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In agricultural landscapes, drainage networks can be greatly extended by man-made 
linear features such as ditches. Modifying the density of these man-made drainage 
networks can be a valuable tool to modulate hydrological processes. The objective of 
this paper is to determine the spatial variability of man-made drainage density in 
agricultural landscapes and to quantify the extent to which this density depends on 
the landscape attributes. We performed field surveys of man-made drainage networks, 
identified potential explanatory variables, and modeled the density of drainage net- 
works by employing multiple linear regression and kriging. The explanatory variables 
were related to the topography, soil type, density of roads, and density of the field 
boundaries. These explanatory variables accounted for 55% of the variability in the 
density. The remaining 45% of the variability were assumed to be related to socio- 
economic factors, and represent the latitude in modifying these networks. 
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1.   Introduction 

Cultivated landscapes are characterized by linear elements, such as roads, hedgerows, 

embankments, and  ditches  (Hirt,  Mewes,  &  Meyer,  2011).  These  man-made linear 

features can greatly extend and modify drainage networks (Duke, Kienzle, Johnson, & 

Byrne, 2006; Wemple, Jones, & Grant, 1996). Man-made drainage networks are particu- 

larly common in every agricultural landscapes, such as temperate and boreal landscapes 

(Carluer & Marsily, 2004; Dunn & Mackay, 1996; Herzon & Helenius, 2008; Procopio & 

Bunnell, 2008), tropical landscapes (Gardner & Gerrard, 2003), and Mediterranean land- 

scapes (Moussa, Voltz, & Andrieux, 2002; Pita, Mira, & Beja, 2006; Ramos & Porta, 

1997; Roose and Sabir, 2002; Warner, 2006) (Figure 1). 

These man-made drainage networks impact runoff and groundwater dynamics 

(Buchanan, Falbo, Schneider, Easton, & Walter, 2012; Carluer & Marsily, 2004; Dages 

et al., 2009; Moussa et al., 2002) and also erosional processes (Gardner & Gerrard 2003; 

Paroissien, Lagacherie, & Le Bissonnais, 2010; Ramos & Porta 1997). Often associated 

with terrace fronts, these networks thus contribute to the stability of terraced hillslopes in 

Mediterranean areas (Stanchi, Freppaz, Agnelli, Reinsch, & Zanini 2012). As interstitial 

elements in  intensively cultivated landscapes, they  may  have  a  significant value  in 
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Figure 1.   Four examples of man-made drainage features in the Hérault département in the south of 
France. (A) a small ditch conveying runoff at the bottom of a terrace front on a hilly landscape, (B) a 
ditch in a flat area, (C) a roadside ditch and (D) a sunken path that also acts as a drainage ditch. 

 
 

ecology (Stoate et al., 2009), but this depends on their management. They may provide 

valuable habitats, enhance connectivity within the landscape and/or harbor rare species 

(Herzon & Helenius 2008; Mazerolle, 2005; Pita, Mira, & Beja, 2006). 

The same way as for the natural drainage networks (Gregory & Walling, 1968; Post & 

Jakeman, 1996), the man-made drainage density, i.e., the density of man-made drainage 

networks, has been shown to be a key factor influencing the control of these aforemen- 

tioned physical processes (Dunn & Mackay, 1996; Finke, Brus, Bierkens, Hoogland, 

Knotters, & de Vries, 2004; Krause, Jacobs, & Brorstert, 2007). Man-made drainage 

density seems to be a key parameter especially for controlling surface runoff 

(Levavasseur, Bailly, Legacherie, Calin, & Robotin, 2012) and the associated soil erosion. 

Moreover, man-made drainage networks are often dense enough to significantly increase 

the hydrological connectivity of a catchment. These man-made linear features are thus 

important to consider when studying the runoff and erosion processes of small, cultivated 

catchments. 

Some studies revealed that man-made drainage densities can be highly variable in 

space (Lagacherie et al., 2006; Procopio & Bunnell 2008). Modifying the density of these 

networks could thus be a way to modulate runoff and erosion processes in agricultural 

landscapes and to modify ecological habitats. However, we need to know how this density 

is variable in space and the extent to which it depends on the physical landscape before 

being able to propose some modifications of this density. 

Methods for modeling the variability of man-made drainage density that rely on 

correlations with auxiliary data can be proposed. Such methods are commonly used for 

digital soil mapping and other environmental sciences applications. According to the 

methodology  proposed  by  Hengl  (2009),  methods  that  combine  regressions  and



 
 

geostatistical modeling can be used to model and estimate drainage densities, depending 

on whether the drainage density exhibits a spatial structure. 

The main objective of this study was to model the spatial variability of man-made 

drainage density in agricultural landscapes, to understand its variability and the extent to 

which it depends on the landscapes attributes. We only focused on open-channel drainage 

and not on tile drainage. This approach included the prior determination of the optimal 

resolution at which the drainage density was computed. We then used statistical regres- 

sions from auxiliary environmental data and geostatistical models that exploited spatial 

structures. Finally, we validated our results using a cross-validation process. 
 
 

 
2.   Study area 

2.1.   General description 

The  study  area  is  the  cultivated portion  of  the  Hérault  French  département of  the 

Languedoc-Roussillon région, in the south of France. We did not consider the northern 

mountainous region, where cultivation is limited, or the eastern part, where urbanization is 

high (Figure 2). At the département scale, the land-cover is mainly vineyards, comprising 

50%  of  the  utilized agricultural area.  However, a  third of  the  vineyards have been 

abandoned for twenty years because of the wine crisis (Direction Départementale des 

Territoires et de la Mer de l’Hérault, 2011). Nearly 10% of the utilized agricultural area is 

planted with cereal fields. In the southern and western cultivated areas of the département 

that we studied, the proportion of vineyards is even higher (approximately 75%). In 2000, 
 
 

 

 
 

Figure 2.    Study area: the survey areas (number 1–10) are distributed throughout the vineyards (A) 

of the Hérault département and the three main cultivated pedo-landscapes (B).



 

5 - Montagnac 1 Hills Vineyards 
6 - Saint-Thibéry 1 Alluvial plain, flat area Vineyards 
7 - Bessan 1 Plateaux, upslope position Vineyards 
8 - Béziers 1 Plains and hills Cereal fields 
9 - Caussiniojouls 1 Hills on shales Vineyards 
10 - Peyne 40 Plains and hills Vineyards, cereal fields, 

subcatchment   shrubs 

 

 

small farms predominated with an average farm area of 13 ha according to the data from 

the agricultural census conducted by the Regional Direction of Agriculture and Forest. 

The climate is Mediterranean with 600–800 mm of precipitation per year and two 

short but intense rainy seasons in the autumn and spring. This climate combined with the 

intensive vine cultivation causes the area to be sensitive to flash flooding and erosion. For 

example, the mean erosion rate in the study area is 10.5 t ha   1  year   1  but the spatial 

variability of the intensity of erosion is high (Paroissien et al., 2010). 

The altitude varies between approximately 0 and 350 m in the southern portion of the 

département. From a geomorphological point of view, we can distinguish four main areas: 

(1) the alluvial and coastal plains and low terraces of the main rivers, (2) the hilly 

landscapes that are mostly calcareous but also contain marls (calcareous sedimentary 

rocks containing a variable amount of clays), (3) the hilly landscapes on shales in the 

western portion of the area, and (4) the mountains in the northern part of the département 

(outside of our study area). Two main catchments cover our study area, the catchments of 

the Hérault and Orb rivers. 
 
 

 
2.2.   Field data 

2.2.1.   Spatial sampling of contrasting landscapes located in the study area 

All of the man-made drainage networks throughout the entire study area could not be 

surveyed in the field. Thus, a stratified sampling strategy based on landscape character- 

istics was performed. The landscape characteristics used to define the sampling strategy 

were the pedo-landscapes given by soil map 2 (Table 3), the main type of land-cover, and 

the topography (Figure 2). All of these characteristics were assumed to have an influence 

on the man-made drainage density of the landscape. Consequently, nine 1 km2  square 

areas and one larger area (40 km2 ) were selected (Table 1) for exhaustive field surveys. 

The goal of selecting the large survey area (the Peyne subcatchment) was to allow us to 

analyze the spatial variability of drainage densities for multiple scales of analysis. 
 
 

 
Table 1.    Survey areas characteristics. 

 
Survey area name 

Size 
km2                                Pedo-landscape                              Land-cover

 

1 - Saint-Jean-de-Fos 1 Fluvial terrace, flat area Vineyards/orchards 
2 - Canet 1 Fluvial terrace, very flat area Vineyards 
3 - Le Pouget 1 Plateaux, former pond drained by Vineyards 

 
4 - Saint-Pons-de- 

Mauchiens 

ditches 
1      Hills                                                   Vineyards, shrubs



 
 

2.2.2.   Data acquisition 

In contrast to natural stream networks, man-made drainage networks are almost never 

mapped on topographical maps. Their remote sensing is not yet accurate enough to create 

such  maps (Bailly, Lagacherie, Millier, Puech, &  Kosuth, 2008). Indeed, man-made 

drainage ditches may be very narrow (widths and depths of less than 1 m) and densely 

covered with vegetation. Moreover, only features with horizontal dimensions of the same 

order of magnitude as the ground resolution of remotely sensed data can be detected 

(Notebaert, Verstraeten, Govers, & Poesen, 2009). This limits the usability of remote 

sensing at a regional scale, because very high resolution data are not available at this scale 

(Notebaert et al., 2009). Therefore, drainage density cannot be accurately inferred from 

the delineations provided by geodatabases or remote sensing data. We thus conducted 

field surveys of these man-made drainage networks in the spring and summer of 2010 at 

an average speed of 1.5–3 km2  per day and per person according to the difficulty of the 

terrain. The man-made drainage networks mainly consisted of agricultural ditches, road- 

side ditches, culverts, canalized streams, and sunken paths and roads. The width and depth 

of these elements varied from approximately 50 cm to several meters. Fifty centimeter 

aerial photographs were used at a scale of 1:5000 to locate the elements of the drainage 

networks in  the  fields. The  man-made drainage networks were then  digitalized and 

georeferenced using the Quantum GIS (QGIS) software (Quantum GIS Development 

Team, 2011). 
 

 
3.   Methods 

The methodology of the proposed modeling process includes four steps: 

 
(1)  the selection of a geographical support to model the drainage density; 

(2)  the selection and calibration of a spatial explanatory model; 

(3)  the identification of the potential landscape explanatory variables of the man- 

made drainage density; and 

(4)  the assessment of the performance of the explanatory model. 
 

 
 
 

3.1.   Selecting a geographical support 

3.1.1.   Square grid-based analysis 

To model the drainage density, we used a square grid for which the cumulated length of 

the drainage network divided by the grid cell area was attributed to each grid cell. This 

square grid represented the geographical support, i.e., a given spatial arrangement made of 

geometrical entities. 

A grid-based analysis was used for various reasons. Square grids allowed us to model 

the drainage density throughout the landscape with the same geographical support. This 

would not be possible if either individual drainage features (e.g., a ditch) or catchments 

were used as the spatial scale of the analysis. Moreover, a square grid-based analysis 

allowed us to link the spatial variability of the drainage density with landscape explana- 

tory variables. We could have used kernel estimators instead, but we chose a square grid- 

based analysis because of its simplicity and the absence of edge effects. Furthermore, the 

use of a square grid allowed us to maintain the maximal spatial variability of the drainage 

densities. For all of these reasons, grid-based analyses have been used in various studies to



 
 

compute the densities of linear elements of landscapes, such as streams (Luoto, 2007; 

Oguchi, 1997), hedgerows (Burel & Baudry, 1990; Deckers, Kerselaers, Gulinck, Muys, 

& Herny, 2005), roads (Hawbaker, Radeloff, Hammer, & Clayton, 2005), or lineaments 

(linear features on the Earth’s surface, e.g., faults) (Casas et al., 2000). Nevertheless, the 

use of a square grid creates an issue with the selection of the grid cell size (Borruso, 

2003). To deal with this issue, we proposed a method to define empirically the optimal 

grid cell size in our study. 
 
 

3.1.2.   Selection of the grid cell size for the spatial modeling of man-made drainage 

density 

Numerous studies  have  dealt  with  the  selection of  the  grid  cell  size  (Duveiller & 

Defourny, 2010; Hengl, 2006; Obeysekera & Rutchey, 1997). However, none of these 

studies have considered the case of making density maps from maps of linear features, 

though these studies have considered the use of different criteria to optimize the cell 

resolution (e.g., object detection in images). Moreover, all of these studies dealt with the 

case of a variable fully defined in space, such as elevation or land-cover. In studies 

concerned with the densities of  linear features, the selection of  the scale was often 

arbitrary (Hawbaker et al., 2005) or related to farms or fields characteristics (Burel & 

Baudry 1990; Deckers et al., 2005). Nevertheless, Casas et al. (2000) suggested that the 

best choice of grid cell size to study the densities of lineaments would be the one that 

respected the average spacing between the lineament under examination. Using a grid that 

respects the line spacing allows for the minimization of the number of cells that do not 

contain any lines. 

To take into account the line spacing, we proposed to directly determine the grid cell 

size for which no bimodality in the distribution of the resulting drainage densities was 

observed. The test for unimodality was performed using the dip-test (Hartigan & Hartigan, 

1985) in the GNU-R software (R Development Core Team, 2010). The dip statistics were 

computed for the drainage density distributions from the samples with grid cell sizes of 

50, 100, 166, 200, 250, 333, 500, and 1000 m; each value is approximately a divisor of 

the size of most of the survey areas (1000      1000 m). The values of the dip statistics 

were then compared with the values of the dip statistic for 100,000 uniform distributions. 

We could reject the null hypothesis of unimodality with an error probability of less than 

1% (arbitrary threshold) if the dip statistic for the tested sample was higher than the 99th 

quantile of the distribution of the dip statistics for the uniform distribution. 

However, we searched for a coefficient of variation of drainage densities that remained 

high because we also wanted to maintain a high variability of drainage densities. The best 

cell size for this study should therefore be a compromise between the line spacing and the 

variability of the resulting drainage densities. 
 
 

3.2.   Spatial explanatory model of man-made drainage  density 

To select a spatial explanatory model, Hengl (2009) proposed a general decision tree. 

Using this framework, we chose a regression-kriging model. Regression-kriging combines 

a regression of the dependent variable on the auxiliary variables with the simple kriging of 

the regression residuals (residual kriging). This method allows the user to separately 

interpret the power of the regression model, the deterministic part, and that of the kriging 

interpolation, the stochastic part, i.e., the unexplained part of the variability (Hengl, 

Heuvelink, & Rossitier 2007). An advantage is thus to measure the spatial correlation



 
 

in randomness that can drive to consider other processes. Hence, this method has been 

used in many studies because of its simplicity and its ability to consider both a determi- 

nistic component and a spatial dependence structure to model a variable, e.g., for the 

prediction of  meteorological data  (Alsamamra, Ruiz-Arias, Pozo-Vázquez, &  Tovar- 

Pescador, 2009) or soils properties (Hengl et al., 2007). 

For the regression model, we chose a multiple linear regression (MLR) model. From 

the residuals of the MLR model, we computed an empirical semivariogram (Matheron, 

1962), which plots the semivariance, i.e., the expected squared increment of the residuals 

distant from a given distance h against the distance h. From the empirical semivariogram, 

a  semivariogram was  modeled  and  used  for  the  modeling  of  the  residuals  in  the 

unsampled areas by kriging interpolation. Thus, the target variable, i.e., the drainage 

density, could be expressed for an unsampled location s0  as the sum of the deterministic 

and stochastic components Hengl (2009). 

 
ẑðs0 Þ ¼ m̂ ðs0 Þ þ êðs0 Þ                                                                            (1) 

 

 
p                                       n 

ẑðs0 Þ ¼ 
X 

β̂k    qk ðs0 Þ þ 
X 

λi    eðsi Þ                                                       (2)
k¼0 

Pp
 

i¼1

where  m̂ ðs0 Þ ¼  
k¼0 β̂k    qk ðs0 Þ  is the fitted deterministic component, i.e., the MLRPnmodel; êðs0 Þ ¼  i¼1 λi    eðsi Þ is the interpolated residual; p is the number of explanatory

variables of the MLR model; n is the number of observations; β̂k  are the estimated MLR 

model coefficients (β̂0 is the estimated intercept); qk ðs0 Þ are the values of the explanatory 
variables at location s0 ; λi  are the kriging weights depending on the spatial dependence 
structure  of  the  MLR  residuals  and  eðsi Þ   is  the  residual  at  location  si .  The  MLR 

coefficients β̂k  were estimated from the training sample by the ordinary least squares 
(OLS) method. 

We used the geoR library in the GNU-R software to perform the regression-kriging. 
 

 
3.3.   Identification of potential explanatory variables of man-made drainage  densities 

We included seven potential explanatory variables relative to landscapes attributes to 

model man-made drainage density, all represented by quantitative variables (Table 2). 

These variables were the Convergence Index, mean slope, two variables related to road 

density, the density of field unit boundary and two variables related to soil type. 

To identify these explanatory variables, we considered the role of the man-made 

drainage networks. According to the literature, the roles of man-made drainage networks 

are the interception of runoff from hillslopes and roads, the lowering of the water table via 

the drainage of groundwater and the conveyance of water towards downstream areas 

(Adamiade, 2004; Carluer & Marsily, 2004; Duke et al., 2006; Dunn & Mackay, 1996; 

Ramos & Porta, 1997). 

We first considered the influence of topography on runoff production and accumula- 

tion. We computed two topographic indices: the convergence index with a search radius of 

250 m (Kothe & Lehmeier, 1996) and the slope derived from the 5 m Digital terrain 

model (DTM) (Table 3). They were both computed using SAGA GIS (http://saga-gis.org). 

Low values of the convergence index corresponded to areas where water converges; thus, 

high convergence index values were assumed to indicate a low drainage density.

http://saga-gis.org/


 
 

Table  2.    Description of  the  selected  explanatory variables  and  their  assumed  effect  on  the 
man-made drainage density. 

Explanatory variable               Notation              Assumed effect                  Source data (Table 3) 

Convergence index                  CI              decreasing drainage density    5 m Digital Terrain Model 
(DTM) 

Mean slope                              slope         Increasing drainage density     5 m Digital Terrain Model 
(DTM) 

Road density 1                        d.road.1     Increasing drainage density     Maps of landscape 
structural elements 

Road density 2                        d.road.2     Increasing drainage density     Maps of landscape 
structural elements 

Field unit boundary density    d.bound     Increasing drainage density     Land registry map and 
aerial photographs 

Percentage of type of soil 1    %soil.1     Decreasing drainage density    Soil map 1 and soil map 2 
Percentage of type of soil 2    %soil.2     Increasing drainage density     Soil map 1 and soil map 2 

 
 

 
Table 3.    Available spatial data. 

 

Description                                  Year      Type     Scale/Resolution               Producer/owner 
 

Aerial photographs 
(BD ORTHO®) 

2009 Raster 50 cm Institut Géographique 
National (IGN) 

Maps of landscape structural 
elements (SCAN 25®) 

2006 Raster 2.5 m IGN 

Digital Terrain Model (DTM) 2005 Raster 5 m Conseil Général de l’Hérault 
Soil map 1 1993 Vector 1:100,000 Institut National de la 
 
 
Soil map 2 

 
 

1999 

 
 

Vector 

 
 

1:250,000 

Recherche Agronomique 
(INRA) 

INRA 

Land registry map of the 1997 Vector 1:2500 Direction Générale des 
Peyne subcatchment    Impôts (DGI) 

 

 
The type  of  soil  in  an  area affects the  runoff production and  the  possibility of 

waterlogging. Hence, we classified the different soil units based on three characteristics. 

Type 1 soils limited the production of runoff and were thus assumed to disfavor high man- 

made drainage densities. Type 2 soils favored waterlogging and were thus assumed to 

favor high man-made drainage densities. Type 3 soils had no particular impact on runoff 

and were assumed to be neutral concerning their impact on man-made drainage density. 

Many parameters control the soil infiltration capacity (Paré, 2011; Wassenaar, Andrieux, 

Baret, & Robbez-Masson, 2005) and consequently the production of Hortonian runoff 

which is the prevalent runoff in Mediterranean areas. The effect of soil tillage or the 

amount of grass cover, for instance, can be very important in reducing runoff, but these 

factors are not constant in time and thus not easy enough to map to be considered here. 

However, the presence of stones on the surface was also recognized as a key parameter 

that can increase the soil infiltration capacity (Poesen, Ingelmo-Sanchez, & Mucher, 1990; 

Wassenaar et al., 2005). In our study, the soils with numerous and not embedded stones on 

the surface were thus classified as type 1 soils. For instance, the soils of the Bessan, 

Caussiniojouls, and Saint-Jean-de-Fos survey areas were considered to be type 1 soils, as 

well  as  some  parts  of  the  Peyne,  Saint-Thibéry,  and  Canet  areas.  Concerning



 
 

waterlogging, the soils that had a deep heavy, horizon were classified as type 2 soils; the 

best example of this was the soils of the survey area of Montagnac. These soils were also 

present on parts of the Saint-Pons-de-Mauchiens area. All the other types of soils were 

classified as type 3. Thus, the two explanatory variables selected concerning soil type 

were the percentage of type 1 soils and the percentage of type 2 soils within a grid cell. 

To take into account the impacts of roadside ditches, two explanatory variables were 

chosen: the density of the main and secondary roads (d.roads.1) considered to be regularly 

maintained on the Institut Géographique National (IGN) maps (Table 3) and the density of 

other roads (d.roads.2) also considered to be regularly maintained but of lesser importance. 

The roads were digitized on the maps of the landscapes structural elements (Table 3). 

The  density of  field unit  boundaries was  added  as  another possible explanatory 

variable of  man-made drainage density. Agricultural ditches were the  most frequent 

features of these networks and were always located along field unit boundaries. For 

instance, we surveyed a few agricultural ditches in the Béziers area which is covered by 

large cereal fields. 

Natural areas were not considered in our study, although they certainly decreased 

surface runoff. First, few natural areas were present in our survey areas (except in Saint- 

Pons-de-Mauchiens). Second, when a large patch of natural area was present, the density 

of the field unit boundaries accounted for the expected effect of the decreased drainage 

density caused by the presence of natural areas because we considered only boundaries of 

cultivated field units. 

These explanatory variables may be considered orthogonal (maximum coefficient of 

correlation ρ ¼ 0:25). We gathered various maps (Table 3) to compute these variables. 

Two soil maps were needed because the most detailed soil map did not cover the entire 

study area. 
 
 

3.4.   Assessment of the performances of the explanatory model 

We assessed the performances of the multiple linear regression alone and multiple linear 

regression coupled with residual kriging. We used V-fold cross-validation with a hundred 

repetitions. The sample was randomly divided into ten different sub-samples. Nine sub- 

samples were used for training, i.e., for calibrating the multiple linear regression and for 

estimating the semivariogram parameters of the residuals. The tenth was used for valida- 

tion: the drainage density was modeled by using the multiple linear regression calibrated 

on the nine sub-samples, alone or coupled with residual kriging. We first repeated this 

operation ten  times by  changing the  validation sub-sample each time, and  we  then 

repeated these ten operations a hundred times by changing the random division of the 

sample to avoid any sampling effects in the results. To assess the performances of the 

spatial model, we analyzed the distribution of the coefficient of determination (R2 ) and the 

root mean squared error (RMSE) in both the training samples and the validation samples. 

Then, we analyzed the estimates of the regression coefficients to compare the effect of 

each explanatory variable. 
 
 

4.   Results 

4.1.   Selection of the grid cell size for the spatial modeling of man-made drainage 

density 

We could reject the null hypothesis of unimodality with an error probability of less than 

1% for a cell size inferior to 250 m (Figure 3, left). Thus, 250 m was the minimum cell



 
 

 

 
 

Figure 3.    Selection of the grid cell size. Left: dip statistics of the unimodality test as a function of 
the grid cell size. Right: coefficient of variation of drainage density as a function of the grid cell size. 

 

 
size considered. The coefficient of variation of the drainage densities decreased exponen- 

tially with the grid cell size (Figure 3, right); therefore, we chose the minimum grid cell 

size of 250 m to maintain the maximum variability. 

We took six grid cells in the Peyne subcatchment as an example of the drainage 

density computation with a cell size of 250 m (Figure 4). There was a clear difference in 

drainage density between the northwestern cell where the drainage density was higher 

than 200 m ha   1  in comparison with the southeastern cells where the density was near 

zero (there were almost no man-made drainage networks present). Finally, with a grid cell 

size of 250     250 m, we obtained a total of six hundred and sixty three grid cells: sixteen 
 
 

 

 
 

Figure 4.   Example of the computation of the drainage density of six contrasted grid cells in the 
Peyne subcatchment at a resolution of 250      250 m.



 
 

grid cells for each of the nine survey areas of 1 km2  (which represented a hundred and 

forty four grid cells) and five hundred and nineteen grid cells for the Peyne subcatchment. 

The equivalent grid cell area was 62,500 m2 . This cell area was much greater than the 

average field unit area (6500 m2 ) in our survey areas. 
 

 
 

4.2.   Variability of drainage  densities among and inside survey areas 

The ten survey areas exhibited a large amount of variability in man-made drainage density 

(Figure 5). The survey area with the lowest median drainage density was Canet, a very flat 

area on the terrace of the Hérault River. The other survey areas in plains also had low 

median  drainage densities (Saint-Jean-de-Fos, Béziers, Saint-Thibéry), as  did  as  the 

survey area of Bessan, which was expected due to its particularly well-drained soil and 

its upslope location in the landscape. The hilly landscapes had higher median drainage 

densities, with a maximum median drainage density equal to 129 m ha  1 for Montagnac. 

For all of the survey areas, the minimal drainage density was less than 10 m ha  1 , except 

for Caussiniojouls (14 m ha  1 ) and Montagnac (84 m ha  1 ). The maximum drainage 

density was greater than 200 m ha  1  for Le Pouget (205 m ha  1 ), Montagnac (206 m 

ha  1 ) and the Peyne subcatchment (231 m ha  1 ). 

We also noticed a high variability in the drainage densities within each survey area 

(Figure 5). This finding is especially true for Caussiniojouls, Saint-Pons-de-Mauchiens, 

Le Pouget, and the Peyne survey areas, with ranges in drainage density equal to 161, 167, 

201, and 231 m ha  1 , respectively. However, in the case of the Peyne subcatchment, the 

number of cells was much greater (five hundred and nineteen grid cells versus sixteen for 

each of the other nine survey areas). Thus, we had to explain two kinds of variability: the 

variability among survey areas and the variability inside each survey area. Finally, this 

high spatial variability in man-made drainage density reinforced the interest in modeling 

man-made drainage densities. 
 

 
 

 
 

Figure 5.    Distributions of drainage density by survey area. All of the plots represent 16 grid cells 
of 250       250 m, except for the Peyne subcatchment (519 grid cells). The line within the box 
represents the median, while the boxes represent the interquartile range, and the whiskers extend to 
the most extreme data point which is no more than 1.5 times the interquartile range from the box.



 
 

4.3.   Spatial modeling of drainage  densities 

4.3.1.   Results of the multiple linear regression (MLR) model 

4.3.1.1.   Performances of the MLR model. We first verified the hypothesis of the linear 

model. The normality of the residuals of the model was confirmed with a Shapiro test. No 

heteroskedasticity (heterogeneity of the variance of the residuals) was observed for the 

residuals. 

The distributions of the coefficient of determination (R2 ) were computed for the 

training sample and for the validation sample, as well as the distributions of the RMSE 

(Figure  6).  The  median  R2   indicated  that  the  MLR  model  explained  55%  of  the 

variability in the validation sample. Moreover, three-quarters of the validation samples 

produced an  R2  between 0.51  and  0.61.  The  median error was  almost zero  in  the 

validation sample (6    10   3   m ha  1 ). The median RMSE for the validation samples 

was 36 m ha  1  (33 m ha  1  for the training sample), which represented 41% of the 

mean drainage density. Finally, no significant effect of over-fitting was observed for the 

training sample, which had a median adjusted R2 of 0.560 in comparison to the median 

R2  of 0.565. 

We compared the maps of the actual and modeled drainage densities with the MLR 

model for the Peyne subcatchment (Figure 7). Our model allowed to distinguish between 

areas with high drainage densities and areas with low drainage densities. The pattern of 

the variation in the drainage density was well simulated. However, the modeled map 

appeared more smoothed than the actual map. 
 
 
 

 
 

Figure 6.    Model quality. Left: coefficient of determination. Right: root mean squared error. The 
line within the box represents the median, while the boxes represent the interquartile range, and the 
whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile 
range from the box.



 
 

 

 
 

Figure 7.   Maps of man-made drainage networks and of the actual and the modeled man-made 
drainage densities for the Peyne subcatchment. 

 
 

4.3.1.2.   Importance of each explanatory variable. Before analyzing the estimations of 

the regression coefficients, we first verified that the estimations of the regression coeffi- 

cients were not too dependent on the training sample. For this purpose, we assessed the 

variability in the estimates of the regression coefficients following the cross-validation 

process. The coefficients of variation of the coefficient estimates of the cross-validation 

process were lower than 10%. Therefore, we used the model calibrated on the entire 

sample to analyze the importance of each explanatory variable. 

Table 4 presents the importance of each explanatory variable. First, all the variables 

were considered highly significant (all with p-values of t-tests less than 0.001). The 

expected effects were verified for all the variables: the slope, road density 1, road density 

2, the percentage of type 2 soils, and the density of field unit boundaries increased the 

drainage density, whereas the convergence index and the percentage of type 1 soils 

decreased the drainage density. 

When looking at the standardized regression coefficients (Table 4), the most influen- 

tial variables in decreasing order were: the convergence index, road density 1, the slope 

(or rather the log of slope), the percentage of type 1 soils, the field unit boundary density 

(or rather its log), road density 2, and percentage of type 2 soils. 

According to the relative importance of each explanatory variable, we built new 

multiple linear regression models by progressively adding a variable at each step in 
 

 
Table 4.    Results of the multiple linear regression. 

 
Variable                    Estimate 

Standard 
deviation 

Standardized regression 
coefficient                           p-value

 

Intercept (k)              71.56                 22.36                                                                          1    10   3
 

CI                              −1.632                 0.09671                          −0.4506                            2    10   53
 

log(slope)                  20.70                   2.171                                0.2523                            3    10   20 

d.road.1                       1.305                 0.08222                            0.4199                            3    10   48 

d.road.2                       0.3672               0.06111                            0.1625                            3    10   9
 

%soil.1                      −0.3765               0.03983                          −0.2513                            6    10   20
 

%soil.2                        0.3540               0.09291                            0.09915                          1    10   4
 

log(d.bound)             23.33                   3.578                                0.1739                            1    10   10



 
 

Table 5.    Results of the partial multiple linear regression models. 

 
Model                                                                                         Adjusted R2

 

Additional variability 
explained %

 
k+CI                                                                                                  0.21                          21 
k+CI+d.roads.1                                                                                 0.34                          13 
k+CI+d.roads.1+log(slope)                                                0.42              8 
k+CI+d.roads.1+log(slope)+%soil.1                      0.48  6 
k+CI+d.roads.1+log(slope)+%soil.1+d.bound      0.53 4 
k+CI+d.roads.1+log(slope)+%soil.1+d.bound+d.roads.2                0.55                            3
k+CI+d.roads.1+log(slope)+%soil.1+d.bound+d.roads.2+% 

soil.2 
0.56                            1

 
 
 

order of importance (Table 5). Two variables increased the amount of variability in 

drainage density explained by the model by more than 10% (the convergence index and 

the density of roads 1). Two others variables caused a 5% increase or greater (the log of 

slope and the percentage of type 1 soils), and the last three variables only resulted in a 4%, 

3% and 1% increase, for the density of field unit boundaries, the density of roads 2 and 

the percentage of type 2 soils, respectively. 
 

 
 

4.3.2.   Results of the regression-kriging model 

4.3.2.1.   Variogram of the residuals of the MLR model. We looked at the variogram of the 

residuals of the MLR model computed using the entire sample (Figure 8). The spatial 

structure was low. Indeed, the nugget effect was predominant, and the spatial structure 

was only significant from 250 to 500 m. We could thus hypothesize that the improvement 

brought by residual kriging would be limited. 
 

 
4.3.2.2.   Performances of the regression-kriging model. When adding residual kriging to 

the multiple linear regression results, the median R2 was equal to 61%, which represented 

an improvement of 6% in comparison with the MLR model alone (Figure 6). Three- 

quarters of the validation samples produced an R2  between 0.57 and 0.66. The median 

error was  still  almost zero  (0.02  m  ha  1 ),  and  the  RMSE  was  33  m  ha  1 ,  which 
 

 
 

 
 

Figure 8.    Semivariogram of the residuals of the multiple linear regression model for the entire 
sample.



 
 

represented 38% of the mean drainage density. The regression-kriging model was thus 

able to explain more than half of the variability in the man-made drainage density, but the 

deterministic part  of  the  model  was  able  to  better  explain  this  variability than  the 

stochastic part (residual kriging). 
 
 

 
5.   Discussion 

5.1.   Variability and explanation of the man-made drainage  density throughout 

agricultural  landscapes 

Man-made drainage networks were ubiquitous in the surveyed Mediterranean vineyard 

landscapes of the Hérault département. The drainage density modeling at an optimized 

grid cell size revealed a high variability in the man-made drainage density. This variability 

was observed at two scales, among the survey areas (greater than or equal to 1 km2 ) and 

inside each survey area (less than 1 km2 ). The man-made drainage densities varied from 0 

to 231 m ha  1 at the selected resolution of 250 × 250 m. This variability was successfully 

explained by seven easily available explanatory variables and residual kriging, with 61% 

of the variability explained and a RMSE of 33 m ha  1 . Therefore, the model results 

allowed us to distinguish between areas with high drainage densities and areas with low 

drainage densities. 

Moreover, our model was also able to explain much more variability in man-made 

drainage density than drainage density computed from usual hydrographic databases. 

Indeed, the percentages of explained variability (i.e., the coefficient of determination) 

with the drainage density extracted from hydrographic databases (BD TOPO, BD 

Carthage, Institut Géographique National) was equal to 14% for the cell size of 250 

m. Moreover, we noticed that only 22% of the network length surveyed in the fields 

were  represented in  the  hydrographic databases,  and  this  percentage varied  greatly 

(between 0% and 77%) depending on the survey area. We also tried to explain the 

drainage density with the density of channels extracted from Digital Terrain Models. We 

used the classical D8-algorithm (O’Callaghan and Mark, 1984) with a 5 m DTM and 

various initiation thresholds (from 1000 m2  to 500,000 m2 ). Regardless of the initiation 

threshold, the amount of variability explained was very low in comparison with our 

model, from 0% to 15%. 
 
 

 
5.2.   Spatial explanatory model 

Regression-kriging explained 61% of the variability of the man-made drainage den- 

sities. Multiple linear regression was able to explain most of this variability without 

residual kriging. Residual kriging only increased the amount of variability explained 

by 6%. Moreover, this improvement by residual kriging was mainly virtual because it 

relied on a sampling strategy of 90%. However, according to the semivariogram of the 

residuals  of  the  MLR  model,  in  which  the  range  was  less  than  750  m,  a  dense 

sampling strategy was compulsory to consider the low spatial dependence structure 

of the residuals. 

One  of  the  interesting aspects  of  regression -  kriging  is  its  ability  to  consider 

explanatory models other than linear regression (Hengl et al., 2007). Hence, we also 

tested regression trees, which provided similar performances, but  we  selected MLR 

because we found it easier to interpret.



 
 

5.3.   Discussion of the effect of each explanatory variable 

The topography and the soil type were found to be important explanatory variables of the 

man-made drainage density. The areas where water converged were found to favor higher 

drainage densities, as well as steep areas where runoff could cause greater soil loss 

without ditches. In fact, the convergence index was found to be the most important 

parameter for modeling the man-made drainage density. The type of soil modulated the 

effect of topography: soils with high stone contents (type 1 soils) disfavored surface 

runoff and high drainage densities, whereas soils with a deep heavy horizon (type 2 soil) 

favored water-logging and high drainage densities. Nevertheless, the importance of the 

percentage of type 2 soils was very limited (explaining only an additional 1% of the 

variability in drainage density). This result could be explained by the fact that this type of 

soil occurred in only a few grid cells (only fifteen, mainly in Montagnac). If we had 

sampled more in areas with this type of soil, this variable would have likely been more 

significant. 

The density of roads explained the high number of roadside ditches and was thus one 

of the most important explanatory variables (the density of primary and secondary roads). 

Furthermore, a clear distinction was made between main and secondary roads, which were 

often bordered by ditches on both sides (1.31 m of ditch for every 1 m of roads), and other 

roads, which were not necessary bordered by ditches (0.37 m of ditch for every 1 m of 

roads). The density of trails or pathways (computed from IGN maps) was also tested as an 

explanatory variable, without success. 

The last variable, the density of field unit boundaries (related to the mean field unit 

area), explained only a small amount of the variability in the drainage density. This result 

is in contrast with studies on the density of hedgerows (Kantelhardt, Osinski, & 

Heissenhuber, 2003). Except for rare areas where the field units were very large (which 

explained the low drainage density), field units were small- to medium-sized in the 

majority of the areas and corresponded to contrasted situations of drainage densities. 

For instance, if no land consolidation had occurred in the past, the field units may have 

remained small in areas where man-made drainage was not useful (flat area or at the top of 

a  hill-slope, for instance). Land consolidation was indeed limited in  the study area. 

However, farmers also maintained small field units because the removal of field unit 

boundaries and their associated man-made drainage networks would have increased the 

amounts of surface runoff and soil loss. In fact, we met some farmers who claimed to have 

preserved a boundary and its associated ditch between two of their field units to limit 

surface runoff. 
 
 
 

5.4.   Transferability of the methodology 

The methodology presented in this paper is transferable to other study areas. The selection 

of the grid cell size should be adapted to the data, by using the method proposed here. The 

regression-kriging model  can  be  applied for  any  data  set  of  drainage densities and 

explanatory variables relative to landscape attributes. Concerning the explanatory vari- 

ables, they were all selected according to the hypothesized hydrological functioning of 

cultivated landscapes. These variables should thus be relevant in any study area, even if 

the estimated coefficients would obviously vary. For example, whether the ditches are 

mainly created to limit soil erosion (Ramos & Porta, 1997) or to drain groundwater (Finke 

et al., 2004; Krause et al., 2007) should have an impact on the coefficients estimates. 

Different climate, soils, and agricultural history should thus be taken into account. Finally,



 
 

in addition to the variables chosen in this study, any other explanatory variables could be 

integrated in the regression kriging model according to the local knowledge of the study 

area. 
 
 

 
5.5.   Where did the unexplained variability come from? 

5.5.1.   Inappropriate explanatory variables 

First,  it  is  possible  that  several  determinants were  poorly  mapped  by  our  selected 

explanatory variables. For instance, accounting for the role of soil in modulating the 

drainage density was strongly hampered by the precision of the available soil maps. The 

lack of a better consideration of soil data could possibly explain why the Saint-Jean-de- 

Fos area was poorly modeled, as the soils in this area were very stony in comparison with 

those in other survey areas. Directly considering the sensitivity of soils to erosion could 

allow to better account for the role of ditches in preventing soil erosion in Mediterranean 

areas (Ramos & Porta, 1997; Stanchi et al., 2012) and finally to better model man-made 

drainage  density.  The  global  morphology  was  also  perhaps  poorly  considered. For 

example, the Saint-Jean-de-Fos and Canet areas were located in very wide and flat valleys 

and exhibited very low drainage densities, which was not reflected in our local topo- 

graphic indices. We tried, however, to take into account the topography at various scales 

without success. For example, we tested the multi resolution valley bottom flatness index 

(Gallant & Dowling, 2003), which allows to discriminate valleys at multiple scales, as an 

explanatory variable. 
 

 
 

5.5.2.   Unmapped determinants 

In parallel with studies conducted on the density of hedgerow networks (Kantelhardt 

et al., 2003; Llausà, Ribas, Varga, & Vila, 2009; Thenail, 2002), we hypothesized that 

some technoeconomic factors, such as the productivity, the technical means, and the 

quality approach of the farms could certainly explain why farmers choose whether or 

not to preserve man-made drainage networks. However, we were unable to map these 

potential determinants by adapted explanatory variables in our area at our study scale. 

Another driver that was also not thoroughly considered was the presence of tile 

drainage in field units. Indeed, tile drainage was necessarily associated with a ditch to 

convey the drained water. Tile drainage was used mainly in areas of water convergence 

and where soils favored waterlogging, and thus, the convergence index and the percentage 

of type of soil 2 partly considered tile drainage. Nevertheless, the topography was not the 

only driver of tile drainage, as there were other factors that depended on the farms and on 

the farmers’ individual decisions. Interactions between surface drainage and tile drainage 

could thus be taken into account. For example, Hirt, Meyer, and Hammann, (2005) 

proposed a method to map the proportion of tile drainage areas for a large catchment. 

Tile drainage was however limited in our study area: less than 5% of the field units were 

tile drained according to the data from the agricultural census conducted by the Regional 

Direction of Agriculture and Forest. Therefore, not taking tile drainage into account 

should not impact a lot our results. 

In the Béziers area, where the man-made drainage densities were low and the land was 

formerly used as vineyards but almost entirely covered by cereal fields in 2010, we 

hypothesized that farmers no longer preserved man-made drainage networks and that



 
 

these networks had been filled in by soil tillage. To test this hypothesis, another area that 

is newly cultivated with cereals should be surveyed. 

The current man-made drainage networks are the result of individual farmers’ deci- 

sions to dig a ditch and to various more global drainage policies (like in Le Pouget area) 

during the last two thousand years (Berger, 2000) and are presently still evolving. During 

our field surveys, we noticed some new ditches being dug while others were being 

removed. We also surveyed ditches in areas where vineyards were uncultivated and shrubs 

were growing; these ditches will most likely disappear in the next few years without 

further management. Thus,  there was some degree of  randomness in  the  man-made 

drainage density we observed that we could not hope to explain. 

Finally, we assumed that these unmapped determinants represent technoeconomic 

factors which account for the main part of variability not explained by our model. This 

assumption was reinforced by the almost absence of spatial structure in the residuals of 

the MLR model. This part of the variability illustrates that man-made drainage density 

does not depend only on the landscape attributes. Therefore, there remains some latitude 

to modify the man-made drainage networks. Encouraging farmers to increase or decrease 

locally the density of these man-made drainage networks, according to the objective of the 

catchment managers, could thus help to modulate erosion and hydrological processes. 
 

 
6.   Conclusion 

This study revealed that the man-made drainage density was not well modeled by the 

natural drainage density computed from hydrographic databases. We then built an expla- 

natory  model  of  man-made drainage  density  by  incorporating explanatory variables 

relative to landscape attributes. This model explained the main part of the variability in 

the man-made drainage density. Some technoeconomic factors should be tested in the 

future to understand the part of variability not explained by landscapes attributes. This 

study thus revealed the extent to which man-made drainage density depends on landscape 

attributes and that latitude remains for catchment managers in order to modify these 

networks and preventing soil erosion or flash floods. This modeling approach could also 

have applications in hydrology or ecology, by providing a spatial estimation of the man- 

made drainage density which can be an important parameter in hydrological or ecological 

models. 
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