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Highlights

• Flow stress models for copper are developed using machine learning techniques.
• The strength models are valid for T in [300 K, 800 K] and strain rates up to 1012.
• An incrementally objective and fully implicit time integration scheme is employed.
• Validation of the ML flow stress models through Taylor anvil impact tests.

Abstract

In this paper the application of machine learning techniques for the development of constitutive material models is being
investigated. A flow stress model, for strain rates ranging from 10−4 to 1012 (quasi-static to highly dynamic), and temperatures
ranging from room temperature to over 1000 K, is obtained by beginning directly with experimental stress–strain data for Copper.
An incrementally objective and fully implicit time integration scheme is employed to integrate the hypo-elastic constitutive
model, which is then implemented into a finite element code for evaluation. Accuracy and performance of the flow stress models
derived from symbolic regression are assessed by comparison to Taylor anvil impact data. The results obtained with the free-form
constitutive material model are compared to well-established strength models such as the Preston–Tonks–Wallace (PTW) model
and the Mechanical Threshold Stress (MTS) model. Preliminary results show candidate free-form models comparing well with
data in regions of stress–strain space with sufficient experimental data, pointing to a potential means for both rapid prototyping
in future model development, as well as the use of machine learning in capturing more data as a guide for more advanced model
development.
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1. Introduction

Modeling materials is of extreme importance for a wide range of practical reasons: for example, since experiments
are costly and time-consuming to perform, a mathematical model can provide fast predictions of material behavior,
allowing experts to test new structures or solutions in an inexpensive way. Researchers in the past focused on the
development of new phenomenological constitutive models by finding approximate expressions that described the
physical phenomena underlying the observed macroscale behavior. These expressions usually depended on several
empirical parameters that were computed, or calibrated, using experimental data. Stripped to the essential, material
modeling at the macroscale level consists in finding the best fit (equation) for a set of experimental data, using
observations at micro and macroscales. As models become more complex and advanced in their physical basis,
however, there is a corresponding rise in the complexity of empirical expressions and increased difficulty in the
parameter calibration. This complexity is eased through a focus on the development of more physically based models
where quantities are well defined and can be evaluated independently.

From a different perspective, developing a material model at the macroscopic continuum scale can be seen as an
optimization problem: for a given set of points in an n-dimensional space, find the functional (or set thereof) that is
closest to the input points. The complexity of such an optimization problem is non-polynomial (NP-hard problem) [1].
If the form of the interpolating function is an a priori, the problem reduces to finding the parameter values that
produce the optimal fit for the dataset, which can be solved with polynomial complexity (i.e. the mean least square
approximation is probably the simplest example of this category). In the past, limited computational resource and
lack of appropriate solution algorithms rendered the NP-hard approach intractable. Nonetheless, current advances in
machine learning (ML) techniques and increased computational power make the methodology with non-polynomial
complexity appealing. Several solutions for NP-hard optimization problems resort to stochastic techniques to find
reasonable, approximate solutions to the global optimum.

The current paper explores the application of stochastic techniques to the modeling of plastic deformation in
polycrystalline metallic materials, specifically within a J2 framework with a flow potential surface. Over the broad
range of conditions of interest for this class of materials, the ability of the material to accommodate deformation while
avoiding material failure is determined by the availability of the mechanisms of dislocation glide and deformation
twinning [2–5]. Each of these is driven by atom level processes involving the motion of dislocations due to the
imposition of stress on the material to drive the motion, multiplication, and interaction of dislocations and mechanical
twins which result in an orientational transformation. This plastic deformation if extended to high levels causes local
rotations in the material’s single crystals and both morphological and crystallographic texture is developed [6]. These
physical events taking place in the material are in general very much sensitive to the state conditions (e.g. temperature,
strain rate) and deformation history of the material. In addition, plasticity processes are also very much impacted by the
local structure of the material such are material type, grain size, and chemical composition [7,8]. Developing models to
accurately represent these complex dependencies for a very broad range of state conditions and deformation histories
is still very much a topic of research [9,10]. In general, models are available in a broad range of complexities and
employ many different functional forms from the very simple which have little physical basis in the choice of internal
state variables (which are very easy to use but are less accurate) to very sophisticated which much more accurately
represent the basic physical processes facilitating plastic deformation (but may require a specialist to understand and
use). It is still generally a challenge to strike the proper balance between ease of use and physical accuracy. In the
future, this balance can be struck much more efficiently if specific models are developed for specific materials and
conditions rather than universally applicable models as we practice today which compromise accuracy for universality.
As such, new machine learning tools can assist in postulating the essential mathematical form of a model for the
specific material and conditions of interest.

As the complexity of J2 based material strength models is increased, the evaluation of their parameters for a target
material became an increasingly long and expensive process, requiring extra experiments. It is not surprising that the
machine learning community tried to tackle the issue with black-box models, automatically derived from experimental
data. Artificial Neural Networks (ANN) are surely among the most popular solutions, for their great effectiveness
and ease of use: for example, in [11] ANNs are trained to predict flow stress for 7107 aluminum alloy, showing a
good result when compared to the classical Johnson–Cook model; in [12], ANNs obtained a favorable comparison to
Zerilli–Armstrong and Arrhenius-type models for high-temperature deformation in T24 steel; and in [13], a two-layer
ANN is used to learn flow stress dynamics in 5086 aluminum alloy. In [14] another ML technique, Support Vector
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Machines Regression (SVRs), is used to find a model for flow stress in Austenitic Stainless Steel 304, returning good
results especially for high temperatures, even when compared to ANNs trained on the same dataset; however, SVR
requires the precise tuning of several meta-parameters and an appropriate choice of the kernel, in order to be effective.

While ML techniques can be successful, in order to capture the full dynamics of a phenomenon, they usually require
a considerable amount of experimental data, that can be costly or simply unpractical to produce. For this reason, works
with ANNs found in literature are usually limited to a relatively small range of values for each meaningful variable
(temperature, strain, strain rate). There are, however, ML techniques that can deliver satisfying results starting from a
limited amount of data points, over a much wider range of values.

The ML technique of choice for the problem in study is a stochastic technique called symbolic regression. The
inputs required by this methodology are the dataset and a group of mathematical operators and functions that can
be used to fit the data. The output is a set of equations, with their associated complexity, that best describe (fit)
the experimental data. This methodology is preferable to a black-box model; it satisfies the researcher’s need of
observing the relation between the variables of the problem, as well as providing advantages in the implementation
phase. Obtaining an equation for the strength model, and hence its analytic derivative, allows the use of iterative
solvers that employ Jacobians (i.e. Newton–Raphson scheme) which afford higher convergence order.

Material data covering a broad range of temperatures and strain rates are difficult to find in literature. Copper is one
of the most extensively characterized materials and hence it is used as a proof of concept in the present paper. Although
the obtained strength models will be specific for copper, the general methodology can be applied to any material
of interest, provided that enough data are available. Once a strength model is generated, it is implemented into a
commercial finite element code using a J2 radial return algorithm, and a standard implicit incrementally objective
time integration scheme is then employed. Accuracy of the strength models is assessed by means of numerical
simulations of Taylor anvil impacts [15]. The numerical simulation is characterized by high strain-rates and large
plastic deformations that cause an increase of the sample’s temperature. Results of the strength models generated
through symbolic regression are then compared to established models, Mechanical Threshold Strength (MTS) and
Preston–Tonks–Wallace (PTW), and to the available experimental results. In the present work, for simplicity, data
used by the symbolic regression have physical dimensions. While recognizing the importance of scale invariance in
the development of material models [16], nondimensionalization can be obtained by straightforward application of
the Buckingham Π theorem [17] and it is not explored in the current work.

The paper is structured by introducing the symbolic regression technique in Section 2. Two available strength
models for high strain rates and temperatures are presented in Section 3. In Section 4, the experimental stress–strain
curves of copper are used to derive, through symbolic regression (SR), four new strength models. The numerical
implementation of MTS, PTW and the SR models is detailed in Section 5 and assessment of the data-driven
constitutive models is carried out in Section 6. Finally, a summary and concluding remarks are presented in
Section 7.

2. Symbolic regression

Symbolic regression is a machine learning technique from the field of evolutionary computation [18], able to extract
free-form equations that correlate with data from a given experimental dataset. Evolutionary algorithms (EAs) are
stochastic optimization techniques that loosely mimic natural evolution. Generally speaking, an EA starts by creating
a set of random candidate solutions called population. Each candidate solution, termed individual, is then evaluated
with regard to an objective function, called fitness. The best solutions have a higher probability to be selected for
creating offspring, that are, randomly mutated versions of the original individuals. Offspring are then evaluated, and
added to the population. At the end of each iteration, the worst individuals in the population are removed. Then, new
offspring are produced, and the algorithm continues until a user-defined stop condition is reached (e.g. wall-clock time
limit, satisfying value of the best candidate solution, etc.). A flowchart for a generic EA is presented in Fig. 1.

The original idea for symbolic regression was presented in [1], and it was subsequently popularized by the
commercial tool Eureqa Formulize1 [19]. In this EA, candidate solutions are encoded as trees, with terminal nodes
corresponding to constants and variables of the problem, while intermediate nodes encode mathematical functions

1 http://nutonian.com/.

http://nutonian.com/
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Fig. 1. Flowchart of a classical EA: the initial candidate solutions are randomly generated and after evaluating their fitness the best individuals are
used/mutated to generate new solutions. The worst individuals are removed from the genetic pool and the process is iterated until a stop condition
is reached.

Fig. 2. A candidate solution in a typical symbolic regression problem. Following the natural evolution metaphor, the internal representation
(a binary tree) is termed genotype. The phenotype is the corresponding function, while the fitness to minimize is usually the absolute or squared
error with respect to experimental points.

such as {+, −, ∗, /, . . .}. All the nodes are collectively termed building blocks, and are user-defined. The fitness
function is usually proportional to the absolute or squared error between experimental data and values predicted by
a candidate solution, with parsimony corrections to favor more compact equations. An example of individual for a
symbolic regression problem is presented in Fig. 2.

An additional advantage of this technique is the delivery of human-readable models. While ANN and SVM models
are usually hard to make sense of, information can always be extracted from equations, even when they are extremely
complex: a human expert could use automatically generated results to infer properties of the target phenomenon,
and eventually use them as a base to build a better model. As symbolic regression explores the vast search space of
all possible equations, the real-valued parameters of the obtained models can often be further optimized resorting
to classical techniques such as gradient descent, thus improving their overall fitting. In this work, however, we
intentionally skip this passage, in order to better evaluate the potential of this machine learning algorithm as it is.

Modern approaches to symbolic regression make use of sophisticated techniques to speed up convergence
and improve the quality of results: competitive co-evolution [20], incorporation of expert knowledge [21], noise
modeling [22], and, most notably, Pareto-like optimization [23]. Taking inspiration from works on multi-objective
optimization, Pareto-like symbolic regression evaluates candidate solutions on more than one feature, for example
fitting and complexity: instead of returning the user a single, optimal solution, such algorithms will show a Pareto
front comprising several solutions, each one an optimal trade-off between the two objectives.

It is important to notice that, being a stochastic optimization process, there is no guarantee that an EA will find
the global optimum for a given problem: while there are proofs of convergence for simple case studies [24], when the
structure of a candidate solution is too complex, formally proving properties has so far been unfeasible. Nevertheless,
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EAs are routinely used for real-world NP-hard problems where classical optimization techniques fail, or take too
much time to converge [25–27].

3. Existing strength models

Strength models developed over the past forty years for the modeling of plastic flow at high temperatures and
strain rates, may be classified into two categories: purely empirical models and physically based models. To the first
category belong the Johnson–Cook model [28] and the Steinberg–Cochran–Guinan–Lund model [29,30] which show
unrealistic strain-rate independence at high strain rates or for any strain rate respectively. To the second category
belong models that account for dislocation interactions and dynamics. Among these models the Zerilli–Armstrong
model [31], the Mechanical Threshold Stress (MTS) model [32] and the Preston–Tonks–Wallace (PTW) model [16]
are widely used and reported.

Hereinafter, the two latter strength models are briefly summarized as they will later be used as a comparison for the
results obtained through symbolic regression. For the considered material, copper, the values of the parameters used
by MTS and PTW are given in [33] and [16], respectively.

3.1. Mechanical threshold strength

The mechanical threshold strength (MTS) model [32,34–36] characterizes the flow stress of material by considering
the combined effect of different sources of resistances to dislocation motion. The interdiction of dislocations is
managed through short-range barriers, that can be surpassed thanks to thermal activation; and long-range barriers,
which are unaffected by thermal energy. This model can be seen as a complex, non-linear isotropic hardening law,
which accounts for strain hardening, strain-rate hardening, and thermal softening effects.

According to MTS, the flow stress τ of a material can be expressed as:

τ = τa +
G(T )

G0


Si (T, ε̇ p)τi + Sε(T, ε̇ p)τε + Ss(T, ε̇ p)τs


, (1)

where τa is the constant athermal component of the flow stress, τi is the constant intrinsic lattice resistance at T = 0 K,
and τε represents the evolving flow resistance at T = 0 K, due to dislocation structure. The flow stress term dependent
on the thermally related solute diffusion, τs , appearing in the most general MTS form, is neglected in the present
work. Si and Sε introduce rate and temperature kinetics, while the temperature-dependent shear modulus is G, and its
value at T = 0 K is G0. The shear modulus is given by the following empirical expression:

G(T ) = G0 −
D0

exp


T0
T


− 1

, (2)

where T0 is a reference temperature. Term Si is expressed as:

Si (T, ε̇ p) =

1 −


kT

Gb3g0i
ln

ε̇
p
0i

ε̇ p

 1
qi


1
pi

, (3)

where k is Boltzmann’s constant, b is the magnitude of the Burgers vector, g0i is a normalized activation energy, ε̇
p
0i

is a reference strain rate, pi ∈ [0, 1] and qi ∈ [0, 1] are exponents that define the shape of the energy barrier profile.
Term Sξ is given by a similar expression, with corresponding constants:

Sε(T, ε̇ p) =

1 −


kT

Gb3g0ε

ln
ε̇

p
0ε

ε̇ p

 1
qε


1
pε

. (4)

Finally, the mechanical threshold τε, reflecting the evolution of the dislocation structure, evolves as

dτε

d ε̇ p = h0(ε̇
p, T )


1 −

τε

τεS

κ

, (5)
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where the saturation threshold stress, τεS , is

τεS = τεS0


ε̇ p

ε̇
p
0εS

 kT
Gb3g0εS

, (6)

and where g0εS is the normalized energy of activation, while ε̇
p
0εS is a reference strain rate.

3.2. Preston–Tonks–Wallace

The Preston–Tonks–Wallace (PTW) model [16] describes the plastic flow stress τ as a function of the amount of
strain ε p it has undergone, the strain rate ε̇ p, the material temperature T and its density ρ. The model assumes that
the plastic flow stress is independent of the history of the material (other than plastic strain), and that the plastic flow
is isotropic. The PTW model makes use of three scaled, dimensionless variables:

τ̄ =
τ

G(ρ, T )
, (7)

where τ is the flow stress, defined as τ = σ/2, where σ is the von Mises equivalent deviatoric stress; and G(ρ, T ) is
the shear modulus, function of material density and temperature. Temperature is scaled according to:

T̄ =
T

Tm(ρ)
, (8)

where Tm is the melt temperature of the material, function of its density. Finally, ε̇ p is scaled to an appropriate rate:

ξ̇ (ρ, T̄ ) =
1
2


4πρ

3M

 1
3


G

ρ

 1
2

, (9)

where M is the atomic mass of the material. The strain rate in the PTW model will always appear as ε̇ p/ξ̇ . The shear
modulus G is:

G(ρ, T̄ ) = G0(ρ)(1 − αT̄ ), (10)

where G0(ρ) is the shear modulus at T = 0 and α > 0 is a parameter dependent on the material.
The scaled stress τ̄ ranges between the yield stress τ̄y and a saturation value τ̄s , with a functional form dependent

on the strain ε p:

τ̄ = τ̄s +
1
p
(s0 − τ̄y) ln

1 −


1 − exp


−p

τ̄s − τ̄y

s0 − τ̄y


exp

−
pθε p

(s0 − τ̄y)

exp


p τ̄s−τ̄y

s0−τ̄y


− 1


 , (11)

where p and θ are material-dependent parameters, and s0 is the value that τ̄s assumes at zero temperature. The values
for τ̄y and τ̄s are given by:

τ̄ L
y = y0 − (y0 − y∞) erf


κ T̄ ln


γ ξ̇

ε̇ p


, τ̄ L

s = s0 − (s0 − s∞) erf

κ T̄ ln


γ ξ̇

ε̇ p


, (12)

where κ and γ are dimensionless material parameters and erf denotes the error function. Furthermore, L , M and
H superscripts are employed to indicate respectively low (ε̇ p < 104), intermediate (104

≤ ε̇ p < 109) and high
strain rates (ε̇ p

≥ 109). The parameters y0 and y∞ are the values that τ̄y takes at zero temperature and very high
temperatures, respectively; the same holds for s0 and s∞ with respect to τ̄s .

When the strain rates become very high (ε̇ p > 108) the plastic deformation process can be appropriately described
by Wallace’s theory of overdriven shocks in metals [37], so that the saturation stress becomes

τ̄ H
s = s0


ε̇ p

γ ξ̇

β

, (13)

where the transition between low and high strain rates is accounted for by

τ̄s = max

τ̄ L

s , τ̄ H
s


. (14)
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At very high strain rate the value of yield stress is the same as the saturation stress, that is, τ̄ H
y = τ̄ H

s whereas, for
intermediate strain rates, a power-law is employed leading to

τ̄ M
y = y1


ε̇ p

γ ξ̇

y2

. (15)

Analogously to the saturation stress, a transition between the three strain rate regimes is accounted for by introducing
the following formula for the yield stress

τ̄y = max

τ̄ L

y , min

τ̄ M

y , τ̄ H
y


. (16)

4. Symbolic regression models

In this section the strength models obtained through symbolic regression are summarized. Four models are derived
using different datasets, with the addition of expert knowledge. Among the candidate models obtained, the ones
that provide the overall best fitting are presented: the equations selected are close to the “knee” of their respective
Pareto front, featuring a balance between complexity and fitting. Complexity is a measure of the computational time
necessary to evaluate an expression and we chose the equation located at a “bending point” of the Pareto front, where
complexity increases but the gain in fitting becomes less and less relevant. Finally, it is worth mentioning that points
(candidate equations) on the Pareto front have different functional forms. For ease of reading, datasets and accuracy
of the models with respect to the training data are collected in Appendix A. In the following, coherently with the
other models previously presented, τ is the stress, ε p is the strain, ε̇ p is the strain rate, and T is the temperature.
For convenience, τ̂ = ln(τ ), ε̂ p

= ln(ε p), ˆ̇ε
p

= ln(ε̇ p), and T̂ = ln(T ) variables are also introduced. Stress,
temperature and plastic strain and strain rate are not normalized: the units of measure of τ , ε̇ p and T are MPa, s−1

and K, respectively.

4.1. SR-1

SR-1 indicates the best result of the very first, and naive, symbolic regression experiment on the D1, D2 and D3
datasets. The algorithm is set to find the strength model τ = f (ε p, ε̇ p, T ). A first Pareto front returns an equation
with good fitting and reasonable complexity, that is selected for further evaluation. The equation has the following
form:

τ = 6.025 + 0.0095T + ε p


3217.611 + 2314.333ε p
− 4514.091

√
ε p − 317.766


0.5835ε pε̇ p

− T


. (17)

SR-1 in Eq. (17) is obtained by the process that takes from Figs. 3(a) to 3(b), and exactly like in Fig. 3(b) the curve
presents a decreasing trend for high values of ε. Although softening can clearly occur during plastic deformation, the
behavior described by SR-1 is an artifact, since the considered datasets can be fitted quite accurately with a polynomial
expression, with a negative slope for ε p > 0.4. Lacking data for that interval, expert knowledge has to be introduced
in order to remove the incorrect negative slope.

4.2. SR-2

As for many machine learning approaches, it is possible to ease (or bias) the algorithm’s task by providing human
expert knowledge. In the case of symbolic regression, expert knowledge can be added through several means, for
example:

• by forcing the use of user-defined variables (i.e. ln(τ ), exp(ε p), . . .);
• by introducing weights for each line of the dataset, diversifying the importance of data points the algorithm should

fit during the run;
• by adding extra points, artificially generated, where there is no experimental data but the user is confident in the

form they should present;
• by forcing candidate solutions to be always above a certain value (e.g. always positive);
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(a) Original data. (b) Original data: τ = τ(ε). (c) Biased data: τ = τ(ε).

Fig. 3. Derivation of a strength model from simple compression Hopkinson bar data (room temperature and strain rate ≈103). The training data
points, shown in 3(a), are missing information for high levels of ε. Symbolic regression finds a model that fits the given points well enough, but has
an incorrect behavior where data is missing, as expressed by the blue line in 3(b). Adding an artificial point, taken from expert knowledge on the
process, leads the machine learning algorithm towards a better model, as shown in 3(c).

• by suggesting some initial solutions, in the form of equations, that the algorithm will use to seed the initial
population, and thus quickly driving the symbolic regression process towards specific areas of the search space.

During this second batch of ML experiments, all options for introducing expert knowledge are evaluated, with
different outcomes. In the end, the most effective options seem to be the addition of artificial points, forcing the
function to be non-negative, adding user-defined variables, and introduction of weights, in order to give each curve
in the dataset the same importance, independently from their sampling density. The required functional form of the
strength model is

τ =
G (T )

G0
eτ̂ , (18)

with τ̂ = f (ε̂ p, ˆ̇ε
p
, T̂ ). In analogy with MTS and PTW, the G(T )

G0
term in Eq. (18) is introduced to exploit the known

relation between shear modulus and temperature. The equation for G(T ) is Eq. (2), the same used by MTS. Finally,
the best model for τ̂ is given by

τ̂ = 6.529 + 0.315 min


0.315, ε̂ p
+ 1.235 · 10−5 ˆ̇ε

p
T̂ max


ˆ̇ε

p
, 6.529


− ε̂ p min


0.058 min


0.315, ε̂ p , 1.235 · 10−5 ˆ̇ε

p
T̂


− 0.0097 ˆ̇ε
p

− T̂


0.0021 + 0.001T̂ tanh

min


−0.183, ε̂ p . (19)

The process that leads to SR-2 in Eq. (18) can be visually represented by Figs. 3(a)–3(c). The experimental data,
datasets D1 to D5, are enriched with additional points, obtained from expert knowledge of the physical phenomenon,
to inform the machine learning algorithm on the monotonicity of τ . Moreover, using eτ̂ ensures that the flow stress is
always positive.

4.3. SR-3

Symbolic regression can also be used to learn derivatives. In order to simplify the algorithm’s task, the interpolation
of the shape of the τ–ε p curve is separated from the computation of its asymptotic value. In two separate runs, the
symbolic regression algorithm is asked to search for

dτ

dε p = f

ε p, ε̇ p, ˆ̇ε

p
, T


, (20)

and then

τc = g(ε̇ p, ˆ̇ε
p
, T ), (21)



D. Versino et al. / Comput. Methods Appl. Mech. Engrg. 318 (2017) 981–1004 989

where τc is the numerical value of the flow stress for an arbitrary ε p value. Furthermore, ˆ̇ε
p

is added to the variables
that symbolic regression can use, as it is apparent from previous tests that it is particularly useful to fit the data.

This strategy is equivalent to the process used to derive both MTS [32,34–36] and PTW [16]. The two models are
obtained from a modified Voce hardening law

dτ

dε p = θ

ε p, ε̇ p, T


, (22)

where θ is function of equivalent plastic strain, equivalent plastic strain rate and temperature. If τ is plotted against
ε p, as in Fig. 3(c), the Voce hardening law is responsible for the shape of the curve. Moreover, the Voce law enforces
saturation for high values of equivalent plastic strain.

Once θ is defined, the strength model is obtained by integration of θ with respect to ε p and an integration constant
is introduced. Accordingly, integrating f in Eq. (20) yields

τ = τc +


f (ε p, ε̇ p, ˆ̇ε

p
, T ) dε p, (23)

with τc denoting the integration constant and where f is obtained through symbolic regression.
Saturation of τ is a highly desirable feature for most constitutive models. Classically, the Voce hardening law is

derived from functions that saturate for large values of ε p, such as tanh(x) or the Arrhenius form e−1/x to mention
a few. Within the symbolic regression approach, forcing the method to use a predefined form of the equation would
result in a significant reduction of the solution space. In order to obtain a saturation value while using the largest
possible solution space, the following condition is instead enforced

dτ

dε p = f (ε p, ε̇ p, ˆ̇ε
p
, T ) ≥ 0. (24)

The slope of τ in the ε p–τ plane being always ≥ 0 is clearly a less strict requirement than choosing a priori the form
of f . The hardening law with the best compromise between fitting error and complexity, found through symbolic
regression on the D1 to D5 datasets (see Appendix A), is

dτ

dε p = 0.954 min


2074.4,


1248.204 + 1.129 ˆ̇ε
p

− T
(1.129−ε p)


, (25)

where, in order to avoid unexpected behavior for large values of ε p, the following condition is also introduced

dτ

dε p


ε p>1

≡
dτ

dε p


ε p=1

. (26)

Thus far, the expression for the integration constant τc in Eq. (23) is still unknown. Observing that for an arbitrary
value of ε p a corresponding τc can be obtained with symbolic regression, two options for ε p appear reasonable. The
first one is to compute the initial flow stress of the material by setting ε p

= 0 and letting the symbolic regression
determine τc (ε p

= 0, ε̇ p, T ). The second choice is to compute the saturation flow stress with ε p
= 1. Despite being

reasonable, the former and latter strategy face experimental issues related to the Hopkinson bar compression test: the
flow stress for ε p

= 0 seems difficult to measure accurately due to initial oscillations, while the largest achievable
value of equivalent plastic strain is limited by the kinetic energy of the striker bar which is not sufficient to produce
plastic strain much larger than 20%. Therefore, the value of ε p used is the smallest one at which one of the strain–stress
curves terminates, and it is indicated with ε

p
f . For the dataset employed in the current work, ε

p
f = 0.23. Interpolation

is used to obtain τc|ε p=ε
p
f

for the dataset that do not have points for ε p
= ε

p
f .

The τc term is computed using the original dataset and the process used to generate it can be visualized as the path
that takes from Figs. 4(a) to 4(b). The complete expression is given by

τc = 4.315 · 10−10ε̇ p
+ 149707.505 max


19.086, ˆ̇ε

p


− 183494.523 − 0.208T

− 90.761 erfc

(0.004T )

ˆ̇ε
p

, (27)
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(a) Original data. (b) Original data: τ = τ(ε̇). (c) Biased data: τ = τ(ε̇).

Fig. 4. From experimental data to a saturation stress model (room temperature). Missing training points in the middle of the process, portrayed in
4(a), can lead the machine learning algorithm to fit the data with incorrect models, as shown by the blue line in 4(b). In 4(c), artificial points are
added thanks to expert input that eventually leads symbolic regression towards better models.

where erfc denotes the complementary error function. It is worth underlining that the term max


19.086, ˆ̇ε
p


introduces a discontinuity of the derivative at ε̇ p
≈ 1.95 · 108 which captures the slope difference between the first

(thermally activated dislocation motion) and second (phonon drag) parts of the training data Fig. 4(a).

4.4. SR-4

The evident data gap depicted in Fig. 4(a) corresponds to the one observed in the experiments. During the learning
process of SR-3, symbolic regression was expected to use a curve with positive slope to interpolate over the data gap.
The SR-3 τc curve, Eq. (27), exhibits instead a plateau for strain rates from 105 to 108, similar to the one depicted
in Fig. 4(b). Therefore, additional artificial points have been added to fill the gap and, lacking better knowledge, a
line has been used to connect the last experimental point for low strain rates to the first one for high strain rates, see
Fig. 4(c). Drawing a line in the log–log space implies assuming a power law for intermediate strain-rates as in [16].
Finally, the chosen form of τc is

τc = 528.501 + 0.245 ˆ̇ε
p

− 0.170 T +


0.415 ˆ̇ε

p
(ε̇ p)0.151

− 39.845


T̂ . (28)

For the sake of clarity, the four models obtained through symbolic regression are summarized below

• SR-1 indicates the model described by Eq. (17), it is obtained using the datasets D1, D2 and D3 in Appendix A.
• SR-2 denotes the strength model derived using the datasets D1 to D5 in Appendix A and expert knowledge to

enforce an asymptotic behavior for large strains. It is defined by Eq. (18).
• The learning process of SR-3 is carried out in two phases. The slope of the curve is given by Eq. (25) and its value,

τc, for ε p
= ε

p
f is expressed in Eq. (27). The datasets are D1 to D5 in Appendix A.

• SR-4 uses the same equation of SR-3 for the slope, Eq. (25), whereas Eq. (28) is employed to compute τc. The
training dataset is the same used for SR-3, enriched with artificial points to fill the gap for intermediate strain rates,
see Fig. 4(c) and Appendix A.

Finally, it is worth remarking that all the numerical coefficients appearing in the equations defining the four strength
models are kept constant during the verification carried out in Section 6. The numerical coefficients for MTS and PTW
are computed as described in [32] and [16], respectively. Calibration of MTS and PTW parameters can be seen as a
classical regression problem: given an equation with unknown coefficients find the coefficients that minimize the
distance between the curve and the experimental data. Conversely, symbolic regression finds the functional form, and
the coefficients, that best ”fit” the experimental data. Calibration of MTS and PTW can be solved in polynomial time
whereas symbolic regression seeks a solution of a non-polynomial problem.
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5. Computational formulation

Hereafter, the computational framework and numerical manipulations necessary to implement the strength models
in Sections 3 and 4 as an ABAQUS [38] user material (VUMAT) are described. In this work, the constitutive model is
formulated in a corotational hypoelastic framework. The Green–Naghdi stress rate is used to neutralize rotations in the
presence of finite deformations and standard radial return algorithms are employed [33,39]. From a converged state at
time t (n) the time is advanced to t (n+1)

= t (n)
+∆t . Quantities from the previous converged state, indicated with •

(n),
and the total strain increment ∆ε are given at the beginning of the step and the updated stress and history variables are
computed for t (n+1). Accordingly with the corotational framework, the total strain increment is obtained through an
objective rate of deformation tensor and the elastic strains are assumed to be small (which is usually true for metals).
It is also worth underlining that the strength models used in this work can be employed, without modification, within
a hyperelastic framework [40].

Decomposition in volumetric part, •̄ =
1
3 trace(•), and deviatoric component, •̄, of the strain tensor

ε = ε̄1 + ε̃, (29)

and stress tensor

σ = σ̄1 + σ̃ , (30)

is used where the rank two identity tensor is represented by 1.

5.1. Volumetric: equation of state

The pressure component p = −σ̄ , computed using a constant bulk modulus, does not take into account shocks
inside the material due to high-impact velocities. Therefore, pressure at the Gauss integration point is obtained from a
Mie–Grüneisen type equation of state. Using a linear Hugoniot shock velocity [41] yields

p = ρ0c2
0

1 + (1 −
1
2Γ0)µ −

1
2 bµ2

(1 − (s − 1) µ)2 µ + (Γ0 + bµ)E, (31)

for µ > 0, or

p = µρ0c2
0 + Γ0 E, (32)

if µ ≤ 0, with the measure of compression, µ, given by

µ =
ρ

ρ0
− 1 ≈ −3ε̄, (33)

and where c0, ρ0, ρ, and E are the initial sound speed, the initial density, the density at the current time and the
internal energy-per-unit reference volume, respectively. Due to J2 plasticity, the increment of volumetric strain is
entirely elastic: hence µ(n+1)

= µ(n)
+ ∆µ ≈ µ(n)

− 3∆ε̄. Although µ(n) could be derived from σ̄ (n), the converged
value of µ is stored, for convenience, as a history variable.

The constants Γ0 = 1.96 and s = 1.5, are used in Eqs. (31)–(32). The value of the initial bulk modulus is

K0 = 2G0
1 + ν

3 (1 − 2ν)
, (34)

with G0 = 46.269 GPa and ν = 0.34. Finally, the initial sound speed is obtained from c0 =
√

K0/ρ0 where ρ0 is
given, for each test case, in Section 6.

5.2. Deviatoric: J2 plasticity

The total deviatoric strain rate is additively decomposed into elastic and plastic contributions, which in incremental
form can be written as

∆ε̃ = ∆ε̃e
+ ∆ε̃ p, (35)
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where the e and p superscripts indicate the elastic and plastic parts, respectively. The classical von Mises yield surface
is considered

fλ := ∥s∥ −


2
3
τ ≤ 0, (36)

and the flow stress, τ , is obtained from the strength models described in Sections 3 and 4. An associative flow rule is
employed, using the customary radial return algorithm leads to

∆ε̃ p
= n∆λ (37)

with

n =
σ̃

∥σ̃∥
, (38)

where the plastic multiplier ∆λ ≥ 0 is computed as in [39]. The equivalent plastic strain is obtained from the integral
over time of the equivalent plastic strain rate

ε p
=


ε̇ p dt, (39)

or, incrementally,

ε p (n+1)

= ε p (n)

+ ∆ε p, (40)

where

∆ε p
=


2
3
∆λ (41)

with the equivalent plastic strain rate given by ε̇ p
=

∆ε p

∆t . Increase in temperature, ∆T , is due to plastic dissipation

∆T = Ψ
σ̃ : ∆ε̃ p

ρC p
(42)

where Ψ is the Taylor–Quinney coefficient and C p is the specific heat capacity of the material. Time integration is
carried out as in [33] and a Newton–Raphson iterative scheme is used to compute the converged values for σ̃ , ε p, ε̇ p

and T at time t (n+1).
The remainder of the present section is concerned with the treatment of singularities or undesirable behavior of the

considered strength models. Most of the singularities involve the ln(ε p) and ln(ε̇ p) terms that, similarly to the method
described in [42], are modified by adding a small perturbation

ln(ε p) → ln(ε p
+ δ), ln(ε̇ p) → ln(ε̇ p

+ δ̇). (43)

Higher values of δ (or δ̇) lead to faster convergence (i.e. fewer Newton–Raphson iterations) whereas smaller values
cause slower convergence. The perturbation terms δ and δ̇ vary for each strength model, and their value is set to obtain
a reasonable compromise between speed and accuracy. Clearly, for low strain rates and very long simulation times,
this approach would be ill-suited: but it produces good results for the application of interest (Section 6).

5.2.1. MTS and PTW
Implementation of MTS follows [33]. The only difference is in the perturbations of ε p and ε̇ p equal to δMTS

= 0
and δ̇MTS

= 1.0 · 10−8ε̇
p
max where ε̇

p
max is a MTS parameter. When the PTW model is considered, a corner case has to

be handled: if the saturation and yield stress are identical (τ̄s ≡ τ̄y) or if s0 = τ̄y , the flow stress becomes τ̄ = τ̄s . For
PTW, δPT W

= 0 and δ̇PT W
= 1.0 · 10−10ξ̇ .

5.2.2. SR-1 and SR-2
For the first and second models generated by symbolic regression, both ε p and ε̇ p are perturbed. The perturbations

of the equivalent plastic strain rates are δ̇S R−1
= 1.0 · 10−12 and δ̇S R−2

= 3.0 · 10−12. For high values of equivalent
plastic strain, the τ–ε p curve has negative slope (see Fig. 3(b)). Therefore, ε p is modified as follows

ε p S R−1
= min([ 0.2, ε p

+ 1.0 · 10−10
]), ε p S R−2

= min([ 0.4, ε p
+ 3.0 · 10−12

]). (44)
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Considering a value of equivalent plastic strain, set as the minimum between the current ε p and 0.2 for SR-1, or 0.4
for SR-2, enforces a saturation value of the τ–ε p curve. It is worth remarking that despite trying to force the saturation
behavior of SR-2 through additional data, Fig. 3(c), an additional condition has to be introduced.

5.2.3. SR-3 and SR-4
The third and fourth models, SR-3 and SR-4, are generated by requiring that the τ–ε p curve possesses a positive

slope. Nonetheless, the conditions

ε p S R−3
= min([ 1.0, ε p

]), ε p S R−4
= min([ 1.0, ε p

]), (45)

are introduced to avoid extrapolation: the largest value of the equivalent plastic strain in the training dataset is ε p
= 1

and for this large value of ε p the τ–ε p curve is already saturated. The values of the perturbations used for the two
models are δS R−3

= δS R−4
= 0 and δ̇S R−3

= δ̇S R−4
= 1.0 · 10−6.

6. Verification

Assessment of the strength models obtained through symbolic regression is carried out by means of a classical
large-deformation and high strain-rate test. Classically, machine learning validation is performed by partitioning the
experimental data into training and validation sets (unseen data). In our case, the number of stress–strain curves
obtained from experiments is very limited, typically one curve (or only one point) for a given strain rate and
temperature. Therefore, all the available experimental stress–strain curves have been used to train the symbolic
regression. Validation on unseen data is hence carried out by resorting to a thorough test case, the Taylor anvil
impact [15], where all the Gauss integration points are exposed to a wide range of strain rates and temperatures,
allowing to evaluate almost the entire space represented by τ .

A copper cylinder is moving with an initial velocity U0 towards a rigid anvil. At the beginning of the analysis all the
energy is stored as kinetic energy that, by the end of the analysis, is completely dissipated by the plastic deformation
of the cylinder. In the current work two categories of experimental data are used to validate the strength models: the
deformed profile of the recovered sample, if available, and the final length of the deformed cylinder, L. The profiles
and final lengths obtained from the symbolic regression models are also compared to the state-of-the art models
MTS and PTW (the plastic strain rates lie in a range where MTS is still physically applicable). Time integration is
performed explicitly and axisymmetric four-node elements (CAX4R) are used. Moreover, friction between cylinder
head and anvil is introduced using a friction coefficient equal to 0.1 [33].

The first set of test cases [41] involves two cylinders with initial lengths, L0, and velocities equal to 25.4 mm and
146 m/s and 50.8 mm and 177 m/s, respectively. The initial diameter of the samples is 7.72 mm, the initial temperature
is 298 K and the initial density is 8900 kg/m3. Adiabatic conditions are assumed throughout the simulation and the
Taylor–Quinney coefficient is taken to be Ψ = 0.95 [33]. The percent errors on L, obtained from

100 ·


1 −

Lmodel

Lref


,

for a given strength model are listed in Table 1 and the computed deformed profiles are compared to the experimental,
Lref , ones in Figs. 5 and 6. MTS and PTW are in good agreement with the experimental results and, to a lesser degree,
also the model denoted with SR-4. SR-2 and SR-3 are performing well for the test with initial velocity equal to 146
m/s whereas they predicted deformed profile for the second test is quite off. It should be remarked that, due to the
chosen axis scaling, the error on the radial direction is magnified in the plots. Clearly, model SR-1 does not perform
well and it is therefore discarded in the subsequent comparisons.

In order to validate the models it is also useful to look at some internal variables, accumulated equivalent plastic
strain and temperature in this case, in the deformed configuration. Contour plots of the accumulated equivalent plastic
strain and temperature at the final time are shown in Figs. 7 and 8 for the cylinder with initial velocity equal to 146
m/s. Temperature and accumulated plastic strain are clearly higher in the proximity of the contact surface where most
of the kinetic energy is dissipated. Model SR-4 predicts a temperature field very similar to that obtained from PTW
whereas the equivalent plastic strain values are between the ones predicted by MTS and PTW. Although SR-2 and
SR-3 over-predict the maximum value of equivalent plastic strain, the temperature field seems to be in reasonable
agreement with PTW and MTS.
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Table 1
Percent errors on L for the tests in Figs. 5 and 6.

Initial velocity [m/s] Temperature [K] Lref [mm] MTS PTW SR-1 SR-2 SR-3 SR-4

146.0 298 18.77 −1.14 −0.48 1.72 0.65 −0.44 −2.17
177.0 298 33.62 0.79 1.01 5.51 3.94 1.68 −0.93

(a) MTS. (b) PTW. (c) SR-1.

(d) SR-2. (e) SR-3. (f) SR-4.

Fig. 5. Computed profiles vs. experimental results, initial velocity 146 m/s at room temperature: (a) standard MTS model, (b) standard PTW model,
(c) simplest symbolic regression model, no expert knowledge, (d) strength model obtained from stress–strain data with additional expert knowledge,
(e) Voce hardening expression from symbolic regression, (f) Voce hardening from symbolic regression and expert knowledge on saturation stress.

During the second part of the validation process all the copper Taylor anvil impacts presented in [43] are simulated.
The initial length and diameter for all the cylinders are equal to 30 mm and 6 mm respectively. Initial velocities range
between 48.7 and 394 m/s whereas initial temperatures are comprised within 295 and 1235 K. Initial temperature and
velocity for all the 37 shots are listed in Table 2. Furthermore, although copper’s density is approximately 8900 kg/m3,
the exact values given in [43] are used for each test.

Depending on the initial temperature of the projectile, the tests are collected within three groups: (i) room
temperature shots with T = 295 K, (ii) shots with temperature varying in the [700, 780] K interval and (iii) shots with
T ≥ 1230 K. An average percent error for each model and temperature group is then computed according to

1
N

N
i

|emodel
i |,

where N is the numerosity of the group and emodel
i represent the percent error on L/L0 for i th test and the employed

model. The average errors for the first two groups are computed discarding shots 23, 34, 63 and 53. Test 23 is
discarded because although it is almost identical to the one whose results are shown in Fig. 5 the percent error is much
larger than the error in Table 1 for all strength models. Shot 63 has been discarded because while all the models seem
to agree on the final length of the deformed cylinder the experimental initial speed is uncertain (see note in [43]).
Shots 34 and 53 are discarded because all the models have an absolute value of the percent error larger than 10%:
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(a) MTS. (b) PTW. (c) SR-1.

(d) SR-2. (e) SR-3. (f) SR-4.

Fig. 6. Computed profiles vs. experimental results, initial velocity 177 m/s at room temperature: (a) standard MTS model, (b) standard PTW model,
(c) simplest symbolic regression model, no expert knowledge, (d) strength model obtained from stress–strain data with additional expert knowledge,
(e) Voce hardening expression from symbolic regression, (f) Voce hardening from symbolic regression and expert knowledge on saturation stress.

this is an indicator that physical phenomena, other then plasticity, are happening. Due to the high initial speed of test
53, on the recovered sample “large peripheral cracks” are observed. Therefore, damage should be included in the
material model to correctly represent the cylinder’s response. Finally, test 34 is performed at high initial velocity and
temperature. During the plastic deformation process the computed temperature in the sample increases and approaches
the melting temperature 1357 K of copper. Material’s melting temperature is a function of the applied pressure [44]
(or volumetric strain [29]) but such a relationship is not accounted for in the present work. Neglecting the relation
between melting temperature and pressure is thought to lead to the poor results of the experiments in group (iii).

From Table 2 it is evident that MTS, PTW and SR-4 models have similar performance and are accurate in
computing the final length of the deformed sample for temperature groups (i) and (ii). SR-2 and SR-3 perform
reasonably well at lower strain rates but start to be inaccurate for high initial velocities, U0 > 200 m/s. The reason
of this inaccuracy is that the stress–strain data used to develop the models have a gap between ε̇ p > 1 · 105 and
ε̇ p < 1 · 108. Final profile of the recovered sample is compared to the numerical simulations (MTS, PTW and SR-4
only) for shots 26, 52, and 61 in Figs. 9–11, respectively. The numerical results obtained with the different strength
models are in good agreement with each other and close to the experimental profiles.

Finally, contour plots of temperature and accumulated plastic strain are shown for test 61 in Figs. 12 and 13.
Temperatures and plastic strains computed by MTS, PTW and SR-4 in the final state are remarkably similar (difference
in ε p

≈ 3%). It should be underlined that due to the numerical treatment of the terms ln(ε p) and ln(ε̇ p) appearing
in the strength models (see Section 5) the minimum accumulated plastic strain is not zero, as it would be expected.
Nonetheless, the value is three orders of magnitude smaller than the maximum ε p which makes the adopted solution
adequate for the case in study.

For experiments performed at very high temperatures, group (iii), all the strength models fail, see Table 2.
Nonetheless, it is quite interesting to observe the results of the SR-3 model; it seems to outperform all the other
models and one might conclude that the model is capable of representing the material behavior at high temperatures.
This result is fortuitous since no experimental data has been fed to the symbolic regression tool to justify this behavior.
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(a) MTS. (b) PTW. (c) SR-1.

(d) SR-2. (e) SR-3. (f) SR-4.

Fig. 7. Equivalent plastic strain, initial velocity 146 m/s at room temperature: (a) standard MTS model, (b) standard PTW model, (c) simplest
symbolic regression model, no expert knowledge, (d) strength model obtained from stress–strain data with additional expert knowledge, (e) Voce
hardening expression from symbolic regression, (f) Voce hardening from symbolic regression and expert knowledge on saturation stress.

SR-3 is an extremely good example of how data driven models can be misleading. Although this point will be touched
on more later, expert knowledge is still a vital component of model development.

Lastly, two remarks. (i) For several tests at room temperature two initial velocities are given in [43]: one measures
optically, Uopt

0 , and one from pin reading, Upin
0 . The maximum difference in the two values of initial velocity can

be as high as 7%. Therefore, when two values for U0 are given, the used value is the one belonging to the vector
{min([Uopt

0 , Upin
0 ]), max([Uopt

0 , Upin
0 ]), mean([Uopt

0 , Upin
0 ])} that gives the lowest average percent error on L for MTS,

PTW and SR-4. (ii) Numerical solutions that have a 2%–3% average error on L are considered accurate since the
experimental uncertainty has to be accounted for. Initial velocity and temperature for tests 56 and 61 in Table 2 are
practically identical and the difference in final length is ≈2%. Although a 2% error is exceptionally good from the
experimental point of view, it reduces the confidence of the results obtained in the validation process.

7. Conclusions and future works

While the results obtained with symbolic regression are so far still preliminary, the application of machine learning
to modeling flow stress of material under extreme conditions shows great promise, obtaining, in a few trials, models
whose performance is comparable to the current state-of-the-art in literature. Besides the quick prototyping, this
technique shows several other advantages: it is always possible to guide the learning process by adding a few expert-
designated artificial points to the training dataset, thus avoiding undesirable behavior in parts of the variables’ space
for which no experimental data is available; and, from a numerical point of view, model development can again be
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(a) MTS. (b) PTW. (c) SR-1.

(d) SR-2. (e) SR-3. (f) SR-4.

Fig. 8. Temperature, initial velocity 146 m/s at room temperature: (a) standard MTS model, (b) standard PTW model, (c) simplest symbolic
regression model, no expert knowledge, (d) strength model obtained from stress–strain data with additional expert knowledge, (e) Voce hardening
expression from symbolic regression, (f) Voce hardening from symbolic regression and expert knowledge on saturation stress.

(a) MTS. (b) PTW. (c) SR-4.

Fig. 9. Computed profiles vs. experimental results for shot # 26: (a) standard MTS model, (b) standard PTW model, (c) Voce hardening from
symbolic regression and expert knowledge on saturation stress.

expertly guided by choosing appropriate building blocks, avoiding functions that might introduce excessive numerical
issues.

At the same time, as many other machine learning methods, symbolic regression presents clear limits. When no
experimental data or expert knowledge is available, the behavior of obtained models is highly unpredictable, and
unlikely to be rooted in solid physics. There is also a likelihood of models overfitting the training data, returning
good results only for a small part of the variables’ space: to avoid this issue, it is necessary to have a representative
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Table 2
Errors on L for the 37 shots in [43]; error averages are computed discarding the shots marked with *.

Shot # Initial velocity [m/s] Temperature [K] MTS PTW SR-2 SR-3 SR-4

32 109.0 295 0.50 0.88 1.36 0.78 −0.55
33 126.0 295 0.45 0.82 1.53 0.75 −0.84

109 138.0 295 −2.58 −2.29 −1.22 −2.17 −4.07
*23 148.0 295 9.60 9.77 11.08 10.14 8.21
108 165.0 295 1.49 1.59 3.83 2.57 −0.14
110 180.0 295 0.50 0.62 3.50 2.04 −1.31

24 181.0 295 2.03 2.14 5.02 3.57 0.22
111 213.0 295 0.58 0.39 5.06 3.41 −0.94

31 219.0 295 2.02 1.92 6.81 5.25 0.62
26 267.5 295 1.56 1.06 9.45 8.42 0.52
25 307.0 295 1.68 1.00 9.96 1.34 1.36
30 321.0 295 −1.54 −1.79 11.78 −17.96 −1.09
29 332.0 295 −4.79 −5.03 8.88 8.97 −4.28
27 348.5 295 −2.11 −2.44 −21.32 −42.28 −0.76
35 349.0 295 −1.88 −2.01 −6.18 −30.15 −0.53
28 354.0 295 −1.46 −1.79 −18.34 −53.71 0.05

*34 394.0 295 −10.68 −27.80 −76.09 −93.22 −48.45
*63 48.7 718 8.22 8.54 8.54 8.29 8.04

62 115.0 721 2.07 1.77 1.41 2.71 0.31
76 138.0 713 −1.45 −1.91 −2.21 −0.29 −3.77
60 142.0 717 4.35 3.88 3.56 5.57 2.05
55 145.0 703 1.23 0.73 0.49 2.50 −1.14
74 185.0 733 −0.46 −0.83 −2.17 2.72 −3.84
52 188.0 718 −2.48 −2.86 −3.88 0.94 −5.85
58 190.0 733 1.67 1.35 0.01 5.19 −1.73
64 191.0 725 −0.27 −0.59 −1.84 3.36 −3.68
57 206.0 724 −1.59 −1.92 −3.42 3.18 −5.42
75 208.0 743 2.34 2.20 0.18 7.29 −1.60
56 210.0 721 −2.23 −2.45 −4.04 2.90 −6.16
61 211.0 727 3.06 2.85 1.15 8.14 −0.72

*53 237.0 765 −13.73 −12.83 −17.77 −3.72 −18.97
81 127.0 1235 −19.50 −17.87 −31.31 −15.44 −29.48
77 135.0 1230 −9.84 −8.18 −21.96 −5.04 −19.75
82 155.0 1235 −15.53 −12.19 −32.60 −5.83 −28.24
79 157.0 1235 −18.26 −14.61 −36.14 −7.74 −31.57
83 178.0 1235 −29.46 −23.31 −56.46 −11.79 −47.18
78 181.0 1235 −20.33 −14.22 −46.22 −2.88 −37.17

Average errors, group (i) 1.68 1.72 7.62 12.22 1.15
Average errors, group (ii) 1.93 1.95 2.03 3.73 3.02
Average errors, group (iii) 18.82 15.06 37.45 8.12 32.23

(a) MTS. (b) PTW. (c) SR-4.

Fig. 10. Computed profiles vs. experimental results for shot # 52.
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(a) MTS. (b) PTW. (c) SR-4.

Fig. 11. Computed profiles vs. experimental results for shot # 61: (a) standard MTS model, (b) standard PTW model, (c) Voce hardening from
symbolic regression and expert knowledge on saturation stress.

(a) MTS, temperature [K]. (b) PTW, temperature [K]. (c) SR-4, temperature [K].

Fig. 12. Shot # 61, temperature at the final time: (a) standard MTS model, (b) standard PTW model, (c) Voce hardening from symbolic regression
and expert knowledge on saturation stress.

(a) MTS, ε p . (b) PTW, ε p . (c) SR-4, ε p .

Fig. 13. Shot # 61, equivalent plastic strain at the final time: (a) standard MTS model, (b) standard PTW model, (c) Voce hardening from symbolic
regression and expert knowledge on saturation stress.

training set. Moreover, symbolic regression will probably return completely different models for different materials,
limiting the re-usability of a result. Additionally, as EAs are stochastic in nature, there is no guarantee that two runs
of the algorithm on the same dataset will provide exactly the same results, introducing reproducibility problems. It
is important to notice that, while able to satisfyingly predict results, the models found through symbolic regression
do not necessarily capture the real physics underlying a phenomenon. Therefore, relevant limitations to extrapolating
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Table A.3
Subset of building blocks in Eureqa Formulize that were used during the experiments. W is the arbitrary weight
associated to each block that the tool uses to compute the complexity of each candidate solution.

Building block W Building block W Building block W

Basic Trigonometry Exponential
Constant 1 Sine 3 Exponential 4
Integer constant 1 Cosine 3 Natural logarithm 4
Addition 1 Tangent 4 Factorial 4
Subtraction 1 Squashing Power 5
Multiplication 1 Logistic func. 4 Square root 4
Division 2 Step func. 4
Negation 1 Sign func. 4
Other Gaussian func. 4
Minimum 4 Hyperbolic tan 4
Maximum 4 Error func. 4

Compl. errf 4

beyond datasets exist. Further analyses are needed to fully assess the convenience of symbolic regression for problems
of this kind. Tests on other materials could provide more information in this regard.

When dealing with white-box machine learning algorithms, where experts can manually review the results, a
recurring question is whether or not it is possible for an algorithm to obtain the same expression of a reference
human-designed model, for the same phenomenon. For the case study considered in this work, it is almost natural to
try and find the common parts between the expressions obtained through symbolic regression and established strength
models such as MTS and PTW. Although the question is motivated by the desire of understanding the physics behind
the data, it is also true that, from a mathematical point of view, this is a classical ill-posed inverse problem. There
is no evidence that the current available strength models, MTS or PTW to mention a few, are the absolutely optimal
representation of the physics for this phenomenon, and thus it is in principle possible to find an infinite number of
equivalently good approximations of the reality, that ultimately have no common parts. It is also important to notice
that human-devised strength models are designed to be as general as possible, while the equations obtained through
symbolic regression represent a sort of overfitting on copper data. Again, further experiments on different materials
could perhaps provide more evidence to answer this interesting question.
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Appendix A

Datasets

The datasets used in the machine learning process are taken from the literature. Details of each dataset are reported
hereafter, along with their original source. Data points are either taken from tables, or graphically extracted from
figures.

Dataset D1
This first dataset presents six curves, featuring 245–313 points each, for values of ε̇ p varying in [0.001, 0.1,

2000 ] s−1, and temperatures ranging from 298 to 873 K [32,45].

Dataset D2
Dataset D2 is extracted from Fig. 3 in [16]. A single experiment is reported, with 25 points at low temperature,

T = 76 K, and ε̇ p
= 0.001 s−1.
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Table A.4
Percent errors, with respect to the experimental data, for the different considered models. For each curve in the datasets the best fitting is highlighted
in bold.

Set ε̇ p [s−1] T [K] Max percent relative error Average percent relative error
PTW SR-1 SR-2 SR-3 SR-4 PTW SR-1 SR-2 SR-3 SR-4

D1-1 2.00 · 103 298 8.32 4.34 9.03 5.65 8.39 3.94 1.19 3.82 2.60 5.20
D1-2 2.00 · 103 473 7.23 5.10 5.32 7.56 8.04 4.01 0.92 1.94 2.13 2.58
D1-3 1.00 · 10−1 298 6.18 1.46 2.68 6.79 4.47 2.35 0.32 0.66 5.20 1.50
D1-4 1.00 · 10−3 298 3.33 0.80 2.70 4.73 5.58 1.40 0.25 0.61 1.72 2.88
D1-5 2.00 · 103 673 10.58 7.44 7.52 14.59 13.92 7.00 2.64 2.19 2.12 2.30
D1-6 2.00 · 103 873 14.06 8.61 5.68 23.69 22.89 7.30 1.89 1.74 3.12 2.78

D2-1 1.00 · 10−3 76 11.94 15.84 5.97 32.82 34.50 7.16 10.68 2.77 11.21 11.53

D3-1 1.40 · 10−4 295 12.96 6.35 8.62 10.68 6.28 8.65 5.44 6.67 5.98 1.58
D3-2 1.50 · 10−2 295 14.92 10.06 17.31 21.27 23.61 7.09 6.04 6.82 5.44 7.78
D3-3 8.20 · 10−1 295 8.35 16.60 12.04 8.15 16.40 5.68 5.49 6.69 2.70 8.87
D3-4 8.10 · 101 295 10.93 6.43 8.40 2.65 10.73 10.34 3.27 6.29 1.60 8.27
D3-5 1.80 · 103 295 7.42 11.25 10.45 11.85 10.21 5.39 3.89 3.87 2.99 2.23
D3-6 5.00 · 103 295 8.05 7.39 4.14 5.55 2.80 6.61 5.77 2.48 5.14 2.37
D3-7 9.50 · 103 295 9.20 13.06 5.51 10.97 2.88 8.41 12.24 4.61 10.12 2.38

D4-1 8.48 · 108 300 31.82 26.59 39.80 3.68 43.91 31.82 26.59 39.80 3.68 43.91
D4-2 4.77 · 109 300 22.88 55.56 9.46 9.14 14.19 22.88 55.56 9.46 9.14 14.19
D4-3 1.48 · 1010 300 23.67 66.31 0.57 5.96 4.07 23.67 66.31 0.57 5.96 4.07
D4-4 3.51 · 1010 300 30.54 71.35 2.31 5.40 2.13 30.54 71.35 2.31 5.40 2.13
D4-5 6.36 · 1010 300 34.30 74.59 4.03 2.99 0.05 34.30 74.59 4.03 2.99 0.05
D4-6 1.09 · 1011 300 40.66 76.75 3.39 2.45 0.31 40.66 76.75 3.39 2.45 0.31
D4-7 1.88 · 1011 300 46.55 78.84 3.05 1.13 0.09 46.55 78.84 3.05 1.13 0.09
D4-8 2.74 · 1011 300 54.50 79.70 0.31 2.66 2.41 54.50 79.70 0.31 2.66 2.41
D4-9 3.79 · 1011 300 59.86 80.64 1.05 2.94 3.30 59.86 80.64 1.05 2.94 3.30
D4-10 4.96 · 1011 300 63.17 81.53 1.45 2.51 3.24 63.17 81.53 1.45 2.51 3.24

D5-1 6.60 · 10−2 873 24.16 187.87 34.79 67.05 82.07 21.40 74.43 22.26 45.60 60.40
D5-2 9.60 · 102 873 18.29 28.10 21.88 29.71 22.40 11.93 13.63 11.08 12.25 5.81
D5-3 1.25 · 103 873 14.40 25.36 20.58 23.84 18.86 10.90 14.52 11.32 9.59 5.51
D5-4 1.80 · 103 873 12.49 30.01 22.00 13.51 11.80 9.21 13.76 9.02 4.56 3.24
D5-5 2.30 · 103 873 12.39 31.57 21.30 5.06 5.61 10.76 15.75 6.66 2.41 2.61
D5-6 6.60 · 10−2 1023 19.18 430.90 45.55 57.40 80.40 16.96 158.80 29.08 37.23 56.73
D5-7 9.60 · 102 1023 20.03 53.69 15.32 18.53 9.91 16.53 19.01 5.43 9.80 5.86
D5-8 1.25 · 103 1023 19.98 67.18 19.60 15.83 10.63 17.37 24.95 6.17 8.68 6.77
D5-9 1.80 · 103 1023 18.52 79.44 22.46 14.80 13.18 14.57 33.33 7.30 9.33 8.57
D5-10 2.30 · 103 1023 18.13 83.45 22.99 12.84 14.26 12.84 39.15 8.52 8.63 9.39
D5-11 6.60 · 10−2 1173 5.85 866.76 55.34 16.09 31.81 4.23 322.75 34.73 9.82 25.79
D5-12 9.60 · 102 1173 21.57 115.90 11.20 21.54 10.56 19.81 36.15 6.29 11.61 6.48
D5-13 1.25 · 103 1173 23.60 137.41 14.48 19.96 13.24 19.33 46.77 8.81 11.37 8.38
D5-14 1.80 · 103 1173 22.68 171.00 21.39 18.36 17.62 16.13 65.53 11.91 11.74 11.30
D5-15 2.30 · 103 1173 19.12 169.03 24.40 16.47 19.85 13.64 75.16 14.60 11.01 13.33

D1, average 8.28 4.62 5.49 10.50 10.55 4.33 1.20 1.83 2.81 2.87
D2, average 11.94 15.84 5.97 32.82 34.50 7.16 10.68 2.77 11.21 11.53
D3, average 10.26 10.16 9.50 10.16 10.42 7.45 6.02 5.35 4.85 4.78
D4, average 40.80 69.19 6.54 3.89 7.37 40.80 69.19 6.54 3.89 7.37
D5, average 18.02 165.18 24.89 23.40 24.15 14.37 63.58 12.88 13.58 15.34

Dataset D3
Dataset D3, from [32], contains strain–stress data for values of ε̇ p ranging from 0.00014 s−1 to 9500 s−1, and

T = 295 K. In this case, all the relevant information can be found in Table 1 of the corresponding paper, for a total of
seven experiments, with 5–7 points each.
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Fig. A.14. Comparison of SR-3 and SR-4 with training data for ε p
= ε

p
f = 0.23 and T = 300 K.

Dataset D4
Dataset D4 features high values of ε̇ p [8 · 108, 5.53 · 1011] s−1 at T = 300 K, taken from [16]. Data is graphically

sampled from Figure 9 of the reference, for a total of 10 experiments, with only one point each. It is worth remarking
that due to the logarithmic axes employed in the original figure, the data can be affected by large errors.

Dataset D5
Dataset D5 is found in [46]. Data is graphically extracted from the curves presented in Figures A, B and C of the

paper, for a total of 15 experiments with 15–20 points each. In the reported cases, ε̇ p assumes values ranging from
0.066 to 2300 s−1, for three values of T : 873, 1023 and 1173 K.

Dataset D6
Dataset D6 is collected from curves found in [47,48], in particular from Figures A and B, for a total of 10

experiments, with 8–30 points each. The report, however, presents several important differences in the experimental
method with regard to the previous datasets, so after an in-depth analysis, this last block of data was discarded.

Formula building blocks

The commercial tool used in the ML experiments, Eureqa Formulize, can use different formula building blocks
to create candidate equations, as described in Section 2. Building blocks used in the experiments are reported in
Table A.3.

Comparison on the training set

While the validation of the candidate models on unseen data is illustrated in Section 6, results on the training
datasets are reported in this subsection. Table A.4 summarizes the maximum and average relative error per considered
dataset. For the i th belonging to an experimental set with numerosity N , the error ei is computed from

ei = |τmodel
i − τ

ref
i |,

where τ ref is the vector collecting the experimental stress and the model is one of the strength models described
in the previous sections. Note that MTS is not considered in this appendix because its formulation is based on
a history variable. The maximum relative error and average relative error in Table A.4 are respectively given by
max(e)/max(τ ref ) and

1
N

N
i=1

ei

max(τ ref )
.
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Interestingly, while model SR-1 is often the best on its training datasets, it generalizes poorly for unseen data
(dataset D4). From the physical point of view, it confirms that the interpolation of the thermally activated plasticity
does not extend to the overdriven-shock regime. Models SR-2, SR-3 and SR-4, on the other hand, provide good
results, and often outperform PTW error-wise. Nonetheless, good fit to the training data is not sufficient to ensure
good performance on the validation set. In this regard, when SR-2 is compared to SR-3, the former is more accurate
on the training set but the latter is the one that performs better on the validation test cases in Section 6. Finally, in
Fig. A.14 the training dataset used to compute τc for SR-3 and SR-4 is shown. This training set is built using data
from sets D1 to D5 interpolated at ε p

= 0.23. As explained in Section 4, SR-4 is obtained from an enriched dataset
in order to eliminate the plateau for ε̇ p > 1 · 104 s−1 that characterizes SR-3.
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