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aInstitut Elie Cartan de Lorraine, Université de Lorraine, Sphinx team, Inria Nancy-Grand Est, F-54506
Vandoeuvre-lès-Nancy Cedex, France

bSchool of Mathematics and Statistics, Carleton University, Ottawa, Canada, K1S 5B6
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Abstract

This paper is dedicated to the study of the computational performance of basic and efficient
pseudo-spectral methods [9, 20, 27, 28] and of a more recent Quantum Lattice Boltzmann-
like approach [13, 15, 26, 32, 35] for solving the Time Dependent Dirac Equation (TDDE)
modeling the interaction of classical electromagnetic fields with quantum relativistic parti-
cles.
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1. Introduction

In this work, we are interested in the simulation of the relativistic dynamics of an electron
of mass m coupled to an external classical electromagnetic field. The time-dependent Dirac
equation under consideration reads [24]

i∂tψ(t,x) = Hψ(t,x) (1)

where ψ(t,x) is the time and coordinate dependent four-spinor, and H is the Hamiltonian
operator. The latter is given by

H = α · [cp− eA(t,x)] + βmc2 + I4V (t,x), (2)

where the momentum operator is p = −i∇. More specifically, the Dirac equation under
consideration reads [24]

i∂tψ(t,x) =

{
αx

[
−ic∂x − eAx(t,x)

]
+ αy

[
−ic∂y − eAy(t,x)

]
+αz

[
−ic∂z − eAz(t,x)

]
+ βmc2 + I4V (t,x)

}
ψ(t,x), (3)
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where ψ(t,x) ∈ L2(R3) ⊗ C4 is the time and coordinate (x = (x, y, z)) dependent four-
spinor. In (3), A(t,x) represents the three space components of the electromagnetic vector
potential, V (t,x) = eA0(t,x) + Vnuc.(x) is the sum of the scalar and interaction potentials,
e is the electric charge (with e = −|e| for an electron), I4 is the 4 × 4 unit matrix and
α = (αγ)γ=1,··· ,4, β are the Dirac matrices. In this work, the Dirac representation is used,
where

αγ =

[
0 σγ
σγ 0

]
, β =

[
I2 0
0 −I2

]
. (4)

The σγ are the usual 2× 2 Pauli matrices defined as

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
and σz =

[
1 0
0 −1

]
, (5)

while I2 is the 2× 2 unit matrix. Note that the light velocity c and fermion mass m are kept
explicit in Eq. (2), allowing to adapt the method easily to natural or atomic units (a.u.).

Throughout this work, we consider the single particle Dirac equation which is relevant for
calculations describing Quantum Electrodynamics (QED) processes coupled to strong clas-
sical fields (e.g. particle-antiparticle pair creation from very high intensity electromagnetic
classical fields [14]). The purpose of this paper is not to derive original numerical solvers for
the Dirac equation, or to provide simulations of specific quantum relativistic problems, but to
compare the efficiency of two existing simple but accurate methods for solving the Dirac equa-
tion. Although pseudo-spectral methods are used for decades for solving the Dirac equation,
for instance for Graphene or pair production simulations [1, 9, 10, 11, 18, 31, 33, 36], re-
cently a real space method [13, 15, 26, 32] was established to address these physical questions.
This real space method, which has closed connection with the Quantum Lattice Boltzmann
method [12, 35] is simply a finite-difference method at CFL = 1 [34], for solving a first
order linear hyperbolic system with eigenvalues of equal magnitude. This method which is
based on the Method of Characteristics (MC) will be referred in this paper to as a MC-based
method. Thanks to its simplicity, the MC-based method is shown to be highly scalable and
much more efficient sequentially and in parallel than pseudo-spectral methods for a fixed
number of degrees of freedom (dof). Its main weakness is however the strict condition which
is imposed on the space step. In comparison, the pseudo-spectral methods are much more
flexible regarding the choice of the spatial discretization step, that is the number of dof.
In summary, for physical problems involving very small space scales, the MC-based will be
shown to be much more efficient than pseudo-spectral methods. This will be the case for in-
stance for problems involving heavy ions, or for intense and short laser-molecule interactions.
In the opposite, when a fine spatial resolution is not required pseudo-spectral methods will
be shown to be more efficient thanks to the possibility to select much coarser meshes, while
keeping a very good accuracy (spectral convergence). Naturally, other types of methods
exist for solving the Dirac equation, such as variational methods [16, 17, 19, 21, 25, 37] or
Krylov-type methods [8], but these are not discussed in this paper, which focuses on simple
and efficient techniques.
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The paper is organized as follows. In Section 2 (resp. Section 3), we recall the basics of the
MC-based (resp. basic pseudo-spectral) method for the Dirac equation modeling the inter-
action of an electron with and external electromagnetic field. We next present in Section
4, an overview of the parallel computing aspects. In Section 5 (resp. Section 6), a series of
sequential and parallel experiments is presented to illustrate the strengths and weaknesses of
each method in the one-dimensional (resp. multi-dimensional) case. We conclude in Section
7.

2. Method of characteristic-based TDDE Solver in cartesian coordinates

2.1. Operator Splitting (first order)

We here recall the principle of operator splitting for the computation of an approximate
solution to Eqs. (1) and (2) at time tn+1, and denoted by ψn+1(x). The initial condition at
time tn is assumed given by

ψ(tn,x) = ψn(x). (6)

As previously discussed in [26], this can be done [13, 15] with an operator splitting scheme.
We first define the operators

A = −icαx∂x (7)

B = −icαy∂y (8)

C = −icαz∂z (9)

D = βmc2 + I4V (t,x)− eα ·A(t,x). (10)

The following splitting in Cartesian coordinates is considered [26] (the x-dependence in the
wavefunction argument for notational convenience):

i∂tψ
(1)(t) = Aψ(1)(t), ψ(1)(tn) = ψn, t ∈ [tn, tn+1) (11)

i∂tψ
(2)(t) = Bψ(2)(t), ψ(2)(tn) = ψ(1)(tn+1), t ∈ [tn, tn+1) (12)

i∂tψ
(3)(t) = Cψ(3)(t), ψ(3)(tn) = ψ(2)(tn+1), t ∈ [tn, tn+1) (13)

i∂tψ
(4)(t) = Dψ(4)(t), ψ(4)(tn) = ψ(3)(tn+1), t ∈ [tn, tn+1) (14)

and ψn+1 = ψ(4)(tn+1) (15)

where the upper subscript in parenthesis on the wavefunction denotes the splitting step
number. Note that this simple splitting scheme leads to an error that scales in O(∆t2),
corresponding to a first-order numerical scheme (for more details on the analysis of the
method, see [26]). The method consists of solving each equation independently with an
initial condition given by the solution of the previous step. Note also that for every step,
the time increment is identical, i.e. ∆t ≡ tn+1 − tn. This splitting approach will be used in
this paper with both the MC-based and pseudo-spectral-methods.
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2.2. Method of characteristics (MC) based method

In this section, we summarize the MC-based method which was proposed in [26, 13]. Eqs.
(11) to (13) can actually be solved independently using the method of characteristics (MC).
We first diagonalize the Dirac matrix, thus decoupling the spinor components. The resulting
equation has a form similar to set of advection equations (linear first-order in time and space
derivative). The method of characteristics is then used to find an explicit analytical solution.
Finally, the solution is transformed back to the original Dirac matrix representation. The
explicit solution to these equations and computational details can be found in [13], as well
as [15] in the cylindrical coordinates. The final result for the solutions of Eqs. (11) to (13)
is

ψ(1)(tn+1,x) =
1

2

{
[I4 + αx]ψ

n(x− c∆t, y, z)

+[I4 − αx]ψn(x+ c∆t, y, z)

}
(16)

ψ(2)(tn+1,x) =
1

2

{
[I4 + αy]ψ

(1)(tn+1, x, y − c∆t, z)

+[I4 − αy]ψ(1)(tn+1, x, y + c∆t, z)

}
(17)

ψ(3)(tn+1,x) =
1

2

{
[I4 + αz]ψ

(2)(tn+1, x, y, z − c∆t)

+[I4 − αz]ψ(2)(tn+1, x, y, z + c∆t)

}
(18)

The space domain is then discretized in cubic elements with edges of length a = ∆x =
∆y = ∆z, inside which the wavefunction is constant (Q0-type elements). The discretized
wavefunction and electromagnetic field are then written as

ψh(t, i) =
N∑
m=1

1m(i)ψ(t, x̄m) (19)

Ah(t, i) =
N∑
m=1

1m(i)A(t, x̄m) (20)

where N = NxNyNz is the total number of elements, ψh(t, i) and Ah(t, i) are the discretized
wavefunction and electromagnetic field (i ≡ (i, j, k) ∈ Z3 are indexing the volumes), the
function 1m(i) is equal to 1 in volume m indexed by i and is zero outside, while x̄m is the
vector pointing to the center of volume m with the following components:

x̄m =

(
xmin + (i+

1

2
)a, ymin + (j +

1

2
)a, zmin + (k +

1

2
)a

)
(21)

where xmin, ymin, zmin are the lower domain boundary coordinates. The constraint c∆t = a
(with space step ∆t and space step a) has to be satisfied for stability and accuracy reasons
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[26]. It then allows to write ψ(x± c∆t)→ ψh(i±K), with K ∈ N∗. This discretized scheme
is then exact in each dimension (up to errors coming from the projection of the grid) for any
K ∈ N∗ such that c∆t = Ka. Finally Eqs. (16) to (18) become for K = 1

ψn1
h (i) =

1

2

{
[I4 + αx]ψ

n
h(i− 1, j, k) + [I4 − αx]ψnh(i+ 1, j, k)

}
(22)

ψn2
h (i) =

1

2

{
[I4 + αy]ψ

n1
h (i, j − 1, k) + [I4 − αy]ψn1

h (i, j + 1, k)

}
(23)

ψn3
h (i) =

1

2

{
[I4 + αz]ψ

n2
h (i, k, k − 1) + [I4 − αz]ψn2

h (i, j, k + 1)

}
(24)

ψn+1
h (i) = exp

[
−iβmc2∆t− iṼ n

h (i) + iα · Ãh(i)
]
ψn3
h (i) (25)

where

Ãn(x) = e
∫ tn+1

tn
dτA(τ,x) ≈ An(x)∆t

Ṽ n(x) = e
∫ tn+1

tn
dτV (τ,x) ≈ V n(x)∆t.

(26)

The constraint a = c∆t/K is very restrictive and makes sense when A, V (including Vnuc.)
or ψ(·, 0) possess wavenumbers of the order of 1/mc. In Eq. (14), the solution is simply
given by

ψ(4)(tn+1,x) = T exp

[
−i
∫ tn+1

tn

dτ
[
βmc2 − eα ·A(τ,x)

]]
× exp

[
−ie

∫ tn+1

tn

dτV (τ,x)

]
ψ(3)(tn+1,x), (27)

where T is the time-ordering operator. In practice it is shown in [13], that the solution in
Eq. (25) can be rewritten as:

ψn+1
h (i) = U(i) exp

[
−iṼ n

h (i)
]
ψn3
h (i) (28)

where U(i) is a matrix given explicitly by

U(i) ≡
c(A)− imc

2∆t
A

s(A) 0 i
Ãh,z(i)

A
s(A)

[iÃh,x(i)+Ãh,y(i)]

A
s(A)

0 c(A)− imc
2∆t
A

s(A)
[iÃh,x(i)−Ãh,y(i)]

A
s(A) −i Ãh,z(i)

A
s(A)

i
Ãh,z(i)

A
s(A)

[iÃh,x(i)+Ãh,y(i)]

A
s(A) c(A) + imc

2∆t
A

s(A) 0
[iÃh,x(i)−Ãh,y(i)]

A
s(A) −i Ãh,z(i)

A
s(A) 0 c(A) + imc

2∆t
A

s(A)

 (29)

and where

c(A) ≡ cos(A) , s(A) ≡ sin(A) and A ≡
√

(mc2∆t)2 + Ãh(i) · Ãh(i). (30)

5



This method was implemented and tested in [13, 15]. Although very robust, linear and very
easy to efficiently implement in parallel (see Sections 5 and 6), the restriction on the spatial
step makes it irrelevant in several physical configurations.

Notice finally, that the MC-method can also be implemented in cylindrical coordinates
with for instance azimuthal symmetry, as proposed in [15]. In that case, the equation is again
split in r and z, and the MC-based method can still be implemented in the z-direction, while
in the r-direction a Poisson equation solver is used.

Regarding the mathematical analysis, we refer to [26], where the authors study the con-
vergence analysis of the MC-based method coupled with a Maxwell equation Q1-finite ele-
ment solver. For the MC-based method only, it is easy to show that it is diffusion-less in
any dimension, and dispersion-less only in one dimension. The dispersion issue in higher
dimension was considered in [23], where the authors used staggered grids to reduce the nu-
merical dispersion. Let us remark that the boundary condition problem is not discussed in
this paper, but we refer to [3, 4, 30], for the interested reader.

Notice that in the MC-based method, the main numerical error comes from the operator
splitting in four operators. We recall that splitting ψt = (A+B +C +D)ψ (with ψ(·, tn) =
ψn(·)), where A, B, C, D are four spatial differential or algebraic operators, involves the
combination of four equations ψt = Aψ, ψt = Bψ, ψt = Cψ, ψt = Dψ. For a second order
splitting, we get the following approximation:

‖
(
e∆t(A+B+C+D) − e∆tA/4e∆tB/2e∆tA/4e∆tC/2e∆tDe∆tC/2e∆tA/4e∆tB/2e∆tA/4

)
ψn‖(L2)4 = O(∆t3)(31)

In other words at each time iteration, an error in ∆t3 is produced by the above time-splitting.
The splitting errors will also be produced in the pseudo-spectral methods (except for the
so-called Unsplit-Pseudo-Spectral method) presented below.

3. Pseudo-spectral (PS) methods

The main issue with the finite volume/difference approach proposed in [13] for discretizing
the Dirac equation on the cartesian grid, or in the z-direction in cylindrical coordinates
[15], is due to a combination of a stability/`2-conservation constraint (CFL = 1), and a
physical constraint (∆t . 1/mc2). The consequence is that, in order to avoid numerical
diffusion, we need to choose a very small space step (∆z . 1/mc). As recalled above, this
restriction is only acceptable when the particle is subject to a classical electromagnetic field
with very high wavenumbers, or when the interaction potential or the initial data possess
small spatial scales. Although, the corresponding approach is very attractive in particular
from a parallel computing viewpoint, it then suffers from a need of a very high number of
gridpoints or finite volumes, or more generally of degrees of freedom (dof). In this section, we
present simple alternatives based on pseudo-spectral methods, which simultaneously allow
for i) preserving the high accuracy of the generalized transport equation solver, ii) the high
scalability of the overall solver, and finally iii) to release the constraint on the size of the
space step that is to significantly reduce of the overall number of degrees of freedom. The
methodology which is now detailed is also valid in cylindrical coordinates in the z-direction
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and in cartesian coordinates in the (r, θ) directions. It basically consists of solving the
corresponding hyperbolic systems by using one-dimensional FFTs, generalizing the method
applied now to the generic one-directional scalar transport equation in 3d, ut(t, x, y, z) +
cux(t, x, y, z) = 0. The solution to this equation can indeed be simply computed by solving
the following ordinary differential equation:

ut(t, ξ, y, z) + cF−1
x

(
iξFx

(
u(t, ξ, y, z)

))
= 0

where Fx is the Fourier transform with respect to x, and ξ denotes the co-variable of x.
Naturally, this will be performed numerically using a discrete Fourier transform.
More generally, we consider for convenience the 3-dimensional system in cartesian coordi-
nates, for γ = x, y, z in the domain Ω = [−ax, ax, ]× [−ay, ay]× [−az, az]:

i∂tψ(t) = −icαγ∂γψ(t), ψ(tn) = ψn, t ∈ [tn, tn+1)

and we use the same notation as [2]. We first diagonalize αγ = ΠγDγΠ
T
γ where

Dγ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

The matrices Πγ are defined as follows.

Πx =
1
√

2


0 1 1 0
1 0 0 −1
1 0 0 1
0 1 −1 0

 ,Πy =
1
√

2


0 −i −i 0
1 0 0 1
−i 0 0 i

0 1 −1 0

 ,Πz =
1
√

2


1 0 0 −1
0 −1 −1 0
1 0 0 1
0 1 −1 0

 .

We set φ := ΠT
γψ, which then satisfies

i∂tφ(t) = −icDγ∂γφ(t), φ(tn) = ΠT
γψ

n, t ∈ [tn, tn+1)

We denote the grid-point set by

DNx,Ny ,Nz =
{
xk1,k2,k3 = (xk1 , yk2 , zk3)

}
(k1,k2,k3)∈ONxNyNz

with

ONxNyNz =
{

(k1, k2, k3) ∈ N3, : h = 0, · · · , Nx − 1; k = 0, · · · , Ny − 1; ` = 0, · · · , Nz − 1
}
.

Then, we define

xk1+1 − xk1 = hx = 2ax/Nx, yk2+1 − yk2 = hy = 2ay/Ny, zk3+1 − zk3 = hz = 2az/Nz.

The corresponding discrete wavenumbers are defined by ξ := (ξp, ξq, ξr), where ξp = pπ/ax
with p ∈ {−Nx/2, · · · , Nx/2 − 1}, ξq = qπ/ay with q ∈ {−Ny/2, · · · , Ny/2 − 1} and ξr =
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rπ/az with r ∈ {−Nz/2, · · · , Nz/2 − 1}. Then, we can define the partial Fourier pseudo-

spectral approximations φ̃(`) with ` ∈ {1, 2, 3, 4}, in the x, y- and z-directions

φ̃(`)(t, x, y, z) =
1

Nx

∑Nx/2−1
p=−Nx/2

̂̃
φ

(`)
p (t, y, z)eiξp(x+ax)

φ̃(`)(t, x, y, z) =
1

Ny

∑Ny/2−1

q=−Ny/2

̂̃
φ

(`)
q (t, x, z)eiξq(y+ay)

φ̃(`)(t, x, y, z) =
1

Nz

∑Nz/2−1
r=−Nz/2

̂̃
φ

(`)
r (t, x, y)eiξr(z+az)

The Fourier coefficients are defined as follows, where we denote φ̃
(`)
k1

(t, y, z) = φ̃(`)(t, xk1 , y, z),

φ̃
(`)
k2

(t, x, z) = φ̃(`)(t, x, yk2 , z) and φ̃
(`)
k3

(t, x, y) = φ̃(`)(t, x, y, zk3).
̂̃
φ

(`)
p (t, y, z)eiξp(x+ax) =

∑Nx−1
k1=0 φ̃

(`)
k1

(t, y, z)e−iξp(xk1
+ax)̂̃

φ
(`)
q (t, x, z)eiξq(y+ay) =

∑Ny−1
k2=0 φ̃

(`)
k2

(t, x, z)e−iξq(yk2
+ay)̂̃

φ
(`)
r (t, x, y)eiξr(z+az) =

∑Nz−1
k3=0 φ̃

(`)
k3

(t, x, y)e−iξr(zk3
+az)

We finally define the approximate first-order partial derivatives

∂xφ
(`)(tn,xk1,k2,k3) ≈

{
[[∂x]]φ̃

(`)
}
k1,k2,k3

:=
1

Nx

∑Nx/2−1
p=−Nx/2

iξp
̂(
φ̃

(`)
k2,k3

)
p
eiξp(xk1

+ax)

∂yφ
(`)(tn,xk1,k2,k3) ≈

{
[[∂y]]φ̃

(`)
}
k1,k2,k3

:=
1

Ny

∑Ny/2−1

q=−Ny/2
iξq

̂(
φ̃

(`)
k1,k3

)
q
eiξq(xk2

+ay)

∂zφ
(`)(tn,xk1,k2,k3) ≈

{
[[∂z]]φ̃

(`)
}
k1,k2,k3

:=
1

Nz

∑Nz/2−1
r=−Nz/2

iξr
̂(
φ̃

(`)
k1,k2

)
r
eiξr(xk3

+az)

In the following, the index h will be used (e.g. in φnh =
{
φnk1,k2,k3

}
k1,k2,k3

) to denote a spectral

approximation to a given wavefunction (e.g. φn). This discretization not only allows to
select the spatial step as large as wanted, but it also allows to preserve the very high spatial
accuracy, the parallel computing structure and the scalability of the split method developed
in [13].

In the following subsections, we propose different pseudo-spectral methods by using the
formalism that presented above.

3.1. Classical FFT-method

It has to be noticed that the pseudo-spectral method which will be presented below, differs
from the classical Fourier-type method, which typically requires a splitting of the equation
described in this subsection. The equation is first split in [−ax, ax, ] × [−ay, ay] × [−az, az]
using (7), (8), (9), (10). The first order splitting from tn, tn+1, reads as follows.
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1. First step: integration of the source from tn to tn+1.

ψn1
h = T exp

[
−i
∫ tn+1

tn
dτ [βmc2 − eα ·Ah(τ)]

]
× exp

[
−ie

∫ tn+1

tn

dτVh(τ)

]
ψnh .

This is performed using the time-ordering operator.

2. Second step: integration of the generalized transport equation in Fourier space. One
sets φn1

h := ΠT
xψ

n1
h , and solve

∂tφ+ Λx∂xφ = 0

basically by discretizing in space: φ(tn+1, ·) = F−1
x

(
e−iξ∆tΛxFx(φ)

)
, where Fx is the

Fourier transform in the x-direction that is for ` = 1, · · · , 4

φ
(`),n2

h =
1

Nx

∑Nx/2−1
p=−Nx/2

(
e−iξp∆tλ

(x)
`
∑Nx−1

k1=0 φ
(j),n1

h,k1
e−iξp(xk1

+ax)
)
eiξp(x+axj )

where λ
(x)
` is the `th eigenvalues of Λx.

3. Similarly one computes

φ
(`),n3

h =
1

Ny

∑Ny/2−1

q=−Ny/2

(
e−iξq∆tλ

(y)
`
∑Ny−1

k2=0 φ
(`),n∗

2
h,k2

e−iξq(yk2
+ay)

)
eiξq(y+ayj )

where φ
n∗

2
h = ΠT

y Πxφ
n2
h and finally

φ
(`),n+1
h =

1

Nz

∑Nz/2−1
r=−Nz/2

(
e−iξr∆tλ

(z)
`
∑Nz−1

k3=0 φ
(`),n∗

3
h,k3

e−iξr(zk3
+az)

)
eiξr(z+azj )

where φ
n∗

3
h = ΠT

z Πyφ
n3
h .

Although this approach is classical and allows for a very accurate and fast approximation
of each split equation, it also systematically necessitates a splitting of the TDDE, which
to a certain extent limits its interest. In the following this method will be referred as the
pseudo-spectral FFT-method. Alternatively, it is possible to directly apply 3d FFTs.

3.2. SPS-scheme

We here describe the numerical pseudo-spectral method for solving the split multi-
dimensional TDDE in cartesian coordinates (3). It will be referred as the (split-pseudo-
spectral) SPS-method. As proposed before, this will be performed by splitting the TDDE
into four time dependent systems (7), (8), (9) and (10).
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1. First step: integration of the generalized transport equation in Fourier space in the
x-direction. One sets φnh := ΠT

xψ
n
h , and the system

∂tφ+ cΛx∂xφ = 0, φ(tn, ·) = ΠT
xψ(tn, ·)

is approximately solved by

φn1
h = φnh − c∆tΛx[[∂x]]φ̃

n
h.

We then deduce ψn1
h = Πxφ

n1
h . Notice that it is possible to use a higher order dis-

cretization in time, such as φn
∗

h = φnh − c∆tΛx[[∂x]]φ̃
n
h

φn1
h = φnh − c

∆t

2
Λx

(
[[∂x]]φ̃

n
h + [[∂x]]φ̃

n∗

h

)
.

The corresponding operator is denoted by Px(∆t).
2. Second step: integration of the generalized transport equation in Fourier space in the
y-direction

∂tφ+ cΛy∂yφ = 0.

We set φ
n∗

1
h := ΠT

y ψ
n1
h , and we solve

φn2
h = φ

n∗
1
h −∆tΛy[[∂y]]φ̃

n∗
1
h .

We then deduce ψn2
h = Πyφ

n2
h .

3. Third step: setting φ
n∗

2
h := ΠT

z ψ
n2
h we apply the same procedure in the z-direction, and

deduce ψn3
h . The corresponding operator is denoted by Pz(∆t).

4. Last step: integration of the source from tn to tn+1.

ψn+1
h = T exp

[
−i
∫ tn+1

tn

dτ
[
βmc2 − eα ·Ah(τ)

]]
× exp

[
−ie

∫ tn+1

tn

dτVh(τ)

]
ψn3
h . (32)

The corresponding operator is denoted by Q(∆t).

This scheme is fully explicit, and can be compactly expressed as

ψn+1
h = Px(∆t)Py(∆t)Pz(∆t)Q(∆t)ψnh .

In practice, a splitting of order at least 2, should be implemented, which reads

ψn+1
h = Px

(∆t

4

)
Py
(∆t

2

)
Px
(∆t

4

)
Py
(∆t

2

)
Pz(∆t)Py

(∆t

2

)
Px
(∆t

4

)
Py
(∆t

2

)
Px
(∆t

4

)
ψnh .

Basically, compared to [13], the method of characteristics is replaced by a pseudo-spectral
method. In space, the convergence is spectral (FFT). In cartesian coordinates the above
methodology is applied in each split direction. In cylindrical coordinates, the Poisson solution
is required in the r-direction. Another important interest of this method is that the order
of accuracy of the splitting can easily be increased, unlike the MC-method which does not
allow for splitting of order higher than 2.
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3.3. UPS-scheme

The approach developed in this subsection is close to the SPS-method, but without
splitting the system. The corresponding method will be referred as the (Unsplit Pseudo-
spectral) UPS-method. By using an unsplit method, we avoid errors coming from the non-
commutation of the Dirac matrices. Notice however that the mass operator contribution
βmc2, cannot be solved analytically anymore, and then still requires a very small time step
or higher order discretization in time to accurately approximate its contribution. We first
present the methodology in one-dimension.
One-dimensional UPS-method.

i∂tψ(t, x) =
(
− icσx∂x +mc2σz + V (t, x)I2 − eA(t, x)σx

)
ψ(t, x) (33)

We introduce the notations

Λx =

(
1 0
0 −1

)
, Πx = ΠT

x =
1
√

2

(
1 1
1 −1

)
where σx = ΠxΛxΠ

T
x , φ = ΠT

xψ and

Γx(t, x) = ΠT
x

(
mc2σz + V (t, x)I2

)
ΠT
x =

(
V (t, x) mc2

mc2 V (t, x)

)
.

The TDDE is then rewritten

∂tφ+ cΛx∂xφ− ieA(t, x)Λxφ+ iΓx(t, x)φ = 0. (34)

In the UPS-formalism, we consider the semi-discrete in space system:

∂tφ+ cΛx[[∂x]]φ− ieA(t, x)Λxφ+ iΓx(t, x)φ = 0. (35)

Using the same notation as above, and denoting by ψh the discrete solution to (33) and φh
the one to (35), the numerical approximation reads

φn+1
h = φnh − c∆tΛx[[∂x]]φ̃

n
h + i∆t

(
eAnhΛx − Γnx,h

)
φnh.

Any higher order approximation of the equation is actually possible, such as the following
order-2 scheme.

φn
∗

h = φnh −∆tΛx[[∂x]]φ̃
n
h + i∆t

(
eAnhΛx − Γnx,h

)
φnh,

φn+1
h = φnh −

∆t

2

(
Λx[[∂x]]φ̃

n∗

h + Λx[[∂x]]φ̃
n
h

)
− i

∆t

2

((
eAnhΛx − Γnx,h

)
φnh +

(
eAn

∗

h Λx − Γn
∗

x,h

)
φn

∗

h

)
.

We now extend this approach in the multi-dimensional case.

Multi-dimensional UPS-method. We now solve from tn to tn+1

i∂tψ(t,x) =

{
αx

[
−ic∂x − eAx(t,x)

]
+ αy

[
ic∂y − eAy(t,x)

]
+αz

[
−ic∂z − eAz(t,x)

]
+ βmc2 + I4V (t,x)

}
ψ(t,x).
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Assuming that ψh is known at time tn, the semi-discrete in space scheme reads in [−ax, ax, ]×
[−ay, ay]× [−az, az]

i∂tψh =

{
αx

[
−ic[[∂x]]ψ̃h − eAx,h(t)ψh

]
+ αy

[
−ic[[∂y]]ψ̃h − eAy,h(t)ψh

]
+αz

[
−ic[[∂z]]ψ̃h − eAz,h(t)ψh

]
+ βmc2 + I4Vh(t)ψh

}
(36)

which is nothing but a system of differential equations, which can be solved using an explicit
or implicit high order scheme. Assuming that ψnh is known, a first order explicit scheme in
time reads

iψn+1
h = iψnh + ∆t

{
αx

[
−ic[[∂x]]ψ̃nh − eAnx,hψnh

]
+ αy

[
−ic[[∂y]]ψ̃nh − eAny,hψnh

]
+αz

[
−ic[[∂z]]ψ̃nh − eAnz,hψnh

]
+ βmc2 + I4V

n
h ψ

n
h

}
where Anx,h stands for Ax,h(tn), etc. However such a scheme would not ensure stability and
accuracy in principle. In practice higher order scheme will be used. An alternative from
(36) is then to formally integrate analytically this expression by expliciting the [[∂γ]]ψ̃ terms
(γ = x, y, z). Say from time tn+1 to tn:

ψh(tn+1) = exp

{
ie
[
αx

∫ tn+1

tn

Ax,h(s)ds+ αy

∫ tn+1

tn

Ay,h(s)ds+ αz

∫ tn+1

tn

Az,h(s)ds

−imc2(tn+1 − tn)β − iI4

∫ tn+1

tn

Vh(s)ds
]}

×
{
c(tn+1 − tn)

[
αx[[∂x]]ψ̃h(tn) + αy[[∂y]]ψ̃h(tn) + αz[[∂z]]ψ̃h(tn)

]
×∫ tn+1

tn

exp

{
−ie

[
αx

∫ s

tn

Ax,h(τ)dτ + αy

∫ s

tn

Ay,h(τ)dτ + αz

∫ s

tn

Az,h(τ)dτ

−imc2(s− tn)β − iI4

∫ s

tn

Vh(τ)dτ
]}

which then requires high order approximations of time integrals.

4. Parallel computing

The parallel computation of the generalized transport systems which is detailed in [13, 15],
is highly scalable thanks to a spatial domain decomposition (in any direction x, y, z). At
each subdomain interface, the Dirac equation is diagonalized in the direction orthogonal to
the subdomain interface. We then impose Dirichlet boundary conditions at these interfaces
and on the components corresponding to the outgoing characteristics, and these conditions
are sent by message passing. The spatial domain can be decomposed in layers in one specific
directions, or alternatively in small cubic subdomains.
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It is well known that the parallel implementation of the FFT suffers from a relative
lack of scalability. However the pseudo-spectral methods presented in this paper allow for
using the high accuracy and relative efficiency of the parallel one-dimensional FFTs in the z-
direction, and also keeping the nice scalability properties of [13, 15] in the x- and y-directions
where spequential FFTs are performed. More specifically in 3 dimensions, we proceed by
alternating the directions. We first decompose the domain by layers in the z-directions (see
Fig. 1). Then

• We successively perform the evolution (FFT) sequentially in the x- and y-directions,
by layer in the z-direction. Each processor manages one layer in z. We expect a perfect
scaling for this step, as it does not require any transmission from one node to another.

• For all x and y, we perform the evolution in the z-direction using the parallel FFT
(fftw). The performance of this step is fully dependent on the parallelization of the
one-dimensional FFT.

x

y

z

 

First processor (FFT in z) Last processor (FFT in z)

Figure 1: Parallelization principle of the FFT in the z-direction.

The main difference with the MC-based methods proposed in [13, 15] is that we do not
have the space-step restriction due to the CFL-number, but keeping simultaneously a high
accuracy and high scalability. Stability and convergence properties are also preserved. As
a consequence, the number of degrees of freedom in space can largely be reduced. Notice
that the parallelization approach is valid for the classical FFT-method, as well as for the
SP-methods presented in this paper.

The computational complexity (CC) is relatively simple to established. Assume that the
real-space grid is composed by Nx × Ny × Nz volumes. We denote by NTf the number of
time steps to reach a final physical time Tf . The computation of the MC-solver for the
split generalized transport equation (22) (resp. (23), resp. (24)) requires cxNTfNxNyNz

operations (resp. cyNTfNxNyNz, resp. czNTfNxNyNz), where the integers cx ≈ cy ≈ cz are
typically integers smaller than 10. The solution to the differential system (27) also requires
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cTfNTfNxNyNz operations, where cTf is dependent on the order of the numerical integrator
and of the time-ordering operator. In fine, the total complexity CMC, is then given by

CMC = O
(
NTfNxNyNz

)
with a small prefactor. In addition this method is pleasingly parallel as discussed in [13],
and efficiency greater than 1 can even be observed due to cache effects. By comparison, the
CC of the UPS-method, CUPS, and for the SPS-method, CSPS, are

CUPS,SPS = O
(
NTfNxNyNz log(NxNyNz)

)
.

Compared to the MC-method, the prefactor is however much higher. The SPS-method
also allows for a very efficient parallel computing of the “many” one-dimensional FFTs.
Indeed, the UPS/SPS require the computation of one-dimensional FFTs of three-dimensional
wavefunctions. Two of three real variables are then fixed, while the FFT is applied in the
third one. Notice however that multi-dimensional FFTs can be very efficiently computed
in parallel, while one-dimensional parallel FFT versions may suffer from a loss of efficiency.
We refer to [5, 6, 22] for the presentation and mathematical analysis of pseudo-spectral
methods in different regimes. In the relativistic regime, we also refer to [7, 29, 9] for efficient
pseudo-spectral methods.

In the following, the first three one-dimensional tests are performed by using matlab.
The fourth one-dimensional test, as well as all the multi-dimensional tests are performed
by using a C++-code with MPI-library. The parallel tests are realized on the computer
mammouth-parallel II from Compute Canada, with 30984 cores, 24 cores/node, 32 G/node
& FAT nodes, opteron 2.1 GHz.

5. One-dimensional experiments

We now compare the performance of the pseudo-spectral methods with the MC-based
method. It is important to recall that pseudo-spectral methods are expected to be more
attractive than the MC-based method, only if the space variations of either the electromag-
netic field (EM), the interaction potential, or the initial data are much larger than 1/mc.
Typically, denoting by k∞ the largest wavenumber of the EM and of Vnuc., the space steps
for respectively the PS-methods and MC-method, are selected as follows:

∆xPS . k∞/M, ∆xMC . min
(
k∞/M, 1/mc

)
where M is a non-zero integer. Notice that the interaction of the intense EM with quantum
particle generates very high frequency photons, and may potentially necessitate even finer
spatial resolution.

More specifically, we compare the efficiency of the FFT-, SPS-, UPS- and MC-schemes which
are presented in Section 3 and Appendix A. Recall that the strength of the UPS-scheme
compared to the SPS- and FFT-scheme is that it does not require the split of the Dirac
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Hamiltonian. On the other side, the FFT-, SPS- and UPS-schemes do not require a strict
condition on the space step, unlike the MC-based scheme (∆x = c∆t). In the following, the
external field the particle is subject to, is assumed space-independent, and is given by

A(t) = A0 sin exp(−α
(t− Tf )2

4

)
sin
(
2Cπt/Tf

)
. (37)

In (37), A0 denotes the maximal amplitude to the field, Tf the pulse duration, C the number
of cycles and α a real parameter characterizing the pulse envelope.

5.1. Test 1.

In this first test, we compare the MC-based scheme on a very fine mesh (N (mc) = 54799),
with the pseudo-spectral methods on coarser meshes. In (37), we select A0 = −100, the
number of cycles C = 6, Tf = 5× 102/1372, and α = 107. The field is represented in Fig. 2,
as function of time in [0, Tf ]. The initial wavefunction is given by
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Figure 2: Electric potentials A(t).

(
ψ(1)(0, x), ψ(2)(0, x)

)T
=
(
eik0x−x2/10, 0

)T
where the wavenumber k0 = 4. The scalar potential is hence null and, the nuclear potential
is of Coulomb type with charge Z = 1000, and softcore parameter ε = 10−1:

Vnuc.(x) = −
Z

√
x2 + ε

.

That is we have V (t, x) = Vnuc.(x). The other physical data are as follows (in atomic units):
c = 137, m = 1 and the computational domain is given by (−a, a), with a = 20 and
∆t = 10−1/mc2 = 10−1/1372. We report in Table 1, the CPU-time for solving the above
problem, using the MC-based, FFT-, SPS-, UPS-schemes, and with a variable number of dof.
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# dof CPU-time MC CPU-time SPS CPU-time UPS CPU-time FFT

54799 19.46 - - -
5481 - 2.86 3.87 2.15
1097 - 0.63 0.81 0.48
275 - 0.13 0.19 0.10

Table 1: Computational time in second: MC-, SPS-, UPS-, FFT-schemes.

The MC-based scheme for a fixed ∆t, requires ∆x = c∆t = 1/mc, that is N (mc) ≈ 2amc dof.
Unlike the MC-scheme, the pseudo-spectral methods allowed for choosing space steps (much)
larger than c∆t, then at a cheaper computational complexity, while keeping a good accuracy.
For instance, it is reported in Figs. 3, 4, the bispinor components at final time, using the
MC-based scheme with N (mc) = 54799 and the UPS-scheme with N (ups) = 5481, 1097, 275.
We observe that with much less dof (1097 vs 54799), we still keep a good accuracy.
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SPS-method - N (sps) = 275
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MC-method - N (mc) = 54799
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UPS-method - N (ups) = 275

UPS-method - N (ups) = 1097
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MC-method - N (mc) = 54799

Figure 3: Comparison: bispinor first component at final time Tf , computed with MC-based scheme with
N (mc) = 54799 gridpoints, and SPS-method (Left) and UPS-method (Right) with N (ps) = 275, 1097, 5481
gridpoints.

Notice that the simple FFT-method is the most efficient method, but requires an operator
splitting unlike the UPS-method.

5.2. Test 2.

In the following, we still consider a simple test with small scales in space (and time). The
use of the MC-based is shown to be more competitive than pseudo-spectral methods (more
specifically the so-called FFT-method), as it is required to select ∆x at least as small as c∆t
for an accurate spatial resolution. The EM is given by (37) where A0 = −500, the number
of cycles C = 6, Tf = 5× 102/1372, and α = 107. The initial wavefunction is given by(

ψ(1)(0, x), ψ(2)(0, x)
)T

=
(
eik0x−x2/2, 0

)T
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UPS-method - N (ups) = 275
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UPS-method - N (ups) = 5481
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Figure 4: Comparison: bispinor second component at final time Tf , computed with MC-based scheme with
N (mc) = 54799 gridpoints, and SPS-method (Left) and UPS-method (Right) with N (ps) = 275, 1097, 5481
gridpoints.

where the wavenumber k0 = 4. The scalar potential is hence null and, the nuclear potential is
a combination of three nuclear potentials with Z = 500, and a softcore parameter is ε = 10−6

Vnuc.(x) = −
2Z√

(x− 2.01)2 + ε
−

Z√
(x− 2)2 + ε

−
3Z√

(x− 1.99)2 + ε
.

This potential is represented in Fig. 5.
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Figure 5: Interaction potential Vnuc..

The other physical data are as follows (in atomic units): c = 137, m = 1, and the
computational domain is given by (−5, 5), ∆t = 10−2/mc2 = 1/1372. We compare the MC-
based solution with N (mc) = 1.37 × 105 grid points and the FFT-method with respectively
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N (mc) = 1.37 × 105 and N (fft) = 1.37 × 104. More specifically, in Fig. 6, we represent
the first and second components of the MC- (N (mc) = 1.37 × 105) and FFT-solutions with
N (fft) = 1.37×104, close to the nuclei (Top-left), (Top-right), as well as the spatial spectrum

of ψ1(Tf , ·) (i.e.
{(
k,
∣∣Fxψ1(Tf , k)

∣∣2)} in logscale). Although, the computational time is
much smaller using the FFT-method (5.8 seconds versus 48.7 seconds for the MC-based
scheme) the accuracy in space is insufficient to capture the very small spatial scales in Vnuc..
In comparison, if we also take N (fft) = 1.37 × 105 for the FFT-method, the two solutions
are comparable as observed in Figs. 7, as well as the spatial spectrum of ψ1(Tf , ·). However
the MC-method is now shown to be more efficient: 48.7 seconds versus 68.5 seconds for the
FFT-method.

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08 2.1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Space

 

 

FFT-method - N (FFT ) = 13700

MC-method - N (mc) = 137000

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08 2.1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Space

 

 

FFT-method - N (FFT ) = 13700

MC-method - N (mc) = 137000

10
0

10
1

10
2

10
3

10
0

10
2

10
4

10
6

10
8

 

 

FFT-method - N (FFT ) = 13700
MC-method - N (mc) = 137000

Figure 6: Comparison: bispinor first (Top-left) and second (Top-right) components at final time Tf , com-
puted with MC-based scheme with N (mc) = 1.37×105 gridpoints, and FFT-method with N (fft) = 1.37×104

gridpoints. (Bottom) Spatial spectrum of ψ1(Tf , ·) in logscale:
{(
k,
∣∣Fxψ1(Tf , k)

∣∣2)}.

Although simple, this test illustrates that the MC-based method is sequentially more
competitive than the FFT-method for multiscale problems in space.
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Figure 7: Comparison: bispinor first (Top-left) and second (Top-right) components at final time Tf , com-
puted with MC-based scheme with N (mc) = 1.37×105 gridpoints, and FFT-method with N (fft) = 1.37×105

gridpoints. (Right) Spatial spectrum of ψ1(Tf , ·) in logscale:
{(
k,
∣∣Fxψ1(Tf , k)

∣∣2)}.

5.3. Test 3.

We again compare the performance of the MC-based scheme with the pseudo-spectral
scheme. The EM is assumed space-independent and given by (37), with A0 = −100, the
number of cycles C = 8, Tf = 2 × 103/1372, and α = 2 × 103. The initial wavefunction is
given by (

ψ(1)(0, x), ψ(2)(0, x)
)T

=
(
eik0x−x2/2, 0

)T
where the wavenumber k0 = 5. The scalar potential is hence null and, the nuclear potential
is of Coulomb type with charge Z = 100, and softcore parameter ε = 10−1

Vnuc.(x) = −
Z

√
x2 + ε

.
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Therefore, one gets V (t, x) = Vnuc.(x). The other physical data are as follows (in atomic
units): c = 137, m = 1, and the computational domain is given by (−20, 20) with ∆t =
10−1/mc2 = 1/1372. For both schemes, a second-order splitting (Strang) scheme is used to
approximate the TDDE. When using the SPS-scheme, we take ∆x = c∆t ≈ 7.3×10−4 (resp.
c
√
c∆t/2 ≈ 1.46×10−3, c

√
c∆t/2 ≈ 4.27×10−3, c

√
c∆t ≈ 8.54×10−3, 2c

√
c∆t ≈ 1.71×10−2,

5c
√
c∆t ≈ 4.27 × 10−2, c2∆t ≈ 10−1) the corresponding number of spatial grid-points is

given by N (sps) = 54800 (resp. 27400, 9364, 4682, 2341, 937, 401). For the MC-based
scheme, we take ∆x = c∆t ≈ 7.3× 10−3 and the number of spatial grid-points is fixed and
given by N (mc) = 54800. Although the MC-based scheme is much simpler to implement, its
computational cost is naturally much higher whenever N (mc) � N (sps).

We first report in Fig. 8 the bispinor components at final time Tf by using the MC-based
method with N (mc) grid-points and the SPS-method with N (sps) = 937 and 401 gridpoints.
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Figure 8: Comparison: bispinor components at final time Tf , computed with MC-based scheme with N (mc) =
54800 gridpoints, and SPS-method with N (sps) = 401 and 937 gridpoints.

In Table 2, we report the CPU-time to solve the TDDE using the MC-based method on
N (mc) = 54800 grid-points (∆x = c∆t = 1/mc), and the SPS-method using N (sps) = 54800
(∆x = c∆t), N (sps) = 9364 (∆x =

√
c∆t/2 = 1/2

√
cm), N (sps) = 4682 (∆x = c

√
c∆t =

1/m
√
c), N (sps) = 2341 (∆x = 2c

√
c∆t = 1/m

√
c), N (sps) = 937 (∆x = 5

√
c∆t = 5/

√
cm),

and N (sps) = 401 (∆x = c2∆t = 1/m). Recall again that the CFL= 1 condition constraining
the MC-method, no more occurs with the SPS-method which allows for choosing space steps
much larger than c∆t.

5.4. Test 4.

The following test is devoted to the analysis of the scalability of the MC-based and FFT-
methods, still in one-dimension. The domain we consider is (−64, 64). The initial density
(ρ0(·) =

∑4
i=1 |ψ4(0, ·)|2) and the interaction potential (with 3 nuclei) are represented in Figs.

9 (Top-left) and (Top-right). The nuclei are respectively located in z = −10, 0, and 10, and
their respective charge is Z1 = 30, Z2 = 60 and Z3 = 70. Softcore constants are used to
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# dof CPU-time MC CPU-time SPS

54800 39.52 87.63
27400 - 42.1
9364 - 13.62
4682 - 6.71
2341 - 3.35
937 - 1.34
401 - 0.58

Table 2: Computational time in second: MC- and SPS-schemes (MC-scheme with 54800 points) and SPS-
solution.

regularize the potential singularities, and are respectively equal to 5.0, 0.791 and 0.071. The
time step is fixed to 1.78158 × 10−6 and the number of degrees of freedom is N = 524288.
The final physical time is Tf = 1.78158 × 10−4. We also report the density at final time in
the global domain in Figs. 9 (Bottom-left) and (Bottom-right). We compare the scalability
of the MC-based and FFT-method for 22p processors with p = 0, · · · , 3. The MC-based
scheme is parallelized by domain decomposition thanks to the algorithm described in [13],
and shortly recalled in Section 4. The efficiency of the parallelization for this method comes
from i) the hyperbolicity, ii) the linearity of the Dirac equation and iii) the use of alternate
direction splitting. The FFT-method which is used here, is based on the standard, and
celebrated parallel version of fftw. In Fig. 10, we report the CPU-times for both the FFT-
and MC-based methods. More specifically, we provide i) the efficiency T1/pTp (where Tp
denotes the CPU time for solving the equation on p processors with p = 1, 4, 16, 64), where
p denotes the number of processors in Fig. 10 (Top-left), and ii) the CPU-time in logscale
as a function of the number of processors (Top-right).

We previously noticed on low dimensional problems, that for a fixed number of dof,
the MC-based method was more efficient than the FFT-method. It is still observed on this
higher dimensional problem that the MC-based method has a much better speed-up than the
FFT-method, in particular when increasing the number of processors with a fixed number
of dof.

Unlike the MC-based method, the FFT-method permits for fixed ∆t to select much larger
spatial steps while keeping a very good accuracy in space. To illustrate this fact, we report
on Fig. 10 (Bottom), and for 1 processor the CPU-time with the FFT-method on the same
problem as above, but with a total number of dof: 524288/22p, with p = 0, · · · , 3. The MC-
based method maintains an excellent efficiency up to 64 processors, unlike the FFT-method
for which a strong discrepancy is observed beyond 16 processors.

6. Multi-dimensional experiments

In this section, we present large scale experiments in 2-d and 3-d in order to compare
the efficiency of the MC-based and the pseudo-spectral FFT-methods. The latter is the
most efficient and simple pseudo-spectral method. Due to the dimension of the problem, the
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Figure 9: (Top-left) Initial spinor density. (Top-right) Interaction potential (Bottom-left) Spinor density at
final time. (Bottom-right) Spinor density at final time: zoom in the central nucleus.

methods are implemented in parallel following the approach described in Section 4. The MC-
based algorithm is parallelized by using a simple domain decomposition strategy: the whole
domain is divided into subdomains and the mesh data in each of these subdomains is managed
to a different process. The communication between the subdomains which is required in the
computation of the solution in the elements close to the subdomain boundaries is performed
by using the Message Passing Interface (MPI) library.

6.1. Test 1.

This test is dedicated to the two-dimensional evolution in the (x, z)-plane of a wavepacket
with wavenumbers kx = kz = 5, angular moment jz = 0.5, and its interaction with 3
atoms of equal charge Z1 = Z2 = Z3 = 20, with softcore constant equal to 5. The nuclei
are respectively located in (10,−10), (0, 0) and (−10, 10). We report the initial density
ρ0(·, ·) =

∑4
i=1 |ψi(0, ·, ·)|2, and potential in Fig. 11 (Left) and (Right).

The overall computational domain is (−64, 64)2, the time step ∆t = 1/mc2 = 2.28042×
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Figure 10: (Top-left) Efficiency T/pTp, (Top-right) CPU-time as a function of the number of processors
(p = 1, 4, 16, 64), (Bottom) CPU time for FFT-method with Nz = 524288/22p, with p = 0, · · · , 3, and
MC-based method with 524288 dof.

10−4, and the final physical time Tf = 0.912169 (corresponding to 4000 iterations). The
number of degrees of freedom is Nx × Nz = 4096 × 4096. We report in Fig. 12, the overall
density at final time. The main purpose of this test is to illustrate the efficiency of the MC-
based method. We denote by px (resp. pz) the number of processors in the x-direction (resp.
z-direction), and by p the total number of processors with p = px × pz. For the MC-based
method, we respectively present some efficiency results in the case where i) p = px× pz = pz
(that is parallelism only in the z-direction), and in the case ii), where px = pz =

√
p. In both

cases, we will use up to p = 256 processors. The FFT-method is parallelized in the (x, z)-
plane, by decomposing the domain only in layers in the z-direction (p = pz). The main issue
regarding the FFT-method is the use of parallel one-dimensional FFTs in the z-direction. Its
poor efficiency when the number of dof is relatively “small” deteriorates the overall efficiency
of the method despite a perfect scaling in the x-direction (as the one-dimensional FFTs in
the x-direction are computed independently on different processors). As Nz = 4096 is too
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Figure 11: (Left) Density of the initial spinor. (Right) Interaction potential.

small for efficient parallelization of the one-dimensional FFT, we only report the efficiency of
the FFT-method for 1 to 4 processors. Even with this small number of processors, we indeed
observe already a strong discrepancy of the efficiency. In comparison, the MC-based method
shows an excellent efficiency (even higher than 1 due to cache-effects) up to 64 processors
for both decompositions i) z-direction (p = pz) and in x, z (px = pz =

√
p).

We observe that with both types of decomposition and parallelism, the efficiency is
relatively identical. However, it is interesting to notice that at 256 processors, the second
approach (px = pz =

√
p) has a better efficiency than the first one (p = pz). In the following,

we will only use a decomposition by layers in the z-direction.

6.2. Test 2.

In the following test, we still propose a two-dimensional simulation in the (x, z)-plane,
in order to illustrate that due to the parallel one-dimensional FFT in the z-direction, the
relative loss of efficiency of the method, can actually be reduced if Nz is taken larger. A
wavepacket with wavenumbers kx = kz = 5, angular moment jz = 0.5, is interacting with 2
atoms of equal charge Z1 = Z2 = 50, and with softcore constants equal to 1. The nuclei are
respectively located in (−1,−10), and (−1, 10). We report the initial density and potential
in Fig. 13 (Left) and (Right).

The overall computational domain is (−4, 4)× (−64, 64), the time step is ∆t = 5.70106×
10−5, and the physical times T = 0.05521 and Tf = 0.1142 (corresponding to 1000 and
2000 iterations). The number of degrees of freedom is Nx × Nz = 1024 × 16384 (resp.
Nx × Nz = 256 × 4096). We report in Fig. 14, the overall density at final time. The MC-
based method is parallelized in the z-direction. We observe in Fig. 15 that the efficiency of
the FFT-method is indeed slightly improved when a larger Nz is selected (4096 vs 16384).
This is due to an improvement of the efficiency of the parallel one-dimensional FFT, for larger
numbers of dof. As mentioned several times along this paper, although at fixed number of
dof (that is fixed space step), the FFT-method is much less efficient (sequentially and in
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Figure 12: (Top-left) Density at final time: Tf = 0.912169. (Top-right) Efficiency T1/pTp for the MC- and
FFT-methods. (Bottom) CPU-time as function of number of processors (p = 1, 2, 4, 8, 16, 64, 256 processors).

parallel) than the MC-based method, it allows to select much larger space steps (less dof
for given spatial domain, for fixed imposed ∆t) but still keeping a good accuracy, except for
multiscale problems. In the latter case, a very fine resolution in space is indeed required,
making the MC-method more attractive. This remark is also illustrated in Fig. 15, where it
is observed that on a coarse mesh (Nx = 256, Nz = 4096) and still taking ∆t = 1/mc2, the
FFT-method is more efficient than the MC-method when Nx = 1024, Nz = 16384, at least
for a small number of processors.

6.3. Test 3.

In this last test, we consider the evolution of a wavepacket subject to an external dy-
namic and static fields in 3d. We again compare the performance of the MC-based and
FFT-methods. The computational domain is (−8, 8)× (−8, 8)× (−512, 512), and the time
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Figure 13: (Left) Density of the initial spinor. (Right) Interaction potential.

Figure 14: Density at time: (Left) T = 0.05521 and (Right) Tf = 0.1142.

integration domain is [0, Tf ] with Tf = 4.561× 10−2. The static field is defined by

V (x, y, z) =

{
0, (x, y, z) ∈ (−8, 8)2 × {z < 0},
10, (x, y, z) ∈ (−8, 8)2 × {z > 0}.

The magnetic field is defined by A = (Ax, Ay, Az), with Ax = Ay = 0 and Az is represented
at final time Tf in the (x, y)-plane at z = 0, and in Fig. 17 (Left), and in the (x, z)-
plane and at y = 0 in Fig. 17 (Right). The initial data is a wavepacket centered at
(−2.5, 0, 0) with wavenumber kx = 10, ky = −10, kx = −10, and the corresponding density
ρ0(·) =

∑4
i=1 |ψi(0, ·)|2 is represented in the (x, y)-plane at z = 0 in Fig. 16 (Left), and in the

(x, z)-plane at y = 0 in Fig. 16 (Right). We select the time step equal to ∆t = ∆x/c, that
is ∆t ≈ 9.1× 10−4. We then report in Fig. 18 the density ρ(Tf , x, y, 0) in the (x, y)-plan at
z = 0 at final time Tf (Left), as well as ρ(Tf , x, 0, z) in the (x, z)-plan at y = 0 at Tf (Right).
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Figure 15: (Left) CPU-time as function of the number of processors. (Right) Efficiency T1/pTp for the
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Figure 16: Density at initial time. (Left)
{(
x, y, ρ0(x, y)

)
, for (x, y) ∈ (−8, 8)2

}
. (Right){(

x, z, ρ0(x, 0, z)
)
, for (x, z) ∈ (−8, 8)× (−512, 512)

}
.

We denote by px (resp. py, pz) the number of processors in the x-direction (resp. y-,z-
direction), and by p the total number of processors with p = px× py× pz. For the MC-based
method, we respectively present efficiency results in the case i) p = px × py × pz = pz (that
is parallelism only in the z-direction) with p = pz = 1, 4, 16, 64, 256, and ii) px, py and pz are
greater than 1 (parallelism in x, y, z-directions): px = py = pz = 1 (p = 1), px = py = pz = 2
(p = 8), px = py = pz = 4 (p = 64) and px = py = 4, pz = 16 (p = 256). We report
in Fig. 19, the efficiency and CPU-time as a function for the MC- and FFT-methods. We
notice that the MC-based method is again the most efficient, with in particular, a better
efficiency with parallelism in the z-direction. However there is a noticeable deterioration of
the efficiency of the MC-based method beyond 16 processors, and unlike the 2d-case. This
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Figure 17: Electric potential. (Left)
{(
x, y,Az(Tf , x, y, 0)

)
, for (x, y) ∈ (−8, 8)2

}
. (Right){(

x, z,Az(Tf , x, 0, z)
)
, for (x, z) ∈ (−8, 8)× (−512, 512)

}
.

Figure 18: Density at final time. (Left)
{(
x, y, ρ(x, y, 0, Tf )

)
, for (x, y) ∈ (−8, 8)2

}
. (Right){(

x, z, ρ(x, 0, z, Tf )
)
, for (x, z) ∈ (−8, 8)× (−512, 512)

}

is due to the heavier load of data to exchange between processors in 3-d.

7. Conclusion

In this paper we have proposed a performance comparison of simple and efficient Dirac
equation solvers: a real space method based on the characteristic equation (MC-based
method), also referred as a Quantum Lattice Boltzmann method, with simple pseudo-spectral
methods (PS-methods). We have established that for a given number of degrees of freedom,
the MC-based method is much more efficient sequentially and in parallel than PS-methods.
The price to pay is a strict condition imposed on the spatial discretization step. However and
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Figure 19: (Left) Efficiency T1/pTp for the MC- and FFT-methods. (Right) CPU-time as function of number
of processors (p = 1, 2, 4, 8, 16, 64, 256 processors).

except for multiscale problems in space, the PS-methods do not impose such constraints, and
allow then for taking much larger spatial discretization steps (then reducing the overall com-
putational complexity), while keeping a good accuracy. In conclusion, the MC-based method
should be preferred for problems involving very small spatial scales, such as those involving
heavy ions, ultrashort laser-atom interaction, while the PS-methods are more adapted for
other the physical configurations.

Acknowledgments. The authors would like Dr F. Fillion-Gourdeau (INRS) for helpful
discussions.

Appendix A. One-dimensional numerical schemes

Classical FFT-scheme. This scheme necessarily requires the splitting of the Dirac Hamilto-
nian. From time tn to tn+1 the schemes reads as follows.

1. Source term integration, and 0 6 j 6 N (ps) − 1

ψ
(1),n1

h,j = exp
(
− i∆t(mc2 + Vnuc.,j)/2

)
ψ

(1),n
h,j ,

ψ
(2),n1

h,j = exp
(
− i∆t(−mc2 + Vnuc.,j)/2

)
ψ

(2),n
h,j .

2. We then solve the potential-free and mass-free Dirac Hamiltonian.

• We set φn1
h =

(
φ

(1),n1

h , φ
(2),n1

h

)T
, where

φ
(1),n1

h =
ψ

(1),n1

h + ψ
(2),n1

h√
2

, φ
(2),n1

h =
ψ

(1),n1

h − ψ(2),n1

h√
2

.
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Then

φ
(1),n2

h =
1

N (fft)

∑N(fft)/2−1

p=−N(fft)/2

(
e−icξp∆t

∑N(fft)−1
k1=0 φ

(j),n1

h,k1
e−iξp(xk1

+ax)
)
eiξp(x+axj ),

φ
(2),n2

h =
1

N (fft)

∑N(fft)/2−1

p=−N(fft)/2

(
eicξp∆t

∑N(fft)−1
k1=0 φ

(j),n1

h,k1
e−iξp(xk1

+ax)
)
eiξp(x+axj ).

• Then, we get

ψ
(1),n2

h =
φ

(1),n2

h + φ
(2),n2

h√
2

, ψ
(2),n2

h =
φ

(1),n2

h − φ(2),n2

h√
2

.

3. Finally, we integrate one more time the source term (Strang-splitting), for 0 6 j 6
N (ps) − 1

ψ
(1),n+1
h,j = exp

(
− i∆t(mc2 + Vnuc.,j)/2

)
ψ

(1),n2

h,j ,

ψ
(2),n+1
h,j = exp

(
− i∆t(−mc2 + Vnuc.,j)/2

)
ψ

(2),n2

h,j .

Split Pseudo-spectral (SPS) scheme. From time tn to tn+1 the scheme reads

1. Source term integration, and 0 6 j 6 N (ps) − 1

ψ
(1),n1

h,j = exp
(
− i∆t(mc2 + Vnuc.,j)/2

)
ψ

(1),n
h,j ,

ψ
(2),n1

h,j = exp
(
− i∆t(−mc2 + Vnuc.,j)/2

)
ψ

(2),n
h,j .

2. We set φn1
h =

(
φ

(1),n1

h , φ
(2),n1

h

)T
, where

φ
(1),n1

h =
ψ

(1),n1

h + ψ
(2),n1

h√
2

, φ
(2),n1

h =
ψ

(1),n1

h − ψ(2),n1

h√
2

then

• For any 1 6 j 6 N (ps) − 2

[[∂x]]φ̃
n1
h =

1

N (ps)

N(ps)/2−1∑
p=−N(ps)/2

iξp

(N(ps)−1∑
k1=0

φ̃n1
k1
e−iξp(xk1

+a)
)
eiξp(xj−a).

• Then, for all 0 6 j 6 N (ps) − 1

φ
(1),n∗

1
h,j = φ

(1),n1

h,j − c∆t[[∂x]]φ̃(1),n1

h,j + i∆teAn1φ
(1),n1

h,j ,

φ
(2),n∗

1
h,j = φ

(2),n
h,j + c∆t[[∂x]]φ̃

(2),n1

h,j − i∆teAn1φ
(2),n1

h,j .

• Followed, for all 0 6 j 6 N (ps) − 1, by

φ
(1),n2

h,j = φ
(1),n
h,j −

c∆t

2

(
[[∂x]]φ̃

(1),n1

h,j + [[∂x]]φ̃
(1),n∗

1
h,j

)
+ i

∆t

2

(
eAn1φ

(1),n1

h + eAn
∗
1φ

(1),n∗
1

h

)
φ

(2),n2

h,j = φ
(2),n
h,j +

c∆t

2

(
[[∂x]]φ̃

(2),n1

h,j + [[∂x]]φ̃
(2),n1

h,j

)
− i

∆t

2

(
eAn1φ

(2),n1

h,j + eAn
∗
1φ

(2),n∗
1

h,j

)
.
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• Then, we get

ψ
(1),n2

h =
φ

(1),n2

h + φ
(2),n2

h√
2

, ψ
(2),n2

h =
φ

(1),n2

h − φ(2),n2

h√
2

3. Finally, we integrate one more time the source term (Strang-splitting), for 0 6 j 6
N (ps) − 1

ψ
(1),n+1
h,j = exp

(
− i∆t(mc2 + Vnuc.,j)/2

)
ψ

(1),n2

h,j ,

ψ
(2),n+1
h,j = exp

(
− i∆t(−mc2 + Vnuc.,j)/2

)
ψ

(2),n2

h,j .

Unsplit Pseudo-spectral (UPS) scheme. This scheme corresponds to the unsplit version
of the SPS-scheme. From time tn to tn+1 the schemes reads, as follows. We set φn1

h =(
φ

(1),n1

h , φ
(2),n1

h

)T
, where

φ
(1),n
h =

ψ
(1),n
h + ψ

(2),n
h√

2
, φ

(2),n
h =

ψ
(1),n
h − ψ(2),n

h√
2

.

then

• For any 1 6 j 6 N (ps) − 2

[[∂x]]φ̃
n
h =

1

N (ps)

N(ps)/2−1∑
p=−N(ps)/2

iξp

(N(ps)−1∑
k1=0

φ̃nk1
e−iξp(xk1

+a)
)
eiξp(xj−a).

• Then for all 0 6 j 6 N (ps) − 1

φ
(1),n∗

1
h,j = φ

(1),n
h,j − c∆t[[∂x]]φ̃

(1),n
h,j + i∆t

(
eAnφ

(1),n
h,j − Vnuc.,jφ

(1),n
h,j −mc2φ

(2),n
h,j

)
,

φ
(2),n∗

1
h,j = φ

(2),n
h,j + c∆t[[∂x]]φ̃

(2),n
h,j − i∆t

(
eAnφ

(2),n
h,j +mc2φ

(1),n
h,j + Vnuc.,jφ

(2),n
h,j

)
.

• Followed, for all 0 6 j 6 N (ps) − 1, by

φ
(1),n1

h,j = φ
(1),n
h,j −

c∆t

2

(
[[∂x]]φ̃

(1),n
h,j + [[∂x]]φ̃

(1),n∗
1

h,j

)
,

+i
∆t

2

(
eAnφ

(1),n
h + eAn

∗
1φ

(1),n∗
1

h − Vnuc.,j

(
φ

(1),n1

h + φ
(1),n∗

1
h

)
−mc2

(
φ

(2),n1

h + φ
(2),n∗

1
h

))
φ

(2),n1

h,j = φ
(2),n
h,j +

c∆t

2

(
[[∂x]]φ̃

(2),n
h,j + [[∂x]]φ̃

(2),n
h,j

)
−i

∆t

2

(
eAnφh,jh

(2),n + eAn
∗
1φh, j(2),n∗

1 + Vnuc.,j

(
φ

(1),n1

h,j + φ
(1),n∗

1
h,j

)
+mc2

(
φ

(2),n1

h,j + φ
(2),n∗

1
h,j

))
.
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Finally, we have

ψ
(1),n+1
h =

φ
(1),n1

h + φ
(2),n1

h√
2

, ψ
(2),n+1
h =

φ
(1),n1

h − φ(2),n1

h√
2

.

MC-based scheme. From time tn to tn+1 the schemes reads

1. Source term integration and 0 6 j 6 N (ps) − 1

ψ
(1),n1

h,j = exp
(
− i∆t(mc2 + Vnuc.,j)/2

)
ψ

(1),n
h,j ,

ψ
(2),n1

h,j = exp
(
− i∆t(−mc2 + Vnuc.,j)/2

)
ψ

(2),n
h,j .

2. We set φn1
h =

(
φ

(1),n1

h , φ
(2),n1

h

)T
, where

φ
(1),n1

h =
ψ

(1),n1

h + ψ
(2),n1

2√
2

, φ
(2),n1

h =
ψ

(1),n1

h − ψ(2),n1

h√
2

• For any 1 6 j 6 N (mc) − 2

φ
(1),n2

h,j = φ
(1),n1

h,j−1 + i∆teAn1φ
(1),n1

h,j , φ
(2),n2

h,j = φ
(2),n1

h,j+1 − i∆teAn1φ
(2),n1

h,j .

• Then, we get

ψ
(1),n2

1 =
φ

(1),n2

h + φ
(2),n2

h√
2

, ψ
(2),n2

h =
φ

(1),n2

h − φ(2),n2

h√
2

.

3. Finally, we integrate one more time the source term (Strang splitting) for 0 6 j 6
N (mc) − 1

ψ
(1),n+1
h,j = exp

(
− i∆t(mc2 + Vnuc.,j)/2

)
ψ

(1),n2

h,j ,

ψ
(2),n+1
h,j = exp

(
− i∆t(−mc2 + Vnuc.,j)/2

)
ψ

(2),n2

h,j .
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