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Abstract:  

In the pelagic foodweb, micronekton at the mid-trophic level (MTL) are one of the lesser known 
components of the ocean ecosystem despite being a major driver of the spatial dynamics of their 
predators, of which many are exploited species (e.g. tunas). The Spatial Ecosystem and Population 
Dynamics Model is one modelling approach that includes a representation of the spatial dynamics of 
several epi- and mesopelagic MTL functional groups. The dynamics of these groups are driven by 
physical (temperature and currents) and biogeochemical (primary production, euphotic depth) 
variables. A key issue to address is the parameterization of the energy transfer from the primary 
production to these functional groups. We present a method using in situ acoustic data to estimate the 
parameters with a maximum likelihood estimation approach. A series of twin experiments conducted to 
test the behaviour of the model suggested that in the ideal case, that is, with an environmental forcing 
perfectly simulated and biomass estimates directly correlated with the acoustic signal, a minimum of 
200 observations over several time steps at the resolution of the model is needed to estimate the 
parameter values with a minimum error. A transect of acoustic backscatter at 38 kHz collected during 
scientific cruises north of Hawaii allowed a first illustration of the approach with actual data. A 
discussion followed regarding the various sources of uncertainties associated with the use of acoustic 
data in micronekton biomass. 
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Introduction 
The development of marine ecosystem models is providing new useful tools and products in 
investigating the combined effects of fishing, environmental variability and the impacts of climate 
changes on species of interest; in particular, exploited or protected species (e.g., De Young et al. 2004; 
Fulton 2010; Lehodey et al. 2008; Plagányi 2007; Senina et al. 2008; Dueri et al. 2012; Sibert et al. 
2012). The first necessary step in the development of such ocean ecosystem models is to produce 
reliable predictions of the physical-biogeochemical oceanic environment. Physical ocean-circulation 
models are now providing realistic simulations of the ocean by assimilating large amounts of sea 
surface satellite and depth profile data (e.g., ARGO program) to produce reanalyses of the past and 
present ocean state at high resolution. The modeling of lower trophic levels, that is, the phyto- and 
zooplankton, is also rapidly progressing (Brasseur et al. 2010, Holt et al. 2014) and should soon 
provide operationally realistic outputs to connect these ocean models to the higher biological levels. As 
an immediate alternative, primary production by phytoplanktonic groups can be inferred from satellite 
data (e.g., Behrenfeld and Falkowsky 1997), with the advantage of providing a realistic description of 
mesoscale activity.  

While the modeling of these physical and biological variables is well advanced, this is not the case 
however, for the epi- and mesopelagic mid-trophic level (MTL) organisms (macrozooplankton and 
micronekton) that are a critical component in the oceanic ecosystem. By definition, micronekton are 
small organisms (~1-20 cm or g) that can swim; however, their small sizes are still strongly impacted 
by oceanic circulation from large to mesoscale. They distribute between the surface and the deep layers 
with some groups of species migrating every night and day between these vertical layers. Predators 
have adapted their behavior to chase these forage species by using their physical and physiological 
skills for accessing the different layers. These predators include many exploited stocks (e.g., tunas and 
swordfish) and protected species (e.g. turtles, seabirds, sharks and marine mammals), and realistic 
simulations of micronektonic prey would provide a key explanatory variable that is currently missing to 
better understand individual behavior and population dynamics. Additionally, micronektonic organisms 
are a major source of grazing of zooplankton and are predators of eggs and larvae drifting in the pelagic 
environment, including those of the exploited species. Micronekton also interact with the carbon cycle, 
including the CO2 released in the atmosphere by human activity, as they contribute to the production of 
particular organic matter (POC) that is recycled either in the microbial loop or stored by sinking to the 
deep ocean (Holt et al., 2014). Thus, micronekton are central to the understanding and modelling of 
oceanic ecosystems and there is a pressing need for increased knowledge and for models pertaining to 
their biomass estimate and ecological role.  

Several modeling approaches can be used to estimate micronekton biomass (e.g., Kitchell et al. 1999, 
Jennings et al. 2008; Maury 2010; Lehodey et al., 2010a). The Spatial Ecosystem And Population 
Dynamics Model (SEAPODYM) in this study includes a representation of several MTL functional 
groups, i.e., the epi- and meso-pelagic micronekton, to describe the prey fields of tuna and other large 
pelagic predators (Lehodey et al., 2010a). This micronekton model has been used in several 
applications on tuna species (Lehodey et al. 2008; Senina et al. 2008; Lehodey et al., 2010b, 2013; 
Briand et al 2011; Sibert et al. 2012), and its outputs used to investigate habitats and movements of 
other large oceanic species (Abecassis et al 2013; Lambert et al., 2014).  

A key issue in the SEAPODYM modelling approach is to parameterize the energy transfer from the 
primary production to the functional groups of micronekton. A preliminary parameterization (Lehodey 
et al., 2010a) was achieved based on a first compilation of existing data in the literature and a Pacific 
basin-scale simulation at coarse resolution (1 deg × month). A more rigorous approach requires the use 
of data assimilation methods to optimize the parameters using acoustic data that provides a synoptic 
view of micronekton biomass in the vertical layers of the ocean. Over the recent years, acoustic 
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estimates of micronekton biomass has received increased attention, and many acoustic transects are 
collected at basin scales by various research and fishing vessels. An effort of standardization between 
these different data sources (e.g., IMOS project: http://imos.org.au/anmnacous.html) should fill the 
important gap in the understanding of basin scale mid-trophic biomass and distribution providing data 
to initialize and assimilate into ecological models.  

Here, we present a methodology for a parameter optimization approach based on assimilation of 
acoustic data in the MTL model. Assimilation experiments with the MTL model at high-resolution in 
the Pacific Ocean are used to validate the method and to highlight the need for collecting and 
standardizing such data. After a series of twin experiments conducted to test the behavior of the model, 
a transect of acoustic backscatter at 38 kHz collected during scientific cruises north of Hawaii 
illustrates the approach. We assumed that the intensity of the acoustic signal is proportional to the 
density of micronekton. This is not always true, e.g. due to resonant scattering diel shifts, and has been 
identified by the acoustic community as needing more research (e.g. Handegard et al 2013).   

 

Material and Methods 

1. The mid-trophic model 
In its present version, the SEAPODYM MTLs sub-model includes 3 vertical layers and 6 functional 
groups characterized by their vertical behavior, i.e., with or without occurrence of diel migration 
between three vertical layers. Recruitment, ageing, mortality and passive transport with horizontal 
currents are modeled by a system of Advection-Diffusion-Reaction equations, taking into account the 
vertical behavior of organisms (Lehodey et al., 2010a). Since the dynamics are represented by a 
relationship of temperature-linked time development, only six parameters in the model have to be 
estimated. The first one (E) defines the total energy transfer between primary production and all the 
MTL groups. The other parameters are the relative coefficients (E’n) redistributing this energy through 
the different components (the sum of which being 1). The parameterization of E requires absolute 
biomass estimates of MTL, while the matrix of E’n coefficients can be estimated simply using relative 
day and night values integrated in the three vertical layers of the model. The 6 parameters of the MTL 
model have been initially tuned according to very limited in situ data and information from the 
literature (Lehodey et al., 2010a).  

2. Terminology and definition of vertical layers  
In its first version, the layers of the model were conveniently named as epi-, meso- and bathypelagic 
(Lehodey et al 2010a). However, the names of the functional groups were revised (Fig. 1) to comply 
with the standard terminology that defines the bathypelagic layer below 1000 m. The 3 vertical layers 
are therefore renamed as epipelagic, upper- and lower- mesopelagic layers. They have been defined 
relatively to the euphotic depth (Zeu), assuming the vertical migration of micronektonic organisms is 
primarily driven by light. When comparing acoustic profiles with Zeu (Fig. 1) in the region of study, the 
epipelagic layer appeared to extend deeper than the euphotic depth computed according to the VGPM 
model of Behrenfeld and Falkowski (1997). Thus the first layer was computed using 1.5 × Zeu. The 
second and third layer boundaries were defined as 3 times and 7 times the depth of the first layer (with 
a maximum set at 1000 m) based on visual inspection of acoustic transects (Fig. 1). The definition of 
vertical layers, based on the euphotic depth and the few available acoustic transects for this study, 
could evolve while more data becomes available (see discussion). Each MTL functional group is 
identified by the layer that is inhabited by its organisms during the day and night. With this 
terminology the epipelagic group is called MTL1.1 since it is always in the first layer, while the highly 
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migrant lower mesopelagic group becomes MTL3.1, i.e., in
moving up to the surface layer at night

 

Figure 1: Identification of MTL functional groups on acoustic echogram (a) and conceptual model (b), 
revised from Lehodey et al. (2010a). 1.1: Epipelagic; 2.1: Migrant upper mesopelagic; 2.2: Upper 
mesopelagic; 3.1: Highly-migrant lower mesopelagic; 3.2: Migrant lower mesopelagic;
mesopelagic. 

 

3. Model domain and forcing 
Acoustic transect data are strongly influenced by the mesoscale activity and represent very detailed but 
also a very small portion of the ocean. 
feedback is needed to extract the largest information from data us

mesopelagic group becomes MTL3.1, i.e., inhabiting the third layer during the day and 
moving up to the surface layer at night (Fig. 1).    

: Identification of MTL functional groups on acoustic echogram (a) and conceptual model (b), 
010a). 1.1: Epipelagic; 2.1: Migrant upper mesopelagic; 2.2: Upper 

migrant lower mesopelagic; 3.2: Migrant lower mesopelagic;

 
data are strongly influenced by the mesoscale activity and represent very detailed but 

very small portion of the ocean. A realistic high-resolution ocean physics and biogeochemistry
to extract the largest information from data used in the optimization approach.

the third layer during the day and 

 

: Identification of MTL functional groups on acoustic echogram (a) and conceptual model (b), 
010a). 1.1: Epipelagic; 2.1: Migrant upper mesopelagic; 2.2: Upper 

migrant lower mesopelagic; 3.2: Migrant lower mesopelagic; 3.3: Lower 

data are strongly influenced by the mesoscale activity and represent very detailed but 
resolution ocean physics and biogeochemistry 

ed in the optimization approach. We 
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used the ocean reanalysis GLORYS (
(GLobal Ocean ReanalYsis and Simulations), supported by the French Groupe
Coriolis, a first eddy resolving global ocean reanalysis has been produced for the 2002
with the ocean general circulation model configuration ORCA025 NEMO, i.e., a spatial resolution of 
¼° (Barnier et al., 2006). The assimila
formulation, Pham et al. 1998) adapted to eddy resolving global ocean model configuration (Tranchant 
et al., 2008). The GLORYS.2v1
Mercator-Ocean (http://www.mercator
and assimilation scheme than GLORYS. Because the ocean circulation model assimilates satellites 
(SST and altimetry) and in situ data, predicted fields of 
with those of primary production derived from ocean color data (Fig. 2), using the VGPM model of 
Behrenfeld and Falkowsky (1997).

 

Figure 2: Snapshots showing the derived primary production computed following the
Behrenfeld and Falkowsky (1997) with superimposed surface currents (average in the euphotic layer) 
predicted in GLORYS2v1 reanalysis (

 

The model computes spatial distribution of production and biomass of each functional group at the 
resolution of the physical model. The total biomass for each layer during day
computed by adding the different components accordingly. For instance, the surface la
only by the epipelagic group during the day but the sum of epipelagic, upper
highly-migrant lower mesopelagic groups during the night. These predictions can be compared to 
acoustic biomass estimates by layer during 

used the ocean reanalysis GLORYS (glorysproducts@mercator-ocean.fr). With the project GLORYS 
(GLobal Ocean ReanalYsis and Simulations), supported by the French Groupe
Coriolis, a first eddy resolving global ocean reanalysis has been produced for the 2002
with the ocean general circulation model configuration ORCA025 NEMO, i.e., a spatial resolution of 
¼° (Barnier et al., 2006). The assimilation method is based on a reduced order Kalman filter (SEEK 
formulation, Pham et al. 1998) adapted to eddy resolving global ocean model configuration (Tranchant 

.2v1 reanalysis was updated for the recent period 
http://www.mercator-ocean.fr/eng) global ocean model PSY3 that is

and assimilation scheme than GLORYS. Because the ocean circulation model assimilates satellites 
data, predicted fields of temperature and current

with those of primary production derived from ocean color data (Fig. 2), using the VGPM model of 
Behrenfeld and Falkowsky (1997).  

 

: Snapshots showing the derived primary production computed following the
Behrenfeld and Falkowsky (1997) with superimposed surface currents (average in the euphotic layer) 
predicted in GLORYS2v1 reanalysis (glorysproducts@mercator-ocean.fr) and the Hawaiian Tr

stribution of production and biomass of each functional group at the 
resolution of the physical model. The total biomass for each layer during day
computed by adding the different components accordingly. For instance, the surface la
only by the epipelagic group during the day but the sum of epipelagic, upper-

mesopelagic groups during the night. These predictions can be compared to 
by layer during nights and days. Though the original domain of the model is 

). With the project GLORYS 
(GLobal Ocean ReanalYsis and Simulations), supported by the French Groupe Mission Mercator 
Coriolis, a first eddy resolving global ocean reanalysis has been produced for the 2002-2009 period 
with the ocean general circulation model configuration ORCA025 NEMO, i.e., a spatial resolution of 

tion method is based on a reduced order Kalman filter (SEEK 
formulation, Pham et al. 1998) adapted to eddy resolving global ocean model configuration (Tranchant 

reanalysis was updated for the recent period with the operational 
that is using the same grid 

and assimilation scheme than GLORYS. Because the ocean circulation model assimilates satellites 
temperature and currents are globally coherent 

with those of primary production derived from ocean color data (Fig. 2), using the VGPM model of 

: Snapshots showing the derived primary production computed following the VGPM model of 
Behrenfeld and Falkowsky (1997) with superimposed surface currents (average in the euphotic layer) 

) and the Hawaiian Transect.  

stribution of production and biomass of each functional group at the 
resolution of the physical model. The total biomass for each layer during day-time and night-time was 
computed by adding the different components accordingly. For instance, the surface layer is inhabited 

-migrant mesopelagic and 
mesopelagic groups during the night. These predictions can be compared to 

. Though the original domain of the model is 
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global between latitude 66.5°N and 66.5°S, a subdomain has been extracted for optimization in the 
North Pacific to save computational time, with geographical coordinates 66.5°N-0°N, 90°E-70°W and 
closed boundary conditions.  

 

4. Acoustic data 
A shipboard survey was conducted in March 2009 along the longitude 158°W from 22°N to 36°N (so-
called “Hawaiian transect” in the following text) that has been used for optimization experiments (Fig. 
2). Bioacoustic signals were collected continuously down to 1200 m with a hull-mounted split-beam 
Kongsberg Maritime AS Simrad EK60 system (Horten, Norway), operating at the 38, 70, and 120 kHz 
frequencies. The EK60 system was calibrated prior to data collection with a 38.1 mm tungsten carbide 
sphere according to standard methods (Foote et al., 1987). As the higher frequency signals attenuate 
shallower than the bottom of the lower mesopelagic layer, only 38-kHz full-resolution acoustic data 
were used. Volume backscattering coefficients (Sv, in dB re 1 m-1) were converted into nautical area 
scattering coefficient (NASC, in m2 nmi-2) values and assumed proportional to micronekton biomass 
(Mac Lennan et al., 2002). Since the 38 kHz frequency signal is dominated by micronektonic 
organisms (Handegard et al. 2013), the integration of NASC is believed to be representative of the total 
biomass of the 6 functional groups of the model. However, a series of potential biases occur that are 
presented in the discussion. Also, the position of the transducer below the hull prevents any recording 
from the first 5 m, while data about 10 m from the transducer face is unreliable due to nonlinearities in 
the nearfield. In addition to the loss of recording in the upper 15 m, water displaced in front of the 
vessel together with the possible escapement behavior of organisms likely leads to a negative bias in 
biomass estimates in the surface layer. To compensate this bias, we decided to correct the signal by 
adding 5% of total biomass in the epipelagic functional group, considering that about 5-10% of the 
total biomass should be in the first 100 m during daytime in the tropical and subtropical ocean (e.g., 
Grandperrin 1975; Irigoien et al. 2014).  

After a few tests, the Hawaiian transect showed a low signal-to-noise ratio (Fig. 3) thereby making 
convergence in the model difficult. This noise is a result of the cavitations and bubble dropout, 
characterized by high frequency localized extreme values and was filtered using a running geometric 
mean (eq. 1) with a window range (1+2f) of 7 bins for each vertical layer at resolution of 10 m.  

����′��, 	
 = �∏ ����������
������ ��, 	′�

� �����
  eq. 1 
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Figure 3: Example of a portion of acoustic transect before (a) and after (b) processing the data (both 
averaged over a minute). After the vertical layers have been defined the signal strength is vertically 
integrated and then averaged at the spati
sunset and sunrise time periods. The orange lines delineate the vertical layers boundaries based on the 
euphotic depth. The purple line shows the variation of the solar elevation angle (whic
discriminate between night and day) through the day. Small ticks (
axis indicate the position each five horizontal cells of the model grid.

 

5. Optimization approach 
The simple modelling approach 
parameters helps implementing 
matrix of E’n coefficients can be estimated simply using relative day and night values of acoustic 
backscatter integrated in each of the 
optimized to fit the relative ratios of micronekton biomass (or NASC) between layers changing during 
day and night periods. First, the NASC
each cell grids of the model and in each layer) and time (during night
transition periods). Based on the sum of values for the 

: Example of a portion of acoustic transect before (a) and after (b) processing the data (both 
averaged over a minute). After the vertical layers have been defined the signal strength is vertically 
integrated and then averaged at the spatial resolution of the grid of the model (1/4°) after excluding the 
sunset and sunrise time periods. The orange lines delineate the vertical layers boundaries based on the 
euphotic depth. The purple line shows the variation of the solar elevation angle (whic
discriminate between night and day) through the day. Small ticks (black and 
axis indicate the position each five horizontal cells of the model grid. 

The simple modelling approach used to describe the MTL components with a limited number of 
 a method of parameter estimation by using data assimilation. The 

coefficients can be estimated simply using relative day and night values of acoustic 
ackscatter integrated in each of the 3 vertical layers of the model. The energy transfer coefficients are 

optimized to fit the relative ratios of micronekton biomass (or NASC) between layers changing during 
NASC values are integrated at the resolution of the model 

each cell grids of the model and in each layer) and time (during night-time and day
Based on the sum of values for the 3 layers, the signal of the first layer is i

 

: Example of a portion of acoustic transect before (a) and after (b) processing the data (both 
averaged over a minute). After the vertical layers have been defined the signal strength is vertically 

al resolution of the grid of the model (1/4°) after excluding the 
sunset and sunrise time periods. The orange lines delineate the vertical layers boundaries based on the 
euphotic depth. The purple line shows the variation of the solar elevation angle (which is used to 

black and pink) on the horizontal 

used to describe the MTL components with a limited number of 
using data assimilation. The 

coefficients can be estimated simply using relative day and night values of acoustic 
vertical layers of the model. The energy transfer coefficients are 

optimized to fit the relative ratios of micronekton biomass (or NASC) between layers changing during 
at the resolution of the model in space (in 

time and day-time, excluding 
layers, the signal of the first layer is increased 
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by 5%. Then, the ratio (ρ) for each layer (K) and night or day period (Ω) is computed relatively to the 
corrected sum of the 3 layers (eq. 2) defined by their upper (Zu) and deeper (Zd) vertical boundaries: 

 ���
�,�,�,���� =
 	 	 	 �"#$%�&,',(,�
)*
	+(	+'	+&	+�,-�.


,/�.

	
0

	
1

	
2

 	 	 	 �"#$%�&,',(,�
)*
	+(	+'	+&	+�,-�3

4

	
0

	
1

	
2

   (eq. 2) 

 

where, (i, j) is the position (the cell) in the grid of the model domain, t the time (in the model 
resolution), Ω the part of the day (night or day), and IΩ the identity function (1 in Ω, 0 elsewhere). Day 
and night periods are defined based on the solar elevation angle (Downey 1990; see 
https://pypi.python.org/pypi/pyephem/ for Python language scripts) with day when the altitude is > 18° 
and night with altitude ≤ 18° (Fig. 3). 

The integration of acoustical signal along a transect is illustrated in Fig. 3. According to the local time 
of the day, these values can be compared to the relative distribution of predicted biomass in the same 
layers, accounting for the different combination of MTL components due to vertical migration. Sunset 
and sunrise time periods are excluded by the definition using solar altitude. 

Observed ratios (ρobs) for each layer K are compared to the model predictions (ρpred). The predicted 
ratios in grid cell (i, j) at time t, for the part of the day Ω, in a layer K is the sum of the biomass of each 
group inhabiting the layer K, at this position and time and divided by the total biomass in all layers (eq. 
3): 

 ���
�,�,�,�
567+ =

∑ 91,0,2:;<:<=
>�?,*
@A	
∑ 91,0,2:;<:<=	

  (eq. 3) 

with n the functional group, Bn the biomass of the group n, and k(n, Ω) the layer inhabited by group n 
during the period of day Ω. 

The optimization approach will search for the optimal set of parameters E’n that provides the best fit 
between observation and prediction. Since the approach use relative ratio of integrated acoustic signal, 
it is possible to include data from various sources and without standardization. However, for the 
parameterization of E, i.e., the total energy transfer that controls the level of absolute biomass, it would 
be necessary to use calibrated biomass estimates.  They need to combine acoustic and micronekton net 
sampling allowing to convert backscatter values in micronekton biomass after careful discrimination 
between various recorded patches of records. This objective is not included in the present approach. 
Nevertheless, based on a detailed acoustic study (Kloser et al 2009), the previous estimate of biomass 
appeared largely underestimated and the value of E was increased (i.e., manually tuned to a value of 
0.04) to fit these recent estimates. 

The optimization approach uses the adjoint technique with the quasi-Newton gradient method to 
minimize the cost function (L-) as described in Senina et al. (2008), but the new likelihood function 
required several modifications of the adjoint code.  

First, the distribution of observed ratios suggest a log-normal distribution for data in the first 2 layers 
either during day or night, but not for the deepest (lower mesopelagic) layer. However, since the sum of 
ratios of the three layers is necessary at each given location and time, it was possible to use the 
complementary distribution to 1 (i.e., 1 − �D���) which in that case become much closer of the log-
nomal distribution. Quantile-Quantile plots (Q-Q plot, Fig. 4) presenting the fit between observations 
and theoretical distributions confirmed that these distributions of observed ratios (ρobs) are close to the 
log-normal distribution (R2 > 0.9).  
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Figure 4: Quantile-quantile plot of the observed ratios by layer and p
distribution for predicted ratios of epi
distribution (1 − �D���) for lower mesopelagic layer. 
the distribution. 

Based on this distribution the cost function is built as the sum of the negative log
for each layer (eq. 4-6): 

 E� = ∑ 		E��D
F�� G���
HIJ

with:  

 E�� ����
���
 = �
�∑�,�,�,�

for K = 1 and 2, and since the sum of 

 E�� ����
���
 = �
�∑�,�,�,�

for K = 3. 

Revised adjoint code was manually written and then compared to results obtained with an
differentiation library (AUTODIFF, Otter Research Ltd., 1994) and validated by a derivative check
i.e., we verify (eq. 7) that the discrepancy between each gradient component (obtained by analytic 
differentiation (adjoint code) and its finite d
varying from 10-8 to 10-2 (Senina et al., 2008). 

 

 ∀L, M
N�O:��P
�MN�O:�

�P

quantile plot of the observed ratios by layer and period of day using log
distribution for predicted ratios of epi- and upper mesopelagic layers and 

) for lower mesopelagic layer. Black dots indicate the 5

 

 

Based on this distribution the cost function is built as the sum of the negative log


HIJQ	 

RlnG���
�,�,�,���� Q − 	ULG���
�,�,�,�
567+ QV��  

1 and 2, and since the sum of ratios is 1:  

RlnG1 − ���
�,�,�,���� Q − 	ULG1 − ���
�,�567+�

manually written and then compared to results obtained with an
differentiation library (AUTODIFF, Otter Research Ltd., 1994) and validated by a derivative check

that the discrepancy between each gradient component (obtained by analytic 
differentiation (adjoint code) and its finite difference approximation changes parabolically with step 

(Senina et al., 2008).   

� :�P
− WXE� = Y�Z�
 

 

eriod of day using log-normal 
and upper mesopelagic layers and the complementary 

the 5th and 95th percentile of 

Based on this distribution the cost function is built as the sum of the negative log-likelihood computed 

(eq. 4) 

QV (eq. 5) 


 ,�,�
567+ QV� (eq. 6) 

manually written and then compared to results obtained with an automatic 
differentiation library (AUTODIFF, Otter Research Ltd., 1994) and validated by a derivative check, 

that the discrepancy between each gradient component (obtained by analytic 
ifference approximation changes parabolically with step h 

 (eq. 7) 
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Each parameter E’n is allowed to vary between 0 and 1
sum being equal to 1 at the end of each likelihood function

Finally, the general approach was validated with twin experiment
observations are extracted from biomass outputs predicted from a run of the model 
initial parameterization (Pinit). They are used to 
model can converge towards the 
reached, the relative error to the exact value (
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For a first series of 5 twin experiment
Hawaiian transect. Then, 16 series of 5 replicate simulations
randomly distributed either on 1, 3, 5 or 10 time steps of the simulation and 
localizations by time step. Thus, 
of data between a minimum of 20 and 
first used the mean negative-log 
computed the relative standard deviation of the negative log likelihood (
replicate simulations to compare between these groups while accounting for their 
(E�`̀ `) and numbers of observations

 

Figure 5: Distribution of pseudo
(pink ticks) or distributed according a random sampling on position and period of day (blue dots), 
superimposed on primary production deduced from ocean color

 

Results 

6. Twin experiments  
All twin experiments are run from an initial parameterization with all 
with the same number of night and day pseudo

allowed to vary between 0 and 1 and then rescaled to fulfill the condition of their 
sum being equal to 1 at the end of each likelihood function evaluation. 

Finally, the general approach was validated with twin experiments. In such experiments, pseudo
observations are extracted from biomass outputs predicted from a run of the model 

They are used to verify that after changing the parameter values the 
towards the exact original values of parameters. Once the convergence 
error to the exact value (en) is calculated following equation 

twin experiment simulations we used pseudo-observations
16 series of 5 replicate simulations were produced 

ly distributed either on 1, 3, 5 or 10 time steps of the simulation and 
 a total of 85 twin experiment simulations were conducted

of data between a minimum of 20 and a maximum of 2000 observations. To compare the results, w
log likelihood value of each group of 5 simulations

computed the relative standard deviation of the negative log likelihood (aE�
replicate simulations to compare between these groups while accounting for their 

numbers of observations. 

pseudo-observations for twin experiments either along the
according a random sampling on position and period of day (blue dots), 

superimposed on primary production deduced from ocean color data. 

om an initial parameterization with all E’n coefficients set to 
with the same number of night and day pseudo-observation to avoid any potential bias. Overall, the 

then rescaled to fulfill the condition of their 

In such experiments, pseudo-
observations are extracted from biomass outputs predicted from a run of the model (Fig. 5) with an 

hat after changing the parameter values the 
the convergence criterion is 

) is calculated following equation 8: 

 (eq. 8) 

observations extracted along the 
 with pseudo-observations 

ly distributed either on 1, 3, 5 or 10 time steps of the simulation and 20, 50, 100 or 200 
85 twin experiment simulations were conducted with a range 

. To compare the results, we 
each group of 5 simulations. In addition, we also 

� E�`̀ `⁄ ) for each group of 5 
replicate simulations to compare between these groups while accounting for their different averages 

 
along the Hawaiian transect 

according a random sampling on position and period of day (blue dots), 

coefficients set to 1/6th, and 
observation to avoid any potential bias. Overall, the 
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level of error on parameter estimates decreased with the number of 
experiment, from a maximum relative error of ~
observations to less than 1% in 
minimum of 200 pseudo-observations appeared
(Fig. 6).  

Figure 6: Mapping of the average absolute value of the relative error 
retrieval of parameters in twin experiment
and spatial resolution (vertical axi
observations. Red lines delineate the five
relative errors of twin experiments that mimic the actual Hawaiian transect. 

 

The response of the model showed a dissymmetry considering the number of 
included either spatially or temporally. For the same
these data along the same transect but over several time steps than well dispersed over a single time 
step (Fig. 6). Each group had its own response in the variance of 
being the non-migrant upper mesopelagi
night-time the epipelagic layer, i.e., the epipelagic (1.1), migrant upper
migrant lower mesopelagic (3.1) 
followed by the non-migrant lower mesopelagic group
(3.2) and the non-migrant upper mesopelagic (2.2)
to more dynamic and contrasted signals in the epip
currents. This is certainly not the case for the non

level of error on parameter estimates decreased with the number of pseudo-observat
experiment, from a maximum relative error of ~ 10% in the worst case 

in the best case with maximum spatial and temporal
ervations appeared necessary to remain below the threshold of 

rage absolute value of the relative error (en) for each coefficient 
parameters in twin experiments (identified with black dots), over temporal (horizontal axis) 

and spatial resolution (vertical axis). Black curves show isolines with same numbers of pseudo
observations. Red lines delineate the five-percent relative error area. Circles show the location of 
relative errors of twin experiments that mimic the actual Hawaiian transect.  

showed a dissymmetry considering the number of 
included either spatially or temporally. For the same number of pseudo-observations it is b
these data along the same transect but over several time steps than well dispersed over a single time 

Each group had its own response in the variance of estimated 
mesopelagic group (2.2). The three groups that inhabit at least during 

time the epipelagic layer, i.e., the epipelagic (1.1), migrant upper mesopelagic (2.1) and highly
mesopelagic (3.1) groups were those that have the lowest level of error (Fig.

migrant lower mesopelagic group (3.3) and finally the migrant lower mesopelagic 
migrant upper mesopelagic (2.2) groups. These different responses could be related 

to more dynamic and contrasted signals in the epipelagic layer with higher temperature and stronger 
currents. This is certainly not the case for the non-migrant lower mesopelagic group, but this one has 

observations included in the 
10% in the worst case with 20 to 50 pseudo-

with maximum spatial and temporal coverage. A 
the threshold of 5% error 

 

) for each coefficient E’n in the 
(identified with black dots), over temporal (horizontal axis) 

s). Black curves show isolines with same numbers of pseudo-
percent relative error area. Circles show the location of 

showed a dissymmetry considering the number of pseudo-observations 
observations it is better to have 

these data along the same transect but over several time steps than well dispersed over a single time 
estimated error, the most sensitive 

The three groups that inhabit at least during 
mesopelagic (2.1) and highly-

were those that have the lowest level of error (Fig. 6), 
(3.3) and finally the migrant lower mesopelagic 

These different responses could be related 
elagic layer with higher temperature and stronger 

migrant lower mesopelagic group, but this one has 
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the advantage to stay alone in its layer at night with clear information on its biomass ratio.
mesopelagic layer the signal is less clear since it 
groups and the turnover and dynamics are relatively slow.
the actual Hawaiian transect, i.e.,
in Fig. 6 and confirms the general pattern with the largest error for the 
below 5% for the others. The error on the coefficient of group
expected.  

The total negative log-likelihood increased with the number of 
twin experiments (Fig. 7). This is not surprising since even with small errors the
the number of observations. Howeve
space axes. The value for the samples that mimic the actual Hawaiian transect 
value, possibly due to a favorable position of the transect crossing contrasted systems
gyre and the Convergence Zone of Chlorophyll

 

Figure 7: Mapping of the mean negative log
negative log-likelihood (b), over temporal (horizontal axis) and spatial resolution (vertical axis). Black 
curves show isolines with same numbers of pseudo
the mean negative log-likelihood that mimics the actual Hawaiian transect

 

the advantage to stay alone in its layer at night with clear information on its biomass ratio.
mesopelagic layer the signal is less clear since it always results from a combination of two different 
groups and the turnover and dynamics are relatively slow. The result for the twin experiments imitating 

, with same number and localization of pseudo
the general pattern with the largest error for the group

he error on the coefficient of group 2.1 (4.64%) is 

likelihood increased with the number of pseudo-observations included in the 
twin experiments (Fig. 7). This is not surprising since even with small errors the

However, it increased homogeneously and symmetrically on both time and 
The value for the samples that mimic the actual Hawaiian transect 

favorable position of the transect crossing contrasted systems
gyre and the Convergence Zone of Chlorophyll (Polovina et al. 2001).  

 

mean negative log-likelihood (a) and relative standard deviation of the 
over temporal (horizontal axis) and spatial resolution (vertical axis). Black 

curves show isolines with same numbers of pseudo-observations and circle on a) shows the location of 
likelihood that mimics the actual Hawaiian transect.  

the advantage to stay alone in its layer at night with clear information on its biomass ratio. In the upper 
results from a combination of two different 
The result for the twin experiments imitating 

pseudo-observations, is shown 
group 2.2 (7.14%) while it is 

(4.64%) is slightly above what is 

observations included in the 
twin experiments (Fig. 7). This is not surprising since even with small errors their sum increases with 

symmetrically on both time and 
The value for the samples that mimic the actual Hawaiian transect is below the expected 

favorable position of the transect crossing contrasted systems, i.e., the tropical 

likelihood (a) and relative standard deviation of the 
over temporal (horizontal axis) and spatial resolution (vertical axis). Black 

le on a) shows the location of 
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The standard deviation of the negative log
observations allowed for the analyses of
This relative standard deviation 
size samples (Fig. 7). Again the amount of 200 observations
result also confirmed by the Bayesian information criterion (
for the number of observations and parameters 

Figure 8: Bayesian information criterion 

 

7. Estimated parameters with Hawaiian transect
At the resolution of the model, i.e., ¼°
experiment provided 116 observations 
converged with a new parameterization
0.435) than for the initial parameterization 
mesopelagic groups showed the largest increase with estimates between boundary
estimates for the groups of the upper me
non-migrant group (Table 1). The coefficient value of the non
estimated at the boundary. Therefore
of the small number of observations

 

Table 1:  Matrix of the energy coefficients transfer used for the
according to the functional group and the number of vertical layers, and for different simulation 
experiments. 1: parameterisation achieved from the literature (Lehodey et al 2010a); Opt: optimisation 
after data filtering and 5% of the biomass added in the epipelagic.

Nb of layer 
Simulation 
experiment 

Epi

0 (land) All 0

1 All 1

2 
1 0.34
Opt 0.463

3 
1 0.17
Opt 0.236

The standard deviation of the negative log-likelihood once corrected to the total number of 
for the analyses of the intra-samples variability independently from the

 showed the largest deviation (> 35% of the log
Again the amount of 200 observations appeared as a rough

he Bayesian information criterion (Akaike 1974, Schwarz 1978) that account 
for the number of observations and parameters (Fig. 8), the latter being fixed in our case

Bayesian information criterion (BIC) computed for all twin experiments.

with Hawaiian transect 
lution of the model, i.e., ¼° × week, the transect used to run the real optimization

observations over 3 consecutive time steps. T
converged with a new parameterization with new coefficient values distributed ov

than for the initial parameterization (Table 1). Coefficients of lower and
the largest increase with estimates between boundary
e upper mesopelagic layer strongly decreased and even reach

migrant group (Table 1). The coefficient value of the non-migrant lower mesopelagic was also 
Therefore, this first optimization is not entirely satisfyin

of the small number of observations and the uncertainty on forcing variables (see also discussion)

of the energy coefficients transfer used for the 3-layer 6
according to the functional group and the number of vertical layers, and for different simulation 

. 1: parameterisation achieved from the literature (Lehodey et al 2010a); Opt: optimisation 
5% of the biomass added in the epipelagic. 

Epi Upper 
Meso 

Migrant 
Upper  
meso 

Lower  
meso 

Migrant 
Lower 
Meso

0 0 0 0 0 

1 0 0 0 0 

0.340 0.270 0.390 0 0 
0.463 0.310 0.227 0 0 
0.170 0.100 0.220 0.180 0.13
0.236 0.083 0.000 0.435 0.0

likelihood once corrected to the total number of 
variability independently from their size. 

of the log-likelihood) for small 
rough minimum threshold, a 
Schwarz 1978) that account 

, the latter being fixed in our case. 

 

) computed for all twin experiments. 

he transect used to run the real optimization 
. The model successfully 

coefficient values distributed over a larger range (0 to 
. Coefficients of lower and highly-migrant lower 

the largest increase with estimates between boundary values. Conversely, 
sopelagic layer strongly decreased and even reached 0 for the 

migrant lower mesopelagic was also 
, this first optimization is not entirely satisfying, possibly because 

(see also discussion). 

layer 6-component MTL model 
according to the functional group and the number of vertical layers, and for different simulation 

. 1: parameterisation achieved from the literature (Lehodey et al 2010a); Opt: optimisation 

Migrant 
Lower 
Meso 

Highly 
Migrant 
Lower 
Meso 

 0 

 0 

 0 
 0 

0.130 0.200 
0.020 0.226 
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Nevertheless, even though the new 
it improved the average overall fit to observed ratios in the 
ratios in the upper mesopelagic layer and its weak variability may explain
correct estimates of energy transfer coefficients for the groups 
and temporal resolution of the model 
also does not resolve the transition phase during twilight hours. 
uncertainty that are inherent to the model and its forcing
the discussion.  

 

Figure 9: Comparison between observations and predictions.
transect (averaged over a one-hour period) in NASC (Nautical Area Scattering Coefficient). The three 
other panels shows biomass ratios in the corresponding layer (averaged over a one
lines for observed, black dotted lines for
black solid lines for the new optimization.

 

 

Nevertheless, even though the new optimized parameterization should be considered 
overall fit to observed ratios in the 3 layers (Fig. 9). 

ratios in the upper mesopelagic layer and its weak variability may explain
correct estimates of energy transfer coefficients for the groups inhabiting this layer. 

the model still cannot predict the level of variability observed
also does not resolve the transition phase during twilight hours. Finally, o

inherent to the model and its forcing, as well as in the acoustic 

Comparison between observations and predictions. First panel shows the whole acoustic 
hour period) in NASC (Nautical Area Scattering Coefficient). The three 

other panels shows biomass ratios in the corresponding layer (averaged over a one
k dotted lines for parameterization published in Lehodey et al. (2010a) and 

black solid lines for the new optimization. 

e considered very preliminary, 
9). The low values of signal 

ratios in the upper mesopelagic layer and its weak variability may explain the difficulty to retrieve 
inhabiting this layer. In addition, spatial 

cannot predict the level of variability observed. The model 
Finally, other various sources of 

as well as in the acoustic data, are detailed in 

 

shows the whole acoustic 
hour period) in NASC (Nautical Area Scattering Coefficient). The three 

other panels shows biomass ratios in the corresponding layer (averaged over a one-hour period): blue 
published in Lehodey et al. (2010a) and 
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However, one striking disagreement between observed and predicted ratios occurred at the beginning 
and end of the Hawaiian transect, i.e., when leaving and returning to the Hawaiian Islands. The model 
could not predict the high values observed during the night in the epipelagic layer and, conversely, the 
low values in the lower mesopelagic layer. A more detailed investigation detected a potential problem 
associated with the mesoscale activity. Although the currents predicted with the GLORYS reanalysis 
compared fairly well with those deduced from altimetry data (Fig 10), the detailed mesoscale features 
might differ substantially locally.  For example, the very high ratio value in the epipelagic layer at night 
occurring at 25°N along the transect (Fig 9) seemed to coincide with a structure of two small eddies of 
opposite rotation that are visible on the altimetry map but not in the predicted currents of GLORYS 
(Fig. 10). This type of structure associating one cyclonic and one anti-cyclonic mesoscale eddy is 
highly favorable to the concentration of organisms in the area of convergence of currents as predicted 
for instance in the south-east corner of the micronekton biomass distribution map on figure 10d. The 
lack of such a structure at 25°N on the transect in the field of predicted currents used to simulate the 
micronekton could explain the too low micronekton biomass predicted by the model in comparison to 
acoustic data.  
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Figure 10: Mesoscale prediction and observation. (a) 
reanalysis (week of 16-22 March, 2009) 
(AVISO CNES/CLS http://www.aviso.oceanobs.com/
altimetry for the same period and also superimposed 
superimposed and a zoom is shown for the area identified with a rectangle. (c) Predicted biomass 
distribution in the epipelagic layer during daytime and (d) during nighttime with superimposed 
GLORYS2v1 currents. Note the d

 

Mesoscale prediction and observation. (a) Current velocity (arrows)
22 March, 2009) superimposed on observed sea surface height 

http://www.aviso.oceanobs.com/); (b) Current velocity
altimetry for the same period and also superimposed on SSH. The acoustic transect (black line) is 
superimposed and a zoom is shown for the area identified with a rectangle. (c) Predicted biomass 
distribution in the epipelagic layer during daytime and (d) during nighttime with superimposed 
GLORYS2v1 currents. Note the different ranges of values between color bars.

 

(arrows) from GLORYS2v1 
sea surface height (SSH) anomaly 

Current velocity (arrows) deduced from 
acoustic transect (black line) is 

superimposed and a zoom is shown for the area identified with a rectangle. (c) Predicted biomass 
distribution in the epipelagic layer during daytime and (d) during nighttime with superimposed 

ifferent ranges of values between color bars. 
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Discussion 
Acoustic sampling is the only available approach to collecting a sufficient amount of data at basin 
scales. At first glance, it shows micronekton distribution and density that is globally still missing today. 
However, even with a vast sampling effort, it could not offer the synoptic view that is required for 
understanding and eventually managing these huge oceanic ecosystems. Therefore, the data need to be 
complemented with ecological models with appropriate levels of detail and parameters tailored to 
match this type of data. This study provides a methodology for a simple and robust use of acoustic data 
in an original parsimonious model of micronekton functional groups. 

Acoustic data initially allowed us to define the vertical boundaries of the 3 biological layers in the 
model. Such a definition is critical as physical variables that drive the dynamics of MTL groups are 
averaged within these layers. Ongoing work in other oceanic basins (e.g., the Southern Indian Ocean) 
suggests that this definition could be generalized at the ocean basin scale, although this question of 
vertical boundaries remains fully open and will require many other acoustic transects and research 
cruises from various oceanic regions and seasons to be confirmed.  

Clearly, the initial optimal parameterization achieved here with one single transect and single 
frequency is preliminary, and new experiments will have to be conducted with more data and acoustic 
interpretation. The approach based on relative signal ratios should help in combining different data 
sources, but this assumes no horizontal and vertical bias in the acoustic measurement and their 
biological interpretation. Reducing vertical and horizontal bias from the acoustic measurements can be 
achieved with modern calibrated echo sounders from research and fishing vessels with the data 
available with appropriate metadata (Kloser et al. 2009, www.imos.org.au, ICES 2013). Thus, it is 
necessary to implement automatic data screening to remove obvious wrong signals and filtering so as 
to avoid spurious integration of noise (e.g., De Robertis and Higginbottom 2007). It is also essential 
that the treatment of the signal along the vertical dimension be comparable with appropriate beam 
spreading compensation and absorption correction for the frequency used (Francois and Garrison 
1982). Adjustments need to be made for potential changes in transducer sensitivity and absorption in 
the horizontal direction that are mainly a result of temperature (Demer and Renfree 2008). This data 
processing method then enables a comparison of acoustic backscatter ratios between depths and 
regions. To compare data sets from different instruments and regions, the data metadata must describe 
the instrument, the calibration, and signal processing methods used (ICES 2013). 

This work has assumed that the biological interpretation of the acoustics contains no vertical or 
horizontal bias and that the acoustic signal is proportional to the micronekton biomass at all depths 
(Benoit-Bird and Au 2002). This will not be the case at lower frequencies, such as 38 kHz used here, as 
a result of resonance scattering effects in the mesopelagic layer from fish and siphonophores with gas 
inclusions in particular. For example, at 600 m depth the backscatter at 38 kHz can be an order of 
magnitude higher than the 120 kHz frequency as used by Benoit-Bird and Au (2002) requiring a 
scaling adjustment (Kloser et al. 2002). To accurately compare data from different layers and between 
different regions, the proper ratios of different types of micronektonic organisms and their sizes must 
be estimated, and adjustments must be made for differences in acoustic basckscatter based on 
composition and size (Handegard, et al. 2013). This is true even if all micronektonic groups, i.e., fish 
with and without gas-bladder, crustaceans, cephalopods, and gelatinous organisms with and without 
gas inclusions (e.g. some siphonophores), are considered as a whole as in this study. Advances in 
multi-frequency acoustics and detailed studies on the conversion of acoustic to biological units are 
required to narrow down the range of errors and biases based on resonance scattering. The calibration 
of diffusion parameter needs also to be investigated through sensitivity analysis. Decreasing its value 
would certainly reinforce the contrast in the predicted biomass ratio but likely could make the model 
convergence more difficult to achieve. 
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Our estimate of epipelagic biomass may be biased low as a result of the near-surface region unsampled 
by the acoustics (~ 15 m depth) or affected by vessel avoidance (e.g., O'Driscoll, et al. 2009, De 
Robertis, A., and Handegard, N.O. 2013). This bias may have a spatial and temporal structure and be 
region-specific depending on the species present. In this initial experiment we arbitrarily fixed the 
missing near-surface biomass to 5% of the total signal, which is only a first-guess estimate. Based on 
38 kHz acoustic data collected along a circumnavigation, Irigoien et al. (2014) give an estimate of 7% 
for the biomass in the upper 200 m after excluding 5 areas with exceptional high values.  To explore 
the magnitude of this bias will require methodological and technological solutions. Using the existing 
echo sounder data it is possible to observe the migration behavior of the species to determine the 
potential extent of the problem and the need for higher compensation or dedicated near-surface 
sampling technology (O'Driscoll, et al. 2009). Examples of available near-surface acoustic technology 
are upward-looking echo sounders (moored or mobile) and sideways-looking sonars (Handegard et al., 
2013). Estimating biomass from these devices is complicated by the need to know the target strength of 
the species at different orientations. At the least these devices can detect the relative change of acoustic 
signal above and below the near-surface region to explore the potential magnitude of the bias. 
Sampling the near surface with acoustics also has some physical constrains due to the instruments pulse 
length, waves and bubbles. Uncertainty in biomass estimates from these issues will need to be 
addressed if precise epipelagic biomass estimates are to be obtained. Despite all these raised issues, 
observing the behavior of the vertical migration of mesopelagic organisms could be the best method to 
highlight the potential magnitude of the problem to direct more research. 

With the quality and coverage of acoustic data, forcing fields are another area for increasing the 
accuracy of the model in simulating the dynamics of micronekton functional groups. The twin 
experiments indicated that 200 observations could be sufficient to retrieve the correct parameter values. 
However, this is for the ideal and theoretical case of a perfect environmental forcing, i.e., here the same 
used both for producing pseudo-observations and running optimization. In practice, there are many 
sources of uncertainties on the variables used to reproduce the oceanic environment.   

The VGPM model of primary production that is used here is one among many satellite "chlorophyll-
based" models with empirically determined functions that are generalized to basin scale. For instance, 
an alternative definition of the temperature-dependent photosynthetic efficiencies as suggested by 
Eppley (1972) leads to substantial differences in the estimates (see 
http://www.science.oregonstate.edu/ocean.productivity/). The accuracy of 21 ocean color models was 
recently assessed by comparing their estimates to in situ measurements (Saba et al. 2011). While on 
average, simple and more complex models had similar performances, their average accuracy was 
significantly higher at seabed depths greater than 250 m, i.e., for the Case-1 (pelagic) waters used in 
our study. Therefore, primary production estimates are likely degraded close to the coast and these 
errors can cascade downstream and propagate offshore.  

Similarly ocean circulation models still have biases or drifts from observations despite the assimilation 
of satellite and available in situ data (Lellouche et al 2012; Ferry et al 2012). These sources of errors 
likely increase with depth in relation to the number of observations available for assimilation, and also 
near the coast due to the necessity of degrading the actual topography at the resolution of the model 
grid (1/4°). The discrepancy observed in this study between mesoscale features predicted by the 
reanalysis or deduced from altimetry is a good illustration of these potential sources of errors with a 
direct consequence on the micronekton estimate. However, it is worth noting that the optimization 
procedure improved the average estimate independently of these local errors. This suggests that the 
method is robust and can account for these sources of errors. 
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The next step will consist in optimization experiments based on longer time series and with a larger 
amount of observations needed to compensate the various sources of uncertainties. Given the effort 
developed with the IMOS initiative (Kloser et al. 2009; http://www.imos.org.au/) to collect 38 kHz and 
other acoustic frequency data routinely, it is envisaged to develop a configuration for the southern 
hemisphere and use all these available and standardized data. New fine-scale acoustic, optical and 
trawling regional-based experiments are needed to interpret this broader spatial and temporal scale 
acoustics data to initialize and assimilate into the model (Handegard et al. 2013). In particular, 
experiments to quantify the conversion of acoustic backscatter into biological units accounting for 
resonance scattering are needed. The optimal parameterization will be then used for a global hindcast 
simulation allowing evaluation of the results in the northern hemisphere with historical data, e.g., the 
MARECO platform. It is also worth noting that our twin experiments suggest that a long time series of 
acoustic data in a single point could provide more useful information for parameter optimization than 
the same amount of data spatially dispersed over a few time steps. It is essential to confirm or not this 
result given its potential consequences when designing ocean-monitoring networks. 

Parallel to the progress of acoustic technology and associated validation experiments for quantifying 
and discriminating between the major groups of micronekton organisms, the model could be further 
developed easily to account for a more detailed description of the pelagic mid-trophic levels. 
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