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Numerical estimations of the cost of boundary controls for

the equation y; — ey, + My, = 0 with respect to e

ARNAUD MUNCH*

March 27, 2017

Abstract

We numerically examine the cost of the null boundary control for the transport diffusion
equation Yyt — €Yse + My, = 0, z € (0,L), t € (0,T) with respect to the positive parameter
€. It is known that this cost is uniformly bounded with respect to € if T' > T with T €
[1,2V/3]L/M if M > 0 and if Tar € [2v/2,2(1 4+ V3)]L/|M| if M < 0. We propose a method
to approximate the underlying observability constant and then conjecture, through numerical
computations, the minimal time of controllability Tas leading to a uniformly bounded cost.
Several experiments for M € {—1,1} are performed and discussed.

Key words: Singular controllability, Lagrangian variational formulation, Numerical approxima-
tion.
1 Introduction - Problem statement

Let L >0,T >0 and Qr := (0,L) x (0,T). This work is concerned with the null controllability
problem for the parabolic equation

Yt — €Yz + My, =0 in (0,L)x (0,7,
y(07 ) = U(t)7 y(Lv ) =0 on (07 T)a (1)
y('>0) = Yo in (Oa L)'

Here we assume that yo € H (0, L). € > 0 is the diffusion coefficient while M € R is the transport
coefficient; v = v(t) is the control (a function in L2(0,T)) and y = y(x,t) is the associated state.
In the sequel, we shall use the following notations :

Lsy =Yt — EYza + My:L’7 L:(,D =Pt — EPxa — MSD:L’ (2)

For any yo € H~1(0,L) and v € L?(0,T), there exists exactly one solution y to , with the
regularity y € L2(Qr)NC([0,T]; H~1(0, L)) (see for instance [I0, Prop. 2.2]). Accordingly, for any
final time T > 0, the associated null controllability problem at time 7" > 0 is the following: for
each yo € H=1(0, L), find v € L?(0,T) such that the corresponding solution to satisfies

y(-,T)=0in H1(0,L). (3)

For any T'> 0, M € R and € > 0, the null controllability for the parabolic type equation
holds true. We refer to [12] and [I5] using Carleman type estimates. We therefore introduce the
non-empty set of null controls

C(yo, Tye, M) := {(y,v) : v € L*(0,T);y solves (1)) and satisfies } (4)
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For ¢ = 0, the system degenerates into a transport equation and is uniformly controllable as
soon as T is large enough, according to the speed M of transport, precisely as soon as T' > L/|M].
On the other hand, for € > 0, the asymptotic behavior of the null controls as ¢ — 0% is less clear,
depends on the sign of M, and has been the subject of several works in the last decade.

For any € > 0, we define the cost of control by the following quantity :

K(e,T,M) := sup {uec(min ||uL2(0,T)} , (5)

llyoll L2 (o, y=1 yo,T,e,M)

and denote by Ths the minimal time for which the cost K(e,T, M) is uniformly bounded with
respect to the parameter €. In other words, is uniformly controllable with respect to ¢ if and
only if T > Ths. In [8], J-M. Coron and S. Guerrero proved, using spectral arguments coupled with
Carleman type estimates that

L
14357 i M>0,
2,572 — if M <0.
| M|

The lower bounds are obtained using the initial condition yo(z) = sin(rz/L)e . The upper

bounds are deduced from Carleman type inequalities for the adjoint solution. Then, using complex
analysis arguments, O. Glass improved in [13] the previous estimations: precisely, he obtained that

L
[1,4.2]M if M >0,
Ty € [ ] I (7)
2,6.1]— if M <0.
|M|

These authors exhibit an exponential behavior of the L?-norm of the controls with respect to .
More recently, P. Lissy in [17, [I8] yielded to the following conclusion:

[172\/3]% it M >0,
Ty € L (8)
[2v/2,2(1 + \/5)]@ if M<o.

Remark that 2(1 4 v/3) ~ 5.46. The second lower bound 2v/2 is obtained by considering again the
initial data yo(z) = sin(rz/L)e = .

The main goal of the present work is to approximate numerically the value of T, both for
M > 0 and M < 0. This can be done by approximating the cost K for various values of € and
T > 0, the ratio L/M being fixed.

In Section [2, we reformulate the cost of control K as the solution of a generalized eigenvalue
problem, involving the control operator. In Section [3] we adapt [21], present a robust method
to approximate numerically the control of minimal L?-norm and discusses some experiments, for
a given initial data. In Section [@ we solve at the finite dimensional level the related eigenvalue
problem using the power iteration method: each iteration requires the resolution of a null con-
trollability for . We then discuss some experiments with respect to e and T for L/M = 1 and
L/M = —1 respectively.

2 Reformulation of the controllability cost K(e,T, M)

We reformulate the cost of control K as the solution of a generalized eigenvalues problem involving
the control operator (named as the HUM operator by J.-L. Lions for wave type equations). From
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, we can write

[(2(57T7 M) = sup M (9)
yo€L2(0,L) (y073/0)L2(0,L)

where v = v(yg) is the null control of minimal L?(0,T)-norm for (1) for the initial data yo. Let us
recall that any null control for satisfies the following characterization

(v,602(0,-))L2(0,7) + (Yo, ¥0)2(0,2) = O, (10)
for any ¢ solution of the adjoint problem

—r — Pz — M@, =0 in (0,L)x (0,7,
90(07 ) = QO(L7 ) =0 on (OvT)7 (11)
(p(-,T) = ¥T in (0’[’)7

where o7 € H}(0,L). In particular, the control of minimal L%mnorm is given by v = £5,(0,-),
t € (0,T) where ¢ solves associated to the initial ¢7, solution of the extremal

* 1 r
sup  T(pr)i= 3 [ (a0, + (o, 0) 120 (12)
pr€HL(0,L) 0

Taking ¢ = ¢ associated to ¢ in , we therefore have
(v,v)200,1) = (v,€02(0,1)) L2¢0,7) = — (Y0, Po) L2(0,1)- (13)

Consequently, if we denote by A. : L*(0, L) — L?(0, L) the control operator defined by A.yo :=
—(0), we finally obtain

Azyo,
K2(E,T, M)= sup (Eyoyw (14)

woer2(0,L) (%0, %0)L2(0,L)

and conclude that K?(e, T, M) is solution of the following generalized eigenvalue problem :

sup{)\ €R:3yo € L*0,L),y0 #0, s.t. Acyo = \yo  in LQ(O,L)}. (15)

Remark 1 The controllability cost is related to the observability constant Cops(e, T, M) which
appears in the observability inequality for

(- 0)[Z2(0.2) < Cobsle, T, M)lewu(0,) 12207y, Voor € Hg(0, L) N H?(0,L)

defined by

2
(p .
Cobs(r‘f,T7M) sup || ( )HLZ(O L)
or€HL(0,L) e (0, )||L2(0T)

Precisely, we get that K(e,T,M) = \/Cops(e, T, M) (see [, Remark 2.98).

(16)

Remark 2 We may reformulate as well the previous extremal problem over H(0,L) (seen as
the dual space of H=1(0,L) > y(-,T)) in term of a generalized eigenvalue problem; we proceed as
follows.
We introduce the operators A, and B, given by
A.: H0,L) — L?*0,L) J B.: H0,L) — L*0,7)
an
A ) er = epa(0,),
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where @ solves . The adjoint operators A and Bf of A and B, are given by :

Ar: L2(0,L) — HY0,L) ; Bf: L20,L) — H™Y0,L)
an
i = y(T5y0,0) v = y(T;0,v),

where y(t; yo, v) is the solution to at time t for the initial data yo and the control v. With these
notations, we may rewrite Cyps given by (@ as follows

ePT, s‘PT)LQ(O L)

Cobs (57 T, M) sup (
ereHi(0,0) (Beor, Bepr)12(0,T)
(17)
— ew (AT AL Acor, 1)1 (0,1)
er€Hy(0,L) ((-A~1)Bt Ba‘PTNPT)Hl(O L)

leading to an eigenvalue problem over HE (0, L).

Remark that the operator BXB. from HZ(0, L) to H=1(0, L) associates to the initial state o1 of
the final state y(T') of with yo = 0 and v = €p,(0,). v is therefore the control of minimal
L2(0,T)-norm with drives the state y from 0 to the trajectory y(T,-). BXB. is the so-called HUM
operator.

Remark 3 Actually, the supremum of o7 € HE(0,L) in (@ can be taken over o(-,0) € L?(0, L)
(or even over ¢ !) leading immediately to

Con(e. T, M) = sup ((0), 9(0)) (18)

e(0)ez?(0,) (A= 9(0),9(0))r2(0.1.)

in full agreement with and the equality K (e, T, M) = \/Cops(e, T, M).
Remark 4 The sup-inf problem (@ may be solved by a gradient procedure. Let us consider the
Lagrangien L : L?(0,L) x R — R defined by

1 1
L(yo, ) = §||U(2/0)||2Lz(o7:r) + 2M<”y0||2L?(07L) - 1)

where v(yo) is the control of minimal L*-norm associated to the initial data yo € L*(0,L) and
p € R a lagrange multiplier to enforce the constraint ||yol|r2(0,0) = 1. v(yo) satisfies , The
first variation of L is given by

DL(yo) - %o = (1yo — ¢(+,0),70) 12 (0,1) = ((M Id + Aa)ymyo) (19)
L2(0,T)

where @ solves (ﬂ) (@ A mazimizing sequence {y§ t>1 can be constructed as follows:

{yg € L*(0,L) given such that ||y]|lr2(0.0) = 1. (20)

YTt = gk 4k (uFyl — o (10)), k>0

with n* > 0 small enough and u* such that ||y0+1||L2 o,y = 1, that is,

oF —1
=T = et 0) £ L (R — 00,64 0)).

I

Remark that (@) implies that the optimal initial data yo is proportional to the optimal terminal

state ©(-,0) of ¢ solution of —(@. Then, from the characterization , the sequence u*
satisfies (v, %) 4+ p* (y&, % (-, 0)) 12(0,1) = 0 and converges toward —K?*(e, T, M). Remark that ;i*
defined above is always negative.
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In order to solve the eigenvalue problem and get the largest eigenvalue of the operator A,
we may employ the power iterate method (see [5]), which reads as follows :

y8 IS LZ(O,L) given such that ||y8||L2(0,L) =1,

gott = Ay, k>0,

_f+1
o % >

Yo — 1~k )
||y0+1||L2(0,L)

(21)

The real sequence {[|7]/r2(0,2) }k>0 then converges to the eigenvalue with largest module of the

operator A., so that
\/||gjg||L2(07L) — K(,T,M) as k— oc. (22)

The L? sequence {y&};, then converges toward the corresponding eigenvector. The first step requires
to compute the image of the control operator A.: this is done by determining the control of minimal
L? norm by solving the extremal problem with y¥ as initial condition for .

3 Approximation of the control problem

The generalized eigenvalue problem involves the null control operator A, associated to . At
the finite dimensional level, this problem can be solved by the way of the power iterative method,
which require at each iterates, the approximation of the null control of minimal L? norm for .
We discuss in this section such approximation, the initial data yg in being fixed.

The numerical approximation of null controls for parabolic equations is a not an easy task and
has been first discussed in [3], and then in several works: we refer to the review [22]. Duality theory
reduces the problem to the resolution of the unconstrained extremal problem . In view of the
regularization character of the parabolic operator, the extremal problem is ill-posed as the
supremum is not reached in HE(0, L), but in a space, say H, defined as the completion of H}(0, L)
for the norm @3 = [|ew(0, )| L2(0,7), much larger than H{(0, L) and difficult to approximate.
We refer to the review paper [22]. The usual "remedy” consists to enforce the regularity H} and

replace by

: 7 1 2 B 2
* : z . . 2
wT6111§1(107L) g(@T) = 2||5<P./(0a ))HLZ(O,T) + (Yo, ¢( 70))L2(0,T) + 9 ||<PT||H3(0,L) (23)

for any 8 > 0 small. The resulting approximate control vg = epg (0, -) leads to a state yg solution
of satisfying the property

s D)l 10,0y < CV/Bllvollr2(0,1) (24)

(for a constant C' > 0 independent of ). This penalty method is discussed in [3] for the boundary
controllability of the heat equation (for the distributed case, we refer to [II, 11l [14]). As in [3],
problem may be solved using a gradient iterative method: in view of the ill-posedness of ,
such method requires an increasing number of iterates to reach convergence as 3 goes to zero.

Moreover, in the context of the transport equation , it is necessary to take § small enough,
in relation with the diffusion coefficient €. Indeed, if 5 > 0 is fixed (independently of ¢), then for
€ > 0 small enough, the uncontrolled solution of satisfies as soon as T' > L/|M]|. In that
case, problem leads to the minimizer ¢ = 0 leading to a null control which is certainly not
the optimal control we expect for negatives values of M (in view of )!

Therefore, as ¢ tends to 0, the presence of the transport term makes the approximation of the
null control for a challenging task. Consequently, instead of minimizing the functional J* (or
J}3), we adapt [21] (devoted to the inner situation for M =0 and € = 1) and try to solve directly
the corresponding optimality conditions. This leads to a mixed variational formulation (following
the terminology introduced in [21]).
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3.1 Mixed variational formulation

We introduce the linear space ®° := {p € C*(Qr), ¢ =0 on Tr}. For any n > 0, we define the
bilinear form

T
(¢, P)ao ::/o Esoz(Ow)wz(Q-)dt+ﬂ(<ﬁ(-,T)7w(nT))Hg(ern//Q L*o L*pdxdt, Vo,pec .
T

From the unique continuation property for the transport equation, this bilinear form defines for
any 3 > 0 a scalar product. Let ®5 be the completion of ®° for this scalar product. We denote
the norm over ®5 by || - ||, such that

113, = llews (0, B)l1Z2 0.7y + Bl Dl @) + ML ellLz@ry, o € Dp. (25)

Finally, we defined the closed subset Ws of ®5 by Wz = {¢p € &5 : L*¢ =0 in L*(Qr)} endowed
with the same norm than ®3. Then, for any r > 0, we define the following extremal problem :

- 1 2 B 2 Thr* g2
min J5(0) = 3 llegs (0. ) a0y + 5 190 Dy + W0 0001z + GIL*ela - (26)

Standard energy estimates for imply that, for any ¢ € Ws, (-,0) € L?(0,L) so that the
functional Jj is well-defined over Wz. Moreover, since for any ¢ € Wp, ¢(-,T') belongs to H(0, L),
Problem is equivalent to the extremal problem . The main variable is now ¢ submitted to
the constraint equality (in L?(Qr)) L*¢ = 0, which is addressed through a Lagrange multiplier.
3.1.1 Mixed formulation

We consider the following mixed formulation : find (¢g, Ag) € @5 x L?(Qr) solution of

{ a5.r(93,P) +b(@s) = UP), Vpedy 2
b(@ﬁ? )‘) = 07 VX S LQ(QT)a

where

ag,r : (I)ﬁ X q)ﬁ — R, a,@,r(% @) = (E%(Oat)a5%(0715))L2(0,T) + /8(90(" T)?@('ﬂT))Hé(O,L)
+7(L* 0, L*P) r2(Qr) (28)
b:®s x L*(Qr) = R, b, A) := (L*¢, M) 2(Qn)
l:®5 =R, (o) :=—(y0,9(-,0))r200,1)-
We have the following result :
THEOREM 3.1 Assume that >0 and r > 0.
1. The mized formulation 18 well-posed.
2. The unique solution (pg,\g) € ®g % L?(Q7) is the unique saddle-point of the Lagrangian
Lg,: Pgx L2(Qr) — R defined by

£5.(0.0) = 2a5.(0,0) + bl X) — U(9). (29)

3. The optimal function g is the minimizer of jg over Wg while A\g € L?(Qr) is the state of
in the weak sense.
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PROOF- The proof is very closed to the proof given in [2I], Section 2.1.1. The bilinear form
ag,r is continuous, symmetric and positive over ®3 x ®3. The bilinear form b is continuous over
5 x L*(Qr). Furthermore, for any 8 > 0, the continuity of the linear form I over ®4 is deduced
from the energy estimate:

1o 0) 2200 < C //Q L oPdrdt + (- T)|Zaor) Voo € B,
T

for some C' > 0, so that [|¢(-,0)[|72(q) < max(Cy~', B71)[l¢[§,. Therefore, the well-posedness of
the mixed formulation is a consequence of the following properties (see [2]):

e ag, is coercive on N (b), where N (b) denotes the kernel of b :
N(©®):={p€®s : b(p,\) =0 for every X\ € L*(Q7)}.

e b satisfies the usual “inf-sup” condition over ®5 x L?(Qr): there exists § > 0 such that

b, A
nf sup Y@AN (30)
AeL2(Qr) pedy |1¢llas 1A L2 (Qr)

The first point follows from the definition. Concerning the inf-sup condition, for any fixed A\° €
L*(Qr), we define the (unique) element ¢° such that L*¢? = =A% ¢ =0 on X and ¢°(-,T) =0
in L?(Q2). The function ¢° is therefore solution of the backward transport equation with source
term —A\° € L?(Qr), null Dirichlet boundary condition and zero initial state. Moreover, since
-\ € L*(Qr), then using energy estimates, there exists a constant Co 7 > 0 such that the
solution (° of the backward equation with source term A° satisfies the inequality

// %) dz dt < Co,r [IX°]|72(qp)-
qr

Consequently, ¢ € ®3. In particular, we have b(¢”, X%) = [X°[|7, o, and

sup @A) (A A1z @r)
eeds [lles 1NN 2@r) — 11€°1les AN L2(@r) (

< .
_ 3
1052122 0z + Mo 32(0r ) Mol 22
Combining the above two inequalities, we obtain
b A 1
sup (¢0; Ao) >
vocos lvollesllrollz@r) — /Car +n

and, hence, holds with § = (Cq 1 + 77)71/2.

The point (¢) is due to the symmetry and to the positivity of the bilinear form ag . Concerning
the third point, the equality b(¢g, A) = 0 for all A € L2(Qr) implies that L*p5 = 0 as an L?(Qr)
function, so that if (¢, A\g) € @3 x L?*(Qr) solves the mixed formulation, then ¢z € W5 and
Ls(0s, Ag) = jg(gog) Finally, the first equation of the mixed formulation (taking r = 0) reads as

follows:

T
/0 £5(0.)P(0.) di+8(0p( TP D)goy | L9t Mol ) dodt = 1(2), Vi € B,

T

or equivalently, since the control is given by v := ep,(0, ),
J[[ wapdrir+ et DS Doy~ [ Do 0Nl dwdt = (7). v € @
qT T

But this means that Ag € L?(Qr) is solution of (1)) in the transposition sense. Since yo € L?(0, L)
and vg € L%*(0,T), A\g coincides with the unique weak solution to such that —A~\g(-,T) +

ﬁ@ﬁ('vT) = 0. O
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3.1.2 Minimization with respect to the multiplier

The augmented mixed formulation allows to solve simultaneously the dual variable ¢g, ar-
gument of the conjugate functional , and the Lagrange multiplier Ag, qualified as the primal
variable of the problem.

Assuming that the augmentation parameter r is strictly positive, we derive the corresponding
extremal problem involving only that variable Ag. For any r > 0, let the linear operator Ag , from
L*(Qr) into L*(Q7) be defined by Ag A := L*p where ¢ = p()\) € @ is the unique solution to

ag.r(0,9) =b(@,2), Vo€ g, (31)

For any r > 0, the form ag,, defines a norm equivalent to the norm on ®g (see (25)), so that
is well-posed. The following crucial lemma holds true.

LEMMA 3.1 For any r > 0, the operator Ag, is a strongly elliptic, symmetric isomorphism from
Lz(QT) mto Lg(QT)

It allows to get the following proposition which permits to replace the minimization of Jg over W3
to the minimization of the functional J37. over L?(Qr), space much easier to approximate than
Wpg.

PROPOSITION 3.1 For any r > 0, let ¢° € ®g be the unique solution of

agr (¢, P) =1UP), VP E By
and let J57,. L?(Qr) — L?(Q7) be the functional defined by

1
J*,*T(/\) = 5(./45,74\, )‘)LQ(QT) — b((po,/\).
The following equality holds :

su inf Ls,.(0,\)=— inf J5(\) + Ls,("0).
W . e (0, A) veinb (A (¢, 0)

We refer to [21], section 2.1 for the proof in the case M = 0.

Remark 5 By introducing appropriate weights functions (vanishing at the time t = T') leading to
optimal L?-weighted controls vanishing at time T, we may consider the case 3 = 0. We refer to
[21], section 2.3.

3.2 Numerical approximation

We now turn to the discretization of the mixed formulation assuming r > 0. We follow
[21] for which we refer for the details. Let then ®g; and Mg be two finite dimensional spaces
parametrized by the variable h such that, for any g > 0,

$g5 C D5, Mgy, C L*(Qr), Yh>O0.
Then, we can introduce the following approximated problems : find (¢n, Ar) € .5 X Mg j, solution
of
{ a5 (o0 B1) + 0@ ) = U@, VB, € D (32)
b(pn, ) = 0, VA € Mg .
The well-posedness of this mixed formulation is a consequence of two properties : the first one

is the coercivity of the form a. , on the subset N}, (b) = {¢n € Pan;b(n, An) =0 VA, € Mgy}
Actually, from the relation

ag(¢:0) > Cryllells,, Ve € @,
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where C.,, = min{1,7/n}, the form ag, is coercive on the full space @3, and so a fortiori on
Ny (b) C @5, C ®g. The second property is a discrete inf-sup condition :

Opp = inf sup blpn; An)
" AEMp.n o, €dp 5, Hgoh”q)ﬁ,h,”)\h”M[j‘h,

>0 Vh>0. (33)

Let us assume that this property holds. Consequently, for any fixed h > 0, there exists a unique
couple (ip, Ap) solution of (32). The property is in general difficult to prove and depends
strongly on the choice made for the approximated spaces Mg ; and ®3 ;. We shall analyze numer-
ically this property in the next section.

Remark 6 Forr =0, the discrete formulation (39) is not well-posed over ®g 5 x Mg, because the
form ag r=¢ is not coercive over the discrete kernel of b: the equality b(An, ¢n) = 0 for all A\, € Mg,
does not imply that L*¢y vanishes. The term THL*Sﬂh”QB(QT) is a numerical stabilization term:
for any h > 0, it ensures the uniform coercivity of the form ag, and vanishes at the limit in h.
We also emphasize that this term is not a reqularization term as it does not add any reqularity to
the solution oy,.

The finite dimensional and conformal space ®g; must be chosen such that L*¢;, belongs to
L*(Qr) for any @5, € ®g 5. This is guaranteed as soon as ¢y, possesses second-order derivatives
in L2(Qr). Any conformal approximation based on standard triangulation of Q7 achieves this
sufficient property as soon as it is generated by spaces of functions continuously differentiable with
respect to the variable z and spaces of continuous functions with respect to the variable t.

We introduce a triangulation 7;, such that Q7 = UkeT, K and we assume that {75, }n>0 is a
regular family. Then, we introduce the space ®g , as follows :

g5 ={pn € CHQT) : ¢nlk €EP(K) VK €Ty, ¢p =0o0n Sr} (34)

where P(K) denotes an appropriate space of polynomial functions in z and ¢. In this work,
we consider for P(K) the so-called Bogner-Fox-Schmit (BFS for short) Cl-element defined for
rectangles. In the one dimensional setting (in space), P(K) = (P, ® P3,)(K) where P, ¢ is the
space of polynomial functions of order 7 in the variable &.

We also define the finite dimensional space

Mﬂ,h = {)\h S CO(@) : /\h|K S Q(K) VK € 'Th},

where Q(K) denotes the space of affine functions both in  and ¢ on the element K. In the one
dimensional setting in space, K is a rectangle and we simply have Q(K) = (P1 . ® P14)(K).

The resulting approximation is conformal: for any h > 0, ®3 ), C ®g and Mg ) C L*(Q7).

Let np, = dim ®g p,mp = dim Mg, and let the real matrices Ag,j € R™ " By € R™r"n,
Jp € R™n™h and Ly, € R™ be defined by

ag,r(n, Pr) =< Ag,rn{en}, {Pr} >rrn g Von, @n € Pp.n,

b(‘Phy )\h) =< Bh{SDh}; {)‘h} >R™h R™h V(ph S q)ﬁ,h)\h S Mg’h,

/ Ah/\ihdx dt =< Jh{)\h}v {Th} >R™E R™R V)\h,Th € Mg,
Qr

l(@h) =< Lp, {(Ph} > Yon € ®s.n,

where {¢5,} € R™ denotes the vector associated to ¢, and < -, - >gns gen the usual scalar product
over R™». With these notations, Problem reads as follows : find {¢p} € R™ and {\} € R™»

such that
< Agrn Bi > < {on} ) _ < Ly > (35)
Bh 0 R™htmp nptmy {Ah} R™htmh 0 Rhtmp
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3.2.1 The discrete inf-sup test

Before to discuss some numerical experiments, we numerically test the discrete inf-sup condition
(33). Taking n = r > 0 so that ag,(p,?) = (¢, P)s, exactly for all ¢, B € g, it is readily seen
(see for instance [4]) that the discrete inf-sup constant satisfies

6g.rn = inf{\/S :BrAg L B} =6 In{dn}, V{An} € R\ {0}}. (36)

The matrix BhAgjﬁ hB}T; enjoys the same properties than the matrix Ag, p: it is symmetric and
positive definite so that the scalar d. j, defined in term of the (generalized) eigenvalue problem
is strictly positive. This eigenvalue problem is solved using the power iteration algorithm (assuming
that the lowest eigenvalue is simple): for any {v)} € R™ such that |[{v)}||2 = 1, compute for any
n >0, {en} € R™ {An} € R™ and {0} "'} € R™ iteratively as follows :

Aprn{on} + By{As} =0 poe1y — 8

Bu{on} = —Jn{vi} st {ARHI2
The scalar 3, , defined by is then given by 05,5 = lim, oo ([[{A7}]2) 712

We now reports some numerical values of &g, with respect to h for the C'-finite element

introduced in Section We use the value T =1 and 3 = 10716, Tables and [3| provides the
value of &g, with respect to h and r for M = 1 for e = 107!,1072 and & = 1073 respectively.
For a fixed value of the parameter e, we observe as in [21], that the inf sup constant increases as
r — 0 and behaves like &5, ~ r~/2, and more importantly, is bounded by below uniformly with

respect to h. This key property is preserved as the parameter ¢ decreases.

r 10. 1. 0.1 h h?
h=1/80 | 0.315 0.919 1.909 2.359 2.535
h=1/160 | 0.313 0.923 1.94 2.468 2.599
h=1/320 | 0.313 0.927 1.969 2.548 2.658

Table 1: 65, wr.t. hand r; e =10"1 - 3=10"16 - M = 1.

r 10. 1. 0.1 h h?
h=1/80 | 0.311 0.961 2.423 3.64 4.473
h=1/160 | 0.316 0.967 2.492 4.06 4.692
h=1/320 | 0.316 0.971 2.545 4.406 4.916

Table 2: 65, wr.t. hand r; e =10"2-3=10"16 - M = 1.

r 10. 1. 0.1 h h?
h=1/80 | 0.310 0.942 2.121 3412 6.012
h=1/160 | 0.310 0.987 2.435 4.012 5.944
h=1/320 | 0.310 0.969 2.544 4.561 5.756

Table 3: 63, wr.t. hand r;e =103 - 3=10"10 - M = 1.

The case M = —1 is reported in Tables 4] [f]and [f] The same behavior is observed except that
we note larger values of the inf-sup constant.

Consequently, we may conclude that the finite approximation we have used passes the discrete
inf-sup test. Such property together with the uniform coercivity of the form ag , then imply the
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convergence of the approximation sequence (¢p, Ap), unique solution of . As the matter of
fact, the use of stabilization technics (so as to enrich the coercivity of the saddle point problem)
introduced and analyzed in a closed context in |20} [19] is not necessary here. We emphasize that
for =0 (or B — 0 as h — 0), the convergence of the approximation vy, is still an open issue. For
B = 0, the convergence is guarantees if a vanishing weight is introduced, see [I1]. This however
leads to a different control and therefore a different definition of the cost of control K (e, T, M).

The choice of r affects the convergence of the sequences ¢y, and A, with respect to h and may
be very important here, in view of the sensitivity of the boundary control problem with respect
to €. Recall from Theorem that for any r > 0, the multiplier A coincides with the controlled
solution. At the finite dimensional level of the mixed formulation where r must be strictly
positive, this property is lost for any A fixed: the non zero augmentation term 7||L*pn| r2(Q.)
introduces a small perturbation and requires to take r > 0 small (in order that the approximation
A be closed to the controlled solution ). In the sequel, the value r = h? is used.

r 10. 1. 0.1 h h?
h=1/80 | 0.3161 0.997 2.663 4.358 5.0688
h=1/160 | 0.316 0.9805 2.673 4.69 5.139
h=1/320 | 0.3162 0.9801 2.653 4.172  5.17

Table 4: 83, for e =1071 - 3=10"16 - M = —1.

r 10. 1. 0.1 h h?
h=1/80 | 0.316 0.997 3.109 7.562  13.9368
h=1/160 | 0.3161 0.9997 3.086  9.433 14.101
h=1/320 | 0.316 0.9809 3.086 11.1008 14.1404

Table 5: 43,5 for e = 1072-3=10"10_- M = —1.

r 10. 1. 0.1 h h?
h=1/80 | 0.302 0.9129 2.887 8.16  39.09
h=1/160 | 0.301 0.957 3.022 12.145 43.08
h=1/320 | 0.301 0.981 3.084 16.61 44.29

Table 6: 6., for e =10"3-3=10"10 - M = —1.

3.3 Numerical experiments

We discuss some experiments for both M = 1 and M = —1 respectively and several values of €.
We consider a fixed data, independent of the parameter e: precisely, we take yo(z) = sin(wz) for
x € (0,L). We take L = 1.

We consider regular but non uniform rectangular meshes refined near the four edges of the
space-time domain Q. More precisely, we refine at the edge {x = 1} x (0,7") to capture the
boundary layer which appear for the variable \;, when M is positive, at the edge {x = 0} x (0,7
to approximate correctly the ”control” function given by vy, := ¢y, », and finally at (0, L) x {0,T}
to represent correctly the initial condition and final condition. Precisely, let p : [0, L] — [0, L] the
polynomial of degree 3 such that p(0) = 0,p'(0) = n1,p (L) = n2 and p(L) = L for some fixed
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n1,m2 > 0. The [0, L] interval is therefore discretized as follows :
[0, L] = U)_oy;, v+l (37)
Yo =045 —yj-1 = pl;) =p(@e,,), j=1-,J+1

where {z;};=0,...,74+1 is the uniform discretization of [0, L] defined by z; = jh,j = 0,-,J + 1,
h = L/(J+1). Small values for 71,72 lead to a refined discretization {y;};=o,...,7+1 at * = 0 and
& = L. The same procedure is used for the time discretization of [0,7]. In the sequel, we use
n =12 = 103,

Preliminary, Table 7| gives some values of the H ~'-norm of the uncontrolled solution of at
time T associated to yo(x) = sin(wz). We take L = |[M| = 1. A time-marching approximation
scheme is used with a very fine discretization both in time and space. As expected, for T' greater
than L/|M], the norm [|y(-, T)||g-1(0,1) decreases as  goes to zero. For T' = L/M, we observe that
ly(; )l -1(0,1) = O(e) while for T' strictly greater than L/|M]|, the decrease to zero as ¢ — 0 is
faster.

€ 1071 1072 1073 1074 1075
T=09L/|M| | 2.20 x 1072 7.45x 10™* 2.76 x 1073 220x 1072  2.15 x 1073
T=L/|M| |158x1072 267x107% 1.72x107* 9.76x 1076 3.07 x 1077
T=11L/|M| | 112x 1072 813 x107%* 1.15x107% 1.63x1071% 8.62x 10=%

Table 7: Approximation ||yn (-, T)||g-1(0,) W-.r-t. T and € for yo(x) = sin(mz).

We first discuss the case M = 1. As € goes to 0, a boundary layer appears for the approx-
imation Ap, at = 1. The profile of the solution takes along the normal the form (e(ms;1> -1
and is captured with a locally refined mesh. Tables 8] [9] and [I0] reports some numerical norms
for e = 10~%,1072 and 1073 respectively. These results are obtained by minimizing the functional
J5. over Mpgp defined in Proposition The minimization of J% of M), is performed using the
conjugate gradient algorithm: the stopping criterion is ||g} || 2(0p) < 10790 | 2(@,) where gft is
the residus at the iterate n. The algorithm is initialized with A} = 0. We refer to [21] for the
details.

We take 8 = 10716 and r = h? for the augmentation parameter leading to an appropriate ap-
proximation of the controlled solution y by the function A: in particular, the optimality condition
Ar(0,+) — epn 2 (0,-) = 0 is well respected in L?(0,T). The convergence of /7| L*¢p||r2(0y) (close
to [[L*@nlz2(g-1) and actually sufficient to describe the solution of , see [6]) is also observed.
As usual, we observe a faster convergence for the norm || Ap||z2(qg,) than for the norm [lvp||z2(0,7)-
From ¢ = 107! to 1072, we also clearly observe a deterioration of the convergence order with
respect to h.

h 1/80 1/160 1/320 1/640
VL onll L2 or) 7.76 x 1072 3.01 x 1072 1.12x 1072 7.12x 1073
) 20020 | 106 % 1072 4.45x 1073 197 x 1073 7.61 x 10~

w0220,

lvnll 22 (0.7 0.324 0.357 0.3877 0.3912

M 22 (@) 0.367 0.366 0.362 0.363
MG T -0y | 447 %1076 9.59 x 1077 2.03 x 1077 1.01 x 1077

f CG iterate 76 117 175 231

Table 8: Mixed formulation -r=h%e=10"3=1071-M=L=1.

For h = 1/320, Figure and [3| depict the function Ay (+,t), approximation of the control v,
for t € (0,7), T =1 for e = 1071, ¢ = 1072 and £ = 1073 respectively. For large values of the
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h 1/80 1/160 1/320 1/640
VI L onll L2 or) 5.86 x 1071 243 x 107! 1.41 x 107! 9.12 x 1072
lep= (00 2n0)20m) | 9551072 1.24x 102 6.04 x 103 2.89 x 10~3
IA (O, )HL2(O,T)
lvnllr2(0,1) 1.391 2.392 2.929 3.316
Al 22(0r) 0.518 0.6001 0.789 0.832
NG, T =10,y | 546 x 1076 3.56 x 1076 8.77 x 1077 6.12 x 1078
f CG iterate 53 93 155 181

Table 9: Mixed formulation -r=h%e=10"2%3=10"1-M=L=1.

h 1/80 1/160 1/320 1/640
VTIL*enllr2q) 175 x 1071 1.0l x 107! 851 x 1072  6.91 x 1072
o) 20020 | 487 %1072 243% 1072 13x 1074 7.19x 1077

h ’)HL2(0,T)

lvnll 2207 0.231 0.713 0.855 0.911

Al 22 (@) 0.498 0.5015 0.5210 0.5319
AR T -1 0,m) 1.17x 1076 3.69x 1077 1.20x 10~7 8.12x 1078

# CG iterate 29 68 129 151

Table 10: Mixed formulation sr=h%e=103%3=10"-M=L=1.

diffusion coefficient ¢, for instance e = 107!, the transport term have a weak influence: the control
of minimal L?-norm is similar to the corresponding control for the heat equation and presents
some oscillations near the controllability time. On the contrary, for ¢ small, typically ¢ = 1073,
the solution - mainly driven by the transport term - is transported along a direction closed to
t = x, so that at time T = 1, is mainly distributed in the neighborhood of x = 1. Consequently,
the control (of minimal L?-norm) acts mainly at the beginning of the time interval, so as to have
an effect, at time T, in the neighborhood of x = 1. We observe a regular oscillatory and decreasing
behavior of the controls.

Let us now discuss the case M = —1. This negative case is a prior: ”simpler” since there is no
more boundary layer at x = 1: the solution is somehow ”absorbed” by the control at the left edge
x = 0. Tables and [13| give some numerical values with respect to h for € = 107,102 and
10~3. Concerning the behavior of the approximation with respect to h, similar remarks (than for
M = 1) can be made: the notable difference is a lower rate of convergence, probably due to the
singularity of the controls we obtain. Precisely, for the same data as in the case M = 1, Figure
and [6] depicts the ”control” function A (0,t) for t € (0,7), T =1 for ¢ = 107}, ¢ = 1072
and € = 1073 respectively. The behavior of the control is quite different from the previous case.
For ¢ large, typically e = 10~!, the control is again similar to the control we observe for the heat
equation, with an oscillatory behavior at the final time. We observe however that the corresponding
norm is significantly larger that for the case M = 1: this is due to the fact, that for M < 0, the
transport term ”pushes” the solution toward x = 0 where the control acts: this reduces the effect of
the control which therefore must be stronger. For € small, the solution is mainly transported along
the direction t = —x so that at time T', the solution is mainly concentrated in the neighborhood
of x = 0. For this reason, the control mainly acts at the end of the time interval: any action of
the control not concentrated at the end of the time interval would be useless because pushed back
to the edge * = 0 and will produce a larger L2-norm. As e goes to zero, the control is getting
concentrated at the terminal time with an oscillatory behavior and large amplitudes. This fact
may explain why the behavior of the cost of control with respect to € observed in [, 13} [17] is
singular for negatives values of M. For M > 0, the transport term ”helps” the control to act on
the edge x = 1 while for M < 0, the transport term is against the control and reduces its action.
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0.6

Figure 1: r = h? - h =1/320-T =1 L = 1 = M; Approximation \,(0,t) of the controls w.r.t.
t€[0,T] for e =101,

10

0.2 0.4 0.6 0.8 1

Figure 2: r = h? - h =1/320- T =1 L = 1 = M; Approximation \,(0,t) of the controls w.r.t.
t €[0,T] for e =1072.
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Figure 3: r = h?> - h =1/320- T =1 L = 1 = M; Approximation \,(0,t) of the controls w.r.t.

t€[0,T] for e =1073.

For this reason, the numerical approximation of controls for M = —1 is definitively more involved

and requires to take a very fine discretization.

h 1/80 1/160 1/320 1/640
VI L*enll L2 (Qp) 1.51 0.731 0.231 0.101
“wzﬁi’,?@é;nf;{l”;f“*T) 9.19x 1073 387x 1073 1.61x 1073 1.12x 1073
llorllL2c0,1) 28.16 39.26 49.96 52.03
IAnll 22(Qr) 5.74 7.96 9.05 10.12
ARG T -1 (0,1 835x107* 1.82x107* 3.97x107° 1.12x107°
t CG iterate 48 80 129 157

Table 11: Mixed formulation -r=h%e=10"13=10"16- M = —1.

We also observe, both for M = 1 and M = —1, that from ¢ = 1072 to ¢ = 1073, the L*-
norm |[ve||z2(o,7) decreases. Very likely, as € goes to zero, this norm goes to zero. This does not

contradict the theoretical results and is due to the fact that the initial condition we have taken
here is independent of €. In other words, the optimal problem of control is not obtained for
yo(z) = sin(mwz) nor by any initial condition independent of the parameter e. We remind that the
initial condition yo(z) = e 2" sin(mz) is used in [} [18].

4 Numerical approximation of the cost of control

We now turn to the numerical approximation of the cost of control K(e,T, M) defined by (5).

Precisely, we address numerically the resolution of the generalized eigenvalue problem :

sup{/\ €eR:3yyc L*0,L),y0 #0, s.t. Acyo = Ayo in LQ(O,L)}.

(38)

Let Vj, be a conformal approximation of the space L?(0,L) for all h > 0. We have then faced
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h 1/80 1/160 1/320 1/640
VTIL*enll L2 (o) 5.291 2.134 1.213 0.591
el 2020 | 597 51074 2.08x 1072 8.05 x 107* 5,01 x 1073

;L(O, )HL2(0,T)
lonll L2 (0.7) 250.54 457.78 666.902 712.121
Il 22 (@) 6.76 10.05 13.111 15.301
ARG T -1 0,m) 1.54x 1073 2.08x 1073 1.71x 1073 6.12x 10~*
f CG iterate 22 41 79 101

Table 12: Mixed formulation -r=h%e=10"2%=10"10- M = —1.

h 1/80 1/160 1/320 1/640
VTIIL*enl L2 (0q) 7.12 2.14 1.31 0.59
e P 2000 | 98751071 7.76x 1072 4.31x 1072 2.12 x 102

w092 0,1
lvnllz20,m) 0.281 x 101 2.35 18.98 21.23
ARl L2 (r) 497 x 1071 5.01x 107! 6.38x 107! 7.23x 107!
X0 (s D) =1 0,1 2.03x107° 328 x107° 6.01x107° 8.01x107°
t CG iterate 7 11 23 26

Table 13: Mixed formulation -r=h%e=10"38=10"16- M = —1.

Figure 4: r = h? - h=1/320-T =1 L =1 = —M; Control for ¢ = 10~

16
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Figure 5: r =h? - h=1/320-T =1 L =1= —M; Control for ¢ = 1072,
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Figure 6: r = h? - h=1/320-T =1 L =1 = —M; Control for ¢ = 1073.
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to the following finite dimensional eigenvalues problems:
sup{)\ eR:Fyon € Vi, vo,n #0, sit. Ayon = Ay, in Vh}. (39)

Acyo.n in L?(0, L) is defined as —py(+,0) where ¢, € @5, solves the variational formulation .
Consequently, from the definition of ®3; in , the space V}, is the set of C'' functions and
piecewise polynomial of order 3:

Vi ={yon € CH0,L]) : youlx €P3. VK € Th} (40)

where T}, is the triangulation of [0, L] defined by (37).
This kind of finite dimensional eigenvalue problems may be solved using the power iterate
method (see [5]): the algorithm is as follows: given yg , € L*(0,1) such that |y, llz2(0,1) = 1:

1. For all k > 0, compute wg’h € L?(0,1) defined by
Pop = AYG - (41)
2. Compute ygjll € L?(0,1) given by

yk+1 _ '(/)g,h
O gl L2 0,1)

The real sequence {||1/}§h|| £2(0,1)} then converges to the eigenvalue with largest module of the

operator A, so that
VI llzz,n) — K(e, T, M, L) as k — oc. (43)

{y’&,h}bo converges to the corresponding eigenvectors. The first step requires to compute the
image of the control operator A.: this is done by solving the mixed formulation taking y(’ih
as initial condition for .

The algorithm is stopped as soon as the sequence {¢§,h}k20 satisfies

16 wllz20,) — %65 L2 (0.2)

& <1073, (44)
14667 |2 0,1)

for some k& > 0.
We now report the numerical values for L =1 and M = £1. We initialize the algorithm with

e~ 5 sin(rz)
yg(l‘) = T _ M=z

||€ 2e Sin(ﬂ'ﬂf)HLz(O,L)

, x€(0,L).

4.1 Cost of control in the case M =1

Table in the annexe section reports the approximations obtained of the cost of control K (e, T, M)
for M = 1 with respect to T' and e. They corresponds to the discretisation h = 1/320. As
expected, for T strictly lower than L/M = 1, here T' = 0.95 and T' = 0.99, we obtain that the cost
K(e,T, M) blows up as € goes to zero. This is in agreement with the fact, that for T < L/M,
the system is not uniformly controllable with respect to the initial data yg and €. Figure
displays the approximations with respect to € for T'= 0.95. On the other hand, for T" larger than
L/M =1, we observe that the numerical approximation of K (e, T, M) is bounded with respect to
€. More precisely, the cost is not monotonous with respect to € as it reaches a maximal value for
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Figure 7: r =h?-h=1/320-T =095 L =1= M; K(¢,T,M) vs. € € [1073,1071].
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Figure 8: r =h?-h=1/320-T=1.L=1= M; K(,T,M) vs. € € [1073,1071].
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Figure 10: r=h%-h=1/320-T =1.05- M =1; K(¢,T, M) vs. € € [1073,1071].
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e~ 1.75x 1073 for T =1 and & ~ 6 x 1072 for T' = 1.05 (see Figure[§|and [L0). Figure[9]is a zoom
in the case T'=1 for the smallest values of the diffusion coeflicient €.

Figure displays the approximation of the initial data yo € L%(f2) solution of the opti-
mal problem for T =1 and ¢ = 101,102 and 1073. As ¢ decreases, the optimal ini-
tial condition yo with |lyollr2(0,) = 1 gets concentrated as x = 0. Again, this is in agree-
ment with the intuition since such condition produces (in the uncontrolled situation) larger val-
ues of ||y(-,T)|[g-1(). It should be noted however that the solutions we get are different from
e~ 2 sin(rz)/|le” = sin(mz)|| r2()- Moreover, they are apparently independent of the controlla-
bility time T' (at least for values of T close to 1 we have used). Remark also that the initial data
yo(x) = e’z sin(mz)/||e 2 sin(7z)||£2(0,) highlighted in [8, [I8] leads to a lower numerical value

of [|vnllr2(q)-
For each values of € and T, the convergence of the power iterate algorithm is fast: the stopping

criterion is reached after less than 5 iterates.

5
S
4y ]
LA
LA
L
3/s % 1
LAt
i
22 !!“-.“
*; e . —
:
s oA
| ]
B A 1
" .
.
0 ‘/.\-\-\I\I\II\-\-\I.\.I“---\-\---\-I--
0 0.2 0.4 0.6 0.8 1
X

Figure 11: »r = h? - h =1/320- T = 1 - M = 1 - The optimal initial condition yg in Q for e = 10~}
(full line), e = 1072 (dashed line) and & = 10~3 (dashed-dotted line).

Remark 7 In [8], Theorem 2, the following estimate is obtained for all (e,T, M) €]0, 0o
573/2T71/2M2 M )
K(E,T,M) ZCll-HWE}g_?’eXp<2g(1—TM)_7T €T>:— le(S,T,M) (45)

for some some positive constant C1 and follows the behavior we observed with respect to € and T .
For T = 0.95, the function f increases as € — 0, while for T > 1, f increases, reaches a unique

mazximum and then decreases to 0 as € goes to zero.

4.2 Controllability cost in the case M = —1

Table in the annexe section reports the approximation obtained of the cost of control K (e, T, M)
for M = —1 and T = 1 with respect to e € [1073,107!]. With respect to the positive case, the

notable difference is the amplitude of the cost, as expected much larger, since the transport term

now acts “against” the control. For instance, for ¢ = 1073, we obtain K(e,T, M) ~ 18.7555

for M = 1 and K(e,T,M) =~ 1.0718 x 10* for M = —1. Moreover, the corresponding optimal
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initial condition yy get supported as e — 0 at the right extremity x = 1 (see figure leading
to a corresponding control localized a t = T = 1, with very large amplitude and oscillations, as
shown on figure for ¢ = 1073, Such oscillations are difficult to capture numerically and are
very sensitive to the discretization used. On the other hand, we observe that, as for M = 1, that
the cost K (e, T, M) does not blow up as ¢ — 0, in contradiction with the theoretical results from
[8, [I8]. The discretization used is not fine enough here to capture the highly oscillatory behavior
of the control near the controllability time T (in contrast to the positive case) and very likely leads
to an uncorrect approximation of the controls. For T lower than one, as expected, we observe that
the cost blows up, while for T strictly greater than one, the cost decreases to zero with e.
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Figure 12: » = h? - h = 1/320 - T =1 - M = —1 - The optimal initial condition g, in Q for
€ =107 (full line), e = 10~2 (dashed line) and ¢ = 103 (dashed-dotted line).

5 Concluding remarks and perspectives

We have presented a direct method to approximate the cost of control associated to the equation
Yt — EYze + My, = 0. For M > 0, the "worst” initial data we observed are concentrated at
z = 0 leading to a control distributed at the beginning of the time interval, and vanishing as
t — T. In this case, controls v are smooth and easily approximated. Vanishing exponentially
weighs as considered in [2]] leading to strong convergent results (w.r.t. h) are not necessary here.
Consequently, for M > 0, we are confident with the numerical approximation obtained and may
conjecture that the minimal time of uniform controllability w.r.t. € is Thy = L/M. The situation is
much more singular for M < 0 for which the transport term acts against the control. The ”worst”
initial data are now concentrated as the right extremity leading to a highly singular controls at the
end of the time interval. Such controls, similar to the controls we observed for the heat equation
(see [22]) are difficult to approximate. The strong convergent approximation of controls w.r.t. h
is still open in such situations. Let us comment possible perspectives to improve the resolution of
this singular controllability problem.

a) A way to recover a strong convergent approximation with respect to h is to force the control
to vanish exponentially as time T' of the form v(t) := p~2(t)ep,(0,t), with p(t) := O(e!/(T—1).
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Figure 13: » = h? - h = 1/320 - T = 1 - M = —1 - The optimal initial condition yq in Q for
e =107" (full line), ¢ = 10~2 (dashed line) and ¢ = 10~3 (dashed-dotted line).
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Figure 14: r =h%-h=1/320-T=1. M = —1; K(g,T, M) vs. € € [1073,6 x 1073].
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Remark that this modifies the cost of control as follows:

K,(e,T,M) := sup

min lpull20,7 } (46)
lyoll2(0.1,=1 {uEC(yO,T,E,M) (0,7)

larger than K (e,7T, M) leading a priori to an upper bound Ty, of Tys. Since p~!

vanishes only
at time T, we suspect that the minimal time of uniform controllability T , coincides with .
b) Even if the introduction of weights like p improves the numerical stability of the mixed
formulation (32), it seems quite impossible to consider values of T far from L/|M]|: for instance,
for T = 2/2 exhibited in [I8] (see , the norm [|y(-, T')||-1(0,1) is the uncontrolled situation, is
for e = 1072, about 3.33 x 10717, Consequently, when the double precision is used, we achieve
"numerically” zero. Resolution of would then lead to v := 0 on (0,7) ! A possible way to
avoid such pathologies is to preliminary consider a change of variables. We may write the solution

y as follows, for any «a,v € R,

= 2
y(z,t) = 5 e e tz(:c,t) (47)
leading to
az M2t ]\4’2
Ly =e' 3¢ e (zt — €2y + M(1 — )z, — 4—(7 +a? — 2a)z>.
€

Remark that y(-,7) = 0 if and only if 2(-,7) = 0. Taking 1 — & small and Jf—;('y +a? —2a) >0
allows to reduce the dissipation of the solution at time 7" as € — 0 and therefore avoid the zero
numeric effect. For instance, for « =y =1, z solves z; — €z,, = 0. Within this change of variable,
the cost of control is

(e,T,M)= sup (A:20, 20)

2
K ez -
z0€L2(0,1) (€” = 20, 20)

opt

(48)

where A, is the control operator defined by A. : 29 — —w(-,0) € L?(0,L) where w solves the
adjoint problem

—Wt — EWgy — M (1 — @)wy, — %—;(7 +a?—=20)w=0 in (0,L)x (0,7),
U)(O, ) = w(Lﬂ ) =0 on (O7T)a (49)
w(-,T) =wr in (0,L),

and wr € HE(0, L) the minimizer of the functional

1 T M2t
J*(wr) 125/0 g2e72e wz(07~)dt+(zo,w(-,O))Lz(oyL).

2
The corresponding control of minimal L?(e~ e t) norm for the variable z is given by v, . :=
2
ce 5 “wy(-,t). The optimality conditions for J* lead to a mixed formulation similar to . The
introduction of appropriate parameters a and  allows to avoid the effect of the transport term; on
the other, the change of variables make appear explicitly in the formulation negative and positive
exponential functions which may leads to numerical overflow for small values of €.

¢) Another numerical strategy, employed in [22], is to use a spectral expansion of the adjoint

solution ¢ of :

oz, t) = e Z age e T Dgin(knz), Aoy = ek®n? + I (50)
k>0

with {ay }rxso € L(e, M, T) such that ¢(z,0) be in L?(0, L), equivalently

3 M (pr)(qm) (1 — e % (—1)PHa
yr 32" M (p )EZQ)(l_bQ ) (=D ))<oo}

p,q p,q

L(e,M,T) = {{ap}p>0 € R, Z Ckpaqe_()‘fv’“"_)‘fm

p,q>0
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with a, 4 = 4(M? + &%((pr)? + (¢m)?)) and b, , := 8?(pm)(gm). The characterization of the
control with v, = £¢,(0,t) then rewrites as follows: find {ay}r>1 € L(e, M, T) such that

1 — e~ Qeptre )T

)\671) + /\e,k

e2 > oya, (k) (pr)

k.p>1

+) e M T B My =0, WGk tks1 € L(e, M, T),
E>1 p>1
(51)
with yo(2) == >_ - Bpsin(prz) and M, 4 = fol e~ "2 sin(prz) sin(qra)dz. The use of symbolic
computations with large digit numbers may allow to solve with robustness.

d) At last, it seems interesting to perform as well an asymptotic analysis of the system of
optimality with respect to ¢, in the spirit of [16]. This may replace the direct resolution of
by a sequel of optimality systems independent of € and easier to solve.

Eventually, we also mention that similar methods can be used to consider the case M = 0 in
in order to examine precisely the evolution of the cost of control for the heat equation when
the controllability time 7" goes to zero. Precisely, the change of variable £ := et in (1) leads to the
equation Ji — e = 0 over (0, L) x (0,eT). This case, easier than the case considered in this work,
is still open in the literature and is numerically discussed in [9].

6 Annexe

References

[1] F. BOYER, On the penalised HUM approach and its applications to the numerical approxima-
tion of null-controls for parabolic problems, in CANUM 2012, 41e Congres National d’Analyse
Numérique, vol. 41 of ESAIM Proc., EDP Sci., Les Ulis, 2013, pp. 15-58.

[2] F. BrEzzl AND M. FORTIN, Mized and hybrid finite element methods, vol. 15 of Springer
Series in Computational Mathematics, Springer-Verlag, New York, 1991.

[3] C. CARTHEL, R. GLOWINSKI, AND J.-L. LIONS, On ezact and approzimate boundary con-
trollabilities for the heat equation: a numerical approach, J. Optim. Theory Appl., 82 (1994),
pp- 429-484.

[4] D. CHAPELLE AND K.-J. BATHE, The inf-sup test, Comput. & Structures, 47 (1993), pp. 537—
545.

[5] F. CHATELIN, Figenvalues of matrices, vol. 71 of Classics in Applied Mathematics, Society for
Industrial and Applied Mathematics (STAM), Philadelphia, PA, 2012. With exercises by Mario
Ahués and the author, Translated with additional material by Walter Ledermann, Revised
reprint of the 1993 edition [ MR1232655].

[6] N. CINDEA AND A. MUNCH, A mized formulation for the direct approzimation of the control
of minimal L*>-norm for linear type wave equations, Calcolo, 52 (2015), pp. 245-288.

[7] J.-M. CoroN, Control and nonlinearity, vol. 136 of Mathematical Surveys and Monographs,
American Mathematical Society, Providence, RI, 2007.

[8] J.-M. CORON AND S. GUERRERO, Singular optimal control: a linear 1-D parabolic-hyperbolic
example, Asymptot. Anal., 44 (2005), pp. 237-257.

[9] M. DUPREZ AND A. MUNCH, Numerical estimations of the cost of boundary controls for the
one dimensional heat equation, In preparation.



REFERENCES

€ T=09|T=09| T'=1. | T=1.05

1073 237.877 | 30.4972 | 18.7555 | 2.2915
1.25 x 1073 | 190.574 | 29.7622 | 19.1953 | 2.8028
1.5 x 1073 | 159.813 | 29.0015 | 19.3883 | 3.2556
1.75 x 1073 | 138.166 | 28.2446 | 19.4234 | 3.6529
2x 1073 122.044 | 27.4997 | 19.3540 | 4.0005
2.25 x 1073 | 109.519 | 26.7745 | 19.2093 | 4.3013
2.5 x 1073 99.476 26.0722 | 19.0163 | 4.5623
3x 1073 84.250 24.7318 | 18.5275 | 4.9814
4%x1073 64.648 22.3060 | 17.3600 | 5.5078
5x 1073 52.289 20.1837 | 16.1269 | 5.7530
6 x 1073 43.650 18.3289 | 14.9392 | 5.8259
7x1073 37.213 16.6883 | 13.8166 | 5.7787
8 x 1073 32.198 15.2461 | 12.7839 | 5.6683
9x 1073 28.210 13.9660 | 11.8380 | 5.5099
10—2 24.934 12.8331 | 10.9763 | 5.3276
1.25 x 1072 | 18.898 10.5015 | 9.1493 4.8282
1.5 x 1072 14.810 8.7281 7.7087 4.3378
1.75x 1072 | 11.913 7.3526 6.5694 3.8897
2 x 1072 9.784 6.2780 5.6566 3.4943
2.25 x 1072 8.176 5.4196 4.9210 3.1506
2.5 x 1072 6.937 4.7293 4.3237 2.8534
3x 1072 5.180 3.7047 3.4240 2.3744
4 %102 3.264 2.4895 2.3297 1.7350
5x 1072 2.294 1.8261 1.7304 1.3416
6 x 1072 1.736 1.4209 1.3522 1.0848
7 %1072 1.376 1.1510 1.1030 0.8978
8 x 1072 1.113 0.9596 0.9223 0.7612
9 x 1072 0.0952 0.8130 0.7865 0.6554
101 0.8175 0.7075 0.6808 0.5711

26

Table 14: K (g, T, M) for M = 1 with respect to T and e- do = dt = 1/320 - r = h? - 3 = 10716,



REFERENCES

€ T=1.

103 10718.0955936799
1.25 x 1073 | 13839.4039394749
1.5 x 1073 | 16903.9918205099
1.75 x 1073 | 19898.1360771887

2x 1073 | 22812.2634798022
2.25 x 1073 | 25638.7601386909
2.5 x 1073 | 28375.3693789053
2.75 x 1073 | 31021.5479842987

3x 1073 33575.948263826

4x 1073 | 42871.1424334121

5x 1073 | 50751.4443114544

6 x 1073 | 57316.7716579456

7x 1073 | 62692.7273334616

8 x 1072 | 66997.3602057935

9x 1073 | 70350.3966144308

102 72862.0738060569
1.25 x 1072 | 76089.8839137614
1.5 x 1072 | 75988.4041456468
1.75 x 10~2 | 73579.1022138189

2x 1072 | 69647.3042543371
2.25 x 1072 | 64735.7778969391
2.5 x 1072 | 59254.0430977822

3x 1072 | 47994.1519570731

4x 1072 | 27872.8642664892

5x 1072 | 13312.4452504554

6 x 1072 | 5687.69600914237

7x 1072 | 1864.72524997867

8 x 1072 | 648.702980070232

9x 1072 | 264.559407164062

101 123.306947646919

27

Table 15: K(e,T, M) for M = —1 with respect to T and &- do = dt = 1/320 - r = h? - 3 = 10716,



REFERENCES 28

[10]

[11]

E. FERNANDEZ-CARA, M. GONZALEZ-BURGOS, AND L. DE TERESA, Boundary controllabil-
ity of parabolic coupled equations, J. Funct. Anal., 259 (2010), pp. 1720-1758.

E. FERNANDEZ-CARA AND A. MUNCH, Numerical exact controllability of the 1D heat equa-
tion: duality and Carleman weights, J. Optim. Theory Appl., 163 (2014), pp. 253-285.

A. V. Fursikov AND O. Y. ImaNuvILOV, Controllability of evolution equations, vol. 34 of
Lecture Notes Series, Seoul National University Research Institute of Mathematics Global
Analysis Research Center, Seoul, 1996.

O. GLASS, A complez-analytic approach to the problem of uniform controllability of a transport
equation in the vanishing viscosity limit, Journal of Functional Analysis, 258 (2010), pp. 852
868.

S. LABBE AND E. TRELAT, Uniform controllability of semidiscrete approzimations of parabolic
control systems, Systems Control Lett., 55 (2006), pp. 597-609.

G. LEBEAU AND L. ROBBIANO, Controle exact de l’équation de la chaleur, Comm. Partial
Differential Equations, 20 (1995), pp. 335-356.

J.-L. LioNs, Perturbations singuliéres dans les problémes aux limites et en contréle optimal,
Lecture Notes in Mathematics, Vol. 323, Springer-Verlag, Berlin-New York, 1973.

P. Lissy, A link between the cost of fast controls for the 1-d heat equation and the uniform con-
trollability of a 1-d transport-diffusion equation, Comptes Rendus Mathematique, 350 (2012),
pp- 591-595.

[18] ——, Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive

equations, and a new lower bound concerning the uniform controllability of the 1-D transport-
diffusion equation, J. Differential Equations, 259 (2015), pp. 5331-5352.

A. MUNCH, Inverse problems for linear parabolic equations using mized formulations - Part
2 : Numerical analysis, In preparation, (2015).

A. MUNCH AND D. Souza, Inverse problems for linear parabolic equations using mized for-
mulations - Part 1 : Theoretical analysis, Journal of Inverse and Ill posed problems., (2017).

A. MONcH AND D. A. Souza, A mized formulation for the direct approximation of L2-
weighted controls for the linear heat equation, Adv. Comput. Math., 42 (2016), pp. 85-125.

A. MUNCH AND E. ZUAZUA, Numerical approximation of null controls for the heat equation:
ill-posedness and remedies, Inverse Problems, 26 (2010), pp. 085018, 39.



	Introduction - Problem statement
	Reformulation of the controllability cost K(,T,M)
	Approximation of the control problem
	Mixed variational formulation
	Mixed formulation
	Minimization with respect to the multiplier

	Numerical approximation
	The discrete inf-sup test

	Numerical experiments 

	Numerical approximation of the cost of control
	Cost of control in the case M=1
	Controllability cost in the case M=-1

	Concluding remarks and perspectives
	Annexe

