF], that the inf sup constant increases as r → 0 and behaves like δ β,r,h ≈ r -1/2 , and more importantly, is bounded by below uniformly with respect to h. This key property is preserved as the parameter ε decreases, in agreement with the estimate [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 2 : Numerical analysis[END_REF] 

ε = 10 -3 -β = 10 -16 -M = 1.
The case M = -1 is reported in Tables 4, 5 and 6. The same behavior is observed except that we note larger values of the inf-sup constant.

Consequently, we may conclude that the finite approximation we have used "passes" the discrete inf-sup test. Such property together with the uniform coercivity of the form a β,r then imply the convergence of the approximation sequence (ϕ h , λ h ), unique solution of [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF]. As the matter of fact, the use of stabilization technics (so as to enrich the coercivity of the saddle point problem) introduced and analyzed in a closed context in [START_REF] Münch | A mixed formulation for the direct approximation of L 2 -weighted controls for the linear heat equation[END_REF][START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 2 : Numerical analysis[END_REF] is not necessary here. We emphasize that for β = 0 (or β → 0 as h → 0), the convergence of the approximation v h is still an open issue. For β = 0, the convergence is guarantees if a vanishing weight is introduced, see [START_REF] Fernández-Cara | Numerical exact controllability of the 1D heat equation: duality and Carleman weights[END_REF]. This however leads to a different control and therefore a different definition of the cost of control K(ε, T, M ).

The choice of r affects the convergence of the sequences ϕ h and λ h with respect to h and may be very important here, in view of the sensitivity of the boundary control problem with respect to ε. Recall from Theorem 3.1, that for any r ≥ 0, the multiplier λ coincides with the controlled solution. At the finite dimensional level of the mixed formulation [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF] where r must be strictly positive, this property is lost for any h fixed: the non zero augmentation term r L ϕ h L 2 (Q T ) introduces a small perturbation and requires to take r > 0 small (in order that the approximation λ h be closed to the controlled solution y). In the sequel, the value r = h 2 is used. 

β,r,h for ε = 10 -3 -β = 10 -16 -M = -1.

Numerical experiments

We discuss some experiments for both M = 1 and M = -1 respectively and several values of ε. We consider a fixed data, independent of the parameter ε: precisely, we take y 0 (x) = sin(πx) for x ∈ (0, L) and L = 1.

We consider regular but non uniform rectangular meshes refined near the four edges of the space-time domain Q T . More precisely, we refine at the edge {x = 1} × (0, T ) to capture the boundary layer of length ε which appear for the variable λ h when M is positive (see [START_REF] Amirat | Boundary controls for the equation y t -εy xx + M y x = 0: Asymptotic analysis with respect to ε[END_REF]), at the edge {x = 0} × (0, T ) to approximate correctly the "control" function given by v h := εϕ h,x , and finally at (0, L) × {0, T } to represent correctly the initial condition and final condition. Precisely, let p : [0, L] → [0, L] be the polynomial of degree 3 such that p(0) = 0, p (0) = η 1 , p (L) = η 2 and p(L) = L for some fixed η 1 , η 2 > 0. The [0, L] interval is then discretized as follows :

[0, L] = ∪ J j=0 [y j , y j+1 ], y 0 = 0, y j -y j-1 = p(x j ) -p(x xj-1 ), j = 1, • • • , J + 1 (26)
where {x j } j=0,••• ,J+1 is the uniform discretization of [0, L] defined by x j = jh, j = 0, •, J + 1, h = L/(J + 1). Small values for η 1 , η 2 lead to a refined discretization {y j } j=0,••• ,J+1 at x = 0 and x = L. The same procedure is used for the time discretization of [0, T ]. In the sequel, we use

η 1 = η 2 = 10 -3 .
Preliminary, Table 7 gives some values of the H -1 -norm of the uncontrolled solution of (1) at time T associated to y 0 (x) = sin(πx). We take L = |M | = 1. A time-marching approximation scheme is used with a very fine discretization both in time and space. As expected, for T greater than L/|M |, the norm y(•, T ) H -1 (0,1) decreases as ε goes to zero. For T = L/M , we observe that y(•, T ) H -1 (0,1) = O(ε) while for T strictly greater than L/|M |, the decrease to zero as ε → 0 is faster. Table 7: Approximation y h (•, T ) H -1 (0,L) w.r.t. T and ε for y 0 (x) = sin(πx). M = L = 1.

We first discuss the case M = 1. As ε goes to 0 + , a boundary layer appears for the approximation λ h at x = 1. The profile of the solution takes along the normal the form (1 -e

-M (1-x) ε
) and is captured with a locally refined mesh (we refer to [START_REF] Amirat | Boundary controls for the equation y t -εy xx + M y x = 0: Asymptotic analysis with respect to ε[END_REF]). Tables 8, 9 and 10 reports some numerical norms for = 10 -1 , 10 -2 and 10 -3 respectively. These results are obtained by minimizing the functional J β,r over M β,h defined in Proposition 3.1. The minimization of J β,r of M h is performed using the conjugate gradient algorithm: the stopping criterion is

g n h L 2 (Q T ) ≤ 10 -6 g 0 h L 2 (Q T )
where g n h is the residus at the iterate n. The algorithm is initialized with λ 0 h = 0. We refer to [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF] for the details.

We take β = 10 -16 and r = h 2 for the augmentation parameter leading to an appropriate approximation of the controlled solution y by the function λ h : in particular, the optimality condition

λ h (0, •) -εϕ h,x (0, •) = 0 is well respected in L 2 (0, T ). The convergence of √ r L ϕ h L 2 (Q T ) (close to L ϕ h L 2 (H -1
) and actually sufficient to describe the solution of (1), see [START_REF] Cîndea | A mixed formulation for the direct approximation of the control of minimal L 2 -norm for linear type wave equations[END_REF]) is also observed. As usual, we observe a faster convergence for the norm λ h L 2 (Q T ) than for the norm v h L 2 (0,T ) . From ε = 10 -1 to 10 -3 , we also clearly observe a deterioration of the convergence order with respect to h.

h 1/80 1/160 1/320 1/640 √ r L ϕ h L 2 (Q T )
7.76 × 10 -2 3.01 × 10 -2 1.12 × 10 -2 7.12 × 10 -3 17) -r = h 2 ; ε = 10 -1 ; β = 10 -16 -M = L = 1.

εϕx(0,•)-λ h (0,•) L 2 (0,T ) λ h (0,•) L 2 (0,T )
For h = 1/320, Figure 1, 2 and 3 depict the function λ h (•, t), approximation of the control v, for t ∈ (0, T ), T = 1 for ε = 10 -1 , ε = 10 -2 and ε = 10 -3 respectively. For large values of the 17) -r = h 2 ; ε = 10 -2 ; β = 10 -16 -M = L = 1. 

h 1/80 1/160 1/320 1/640 √ r L ϕ h L 2 (Q T ) 5.86 × 10 -1 2.43 × 10 -1 1.41 × 10 -1 9.12 × 10 -2 εϕx(0,•)-λ h (0,•) L 2 (0,T ) λ h (0,•) L 2 (0,T ) 2.5 × 10 -2
h 1/80 1/160 1/320 1/640 √ r L ϕ h L 2 (Q T ) 1.75 × 10 -1 1.01 × 10 -1 8.51 × 10 -2 6.91 × 10 -2 εϕx(0,•)-λ h (0,•) L 2 (0,T ) λ h (0,•) L 2 (0,T )
) -r = h 2 ; ε = 10 -3 ; β = 10 -16 -M = L = 1.
diffusion coefficient ε, for instance ε = 10 -1 , the transport term has a weak influence: the control of minimal L 2 -norm is similar to the corresponding control for the heat equation and oscillates near the controllability time. On the contrary, for ε small, typically ε = 10 -3 , the solution -mainly driven by the transport term -is transported along a direction closed to (1, 1/M ) = (1, 1), so that at time T = 1/M , is mainly distributed in the neighborhood of x = 1. Consequently, the control (of minimal L 2 -norm) acts mainly at the beginning of the time interval, so as to have an effect, at time T , in the neighborhood of x = 1. We observe a regular oscillatory and decreasing behavior of the controls.

Let us now discuss the case M = -1. This negative case is a priori "simpler" since there is no more boundary layer at x = 1: the solution is somehow "absorbed" by the control at the left edge x = 0. Tables 11, 12 and 13 give some numerical values with respect to h for ε = 10 -1 , 10 -2 and 10 -3 . Concerning the behavior of the approximation with respect to h, similar remarks (than for M = 1) can be made: the notable difference is a lower rate of convergence, probably due to the singularity of the controls we obtain. Precisely, for the same data as in the case M = 1, Figure 4, 5 and 6 depicts the "control" function λ h (0, t) for t ∈ (0, T ), T = 1 for ε = 10 -1 , ε = 10 -2 and ε = 10 -3 respectively. The behavior of the control is quite different from the previous case. For ε large, typically ε = 10 -1 , the control is again similar to the control we observe for the heat equation, with an oscillatory behavior at the final time. We observe however that the corresponding norm is significantly larger that for the case M = 1: this is due to the fact, that for M < 0, the transport term "pushes" the solution toward x = 0 where the control acts: this reduces the effect of the control which therefore must be stronger. For ε small, the solution is mainly transported along the direction (1, 1/M ) = (1, -1) so that at time T , the solution is mainly concentrated in the neighborhood of x = 0. For this reason, the control mainly acts at the end of the time interval: any action of the control not concentrated at the end of the time interval would be useless because pushed back to the edge x = 0 and will produce a larger L 2 -norm. As ε goes to zero, the control is getting concentrated at the terminal time with an oscillatory behavior and large amplitudes. This fact may explain why the behavior of the cost of control with respect to ε observed in [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF][START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF][START_REF] Lissy | A link between the cost of fast controls for the 1-d heat equation and the uniform controllability of a 1-d transport-diffusion equation[END_REF] is singular for negatives values of M . For M > 0, the transport term "helps" the control to act on the edge x = 1 while for M < 0, the transport term is against the control and reduces its action. 

= L = M = 1; r = h 2 -h = 1/320.
For this reason, the numerical approximation of controls for M = -1 is definitively more involved and requires to take a very fine discretization, which will then imply a large number of CG iterates.

h 1/80 1/160 1/320 1/640 √ r L ϕ h L 2 (Q T ) 1.51 0.731 0.231 0.101 εϕx(0,•)-λ h (0,•) L 2 (0,T ) λ h (0,•) L 2 (0,T )
9.19 × 10 -3 3.87 × 10 -3 1.61 × 10 -3 1.12 × 10 -3 

v h L
) -r = h 2 ; ε = 10 -1 ; β = 10 -16 -M = -1.
We also observe, both for M = 1 and M = -1, that from ε = 10 -2 to ε = 10 -3 , the L 2norm v ε L 2 (0,T ) decreases. Very likely, as ε goes to zero, this norm goes to zero. This does not contradict the theoretical results and is due to the fact that the initial condition we have taken here is independent of ε. In other words, the optimal problem (3) of control is not obtained for y 0 (x) = sin(πx) nor by any initial condition independent of the parameter ε. This fact is proven in [START_REF] Amirat | Boundary controls for the equation y t -εy xx + M y x = 0: Asymptotic analysis with respect to ε[END_REF]. We remind that the initial condition y 0 (x) = e M x 2ε sin(πx) is used in [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF][START_REF]Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF].

Numerical approximation of the cost of control

We now turn to the numerical approximation of the cost of control K(ε, T, M ) defined by [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]. Precisely, we address numerically the resolution of the generalized eigenvalue problem [START_REF] Duprez | Numerical estimations of the cost of boundary controls for the one dimensional heat equation[END_REF]:

sup λ ∈ R : ∃ y 0 ∈ L 2 (0, L), y 0 = 0, s.t. A ε y 0 = λy 0 in L 2 (0, L) .
Let V h be a conformal approximation of the space L 2 (0, L) for all h > 0. We have then face to 

h 1/80 1/160 1/320 1/640 √ r L ϕ h L 2 (Q T ) 5.291 2.134 1.213 0.591 εϕx(0,•)-λ h (0,•) L 2 (0,T ) λ h (0,•) L 2 (0,T )
λ h (•, T ) H -1 (0,T )
1.54 × 10 -3 2.08 × 10 -3 1.71 × 10 -3 6.12 × 10 -4 CG iterate 22 41 79 101

Table 12: Mixed formulation (17) -r = h 2 ; ε = 10 -2 ; β = 10 -16 -M = -1.

h 1/80 1/160 1/320 1/640 √ r L ϕ h L 2 (Q T )
7.12 2.14 1.31 0.59

εϕx(0,•)-λ h (0,•) L 2 (0,T ) λ h (0,•) L 2 (0,T ) 2.87 × 10 -1 7.76 × 10 -2 4.31 × 10 -2 2.12 × 10 -2 v h L 2 (0,T ) 0.281 × 10 -1 2.35 18.98 21.23 λ h L 2 (Q T ) 4.97 × 10 -1 5.01 × 10 -1 6.38 × 10 -1 7.23 × 10 -1 λ h (•, T ) H -1 (0,T )
2.03 × 10 -5 3.28 × 10 -5 6.01 × 10 -5 8.01 × 10 -5 CG iterate 7 11 23 26

Table 13: Mixed formulation (17) -r = h 2 ; ε = 10 -3 ; β = 10 -16 -M = -1. 

sup λ ∈ R : ∃ y 0,h ∈ V h , y 0,h = 0, s.t. A ε y 0,h = λy 0,h in V h .
A ε y 0,h in L 2 (0, L) is defined as -ϕ h (•, 0) where ϕ h ∈ Φ β,h solves the variational formulation [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF]. Consequently, from the definition of Φ β,h in (24), the space V h is the set of C 1 -functions and piecewise polynomial of order 3:

V h = y 0,h ∈ C 1 ([0, L]) : y 0,h | K ∈ P 3,x ∀K ∈ T h
where T h is the triangulation of [0, L] defined by (26).

This kind of finite dimensional eigenvalue problems may be solved using the power iterate method (see [START_REF] Chatelin | Eigenvalues of matrices[END_REF]): the algorithm is as follows: given

y 0 0,h ∈ L 2 (0, L) such that y 0 0,h L 2 (0,L) = 1, compute for all k ≥ 0,      z k 0,h = A y k 0,h , k ≥ 0, y k+1 0,h = z k 0,h z k 0,h L 2 (0,L)
, k ≥ 0.

The real sequence { z k 0,h L 2 (0,L) } then converges to the eigenvalue with largest modulus of the operator A ε , so that

z k 0,h L 2 (0,1) → K(ε, T, M, L) as k → ∞.
{y k 0,h } k>0 converges to the corresponding eigenvectors. The first step requires to compute the image of the control operator A ε : this is done by solving the mixed formulation [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF] taking y k 0,h as initial condition for [START_REF] Amirat | Boundary controls for the equation y t -εy xx + M y x = 0: Asymptotic analysis with respect to ε[END_REF].

The algorithm is stopped as soon as the sequence {z k 0,h } k≥0 satisfies

z k 0,h L 2 (0,L) -z k-1 0,h L 2 (0,L) z k-1 0,h L 2 (0,1) ≤ 10 -3 , (27) 
for some k > 0. We now report the numerical values for L = 1 and M = ±1. We initialize the algorithm with

y 0 0 (x) = e -M x 2 sin(πx) e -M x 2 sin(πx) L 2 (0,L) , x ∈ (0, L).

Cost of control in the case M = 1

Table 14 in the annexe section reports the approximations obtained of the cost of control K(ε, T, M ) for M = 1 with respect to T and ε. They corresponds to the discretisation h = 1/320. As expected, for T strictly lower than L/M = 1, here T = 0.95 and T = 0.99, we obtain that the cost K(ε, T, M ) blows up as ε goes to zero. This is in agreement with the fact, that for T < L/M , the system (1) is not uniformly controllable with respect to the initial data y 0 and ε. Figure 7 displays the approximations with respect to ε for T = 0.95. On the other hand, for T larger than L/M = 1, we observe that the numerical approximation of K(ε, T, M ) is bounded with respect to ε. More precisely, the cost is not monotonous with respect to ε as it reaches a maximal value for ε ≈ 1.75 × 10 -3 for T = 1 and ε ≈ 6 × 10 -3 for T = 1.05 (see Figures 8 and10). Figure 9 is a zoom in the case T = 1 for the smallest values of the diffusion coefficient ε. Figure 11 displays the approximation of the initial data y 0 ∈ L 2 (0, L) solution of the optimal problem (9) for T = 1 and ε = 10 -1 , 10 -2 and 10 -3 . As ε decreases, the optimal initial condition y 0 with y 0 L 2 (0,L) = 1 gets concentrated as x = 0. Again, this is in agreement with the intuition since such condition produces (in the uncontrolled situation) larger values of y(•, T ) H -1 (0,L) . It should be noted however that the solutions we get are different from e -M x 2 sin(πx)/ e -M x 2 sin(πx) L 2 (0,L) . Moreover, they are apparently independent of the controllability time T (at least for the values of T closed to 1/M we have used). Remark also that the initial data y 0 (x) = e M x 2 sin(πx)/ e M x 2 sin(πx) L 2 (0,L) highlighted in [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF][START_REF]Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF] leads to a lower numerical value of v h L 2 (0,L) .

For each values of ε and T , the convergence of the power iterate algorithm is fast: the stopping criterion ( 27) is reached in less than 5 iterates. 

K(ε, T, M ) ≥ C 1 ε -3/2 T -1/2 M 2 1 + M 3 ε -3 exp M 2ε (1 -T M ) -π 2 εT := C 1 f (ε, T, M )
for a positive constant C 1 . This estimate is in agreement with the behavior we observe with respect to ε and T in the previous figures. For T = 0.95/M , the function f increases as ε → 0, while for T ≥ 1/M , f increases, reaches a unique maximum and then decreases to 0 as ε goes to zero.

Controllability cost in the case M = -1

Table 15 in the annexe section reports the approximation obtained of the cost of control K(ε, T, M ) for M = -1 and T = 1/|M | with respect to ε ∈ [10 -3 , 10 -1 ]. With respect to the positive case, the notable difference is the amplitude of the cost, as expected much larger, since the transport term now acts "against" the control. For instance, for ε = 10 -3 , we obtain K(ε, T, M ) ≈ 18.7555 for M = 1 and K(ε, T, M ) ≈ 1.0718 × 10 4 for M = -1. Moreover, the corresponding optimal initial condition y 0 is supported as ε → 0 at the right extremity x = 1 (see figure 12) leading to a corresponding control localized at t = T = 1/|M |, with very large amplitude and oscillations, as shown on figure 13 for ε = 10 -3 . Such oscillations are difficult to capture numerically and are very sensitive to the discretization used. On the other hand, we observe, as for M = 1, that the cost K(ε, T, M ) does not blow up as ε → 0, in contradiction with the theoretical results from [START_REF] Coron | Singular optimal control: a linear 1-D parabolic-hyperbolic example[END_REF][START_REF]Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF]. The discretization used is not fine enough here to capture the highly oscillatory behavior of the control near the controllability time T (in contrast to the positive case) and very likely leads to an uncorrect approximation of the controls. For T lower than 1/|M |, as expected, we observe that the cost blows up, while for T strictly greater than 1/|M |, the cost decreases to zero with ε. 

Concluding remarks and perspectives

We have presented a direct method to approximate the cost of control associated to the equation y t -εy xx + M y x = 0. For M > 0, the "worst" initial data we observe are concentrated at x = 0 leading to a control distributed at the beginning of the time interval, and vanishing as t → T . In this case, controls v are smooth and easily approximated. Vanishing exponentially weighs as considered in [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF] leading to strong convergent results (w.r.t. h) are not necessary here. Consequently, for M > 0, we are confident with the numerical approximation obtained and may conjecture that the minimal time of uniform controllability w.r.t. ε is T M = L/M . The situation is much more singular for M < 0 for which the transport term acts "against" the control. The optimal initial data are now concentrated as the right extremity leading to a highly singular controls at the end of the time interval. Such controls, similar to the controls we observed for the heat equation (see [START_REF] Münch | Numerical approximation of null controls for the heat equation: ill-posedness and remedies[END_REF]) are difficult to approximate. The strong convergent approximation of controls w.r.t. h is still open in such situations. Let us comment possible perspectives to improve the resolution of this singular controllability problem. a) A way to recover a strong convergent approximation with respect to h is to force the control to vanish exponentially as time T of the form v(t) := ερ -2 (t)ϕ x (0, t), with ρ(t) := O(e 1/(T -t) ). Remark that this modifies the cost of control as follows: at time T , we suspect that the minimal time of uniform controllability T M,ρ coincides with T M . b) Even if the introduction of weights like ρ improves the numerical stability of the mixed formulation [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF], it seems quite impossible to consider values of T far from L/|M |: for instance, for T = 2 √ 2 exhibited in [START_REF]Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transportdiffusion equation[END_REF] (see ( 4)), the norm y(•, T ) H -1 (0,L) is the uncontrolled situation, is for ε = 10 -2 , about 3.33 × 10 -17 . Consequently, when the double precision is used, we achieve "numerically" zero. Resolution of [START_REF] Münch | Inverse problems for linear parabolic equations using mixed formulations -Part 1 : Theoretical analysis[END_REF] would then lead to v := 0 on (0, T ) ! A possible way to avoid such pathologies is to preliminary consider a change of variables. We may write the solution y as follows, for any α, γ ∈ R,

K ρ (ε, T, M ) := sup
y(x, t) = e M αx 2 
e -γM 2 t 4ε z(x, t) leading to

L ε y := e M αx 2 e -γM 2 t 4ε z t -εz xx + M (1 -α)z x - M 2 4ε (γ + α 2 -2α)z .
Remark that y(•, T ) = 0 if and only if z(•, T ) = 0. Taking 1 -α small and M 2 4ε (γ + α 2 -2α) ≥ 0 allows to reduce the dissipation of the solution at time T as ε → 0 and therefore avoid the zero numeric effect. For instance, for α = γ = 1, z solves z t -εz xx = 0. Within this change of variable, the cost of control is The corresponding control of minimal L 2 (e -γM 2 t 4ε ) norm for the variable z is given by v ε,z := εe γM 2 t 2ε w x (•, t). The optimality conditions for J lead to a mixed formulation similar to [START_REF] Lions | Perturbations singulières dans les problèmes aux limites et en contrôle optimal[END_REF]. The introduction of appropriate parameters α and γ allows to avoid the effect of the transport term; on the other hand, the change of variables make appear explicitly in the formulation exponential functions which may leads to numerical overflow for small values of ε. c) Another numerical strategy, employed in [START_REF] Münch | Numerical approximation of null controls for the heat equation: ill-posedness and remedies[END_REF], is to use a spectral expansion of the adjoint solution ϕ of (6): α p α q e -(λ ε,k +λε,p)T 32ε 3 M (pπ)(qπ)(1 -e -M ε (-1) p+q ) (a 2 p,q -b 2 p,q )

K 2 (ε, T, M ) = sup
) < ∞ with a p,q := 4(M 2 + ε 2 ((pπ) 2 + (qπ) 2 )) and b p,q := 8ε 2 (pπ)(qπ). The characterization (8) of the control with v ε = εϕ x (0, •) then rewrites as follows: find {α k } k≥1 ∈ L(ε, M, T ) such that

ε 2 k,p≥1
α k α p (kπ)(pπ) 1 -e -(λε,p+λ ε,k )T λ ε,p + λ ε,k + k≥1 α k e -λ ε,k T p≥1 β p M p,k = 0, ∀{α k } k≥1 ∈ L(ε, M, T ), (28) with y 0 (x) := p>0 β p sin(pπx) and M p,q := 1 0 e -M x 2ε sin(pπx) sin(qπx)dx. The use of symbolic computations with large digit numbers may allow to solve (28) with robustness. d) At last, it seems interesting to perform as well an asymptotic analysis of the system of optimality [START_REF] Lions | Perturbations singulières dans les problèmes aux limites et en contrôle optimal[END_REF] with respect to ε, in the spirit of [START_REF] Lions | Perturbations singulières dans les problèmes aux limites et en contrôle optimal[END_REF]. This may allow to replace the direct resolution of ( 17) by the resolution of a sequel of simpler optimality systems independent of ε. This analysis is investigated in [START_REF] Amirat | Boundary controls for the equation y t -εy xx + M y x = 0: Asymptotic analysis with respect to ε[END_REF].

Eventually, we also mention that similar methods can be used to consider the case M = 0 in (3) in order to examine precisely the evolution of the cost of control for the heat equation when the controllability time T goes to zero. Precisely, the change of variable t := εt in (1) leads to the equation ỹtt -ỹxx = 0 over (0, L) × (0, εT ). This case, easier than the case considered in this work, is still open in the literature and is numerically discussed in [START_REF] Duprez | Numerical estimations of the cost of boundary controls for the one dimensional heat equation[END_REF]. 
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 1 Figure 1: Approximation λ h (0, t) of the control w.r.t. t ∈ [0, T ] for ε = 10 -1 and T = L = M = 1; r = h 2 -h = 1/320.
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 2 Figure 2: Approximation λ h (0, t) of the control w.r.t. t ∈ [0, T ] for ε = 10 -2 and T = L = M = 1; r = h 2 -h = 1/320.
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 3 Figure 3: Approximation λ h (0, t) of the control w.r.t. t ∈ [0, T ] for ε = 10 -3 and T = L = M = 1; r = h 2 -h = 1/320.
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 4 Figure 4: Approximation λ h (0, t) of the control w.r.t. t ∈ [0, T ] for ε = 10 -1 and T = L = -M = 1; r = h 2 -h = 1/320.
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 5 Figure 5: Approximation λ h (0, t) of the control w.r.t. t ∈ [0, T ] for ε = 10 -2 and T = L = -M = 1; r = h 2 -h = 1/320.
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 6 Figure 6: Approximation λ h (0, t) of the control w.r.t. t ∈ [0, T ] for ε = 10 -3 and T = L = -M = 1; r = h 2 -h = 1/320.
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 7 Figure 7: Cost of control K(ε, T, M ) w.r.t. ε ∈ [10 -3 , 10 -1 ] for T = 0.95L/M and L = M = 1; r = h 2 -h = 1/320.
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 8 Figure 8: Cost of control K(ε, T, M ) w.r.t. ε ∈ [10 -3 , 10 -1 ] for T = L/M and L = M = 1; r = h 2 -h = 1/320.
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 910 Figure 9: Cost of control K(ε, T, M ) w.r.t. ε ∈ [10 -3 , 6 × 10 -3 ] for T = 0.95L/M and L = M = 1; r = h 2 -h = 1/320.
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 117 Figure 11: The optimal initial condition y 0 in (0, L) for ε = 10 -1 (full line), ε = 10 -2 (dashed line) and ε = 10 -3 (dashed-dotted line) and T = M = L = 1; r = h 2 -h = 1/320.
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 12 Figure12: The optimal initial condition y 0 in (0, L) for ε = 10 -1 (full line), ε = 10 -2 (dashed line) and ε = 10 -3 (dashed-dotted line) and T = -M = L = 1; r = h 2 -h = 1/320.

y0 L 2 Figure 13 :Figure 14 :

 21314 Figure 13: Approximation λ h (0, t) of the corresponding control w.r.t. t ∈ [0, T ] for ε = 10 -3 and T = L = -M = 1; r = h 2 -h = 1/320.

z0∈L 2 ( 2 T 0 ε 2 e γM 2 t 2ε w 2 x

 222 0,L) (A ε z 0 , z 0 ) (e M αx ε z 0 , z 0 )where A ε is the control operator defined by A ε :z 0 → -w(•, 0) ∈ L 2 (0, L); here w solves the adjoint problem -εw xx -M (1 -α)w x -M 2 4ε (γ + α 2 -2α)w = 0 in Q T , w(0, •) = w(L, •) = 0 on (0, T ), w(•, T ) = w T in (0, L),with w T ∈ H 1 0 (0, L) the minimizer of the functional J (w T ) := 1 (0, t)dt + (z 0 , w(•, 0)) L 2 (0,L) .

  ϕ(x, t) = e -M x 2ε k>0 α k e -λ ε,k (T -t) sin(kπx), λ ε,k := εk 2 π 2 + M 2 4ε with {α k } k>0 ∈ L(ε, M, T ) such that ϕ(•, 0) is in L 2 (0, L), equivalently L(ε, M, T ) := {α p } p>0 ∈ R, p,q≥0

ε T = 0

 0 .95 T = 0.99 T = 1. T = 1.05 10

Table 1 :

 1 uniform with respect to ε. δ β,r,h w.r.t. h and r; ε = 10 -1 -β = 10 -16 -M = 1.

	r	10.	1.	0.1	h	h 2
	h = 1/80 0.315 0.919 1.909 2.359 2.535
	h = 1/160 0.313 0.923 1.94 2.468 2.599
	h = 1/320 0.313 0.927 1.969 2.548 2.658
	r	10.	1.	0.1	h	h 2
	h = 1/80 0.311 0.961 2.423 3.64 4.473
	h = 1/160 0.316 0.967 2.492 4.06 4.692
	h = 1/320 0.316 0.971 2.545 4.406 4.916

Table 2 :

 2 δ β,r,h w.r.t. h and r; ε = 10 -2 -β = 10 -16 -M = 1.

	r	10.	1.	0.1	h	h 2
	h = 1/80 0.310 0.942 2.121 3.412 6.012
	h = 1/160 0.310 0.987 2.435 4.012 5.944
	h = 1/320 0.310 0.969 2.544 4.561 5.756

Table 3 :

 3 δ β,r,h w.r.t. h and r;

Table 4 :

 4 δ β,r,h for ε = 10 -1 -β = 10 -16 -M = -1.

		10.	1.	0.1	h	h 2
	h = 1/80 0.3161 0.997 2.663 4.358 5.069
	h = 1/160 0.316 0.9805 2.673 4.69 5.139
	h = 1/320 0.3162 0.9801 2.653 4.172 5.171
	r	10.	1.	0.1	h	h 2
	h = 1/80	0.316	0.997 3.109 7.562 13.936
	h = 1/160 0.3161 0.9997 3.086 9.433 14.101
	h = 1/320 0.316 0.9809 3.086 11.101 14.140

Table 5 :

 5 δ β,r,h for ε = 10 -2 -β = 10 -16 -M = -1.

	r	10.	1.	0.1	h	h 2
	h = 1/80 0.302 0.9129 2.887 8.16 39.09
	h = 1/160 0.301 0.957 3.022 12.14 43.08
	h = 1/320 0.301 0.981 3.084 16.61 44.29

Table 6 :

 6 δ

Table 8 :

 8 1.06 × 10 -2 4.45 × 10 -3 1.97 × 10 -3 7.61 × 10 -4 Mixed formulation (

	v h L 2 (0,T )	0.324	0.357	0.3877	0.3912
	λ h L 2 (Q T )	0.367	0.366	0.362	0.363
	λ h (•, T ) H -1 (0,T )	4.47 × 10 -6 9.59 × 10 -7 2.03 × 10 -7 1.01 × 10 -7
	CG iterate	76	117	175	231

Table 9 :

 9 1.24 × 10 -2 6.04 × 10 -3 2.89 × 10 -3 Mixed formulation (

	v h L 2 (0,T )	1.391	2.392	2.929	3.316
	λ h L 2 (Q T )	0.518	0.6001	0.789	0.832
	λ h (•, T ) H -1 (0,T )	5.46 × 10 -6 3.56 × 10 -6 8.77 × 10 -7 6.12 × 10 -8
	CG iterate	53	93	155	181

Table 10 :

 10 4.87 × 10 -2 2.43 × 10 -2 1.3 × 10 -4 7.19 × 10 -5 T ) H -1 (0,T ) 1.17 × 10 -6 3.69 × 10 -7 1.20 × 10 -7 8.12 × 10 -8 Mixed formulation[START_REF] Lions | Perturbations singulières dans les problèmes aux limites et en contrôle optimal[END_REF]

	v h L 2 (0,T )	0.231	0.713	0.855	0.911
	λ h L 2 (Q T )	0.498	0.5015	0.5210	0.5319
	λ h (•, CG iterate	29	68	129	151

Table 11 :

 11 Mixed formulation[START_REF] Lions | Perturbations singulières dans les problèmes aux limites et en contrôle optimal[END_REF]

	2 (0,T )	28.16	39.26	49.96	52.03
	λ h L 2 (Q T )	5.74	7.96	9.05	10.12
	λ h (•, T ) H -1 (0,T )	8.35 × 10 -4 1.82 × 10 -4 3.97 × 10 -5 1.12 × 10 -5
	CG iterate	48	80	129	157

  5.27 × 10 -4 2.08 × 10 -2 8.05 × 10 -3 5.01 × 10 -3

	v h L 2 (0,T )	250.54	457.78	666.902	712.121
	λ h L 2 (Q T )	6.76	10.05	13.111	15.301

Table 14 :

 14 Cost of control K(ε, T, M ) for L = M = 1 with respect to T and ε; -h = 1/320 -r = h 2 -β = 10 -16 .

	-3	237.877	30.4972 18.7555	2.2915
	1.25 × 10 -3	190.574	29.7622 19.1953	2.8028
	1.5 × 10 -3	159.813	29.0015 19.3883	3.2556
	1.75 × 10 -3	138.166	28.2446 19.4234	3.6529
	2 × 10 -3	122.044	27.4997 19.3540	4.0005
	2.25 × 10 -3	109.519	26.7745 19.2093	4.3013
	2.5 × 10 -3	99.476	26.0722 19.0163	4.5623
	3 × 10 -3	84.250	24.7318 18.5275	4.9814
	4 × 10 -3	64.648	22.3060 17.3600	5.5078
	5 × 10 -3	52.289	20.1837 16.1269	5.7530
	6 × 10 -3	43.650	18.3289 14.9392	5.8259
	7 × 10 -3	37.213	16.6883 13.8166	5.7787
	8 × 10 -3	32.198	15.2461 12.7839	5.6683
	9 × 10 -3	28.210	13.9660 11.8380	5.5099
	10 -2	24.934	12.8331 10.9763	5.3276
	1.25 × 10 -2	18.898	10.5015	9.1493	4.8282
	1.5 × 10 -2	14.810	8.7281	7.7087	4.3378
	1.75 × 10 -2	11.913	7.3526	6.5694	3.8897
	2 × 10 -2	9.784	6.2780	5.6566	3.4943
	2.25 × 10 -2	8.176	5.4196	4.9210	3.1506
	2.5 × 10 -2	6.937	4.7293	4.3237	2.8534
	3 × 10 -2	5.180	3.7047	3.4240	2.3744
	4 × 10 -2	3.264	2.4895	2.3297	1.7350
	5 × 10 -2	2.294	1.8261	1.7304	1.3416
	6 × 10 -2	1.736	1.4209	1.3522	1.0848
	7 × 10 -2	1.376	1.1510	1.1030	0.8978
	8 × 10 -2	1.113	0.9596	0.9223	0.7612
	9 × 10 -2	0.0952	0.8130	0.7865	0.6554
	10 -1	0.8175	0.7075	0.6808	0.5711