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Abstract:

In the pelagic foodweb, micronekton at the mid-trophic level (MTL) are one of the lesser known
components of the ocean ecosystem despite being a major driver of the spatial dynamics of their
predators, of which many are exploited species (e.g. tunas). The Spatial Ecosystem and Population
Dynamics Model is one modelling approach that includes a representation of the spatial dynamics of
several epi- and mesopelagic MTL functional groups. The dynamics of these groups are driven by
physical (temperature and currents) and biogeochemical (primary production, euphotic depth)
variables. A key issue to address is the parameterization of the energy transfer from the primary
production to these functional groups. We present a method using in situ acoustic data to estimate the
parameters with a maximum likelihood estimation approach. A series of twin experiments conducted to
test the behaviour of the model suggested that in the ideal case, that is, with an environmental forcing
perfectly simulated and biomass estimates directly correlated with the acoustic signal, a minimum of
200 observations over several time steps at the resolution of the model is needed to estimate the
parameter values with a minimum error. A transect of acoustic backscatter at 38 kHz collected during
scientific cruises north of Hawaii allowed a first illustration of the approach with actual data. A
discussion followed regarding the various sources of uncertainties associated with the use of acoustic
data in micronekton biomass.

Keywords: acoustic ; maximum likelihood estimation ; micronekton ; model optimization ; modelling ;
Pacific ocean ; SEAPODYM

Powered by http://archimer.ifremer.fr



http://dx.doi.org/10.1093/icesjms/fsu233
mailto:plehodey@cls.fr

I ntroduction

The development of marine ecosystem models is providing new useful tools and products in
investigating the combined effects of fishing, environmental variability and the impacts of climate
changes on species of interest; in particular, exploited or protected species (e.g., De Young et al. 2004;
Fulton 2010; Lehodey et al. 2008; Plaganyi 2007; Senina et al. 2008; Dueri et al. 2012; Sibert et al.
2012). The first necessary step in the development of such ocean ecosystem models is to produce
reliable predictions of the physical-biogeochemical oceanic environment. Physical ocean-circulation
models are now providing realistic simulations of the ocean by assimilating large amounts of sea
surface satellite and depth profile data (e.g., ARGO program) to produce reanalyses of the past and
present ocean state at high resolution. The modeling of lower trophic levels, that is, the phyto- and
zooplankton, is also rapidly progressing (Brasseur et al. 2010, Holt et al. 2014) and should soon
provide operationally realistic outputs to connect these ocean models to the higher biological levels. As
an immediate alternative, primary production by phytoplanktonic groups can be inferred from satellite
data (e.g., Behrenfeld and Falkowsky 1997), with the advantage of providing a realistic description of
mesoscale activity.

While the modeling of these physical and biological variables is well advanced, this is not the case
however, for the epi- and mesopelagic mid-trophic level (MTL) organisms (macrozooplankton and
micronekton) that are a critical component in the oceanic ecosystem. By definition, micronekton are
small organisms (~1-20 cm or g) that can swim; however, their small sizes are still strongly impacted
by oceanic circulation from large to mesoscale. They distribute between the surface and the deep layers
with some groups of species migrating every night and day between these vertical layers. Predators
have adapted their behavior to chase these forage species by using their physical and physiological
skills for accessing the different layers. These predators include many exploited stocks (e.g., tunas and
swordfish) and protected species (e.g. turtles, seabirds, sharks and marine mammals), and realistic
simulations of micronektonic prey would provide a key explanatory variable that is currently missing to
better understand individual behavior and population dynamics. Additionally, micronektonic organisms
are a major source of grazing of zooplankton and are predators of eggs and larvae drifting in the pelagic
environment, including those of the exploited species. Micronekton also interact with the carbon cycle,
including the CQreleased in the atmosphere by human activity, as they contribute to the production of
particular organic matter (POC) that is recycled either in the microbial loop or stored by sinking to the
deep ocean (Holt et al., 2014). Thus, micronekton are central to the understanding and modelling of
oceanic ecosystems and there is a pressing need for increased knowledge and for models pertaining tc
their biomass estimate and ecological role.

Several modeling approaches can be used to estimate micronekton biomass (e.g., Kitchell et al. 1999,
Jennings et al. 2008; Maury 2010; Lehodey et al., 2010a). The Spatial Ecosystem And Population
Dynamics Model (SEAPODYM) in this study includes a representation of several MTL functional
groups, i.e., the epi- and meso-pelagic micronekton, to describe the prey fields of tuna and other large
pelagic predators (Lehodey et al.,, 2010a). This micronekton model has been used in several
applications on tuna species (Lehodey et al. 2008; Senina et al. 2008; Lehodey et al., 2010b, 2013;
Briand et al 2011; Sibert et al. 2012), and its outputs used to investigate habitats and movements of
other large oceanic species (Abecassis et al 2013; Lambert et al., 2014).

A key issue in the SEAPODYM modelling approach is to parameterize the energy transfer from the
primary production to the functional groups of micronekton. A preliminary parameterization (Lehodey

et al., 2010a) was achieved based on a first compilation of existing data in the literature and a Pacific
basin-scale simulation at coarse resolution (1 deg x month). A more rigorous approach requires the use
of data assimilation methods to optimize the parameters using acoustic data that provides a synoptic
view of micronekton biomass in the vertical layers of the ocean. Over the recent years, acoustic
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estimates of micronekton biomass has received increased attention, and many acoustic transects are
collected at basin scales by various research and fishing vessels. An effort of standardization between
these different data sources (e.g., IMOS projbtp://imos.org.au/anmnacous.hjnghould fill the
important gap in the understanding of basin scale mid-trophic biomass and distribution providing data
to initialize and assimilate into ecological models.

Here, we present a methodology for a parameter optimization approach based on assimilation of
acoustic data in the MTL model. Assimilation experiments with the MTL model at high-resolution in
the Pacific Ocean are used to validate the method and to highlight the need for collecting and
standardizing such data. After a series of twin experiments conducted to test the behavior of the model,
a transect of acoustic backscatter at 38 kHz collected during scientific cruises north of Hawalii
illustrates the approach. We assumed that the intensity of the acoustic signal is proportional to the
density of micronektarThis is not always true, e.g. due to resonant scattering diel shifts, and has been
identified by the acoustic community as needing more research (e.g. Handegard et al 2013).

Material and M ethods

1. The mid-trophic model

In its present version, the SEAPODYM MTLs sub-model includes 3 vertical layers and 6 functional
groups characterized by their vertical behavior, i.e., with or without occurrence of diel migration
between three vertical layers. Recruitment, ageing, mortality and passive transport with horizontal
currents are modeled by a system of Advection-Diffusion-Reaction equations, taking into account the
vertical behavior of organisms (Lehodey et al.,, 2010a). Since the dynamics are represented by a
relationship of temperature-linked time development, only six parameters in the model have to be
estimated. The first on&) defines the total energy transfer between primary production and all the
MTL groups. The other parameters are the relative coefficierfsredistributing this energy through

the different components (the sum of which being 1). The parameterizati&rreafuires absolute
biomass estimates of MTL, while the matrixEf, coefficients can be estimated simply using relative

day and night values integrated in the three vertical layers of the model. The 6 parameters of the MTL
model have been initially tuned according to very limitadsitu data and information from the
literature (Lehodey et al., 2010a).

2. Terminology and definition of vertical layers

In its first version, the layers of the model were conveniently named as epi-, meso- and bathypelagic
(Lehodey et al 2010a). However, the names of the functional groups were revised (Fig. 1) to comply
with the standard terminology that defines the bathypelagic layer below 1000 m. The 3 vertical layers
are therefore renamed as epipelagic, upper- and lower- mesopelagic layers. They have been defined
relatively to the euphotic deptizZg), assuming the vertical migration of micronektonic organisms is
primarily driven by light. When comparing acoustic profiles vidgh(Fig. 1) in the region of study, the
epipelagic layer appeared to extend deeper than the euphotic depth computed according to the VGPM
model of Behrenfeld and Falkowski (1997). Thus the first layer was computed usingZd,.5The

second and third layer boundaries were defined as 3 times and 7 times the depth of the first layer (with
a maximum set at 1000 m) based on visual inspection of acoustic transects (Fig. 1). The definition of
vertical layers, based on the euphotic depth and the few available acoustic transects for this study,
could evolve while more data becomes available (see discussion). Each MTL functional group is
identified by the layer that is inhabited by its organisms during the day and night. With this
terminology the epipelagic group is called MTL1.1 since it is always in the first layer, while the highly
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migrant lowermesopelagic group becomes MTL3.1, i.ehabitingthe third layer during the day a
moving up to the surface layer at ni (Fig. 1).
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Figure 1: Identification of MTL functional groups on acoustic echogram (a) and conceptual moc
revised from Lehodey et al. @20a). 1.1: Epipelagic; 2.1: Migrant upper mesopelagic; 2.2: L
mesopelagic; 3.1: Highlyigrant lower mesopelagic; 3.2: Migrant lower mesopel 3.3: Lower
mesopelagic.

3. Model domain and forcing

Acoustic transeatiata are strongly influenced by the mesoscale activity and represent very dete
also avery small portion of the oceaA realistic highresolution ocean physics and biogeocherr
feedback is needed extract the largest information from dated in the optimization approa We
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used the ocean reanalysis GLORYglorysproducts@mercator-ocea).frWith the project GLORY?
(GLobal Ocean ReanalYsis and Simulations), supported by the French Mission Mercator
Coriolis, a first eddy resolving global ocean reanalysis has been produced for t-2009 period
with the ocean general circulation model configuration ORCA025 NEMO, i.e., a spatial resolt
Y,° (Barnier et al., 2006). The assirtion method is based on a reduced order Kalman filter (S
formulation, Pham et al. 1998) adapted to eddy resolving global ocean model configuration (Ti
et al., 2008). The GLORY.3v1 reanalysis was updated for the recent pewith the operational
Mercator-Oceanhftp://www.mercatc-ocean.fr/leny global ocean model PS¥Bat is using the same grid
and assimilation scheme than GLORYS. Because the ocean circulation model assimilates
(SST and altimetry) anish situ data, predicted fields ¢emperature and curres are globally coherent
with those of primary production derived from ocean color data (Fig. 2), using the VGPM m
Behrenfeld and Falkowsky (199
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Figure 2: Snapshots showing the derived primary production computed followi VGPM model of
Behrenfeld and Falkowsky (1997) with superimposed surface currents (average in the eupho
predicted in GLORYS2v1 reanalysglorysproducts@mercator-oceahdnd the Hawaiian "ansect.

The model computes spatialsttibution of production and biomass of each functional group ¢
resolution of the physical model. The total biomass for each layer duri-time and night-time was
computed by adding the different components accordingly. For instance, the siyer is inhabited
only by the epipelagic group during the day but the sum of epipelagic-migrant mesopelagic and
highly-migrant lowermesopelagic groups during the night. These predictions can be comp:i
acoustic biomass estimateg layer durincnights and daysThough the original domain of the mode
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global between latitude 66.5°N and 66.5°S, a subdomain has been extracted for optimization in the
North Pacific to save computational time, with geographical coordinates 66.5°N-0°N, 90°E-70°W and
closed boundary conditions.

4, Acoustic data

A shipboard survey was conducted in March 2009 along the longitude 158°W from 22°N to 36°N (so-
called “Hawaiian transect” in the following text) that has been used for optimization experiments (Fig.
2). Bioacoustic signals were collected continuously down to 1200 m with a hull-mounted split-beam
Kongsberg Maritime AS Simrad EK60 system (Horten, Norway), operating at the 38, 70, and 120 kHz
frequencies. The EK60 system was calibrated prior to data collection with a 38.1 mm tungsten carbide
sphere according to standard methods (Foote et al., 1987). As the higher frequency signals attenuate
shallower than the bottom of the lower mesopelagic layer, only 38-kHz full-resolution acoustic data
were used. Volume backscattering coefficients (Sv, in dB ré'Jlwere converted into nautical area
scattering coefficient (NASC, in Tmmi?) values and assumed proportional to micronekton biomass
(Mac Lennan et al., 2002). Since the 38 kHz frequency signal is dominated by micronektonic
organisms (Handegard et al. 2013), the integration of NASC is believed to be representative of the total
biomass of the 6 functional groups of the model. However, a series of potential biases occur that are
presented in the discussion. Also, the position of the transducer below the hull prevents any recording
from the first 5 m, while data about 10 m from the transducer face is unreliable due to nonlinearities in
the nearfield. In addition to the loss of recording in the upper 15 m, water displaced in front of the
vessel together with the possible escapement behavior of organisms likely leads to a negative bias in
biomass estimates in the surface layer. To compensate this bias, we decided to correct the signal by
adding 5% of total biomass in the epipelagic functional group, considering that about 5-10% of the
total biomass should be in the first 100 m during daytime in the tropical and subtropical ocean (e.qg.,
Grandperrin 1975; Irigoien et al. 2014).

After a few tests, the Hawaiian transect showedwva dignal-to-noise ratio (Fig. 3) thereby making
convergence in the model difficult. This noise is a result of the cavitations and bubble dropout,
characterized by high frequency localized extreme values and was filtered using a running geometric
mean (eq. 1) with a window range (Iy}@f 7 bins for each vertical layer at resolution of 10 m.

t'=t-f eq. 1

- 1
NASC'(d,t) = (Ht =t NASC (d, t’) [e2f
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Figure 3: Example of a portion of acoustic transect before (a) and after (b) processing the de
averaged over a minute). After the vertical layers have been defined the signal strength is
integrated and then averaged at the al resolution of the grid of the model (1/4°) after excluding
sunset and sunrise time periods. The orange lines delineate the vertical layers boundaries ba
euphotic depth. The purple line shows the variation of the solar elevation anglh is used to
discriminate between night and day) through the day. Small black andpink) on the horizontal
axis indicate the position each five horizontal cells of the mode

5. Optimization approach

The simple modelling approacused to describe the MTL components with a limited numbe
parameters helps implementiragmethod of parameter estimation bging data assimilation. TI
matrix of E’, coefficients can be estimated simply using relative day and night values of a
backscatter integrated in each of 3 vertical layers of the model. The energy transfer coefficient
optimized to fit the relative ratios of micronekton biomass (or NASC) between layers changinc
day and night periods. First, tNASC values are integrateat the resolution of the modin space (in
each cell grids of the model and in each layer) and time (during-time and da-time, excluding
transition periods)Based on the sum of values for 3 layers, the signal of the first layer ncreased
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by 5%. Then, the ratigd for each layerK) and night or day periodY) is computed relatively to the
corrected sum of the 3 layers (eq. 2) defined by their ugpeafd deeperZ) vertical boundaries:

Zy(K
obs Je I fj fZ;((K))(NASC(x,y,z,t)IQ) dz dy dx dt

Ljta = [0, [P ascxyzig) dz dy dx dt

(P (eq. 2)

where, {, j) is the position (the cell) in the grid of the model domaithe time (in the model
resolution),2 the part of the day (night or day), algdthe identity function (1 i, O elsewhere). Day

and night periods are defined based on the solar elevation angle (Downey 1990; see
https://pypi.python.org/pypi/pyepherfogr Python language scripts) with day when the altitude is > 18°
and night with altitudec 18° (Fig. 3).

The integration of acoustical signal along a transect is illustrated in Fig. 3. According to the local time
of the day, these values can be compared to the relative distribution of predicted biomass in the same
layers, accounting for the different combination of MTL components due to vertical migration. Sunset
and sunrise time periods are excluded by the definition using solar altitude.

Observed ratios™ for each layelK are compared to the model predictiop®®). The predicted
ratios in grid cell i( j) at timet, for the part of the dag, in a layeK is the sum of the biomass of each
group inhabiting the laye, at this position and time and divided by the total biomass in all layers (eq.
3):

n
Y 1snse Bjj:

pred __  k(nQ)=K
(pK)i,j,t,Q Y1<n<e Bir_lj,t (eq. 3)

with n the functional groupB” the biomass of the group and k(n,Q) the layer inhabited by group n
during the period of dag.

The optimization approach will search for the optimal set of paramgtethat provides the best fit
between observation and prediction. Since the approach use relative ratio of integrated acoustic signal,
it is possible to include data from various sources and without standardization. However, for the
parameterization &, i.e., the total energy transfer that controls the level of absolute biomass, it would

be necessary to use calibrated biomass estimates. They need to combine acoustic and micronekton ne
sampling allowing to convert backscatter values in micronekton biomass after careful discrimination
between various recorded patches of records. This objective is not included in the present approach.
Nevertheless, based on a detailed acoustic study (Kloser et al 2009), the previous estimate of biomass
appeared largely underestimated and the value wés increased (i.e., manually tuned to a value of
0.04) to fit these recent estimates.

The optimization approach uses the adjoint technique with the quasi-Newton gradient method to
minimize the cost functionL{) as described in Senina et al. (2008), but the new likelihood function
required several modifications of the adjoint code.

First, the distribution of observed ratios suggest a log-normal distribution for data in the first 2 layers
either during day or night, but not for the deepest (lower mesopelagic) layer. However, since the sum of
ratios of the three layers is necessary at each given location and time, it was possible to use the
complementary distribution to 1 (i.el,— p2?%) which in that case become much closer of the log-
nomal distribution. Quantile-Quantile plots (Q-Q plot, Fig. 4) presenting the fit between observations
and theoretical distributions confirmed that these distributions of observed @Bffpsue close to the
log-normal distribution (&> 0.9).
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Figure 4. Quantilequantile plot of the observed ratios by layer aeriod of day using Ic-normal

distribution for predicted ratios of ¢« and upper mesopelagic layers athe complementary
distribution @ — pg?s) for lower mesopelagic layeBlack dots indicatehe " and 98 percentile of
the distribution.

Based on this distribution the cost function is built as the sum of the nega-likelihood computed
for each layer (eq. 4-6):

L™ =Yg Lx ((PK)ObS) (eq. 4)
with:

_ 1 2
Lk ((pg)°P*) = EZi,j,t,Q[ln((pK ?,?,St,ﬂ - ln((PK)EJT-,eti) ] (eq. 5)

for K =1 and 2, and since the sumratios is 1:

2
Lk ((pg)°?) = %Zi,j,t,ﬂ[ln(l — (pk io,?j:,ﬂ - ln(l - (Pk)ﬁii} ] (eq. 6)
forK = 3.

Revised adjoint code wamanually written and then compared to results obtained w automatic
differentiation library (AUTODIFF, Otter Research Ltd., 1994) and validated by a derivative,
i.e., we verify (eq. 7}hat the discrepancy between each gradient component (obtained by ¢
differentiation (adjoint code) and its finitdfference approximation changes parabolically with h
varying from 1 to 10% (Senina et al., 2008

Vn, L_(En"'h)z_hl'_(En_h) — vkL_ = O(hz) (eq 7)




Each parametdt’,, is allowed to vary between 0 an andthen rescaled to fulfill the condition of th
sum being equal to 1 at the end of each likelihood fur evaluation.

Finally, the general approach was validated with twin expers. In such experiments, pset-
observations are extracted from biomass outputs predicted from a run of the(Fig. 5) with an
initial parameterizationR},;;). They are used tverify that after changing the parameter values
model can convergmwards theexact original values of parameters. Otioe convergenccriterion is
reached, the relativerror to the exact value,) is calculated following equatic8:

_ |ETp— Ery|

£, (eq. 8)

€n

For a first series of Bwin experimer simulations we used pseudbservation extracted along the
Hawaiian transect. Thed6 series of 5 replicate simulatic were producedavith pseudo-observations
randonty distributed either on 1, 3, 5 or 10 time steps of the simulation20, 50, 100 or 200
localizations by time step. Thustotal of85 twin experiment simulations were condu with a range
of data between a minimum of 20 aa maximum of 2000 observationso compare the resultse
first used the mean negatilag likelihood value ofeach group of 5 simulatio. In addition, we also
computed the relative standard deviation of the negative log likelitoL~/L~) for each group of 5
replicate simulations to compare between these groups while accounting fcdifferent averages
(L7) andnumbers of observatio.

125
td)

25 50 13 100
Verticaly integrated Primary Production (mmolC.m

Figure 5: Distribution ofpseud-observations for twin experiments eitt®ong thc Hawaiian transect
(pink ticks) or distributedaccording a random sampling on position and period of day (blue
superimposed on primary production deduced from ocear data.

Results

6. Twin experiments
All twin experiments are rundm an initial parameterization with &', coefficients set t1/6", and
with the same number of night and day ps«~observation to avoid any potential bias. Overall,
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level of error on parameter estimates decreased with the nurrpseudoebserveions included in the
experiment, from a maximum relative error ¢ 10% in the worst caswith 20 to 50 pseudo-
observations to less than 1 the best casevith maximum spatial and tempa coverage. A
minimum of 200 pseudo-obsrations appear necessary to remain beldive threshold 05% error

(Fig. 6).
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Figure 6: Mapping of the awage absolute value of the relative el(e,) for each coefficienE’, in the
retrieval ofparameters in twin experimes (identified with black dots), over temporal (horizontal a
and spatial resolution (vertical s). Black curves show isolines with same numbers of p-
observations. Red lines delineate the -percent relative error area. Circles show the locatio
relative errors of twin experiments that mimic the actual Hawaiian trai

The response of the modshowed a dissymmetry considering the numbepseudo-observations
included either spatially or temporally. For the s number of pseudobservations it isetter to have
these data along the same transect but over several time steps than well dispersed over a ¢
step (Fig. 6)Each group had its own response in the variancestimatecerror, the most sensitive
being the non-migrant upp@nesopelacc group (2.2).The three groups that inhabit at least du
nighttime the epipelagic layer, i.e., the epipelagic (1.1), migrant mesopelagic (2.1) and higl-
migrant lower mesopelagic (3.1groupswere those that have the lowest level of error 6),
followed by the normmigrant lower mesopelagic grc (3.3) and finally the migrant lower mesopela
(3.2) and the nomigrant upper mesopelagic (2 groups.These different responses could be rel;
to more dynamic and contrasted signals in theelagic layer with higher temperature and stror
currents. This is certainly not the case for the-migrant lower mesopelagic group, but this one
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the advantage to stay alone in its layer at night with clear information on its bioma: In the upper
mesopelagic layer the signal is less clear sinalwaysresults from a combination of two differe
groups and the turnover and dynamics are relatively The result for the twin experiments imitati
the actual Hawaiian transect, j.@ith same number and localizationpgfeud-observations, is shown
in Fig. 6 and confirmshe general pattern with the largest error forgroug 2.2 (7.14%) while it is
below 5% for the others.HE error on the coefficient of grc 2.1 (4.64%) isslightly above what is
expected.

The total negative logkelihood increased with the number pseudoebservations included in tt
twin experiments (Fig. 7). This is not surprising since even with small errdr sum increases with
the number of observationdowever, it increased homogeneously aynmetrically on both time ar
space axeslhe value for the samples that mimic the actual Hawaiian trais below the expected
value, possibly due tofavorable position of the transect crossing contrasted sy, i.e., the tropical
gyre and the Convergence Zone of Chlorof (Polovina et al. 2001).
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The standard deviation of the negative -likelihood once corrected to the total number
observations alloweébr the analyses (the intra-samplesariability independently from tlir size.
This relative standard deviati@howed the largest deviation (> 35%fothe lo¢-likelihood) for small
size samples (Fig. 7Again the amount of 200 observati appeared asraugl minimum threshold, a
result also confirmed byhé Bayesian information criterioAkaike 1974 ,Schwarz 1978) that accoL
for the number of observations and parame(Fig. 8), the latter being fixed in our ce.

0.5

BIC

0:23:

0.00 200 500 1000 2000

Total number of observations

Figure 8: Bayesian information criterio(BIC) computed for all twin experimen

7. Estimated parameterswith Hawaiian transect

At the restution of the model, i.e., ¥ x week, he transect used to run the real optimiz:
experiment provided 1ll1@®bservationsover 3 consecutive time step¥he model successfully
converged with a new parameteriza with newcoefficient values distributed er a larger range (0 to
0.435)than for the initial parameterizati((Table 1) Coefficients of lower ar highly-migrant lower
mesopelagic groups showdtk largest increase with estimates between bou values. Conversely,
estimates for the groups ofetlupper msopelagic layer strongly decreased and even ed O for the
non-migrant group (Table 1). The coefficient value of the-migrant lower mesopelagic was a
estimated at the boundariyherefor, this first optimization is not entirely satisfg, possibly because
of the small number of observatic and the uncertainty on forcing variab(ese also discussic.

Table 1: Matrix of the energy coefficients transfer used for 34ayer ¢-component MTL model
according to the functional group and the number of vertical layers, and for different sim
experiments1: parameterisation achieved from the literature (Lehodey et al 2010a); Opt: optin
after data filtering an8% of the biomass added in the epipel:

Epi Upper  Migrant Lower  Migrant Highly
Simulation Meso Upper meso Lower Migrant
Nb of layer .
experiment meso Mesc Lower
Meso
0 (land) All 0 0 0 0 0 0
1 All 1 0 0 0 0 0
5 1 0.320  0.270 0.390 0 0 0
Opt 0.46: 0.310 0.227 0 0 0
3 1 0.1:0  0.100 0.220 0.180 0.1z0 0.200
Opt 0.23¢  0.083 0.000 0.435 0.C20 0.226
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Nevertheless, even though the roptimized parameterization should bonsiderewery preliminary,
it improved the averageverall fit to observed ratios in tI3 layers (Fig9). The low values of signal
ratios in the upper mesopelagic layer and its weak variability may e the difficulty to retrieve
correct estimates of energy transfer coefficients for the gtinhabiting this layerin addition, spatial
and temporal resolution @he modelstill cannot predict the level of variability obser. The model
also does not resolve the transition phase during twilight hiFinally, cther various sources of
uncertainty that armmherent to the model and its forc, as well as in the acousidata, are detailed in
the discussion.
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However, one striking disagreement between observed and predicted ratios occurred at the beginning
and end of the Hawaiian transect, i.e., when leaving and returning to the Hawaiian Islands. The model
could not predict the high values observed during the night in the epipelagic layer and, conversely, the
low values in the lower mesopelagic layer. A more detailed investigation detected a potential problem
associated with the mesoscale activity. Although the currents predicted with the GLORYS reanalysis
compared fairly well with those deduced from altimetry data (Fig 10), the detailed mesoscale features
might differ substantially locally. For example, the very high ratio value in the epipelagic layer at night
occurring at 25°N along the transect (Fig 9) seemed to coincide with a structure of two small eddies of
opposite rotation that are visible on the altimetry map but not in the predicted currents of GLORYS
(Fig. 10). This type of structure associating one cyclonic and one anti-cyclonic mesoscale eddy is
highly favorable to the concentration of organisms in the area of convergence of currents as predicted
for instance in the south-east corner of the micronekton biomass distribution map on figure 10d. The
lack of such a structure at 25°N on the transect in the field of predicted currents used to simulate the
micronekton could explain the too low micronekton biomass predicted by the model in comparison to
acoustic data.
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Discussion

Acoustic sampling is the only available approach to collecting a sufficient amount of data at basin
scales. At first glance, it shows micronekton distribution and density that is globally still missing today.
However, even with a vast sampling effort, it could not offer the synoptic view that is required for
understanding and eventually managing these huge oceanic ecosystems. Therefore, the data need to b
complemented with ecological models with appropriate levels of detail and parameters tailored to
match this type of data. This study provides a methodology for a simple and robust use of acoustic data
in an original parsimonious model of micronekton functional groups.

Acoustic data initially allowed us to define the vertical boundaries of the 3 biological layers in the
model. Such a definition is critical as physical variables that drive the dynamics of MTL groups are
averaged within these layers. Ongoing work in other oceanic basins (e.g., the Southern Indian Ocean)
suggests that this definition could be generalized at the ocean basin scale, although this question of
vertical boundaries remains fully open and will require many other acoustic transects and research
cruises from various oceanic regions and seasons to be confirmed.

Clearly, the initial optimal parameterization achieved here with one single transect and single
frequency is preliminary, and new experiments will have to be conducted with more data and acoustic
interpretation. The approach based on relative signal ratios should help in combining different data
sources, but this assumes no horizontal and vertical bias in the acoustic measurement and their
biological interpretation. Reducing vertical and horizontal bias from the acoustic measurements can be
achieved with modern calibrated echo sounders from research and fishing vessels with the data
available with appropriate metadata (Kloser et al. 2089w.imos.org.au ICES 2013). Thus, it is
necessary to implement automatic data screening to remove obvious wrong signals and filtering so as
to avoid spurious integration of noise (e.g., De Robertis and Higginbottom 2007). It is also essential
that the treatment of the signal along the vertical dimension be comparable with appropriate beam
spreading compensation and absorption correction for the frequency used (Francois and Garrison
1982). Adjustments need to be made for potential changes in transducer sensitivity and absorption in
the horizontal direction that are mainly a result of temperature (Demer and Renfree 2008). This data
processing method then enables a comparison of acoustic backscatter ratios between depths anc
regions. To compare data sets from different instruments and regions, the data metadata must describe
the instrument, the calibration, and signal processing methods used (ICES 2013).

This work has assumed that the biological interpretation of the acoustics contains no vertical or
horizontal bias and that the acoustic signal is proportional to the micronekton biomass at all depths
(Benoit-Bird and Au 2002). This will not be the case at lower frequencies, such as 38 kHz used here, as
a result of resonance scattering effects in the mesopelagic layer from fish and siphonophores with gas
inclusions in particular. For example, at 600 m depth the backscatter at 38 kHz can be an order of
magnitude higher than the 120 kHz frequency as used by Benoit-Bird and Au (2002) requiring a
scaling adjustment (Kloser et al. 2002). To accurately compare data from different layers and between
different regions, the proper ratios of different types of micronektonic organisms and their sizes must
be estimated, and adjustments must be made for differences in acoustic basckscatter based on
composition and size (Handegard, et al. 2013). This is true even if all micronektonic groups, i.e., fish
with and without gas-bladder, crustaceans, cephalopods, and gelatinous organisms with and without
gas inclusions (e.g. some siphonophores), are considered as a whole as in this study. Advances in
multi-frequency acoustics and detailed studies on the conversion of acoustic to biological units are
required to narrow down the range of errors and biases based on resonance scattering. The calibratior
of diffusion parameter needs also to be investigated through sensitivity analysis. Decreasing its value
would certainly reinforce the contrast in the predicted biomass ratio but likely could make the model
convergence more difficult to achieve.
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Our estimate of epipelagic biomass may be biased low as a result of the near-surface region unsampled
by the acoustics (~ 15 m depth) or affected by vessel avoidance (e.g., O'Driscoll, et al. 2009, De
Robertis, A., and Handegard, N.O. 2013). This bias may have a spatial and temporal structure and be
region-specific depending on the species present. In this initial experiment we arbitrarily fixed the
missing near-surface biomass to 5% of the total signal, which is only a first-guess estimate. Based on
38 kHz acoustic data collected along a circumnavigation, Irigoien et al. (2014) give an estimate of 7%
for the biomass in the upper 200 m after excluding 5 areas with exceptional high values. To explore
the magnitude of this bias will require methodological and technological solutions. Using the existing
echo sounder data it is possible to observe the migration behavior of the species to determine the
potential extent of the problem and the need for higher compensation or dedicated near-surface
sampling technology (O'Driscoll, et al. 2009). Examples of available near-surface acoustic technology
are upward-looking echo sounders (moored or mobile) and sideways-looking sonars (Handegard et al.,
2013). Estimating biomass from these devices is complicated by the need to know the target strength of
the species at different orientations. At the least these devices can detect the relative change of acoustic
signal above and below the near-surface region to explore the potential magnitude of the bias.
Sampling the near surface with acoustics also has some physical constrains due to the instruments pulse
length, waves and bubbles. Uncertainty in biomass estimates from these issues will need to be
addressed if precise epipelagic biomass estimates are to be obtained. Despite all these raised issue:s
observing the behavior of the vertical migration of mesopelagic organisms could be the best method to
highlight the potential magnitude of the problem to direct more research.

With the quality and coverage of acoustic data, forcing fields are another area for increasing the
accuracy of the model in simulating the dynamics of micronekton functional groups. The twin
experiments indicated that 200 observations could be sufficient to retrieve the correct parameter values.
However, this is for the ideal and theoretical case of a perfect environmental forcing, i.e., here the same
used both for producing pseudo-observations and running optimization. In practice, there are many
sources of uncertainties on the variables used to reproduce the oceanic environment.

The VGPM model of primary production that is used here is one among many satellite "chlorophyll-
based" models with empirically determined functions that are generalized to basin scale. For instance,
an alternative definition of the temperature-dependent photosynthetic efficiencies as suggested by
Eppley (2972) leads to substantial differences in the estimates (see
http://www.science.oregonstate.edu/ocean.produghvithe accuracy of 21 ocean color models was
recently assessed by comparing their estimatés $itu measurements (Saba et al. 2011). While on
average, simple and more complex models had similar performances, their average accuracy was
significantly higher at seabed depths greater than 250 m, i.e., for the Case-1 (pelagic) waters used in
our study. Therefore, primary production estimates are likely degraded close to the coast and these
errors can cascade downstream and propagate offshore.

Similarly ocean circulation models still have biases or drifts from observations despite the assimilation
of satellite and available situ data (Lellouche et al 2012; Ferry et al 2012). These sources of errors
likely increase with depth in relation to the number of observations available for assimilation, and also
near the coast due to the necessity of degrading the actual topography at the resolution of the model
grid (1/4°). The discrepancy observed in this study between mesoscale features predicted by the
reanalysis or deduced from altimetry is a good illustration of these potential sources of errors with a
direct consequence on the micronekton estimate. However, it is worth noting that the optimization
procedure improved the average estimate independently of these local errors. This suggests that the
method is robust and can account for these sources of errors.
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The next step will consist in optimization experiments based on longer time series and with a larger
amount of observations needed to compensate the various sources of uncertainties. Given the effort
developed with the IMOS initiative (Kloser et al. 200&p://www.imos.org.au/) to collect 38 kHz and

other acoustic frequency data routinely, it is envisaged to develop a configuration for the southern
hemisphere and use all these available and standardized data. New fine-scale acoustic, optical and
trawling regional-based experiments are needed to interpret this broader spatial and temporal scale
acoustics data to initialize and assimilate into the model (Handegard et al. 2013). In particular,
experiments to quantify the conversion of acoustic backscatter into biological units accounting for
resonance scattering are needed. The optimal parameterization will be then used for a global hindcast
simulation allowing evaluation of the results in the northern hemisphere with historical data, e.g., the
MARECO platform. It is also worth noting that our twin experiments suggest that a long time series of
acoustic data in a single point could provide more useful information for parameter optimization than
the same amount of data spatially dispersed over a few time steps. It is essential to confirm or not this
result given its potential consequences when designing ocean-monitoring networks.

Parallel to the progress of acoustic technology and associated validation experiments for quantifying
and discriminating between the major groups of micronekton organisms, the model could be further
developed easily to account for a more detailed description of the pelagic mid-trophic levels.
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