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A few properties of minimax and maximin optimal designs in a compact subset of R d are presented, and connections with other space-filling constructions are indicated. Several methods are given for the evaluation of the minimax-distance (or dispersion) criterion for a given n-point design. Various optimisation methods are proposed and their limitations, in particular in terms of dimension d, are indicated. A large majority of the results presented are not new, but their collection in a single document containing a respectable bibliography will hopefully be useful to the reader.

Résumé : Cet article présente quelques propriétés de plans d'expériences minimax et maximin optimaux dans un compact de R d , ainsi que leur relations avec d'autres plans "à remplissage d'espace". Plusieurs méthodes sont indiquées pour l'évaluation du critère de distance minimax (ou dispersion) pour un plan donné à n points. Diverses méthodes d'optimisation sont proposées et leurs limitations sont indiquées, en particulier en terme de dimension d. La grande majorité des résultats présentés ne sont pas nouveaux, mais nous espérons que le lecteur trouvera utile de les voir réunis dans un seul document accompagné d'une bibliographie conséquente.

Introduction

In the common parametric framework with independent additive errors, optimal designs for linear or nonlinear models tend to concentrate observation sites at a few locations only. In particular, optimal design theory indicates that, for a model depending on p parameters, design measures maximising an information criterion based on the Fisher information matrix need no more than p(p + 1)/2 + 1 support points, see, e.g., [START_REF] Fedorov | Theory of Optimal Experiments[END_REF], [START_REF] Silvey | Optimal Design[END_REF], [START_REF] Pukelsheim | Optimal Experimental Design[END_REF], [START_REF] Atkinson | Optimum Experimental Designs, with SAS[END_REF], [START_REF] Pronzato | Design of Experiments in Nonlinear Models. Asymptotic Normality, Optimality Criteria and Small-Sample Properties[END_REF], [START_REF] Fedorov | Optimal Design for Nonlinear Response Models[END_REF]. The situation is much different for nonparametric regression with correlated errors, where the absence of prior knowledge on the mean and variance functions yields optimal designs that are uniformly distributed, see [START_REF] Biedermann | Minimax optimal designs for nonparametric regression -a further optimality property of the uniform distribution[END_REF]. Also, the growing tendency in industry to replace physical experiments by simulations based on sophisticated mathematical models has generated a strong demand for designs dedicated to the specific situation where repeated observations at the same site (i.e., of several simulations with the same inputs) give the same response. This corresponds to the type of problems considered here: we want to predict the behavior of an unknown function f : x ∈ X → f (x) ∈ R, with X a compact subset of R d , d ≥ 2 but reasonably small (d 10, say); observations correspond to evaluations of f at a collection of sites x i , i = 1, . . . , n, which form the n-point design X n = {x 1 , . . . , x n }; they may possibly be corrupted by random errors, correlated or not. The absence of knowledge on f is an incitement to observe everywhere in X , that is, to spread X n over X . The objective of the paper is to present techniques for the construction of designs having this property.

After observations f (x 1 ), . . . , f (x n ) have been collected, various methods can be used to predict the value f (x) at any given x ∈ X , see for instance [START_REF] Sacks | Design and analysis of computer experiments[END_REF], [START_REF] Stein | Interpolation of Spatial Data[END_REF], [START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF] for kriging and computer experiments, and one may think of defining a design criterion especially adapted to the particular prediction method that will be used. For instance, it might be based on Maximum-Entropy Sampling (MES), see [START_REF] Shewry | Maximum entropy sampling[END_REF], or on the Maximum (respectively, Integrated) Mean-Squared prediction Error (MMSE, respectively IMSE) over X , see (Santner et al., 2003, Chap. 6), Gauthier andPronzato (2014, 2016). Here we shall focus our attention on "universal" (model-free) design criteria, not depending on the prediction method to be used and only based on geometrical properties of X and X n . The relationship with model-based design constructions will be briefly considered in Section 2.5.2.

In all the paper . denotes the l 2 -norm, and for any set A ⊆ X and any point x ∈ X we write d(x, A ) = min z∈A xz ; vol(A ) = A dx denotes the volume of A and |A | its cardinality when A is finite. The letter X will always denote a compact subset of R d with strictly positive ddimensional Lebesgue measure and equal to the closure of its interior. The set X will generally be convex. Typical examples correspond to the d-dimensional unit (hyper-)cube [0, 1] d or the closed unit ball B(0, 1), with 0 denoting the (here d-dimensional) null vector; 1 will denote a vector with all components equal to 1 and e j will denote the j-th basis vector; I p is the p-dimensional identity matrix.

The paper is organised around two different notions of dispersion that are fundamental in most space-filling strategies. The first one is based on distances between design points and corresponds to the maximin-distance criterion of [START_REF] Johnson | Minimax and maximin distance designs[END_REF],

Φ Mm (X n ) = min i = j x i -x j .
We shall denote Φ * Mm,n = Φ * Mm,n (X ) = max X n ∈X n Φ Mm (X n ) and X * Mm,n a maximin-optimal design such that Φ Mm (X * Mm,n ) = Φ * Mm,n . The index of X * Mm,n is defined as the number of pairs of points being at distance Φ * Mm,n , maximin-optimal designs of lowest index being preferable, see [START_REF] Johnson | Minimax and maximin distance designs[END_REF]. See Figure 1-left for an example.

The second notion relies on the Hausdorff distance between X n and X ,

Φ mM (X n ) = d H (X n , X ) = max max i=1,...,n d(x i , X ), max x∈X d(x, X n ) = max x∈X d(x, X n ) = max x∈X min i=1,...,n x -x i , (1) 
since d(x i , X ) = 0 when x i ∈ X . Φ mM corresponds to the minimax-distance criterion of [START_REF] Johnson | Minimax and maximin distance designs[END_REF] and Φ mM (X n ) is also called the dispersion of X n , see (Niederreiter, 1992, Chap. 6).

We shall denote Φ * mM,n = Φ * mM,n (X ) = min X n ∈X n Φ mM (X n ) and X * mM,n a minimax-optimal design such that Φ mM (X * mM,n ) = Φ * mM,n . Let X * (X n ) denote the set of most distant points x ∈ X , i.e., such that d(x, X n ) = Φ * mM,n . The index of X * mM,n is defined as min x∈X * (X n ) N(x), with N(x) = {x i ∈ X n : xx i = Φ * mM,n } , and minimax-optimal designs of highest index are preferable. An example is given in Figure 1-right. FIGURE 1. Maximin (left) and minimax (right) optimal designs in a square for n = 7. The circles have radius Φ * Mm,7 /2 on the left and Φ * mM,7 on the right; the maximin design on the left has index 8; the minimax optimal design X * mM,7 on the right has index 1, with |X * (X * mM,7 )| = 16.

Clearly, maximin-optimal design will tend to push design points to the boundary of X whereas minimax-optimal design will do that to a much lesser extent, see Section 4.3.1 for an exploitation of this property. For a given n, these different behaviours become more striking as the dimension d increases. We shall only consider designs of given size n and not sequences of nested designs (one may refer to Niederreiter (1992, Chap. 6) for the construction of low-dispersion sequences; see also Section 2.5.1 for discrepancy and its link with dispersion). One exception is the algorithm of Section 4.1 that generates design sequences with 50% minimax and maximin efficiency.

Justification and properties

Motivation for minimising Φ mM

In the absence of precise knowledge on f , choosing a collection X n of sites x i ∈ X that minimise Φ mM (X n ) is intuitively appealing for the prediction of the value of f at unsampled locations x ∈ X based on error-free evaluations f (x i ). Indeed, for any z ∈ X and X n ∈ X n , denote by x i * (z) (any of) the nearest neighbour(s) of z in X n ; that is, x i * (z) ∈ Arg min i=1,...,n z -

x i . If f is Lipschitz continuous, with | f (z) -f (x)| ≤ L 0 z -x for all x and z ∈ X , then max z∈X | f (z) -f (x i * (z) )| ≤ L 0 Φ mM (X n ). If f is Lipschitz differentiable, with ∇ f (z) -∇ f (x) ≤ L 1 z -x for all x and z ∈ X , then max z∈X | f (z) -f (x i * (z) ) -∇ f (x i * (z) )(z -x i * (z) )| ≤ L 1 [Φ mM (X n )] 2 .
These obvious constructions are rather naive; they indicate, however, that the major difficulty for approximating an unknown f , including the famous curse of dimensionality, can in fact be formulated as a design problem: good designs with small Φ mM value yield good approximations, even with constructions as simple as above. One may refer to Sukharev (1992, Chap. 3) for more precise developments. 

Pronzato

Suppose now that f belong to a RKHS H with kernel K(•, •), see, e.g., [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF]. Let ηn denote the linear predictor of f based on the f (x i ), i = 1, . . . , n, such that ηn (x i ) = f (x i ) for all i ( ηn interpolates f on X n ) and having minimum norm ηn H . This bestlinear interpolator is the orthogonal projection of f on span{K x 1 , . . . , K x n }, where K

x : z ∈ X → K(z, x). It satisfies, for all x ∈ X , | f (x) -ηn (x)| ≤ f H ρ n (x)
, where the first term f H does not depend on X n and the second one ρ n (x) does not depend on f , see, e.g., [START_REF] Auffray | Maximin design on non hypercube domains and kernel interpolation[END_REF]. In the framework of random-field modeling and kriging, ρ 2 n (x) corresponds to the kriging variance at x. There, the unknown function is considered as the realisation of a random field Z x on X , with zero mean and covariance E{Z x Z x } = σ 2 K(x, x ). The best linear unbiased predictor of Z x based on the observations

z n = (Z x 1 , . . . , Z x n ) is given by ηn (x) = k n (x)K -1 n z n and satisfies E{[Z x -ηn (x)] 2 } = σ 2 ρ 2 n (x) = σ 2 [K(x, x) -k n K -1 n k n (x)], with k n (x) = (K x 1 (x), . . . , K x n (x)) and {K n } i j = K(x i , x j ), i, j = 1, . . . , n. (The fact that ρ 2 n (x)
does not depend on z n has the important consequence that MES, or the optimisation of any design criterion based on ρ n , see Section 2.5.2, cannot be improved if performed sequentially, by adapting the choice of the k-th design point to all current observations; see [START_REF] Vazquez | Sequential search based on kriging: convergence analysis of some algorithms[END_REF] for a thorough discussion.) [START_REF] Schaback | Error estimates and condition numbers for radial basis function interpolation[END_REF] shows that for many isotropic kernels (such that K(x, z)

depends on x -z ), ρ 2 n (x) satisfies sup x∈X ρ n (x) ≤ S[Φ mM (X n )],
with S an increasing function depending on K, hence, again, the interest of using designs with a small Φ mM value.

Relations between Φ mM and Φ Mm , and bounds on their optimum values

Relations between Φ mM and Φ Mm . As noticed in [START_REF] Gonzalez | Clustering to minimize the maximum intercluster distance[END_REF], any

(n + 1)-point design in X (n ≥ 1) satisfies 1 2 Φ Mm (X n+1 ) ≤ Φ * mM,n . (2) 
Indeed, from the pigeonhole principle, one of the n balls B(z i , Φ * mM,n ), with z i ∈ X * mM,n , must contain two points x i , x j of X n+1 , implying that Φ Mm (X n+1 ) ≤ x i -x j ≤ 2Φ * mM,n . Consider now a design X n with n distinct points x i . Any pair of (closed) balls B(x i , Φ Mm (X n )/2) and B(x j , Φ Mm (X n )/2), i = j, do not intersect, and since a convex set X cannot be covered by two or more non-overlapping balls all having their centres in X , we obtain that any design X n in a convex set X , with n ≥ 2, satisfies Φ mM (X n ) > Φ Mm (X n )/2. On the other hand,

Φ * mM,n ≤ Φ * Mm,n (3) 
for any X and any n. The proof is by contradiction, see [START_REF] Auffray | Maximin design on non hypercube domains and kernel interpolation[END_REF], and is reproduced hereafter. Suppose that Φ * mM,n > Φ * Mm,n and consider a maximin-optimal design X * Mm,n with lowest index. The property

Φ mM (X * Mm,n ) ≥ Φ * mM,n > Φ * Mm,n implies the existence of a x * in X such that d(x * , X * Mm,n ) > Φ *
Mm,n , and by substituting x * for any point of X * Mm,n in a pair of points at respective distance Φ * Mm,n , we would obtain a design X n with lower index than X * Mm,n or such that Φ Mm (X n ) > Φ * Mm,n . One may notice that we have in fact proved that

Φ mM (X * Mm,n ) ≤ Φ Mm (X * Mm,n ) when X *
Mm,n is a maximin-optimal design with lowest index. Minimising Φ mM is more difficult than maximising Φ Mm , see Sections 2.4, 3.2 and 4, and this inequality explains why one is often satisfied with a maximin-optimal design. Lower bound. For any n and any X n ∈ X n , the n balls B(x i , Φ mM (X n )) cover X , and the determination of a minimax-optimal design X * mM,n corresponds to a sphere covering problem. As a consequence, denoting V d = vol[B(0, 1)] = π d/2 /Γ(d/2 + 1) the volume of the d-dimensional unit ball B(0, 1), we get nV d (Φ * mM ) d ≥ vol(X ), which yields the lower bound

Φ * Mm,n ≥ Φ * mM,n ≥ R * n = vol(X ) nV d 1/d . ( 4 
)
Upper bound. By construction, the n balls B(x i , Φ * Mm,n /2), n ≥ 2, do not overlap (more precisely, their intersection has zero volume) and have their centres in X , so that

∪ n i=1 B(x i , Φ * Mm,n /2) ⊂ {X ⊕ B(0, Φ * Mm,n /2)} ⊂ {X ⊕ [-Φ * Mm,n /2, Φ * Mm,n /2] d )} , (5) 
where ⊕ denotes Minkowski sum (here, a dilation of X ). When X is convex and has a simple enough shape, this induces a close relationship between maximin-optimal design and sphere packing. To investigate this relationship we shall need to expand and renormalise X , and it is simpler for that purpose to assume, without any loss of generality, that X has been first normalised, so that the largest ball included in X is the unit ball B(0, 1). For any r ≥ 0, denote

X - r = [1/(1 + r)] [X ⊕ B(0, r)] = {(x + z)/(1 + r) : x ∈ X , z ≤ r}. Any y ∈ X - r can be written as αx + (1 -α)z, with α = 1/(1 + r), x ∈ X and z ∈ B(0, 1) ⊂ X . Therefore, X - r ⊂ X when X is convex. Consider an n-point maximin-optimal design X * Mm,n , with maximin value Φ * Mm,n ; take r = Φ * Mm,n /2.
The n balls B(x i , r) do not overlap and are contained in X ⊕ B(0, r), the non-overlapping balls B(x i /(1 + r), r/(1 + r)) are thus contained in X , which implies that

r/(1 + r) = Φ * Mm,n /(2 + Φ * Mm,n ) ≤ r * SP,n , (6) 
with r * SP,n the maximum radius of n identical non-overlapping spheres packed in X . Consider now the set X + r = {x : ∀z ∈ B(0, r), (1r)x + z ∈ X }, r ∈ [0, 1). Since B(0, 1) ⊂ X and X is assumed to be convex, X ⊂ X + r . On the other hand, when the erosion of X by B(0, r) satisfies

X B(0, r) = {x : ∀z ∈ B(0, r), x + z ∈ X } is homothetic to X , (7) 
with balls and regular polytopes of R d as typical examples, then X + r = X . In that case, any n nonoverlapping spheres packed in X with radius r * SP,n , n ≥ 2, are such that their centres c i belong to X B(0, r * SP,n ), and therefore

c i /(1 -r * SP,n ) ∈ X for all i. This implies that 2r * SP,n /(1 -r * SP,n ) ≤ min i = j c i -c j /(1 -r * SP,n ) ≤ Φ * Mm,n . Together with (6), this gives Φ * Mm,n /(2 + Φ * Mm,n ) = r * SP,n
and shows the equivalence between maximin-optimal design and sphere packing when X is a convex set satisfying (7); see Figure 2 for an illustration. When the shape of X is simple enough, (5) and the equivalence with sphere packing yield upper bounds on vol ∪ n i=1 B(x i , Φ * Mm,n /2) = nV d (Φ * Mm,n /2) d , i.e., upper bounds on Φ * Mm,n . In particular, two special cases provide a simple bound. When X is the unit ball B(0, 1), we obtain 

Φ * Mm,n ≤ 2/(n 1/d -1). When X is the hypercube [0, 1] d and n ≤ n * = [2(1 + √ d)] d /(V d d
Φ * mM,n ≤ Φ * Mm,n ≤ R * n = 2 (nV d ) 1/d -2 . ( 8 
) (When n ≤ [2(2 + √ d)] d /(V d d d/2
) , we also have the trivial bound

Φ * mM,n ≤ √ d/2, obtained from X * mM,1 = {(1/2, . . . , 1/2) }.) FIGURE 2.
Equivalence between maximin-optimal design and sphere packing when X is the square [0, 1] 2 , with n = 7 (left, the same design is presented in Figure 1 Packing density, covering, and lattices. Any given design X n provides an upper bound Φ mM (X n ) on Φ * mM,n and a lower bound Φ Mm (X n ) on Φ * Mm,n . In particular, regular arrangements called lattices, form good candidates for obtaining accurate bounds.

When X can tile R d , the hypercube being a typical example, results on packing density can be used to improve (8): n non-overlapping balls with radius r contained in X cannot occupy a volume larger than δ d V , with V = vol(X ) and δ d the optimum (i.e., greatest) sphere-packing density in

R d . Therefore, r < [δ d V /(nV d )] 1/d . When X is the hypercube [-1, 1] d , so that B(0, 1) is the largest ball included in X , then V = 2 d and Φ * Mm,n < 2r/(1 -r), see (6), which gives Φ * Mm,n < 2δ 1/d d /[(nV d ) 1/d -2δ 1/d d ]
for the hypercube [0, 1] d . The determination of packings with greatest density is a subject that has a rich history. When d = 2, the fact that the hexagonal packing arrangement has highest density δ 2 = π √ 3/6 among lattice packings was known to Lagrange (1773), but the first proof of its optimality among all possible arrangements is due to L. Fejes Tóth (1943). This gives Φ * Mm,n < 1/(3 1/4 n/2 -1) for the unit square. A further slight improvement is given by [START_REF] Oler | A finite packing problem[END_REF], with Φ * Mm,n < [1 + 1 + 2 (n -1) / √ 3]/(n -1). For d = 3, Kepler conjectured in 1611 that the face-centred cubic lattice (commonly exhibited on fruit stands), with δ 3 = π √ 2/6, has highest density among all possible arrangements. Gauss proved in 1831 that this was indeed the case among lattice packings, and the Kepler conjecture was finally proved by Hales and Ferguson in 2006;see Lagarias (2011) for details, including corrections that followed the original proof of the conjecture. This gives

Φ * Mm,n < 1/[(n/ √ 
2) 1/3 -1] for the unit cube. Little is known about optimal packings in dimension d larger than 3, except for lattices, see the major reference [START_REF] Conway | Sphere Packings, Lattices and Groups[END_REF]. The densest lattice packings are known up to d = 8, the optimality of the E 8 -lattice among all possible arrangements (including non-lattice ones) has only been proved recently [START_REF] Viazovska | The sphere packing problem in dimension 8[END_REF].

Optimal arrangements in terms of covering minimise the average number of spheres containing a point of the space, which Conway and Sloane (1999, Chap. 2) call thickness. When X can tile R d , thinnest arrangements provide lower bounds on Φ * mM,n , but are only known for d = 1 and 2. Thinnest lattices are known up to d = 5 (they differ from packing-optimal lattices, and are related with them through a duality property for d = 2 and 3); Conway and Sloane (1999, Chap. 3) give the best covering lattices known up to d = 24. Further results are provided for instance in [START_REF] Vallentin | Sphere coverings, lattices and tilings[END_REF].

Design constructions based on lattices are considered in (Niederreiter, 1992, Chap. 5) in connection with the numerical integration of periodic functions, see also [START_REF] Bates | Experimental design and observation for large systems[END_REF] and [START_REF] Riccomagno | Lattice-based D-optimum design for Fourier regression[END_REF] for the relation with optimal experimental design for Fourier regression. The performance of lattices in terms of discrepancy measures is considered in (Niederreiter, 1992, Chap. 5) and (Hickernell, 1998b). One may refer, e.g., to [START_REF] Korobov | Properties and calculation of optimal coefficients[END_REF], [START_REF] Sloan | A computer search of rank-2 lattice rules for multidimensional quadrature[END_REF], [START_REF] Sloan | Component-by-component construction of good lattice rules[END_REF] and [START_REF] Nuyens | Fast construction of good lattice rules[END_REF] for the construction of good lattice rules.

Performance of random designs. [START_REF] Wahl | Measuring the quality of maximin space-filling designs[END_REF] give the distribution of Φ Mm (X n ) when the n points x i in X n are independently uniformly distributed in [0, 1] d , together with approximations of this distribution for large n. As suggested in their paper, this result can be used to evaluate the maximin performance of a given design, through the calculation of the probability that a random design will have a higher Φ Mm value. Otherwise, one may refer to [START_REF] Janson | Random coverings in several dimensions[END_REF][START_REF] Janson | Maximal spacings in several dimensions[END_REF] for results on the asymptotic distribution of Φ mM for random designs uniformly distributed in the hypercube, and to [START_REF] Aaron | On the maximal multivariate spacing extension and convexity tests[END_REF] for an extension to distributions with Lipschitz continuous density and bounded support.

The issue of dimension

Making simplifying assumptions on f . From the inequality (4), Φ mM (X n ) < ε requires n > vol(X )/(V d ε d ). Difficulties can thus be expected in high dimension with moderate n when the accuracy of the prediction of f (•) at a point x depends on the isotropic distance between x and the design X n , as described in Section 2.1. Kernel-based prediction methods adapted to the assumption that f (•) only depends on a few factors and their low-level interactions may then allow one to get around the curse of dimensionality, see, e.g., [START_REF] Durrande | Additive covariance kernels for high-dimensional Gaussian process modeling[END_REF] for additive models and [START_REF] Ginsbourger | On ANOVA decompositions of kernels and Gaussian random field paths[END_REF] for the Sobol'-Hoeffding decomposition used in sensitivity analysis. See also Rasmussen and Williams (2006, Chap. 4). Along the same vein, discrepancy (see Section 2.5.1) relies on volumes rather than distances and corresponds to kernels that favour functions that can be modelled well by sums of few factors interactions, see Hickernell (1998a,b). Low-discrepancy designs which are known to perform well for integration (see, e.g., [START_REF] Niederreiter | Random Number Generation and Quasi-Monte Carlo Methods[END_REF]) may thus also be good for function approximation in high dimension.

Without suitable assumptions of f (•), for large d we shall necessarily encounter the intrinsic difficulties of high dimension, as beautifully explained in (Blum et al., 2016, Chap. 2). We only mention two of them, considering situations where X is a ball or a cube. Towards non-uniform space-filling design. The first difficulty is common to the ball and the cube: the volumes of the unit ball and unit cube are concentrated along their borders. For ε ∈ [0, 1), denoting by

K ε the hypercube [-(1 -ε)/2, (1 -ε)/2] d , we have vol(K 0 ) -vol(K ε ) vol(K 1 ) = vol(B(0, 1)) -vol(B(0, 1 -ε)) vol(B(0, 1)) = 1 -(1 -ε) d > 1 -exp(-dε) ,
which quickly tends to one for any ε > 0 as d increases. When trying to spread n design points uniformly in a high dimensional X , we can thus expect that a large majority of them will be close to the border of X . To circumvent that difficulty, we may consider that prediction accuracy deep inside X is more important than along its border, and use a non-stationary kernel in a kernel-based method, or modify the metric used. For instance, when X is centered at 0, one may replace a stationary kernel

K(x, z) = k( x -z ) by K (x, z) = k( x -z )/[s( x )s( z )],
with s(•) a positive and increasing function on R + , see, e.g., Rasmussen and Williams (2006, Chap. 4).

The change of metric can rely on a nonlinear mapping (warping) of x: one may consider for instance the transformed space X = {x = x/s( x ) : x ∈ X }, where X is centered at 0, s(•) is positive and increasing and such that t → t/s(t) is strictly increasing for t ∈ [0, max x∈X x ] (so that the mapping x ∈ X → x = x/s( x ) is one-to-one).

Rounding the cube. The second noticeable difficulty concerns the striking difference between the geometrical shapes of a ball and a cube in high dimension. As d increases, the volume of the unit cube is one but the maximum distance possible between two points is √ d. In contrast, the volume V d of the unit ball tends to zero but the maximum distance possible between two points equals two. A first consequence is that the squared distance between pairs of points uniformly distributed in the unit cube is concentrated around its mean value d/6: a direct application of Hoeffding's concentration inequality gives Prob 2β 2 ) when x and z are independently uniformly distributed in the unit cube. A second consequence is that whereas the unit cube centered at the origin is contained in the unit ball for d ≤ 4, its 2 d vertices are at distance √ d/2 from the origin and lie outside the ball for d ≥ 5, and the volume of the complement of the ball with respect to the cube tends to one as d increases to infinity. On the other hand, the ball is never contained in the cube: the centre of each (d -1)-dimensional face of the cube is at distance 1/2 from the origin, well inside the ball. This indicates that when d is large, inferring the behaviour of an unknown f (•) seems much more difficult when X is a cube than when it is a ball. The usual motivation for assuming that x = (x 1 , . . . , x d ) lies in a cube is that it accounts for the situation where all input factors x i take their extreme values at the same time. As an attempt to struggle with the curse of dimensionality, one may suppose that only q factors out of d can be extreme simultaneously. After suitable renormalisation, this can be achieved by taking X as the intersection between the unit cube centered at the origin and the ball B(0, α √ d/2): when q/d ≤ α < (q + 1)/d, X intersects all (dq)-faces of the cube but none of its (dq -1)-faces (a 0-face being a vertex, a 1-face an edge, and so on, a (d -1)-face is a face).

x -z 2 -d/6 > β √ d < 2 exp(-
To summarize, the difficulties mentioned in this section point out that minimax and maximin optimal designs based on an isotropic notion of distance do not seem relevant for large d. A few suggestions on how to possibly circumvent some of those difficulties have been indicated, but deeper investigations are clearly required. This explains why we shall restrict our attention to situations where d 10; when we mention large d in the rest of the paper, this should be interpreted as d around 10, or slightly larger than 10.

Evaluation of Φ mM

Whereas the evaluation of Φ Mm (X n ) is straightforward, that of Φ mM (X n ) requires the maximisation of d(x, X n ) with respect to x ∈ X , see (1). The evaluation is of course much simpler when x is restricted to belong to a finite set, and a common approach is to (under-)estimate

Φ mM (X n ) by ΦmM (X n ) = max x∈X Q d(x, X n ), with X Q a finite set {x (1) , . . . , x (Q) } ∈ X Q ,
typically a regular grid, or the first Q points of a low-discrepancy sequence. A large value of Q is required to obtain a precise approximation of Φ Mm (X n ), and for a given level of accuracy Q should increase quickly with d. Indeed, the triangle inequality for Hausdorff distance gives

max x∈X Q d(x, X n ) ≤ Φ mM (X n ) = d H (X n , X ) ≤ d H (X n , X Q ) + d H (X Q , X ) = d H (X n , X Q ) + Φ mM (X Q ) ≤ max max x∈X Q d(x, X n ), Φ mM (X Q ) + Φ mM (X Q ) , and therefore 0 ≤ Φ mM (X n ) -max x∈X Q d(x, X n ) ≤ Φ mM (X Q ) for any reasonable X Q such that Φ mM (X Q ) ≤ max x∈X Q d(x, X n ). On the other hand, one can easily construct examples with X Q a regular grid such that Φ mM (X n ) = max x∈X Q d(x, X n ) + Φ mM (X Q ). The lower bound (4) then indicates that Q must grow as O(1/ε d ) to ensure that Φ mM (X n ) < max x∈X Q d(x, X n ) + ε.
When X is a d-dimensional hypercube, or a convex bounded polyhedron (a polytope) of R d with d small enough (say, d 5), tools from algorithmic geometry provide the exact evaluation of Φ Mm (X n ) (note that in most applications n is growing moderately with d, often linearly). The third method presented uses a Markov Chain Monte Carlo (MCMC) algorithm to construct an estimate of Φ Mm (X n ) and can also be used with larger d.

Delaunay triangulation [START_REF] Pronzato | Design of computer experiments: space filling and beyond[END_REF]. Suppose that X n is an n-point design in X = [0, 1] d . Consider the set X m , with m = (2d + 1)n points, formed by X n and its 2d reflections through the (d -1)-dimensional faces of X . The Delaunay triangulation of X m yields a collection of d-dimensional simplices (each one having d + 1 vertices), with the property that their circumscribed spheres S j do not contain any point of X m in their interior, see [START_REF] Okabe | Spatial Tessellations. Concepts and Applications of Voronoi Diagrams[END_REF], [START_REF] Boissonnat | Algorithmic Geometry[END_REF]. The value max x∈X d(x, X n ) is then attained when x is the centre of one of those spheres, and therefore, max x∈X Q d(x, X n ) gives the exact value of Φ mM (X n ) when X Q is the finite set given by the centres of circumscribed spheres that belong to X . One should notice, however, that the complexity of the construction grows exponentially fast with d,

since Q = |X Q | = O(m d/2
), which gives a computational time growing like O(m 1+ d/2 ), see [START_REF] Cignoni | DeWall: A fast divide and conquer Delaunay triangulation algorithm in E d[END_REF]. The approach is therefore restricted to small values of d (even if removing points not necessary for the construction from X m ). An example is shown in Figure 3-left.

The method requires the computation of the circumscribed sphere S enclosing d + 1 points u i in R d , which can be easily performed as follows. Let U denote the d × (d + 1) matrix with columns given by the u i , and let c and r denote the centre and radius of S , respectively. By 

u i 2 = r 2 , that is 2u i c + (r 2 -c c) = u i 2
, for all i. Denoting w = r 2 -c c and d = diag(U U), the vector with i-th component u i 2 , we can rewrite this in matrix form as

[2U 1] c w = d ,
and obtain the values of c and r = √ w + c c from the solution of this linear system. Note that | det[U 1]|/d! = vol[u 1 , . . . , u d+1 ], the volume of the simplex formed by the u i . Therefore, det[2U 1] = 0 when the points are in general position, and there is no circumscribed sphere (or one may consider that its centre is at infinity) when the system is inconsistent.

Voronoï tessellation (Cortés andBullo, 2005, 2009).

A collection of n sets C i forms a tessel- lation of the set A if C i ∩ C j = / 0 for i = j and ∪ n i=1 C i = A .
The Voronoï tessellation based on the sites, or generators, in X n ∈ X n , partitions R d into n cells C i , with C i consisting of points closer to x i than to any other site in X n . Each cell thus corresponds to a convex polyhedron in R d , some cells being open (and infinite). When X is a polytope of R d , the intersections of the C i with X provide a tessellation of X into n bounded convex polyhedra. The value max x∈X d(x, X n ) is then attained when x is a vertex of one of these polyhedra, and one only need to compute max x∈X Q d(x, X n ) with X Q the collection of these vertices. Again, the construction is computationally expensive for large d, with Q growing like O(n d/2 ), see [START_REF] Klee | On the complexity of d-dimensional Voronoi diagrams[END_REF]. Dealing with infinite cells can be easily avoided by adding a few generators x j out of X (at least d + 1), far enough from X to ensure that the corresponding cells do not intersect X . For instance, when X = [0, 1] d , we can add to X n the 2d generators given by

(1/2)1 ± a e j , j = 1, . . . , d; taking a > 1/2 + √ d then implies max x∈X , x i ∈X n x -x i ≤ √ d < min x∈X x -x j = a -1/2.
The n Voronoï cells corresponding to generators in X n are then finite and their intersections with X are not perturbed by the presence of the extra generators x j . These polyhedral intersections can be computed using for example the method in [START_REF] Walter | Exact recursive polyhedral description of the feasible parameter set for bounded error models[END_REF]) -with a non-negligible contribution to the total computational cost of the method. An illustration is given in Figure 3-right.

Estimation via MCMC. Suppose that we have a sample of Q points x ( j) i.i.d. in X . We can then compute the Q distances d j = d(x ( j) , X n ), with associated order statistics d

1:Q ≥ d 2:Q ≥ • • • ≥ d Q:Q . Let k be a fixed integer between 1 and Q (assuming that Q d, we suggest k = max{10, d}).
Using results in (Zhigljavsky and Žilinskas, 2007, Chap. 2) and [START_REF] Zhigljavsky | Stopping rules in k-adaptive global random search algorithms[END_REF] based on extreme-value theory, we can then estimate Φ mM (X n ) by

Φ mM (X n ) = d 1:Q +C k (d 1:Q -d k:Q ) where C k = b 1 /(b k -b 1 ) with b i = Γ(i + 1/d)/Γ(i).
Moreover, the asymptotic confidence level of the interval

I k,δ = d 1:Q , d 1:Q + d 1:Q -d k:Q (1 -δ 1/k ) -1/d -1 tends to 1 -δ for Q → ∞.
When the points x ( j) are fixed, the precision of the estimation of Φ mM (X n ) by Φ mM (X n ) is poor and the interval I k,δ is large, unless Q is very large. However, the order statistics d j:Q for large j carry little information about the value of Φ mM (X n ). This suggests using a multilevel splitting algorithm, for which all x ( j) at distance d j from X n less than some 

-1 -0.5 0 0.5 1 1.5 2 -1 -0.5 0 0.5 1 1.5 2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 FIGURE 3. Evaluation of Φ mM (X n ) for X n a 6-point design (squares) in X = [0, 1] 2 .
Delaunay triangulation (left): there are 45 triangles, 12 centres of circumscribed circles (dots), the circle with largest radius is plotted. Voronoï tessellation (right): the 2d = 4 additional generators are indicated by stars, the six (finite) cells intersected with X have 14 distinct vertices (28 in total), the most distant from X n corresponds to the upper right corner of X .

L are replaced by points sampled independently (and uniformly) in the set X (L ) = {x ∈ X : d(x, X n ) > L }, for an increasing sequence of levels L . The method of [START_REF] Guyader | Simulation and estimation of extreme quantiles and extreme probabilities[END_REF] is particularly attractive in this context for generating uniform samples in a sequence of sets X (L ), due to its efficiency and the straightforward level sequence that it proposes: at step , the next level is set at L +1 = min j=1,...,Q d j , and the point x j * (unique with probability one) such that d j * = L +1 is replaced by a new point sampled in X (L +1 ). These splitting iterations are stopped when the width of the confidence interval I k,δ , with δ = 0.05, say, is less than some prescribed precision ε.

One may use rejection sampling (the acceptance-rejection method) to sample uniformly in X (L) when L is small enough. However, sampling uniformly in X (L) is not straightforward when L approaches Φ mM (X n ), and when the number of rejections becomes larger than some given threshold (say, 100) one may switch to the MCMC method with Metropolis-Hastings transitions proposed in [START_REF] Guyader | Simulation and estimation of extreme quantiles and extreme probabilities[END_REF]. Denote by Proj X (x) the projection of x onto X (a truncation when X is an hypercube). At step , first replace x j * by a x j * * chosen at random among the other x j , second perform K successive steps of a random walk, where a movement from x to Proj X (x + z), with z normally distributed N (0, σ I d ), is accepted if and only if d(x + z, X n ) > L +1 = d j * . Our numerical experiments indicate that choosing Q = max{nd, 100}, K between 10 and 20 and σ equal to the lower bound R * n given by (4) gives satisfactory results. An illustration is given in Figure 4.

Figure 5 presents boxplots of (the logarithms of) computing times for the three methods above (K = 10, δ = 0.05, ε = 10 -3 for MCMC), for n = 50 and d varying from 2 to 5 (we performed 100 evaluations of Φ mM for random Latin-hypercube designs X n in [0, 1] d ). Voronoi tessellation appears to be the fastest when d = 2 and 3, Delaunay triangulation is the fastest for d = 4 and MCMC is preferable for d ≥ 5. The computational time grows roughly exponentially with d for the first two methods, but is only linear in d for MCMC. 

FIGURE 4. Evaluation of Φ mM (X n ) via MCMC for a 7-point design (squares) in X = [0, 1] 2 .
The initial x ( j) , j = 1, . . . , Q = 104, correspond to 100 random points in X (uniformly distributed) and the 4 vertices. The figure on the left (resp. on the right) shows the situation after 30 (resp. 400) splitting iterations: the 7 balls centered at the design points have radius min j=1,...,Q d(x ( j) , X 7 ) for the current set of points x ( j) ; the point x j * (star) that lies exactly on a circle is replaced by x j * * (triangle) which is then updated into the point indicated by a cross after 10 Metropolis-Hastings transitions. 2.5. Relation with other criteria for optimal design 2.5.1. Model-free design criteria Discrepancy. A rather intuitive approach to achieve the objective of observing "everywhere" in X , as formulated in Section 1, is to minimise a "distance" between the distribution of observations sites x i and the uniform distribution. The notion of discrepancy captures this intuition well, see (Niederreiter, 1992, Chap. 2), and different versions can be considered which receive an analytical expression, see Hickernell (1998a,b), [START_REF] Fang | Wrap-around L 2 -discrepancy of random sampling, Latin hypercube and uniform designs[END_REF], and can therefore be minimised, see [START_REF] Fang | Lower bounds for centered and wrap-around L 2 -discrepancies and construction of uniform designs by threshold accepting[END_REF], [START_REF] Pronzato Fang | Lower bounds for wrap-around L 2 -discrepancy and constructions of symmetrical uniform designs[END_REF] and (Fang et al., 2006, Chaps. 3&4). The use of low-discrepancy sequences forms a cheap alternative to algorithmic discrepancy minimisation (Niederreiter, 1992, Chaps. 3&4). Assume that X = [0, 1] d . Interestingly enough, a bound on the dispersion Φ mM (X n ) of an n-point design can be derived from its (extreme) discrepancy D n (X n ),

Φ mM (X n ) ≤ √ d D 1/d n (X n ) ,
see (Niederreiter, 1992, Th. 6.6) (this formalises the common sense that a sequence distributed uniformly in X is dense in X ). We therefore have bounds on Φ mM for designs X n formed by the first n points of a low-discrepancy sequence (for which

D n = O[(log n) d /n]
), see for instance [START_REF] Mitchell | Error estimates arising from certain pseudorandom sequences in a quasirandom search method[END_REF] for the Halton sequence. However, numerical evaluations indicate that these bounds are rather pessimistic.

Divergence measures and entropy. An alternative approach is to consider that the x i are i.i.d. with a density ϕ in X , and to minimise an estimate Dn of a divergence measure D between ϕ and the uniform density υ on X , or to maximise an estimate Ĥn of the entropy H of ϕ, Dn and Ĥn being estimated from X n considered as a sample of size n. Different divergences or entropies can be considered, see, e.g., [START_REF] Basseville | Divergence measures for statistical data processing -An annotated bibliography[END_REF], minimising a divergence D(ϕ, υ) between ϕ and υ being generally equivalent to maximising a suitable entropy H(ϕ). Jourdan and [START_REF] Franco | Plans d'expériences numériques d'information de Kullback-Leibler minimale[END_REF][START_REF] Franco | Optimal Latin hypercube designs for the Kullback-Leibler criterion[END_REF]) maximise a plug-in estimator of the Shannon entropy H 1 (ϕ) =ϕ(x) log ϕ(x) dx and estimate ϕ with (Gaussian) kernel smoothing; i.e., their density estimator is

ϕ n (x) = 1 n n ∑ i=1 φσ 2 n (x -x i ) , (9) 
where σ n is a bandwidth parameter and φs 2 is the density of the d-dimensional normal distribution N (0, s 2 I d ). To avoid computationally demanding numerical integrations, they substitute the empirical estimator Ĥ1,n

= -(1/n) ∑ n i=1 log ϕ n (x i ) for H 1 ( ϕ n ).
In (Jourdan and Franco, 2009a), the authors maximise the Nearest-Neighbour (NN) estimator of Shannon entropy derived by [START_REF] Kozachenko | On statistical estimation of entropy of random vector[END_REF], which amounts at maximising the product of the distances between each design point and its NN in X n (see also the next paragraph on the maximisation of Euclidean functionals on graphs).

Other entropies can be considered too, such as Tsallis entropy of order α, defined by

H α (ϕ) = [1/(α -1)] [1 -ϕ α (x) dx] for α = 1, with H α (ϕ) → H 1 (ϕ) as α → 1.
When α > 0 and ϕ is constrained to be supported on X , H α (ϕ) is maximum for the uniform distribution. Notice that the second-order Tsallis entropy (α = 2) yields a particularly simple construction, since

R d ϕ 2 n (x) dx = (1/n 2 ) ∑ n i, j=1 φ2σ 2 n (x i -x j ) gives H 2 ( ϕ n ) = 1 - 1 n 2 n ∑ i, j=1 φ2σ 2 n (x i -x j ) . ( 10 
)
Also note that Ĥ1,n and H 2 ( ϕ n ) only depend on distances between pairs of points in X n , as it will also be the case for the design criteria in the next two paragraphs.

Euclidean functionals on graphs. In a seminal paper, [START_REF] Beardwood | The shortest path through many points[END_REF] have shown that when n points x i are i.i.d. with the density ϕ in X = [0, 1] d , the lengths |e i | of the edges e i of the Traveling-Salesman (TS) graph G T S (X n ) having the x i as vertices satisfy

∑ e i ∈G T S (X n ) |e i | n (d-1)/d a.s. → C(d) ϕ (d-1)/d (x) dx as n → ∞ ,
where C(d) only depends on d. This result has then been extended by [START_REF] Steele | Subadditive Euclidean functionals and nonlinear growth in geometric probability[END_REF] to other Euclidean functionals, see also [START_REF] Redmond | Limit theorems and rates of convergence for euclidean functionals[END_REF] for references and a unifying framework based on the notion of quasiadditivity, and has generated an abundant literature. One may refer for instance to [START_REF] Redmond | Asymptotics for Euclidian functionals with power-weighted edges[END_REF], [START_REF] Yukich | Probability Theory of Classical Euclidean Optimization Problems[END_REF], [START_REF] Penrose | Weak laws of large numbers in geometric probability[END_REF], [START_REF] Wade | Explicit laws of large numbers for random nearest-neighbour-type graphs[END_REF], [START_REF] Penrose | Laws of large numbers and nearest neighbor distances[END_REF] for extensions to power-weighted edge lengths, considering various types of convergence and different conditions on ϕ. Basically, when ϕ is uniform on X , for β in a suitable range we have

Φ G ,β (X n ) = ∑ e i ∈G (X n ) |e i | β n (d-β )/d → C(β , d) ϕ (d-β )/d (x) dx as n → ∞ , (11) 
with C(β , d) a constant depending only on β and d (and on the type of graph considered). Here G (X n ) may denote the Minimum Spanning Tree (MST), or the (k-th) Nearest-Neighbour (NN), TS, Voronoï, Delaunay, Gabriel or sphere of influence graph. . . and the type of convergence (L q or a.s.) depends on the range of admissible β and on properties of the graph considered.

For instance, [START_REF] Penrose | Laws of large numbers and nearest neighbor distances[END_REF] show that for the k-th NN graph, we have a.s. and L 2 convergence for β > 0 and L q convergence (q = 1, 2) for β ∈ (-d/q, 0); see also [START_REF] Leonenko | A class of Rényi information estimators for multidimensional densities[END_REF]. An informal justification for the growth rate n (d-β )/d for S n = ∑ e i ∈G (X n ) |e i | β is as follows: consider X n formed by 2 d identical copies of

X n ∈ [0, 1] d×n , X n having n = 2 d n points in [0, 2] d .
For a suitable graph G , the effect of edges connecting points lying in two adjacent hypercubes can be neglected, and

∑ e i ∈G (X n ) |e i | β ≈ 2 d S n . Here X n ∈ [0, 2] d×n , but renormalisation to [0, 1] d yields a design X n ∈ [0, 1] d×n . The edges in G (X n ) are twice shorter than in G (X n ), therefore S n = ∑ e i ∈G (X n ) |e i | β ≈ 2 d-β S n , and S n = O(n t ) gives 2 d-β = 2 dt , i.e., t = 1 -β /d. When α > 1, H α (ϕ)
is maximum for the uniform distribution, and maximising H α (ϕ) is equivalent to minimising ϕ α (x) dx. Considering property (11), this can be achieved by minimising Φ G ,β (X n ) with β < 0. A classification of designs based on the values of the empirical mean and standard deviation of the edge lengths of the MST graph built from X n is proposed in [START_REF] Franco | Minimum Spanning Tree: a new approach to assess the quality of the design of computer experiments[END_REF], but to the best of our knowledge the sum of power-weighted edge lengths Φ G ,β (X n ), for the MST or any other graph among those mentioned above, has scarcely been used as a criterion for space-filling design (NN, and to a lesser extent MST, being the most promising due to their easy construction; see, e.g., Jourdan and Franco (2009a) for the maximisation of the sum of logarithms of edge lengths in the NN graph).

L q relaxation and energy. Denote by d * (x i ) = min j=1,...,n, j =i x i -x j the NN distance to x i in the design X n . We can write Φ Mm (X n ) = min i=1,...,n d * (x i ), so that, for any q > 0, 

1 n n ∑ i=1 d -q * (x i ) ≤ max i=1,...,n d -q * (x i ) = Φ -q Mm (X n ) ≤ n ∑ i=1 d -q * (x i )
∑ i=1 d -q * (x i ) -1/q ≤ Φ Mm (X n ) ≤ 1 n n ∑ i=1 d -q * (x i ) -1/q . ( 12 
)
This indicates that a design X * n,NN,q maximising [∑ n i=1 d -q * (x i )] -1/q is nearly optimal for Φ Mm when q is large enough. Indeed, (12) implies that Φ Mm (X * n,NN,q )/Φ * Mm,n ≥ n -1/q , which tends to 1 as q → ∞. Note that d * (x i ) is equal to the length |e i | of the edge with source at x i in the NN graph G NN (X n ) built on X n , so that X * n,NN,q minimises Φ G NN ,β (X n ) defined by ( 11) with β = -q < 0. A similar relaxation can be applied directly to distances between all pairs of points, with

n ∑ i, j=1, i = j x i -x j -q -1/q ≤ Φ Mm (X n ) ≤ 2 n(n -1) n ∑ i, j=1, i = j x i -x j -q -1/q .
Maximising [∑ n i, j=1, i = j x i -x j -q ] -1/q for q > 0 is equivalent to minimising the energy criterion

E q (X n ) = 2 n(n -1) n ∑ i, j=1, i = j x i -x j -q , ( 13 
)
and a design X

* n,E q minimising E q (X n ) satisfies Φ Mm (X * n,E q )/Φ * Mm,n ≥ n 2 -1/q → 1 as q → ∞.
The continuous extension of the criterion E q is the q-energy E q (µ) =

xx -q dµ(x)dµ(x ), with µ a probability measure on X . The determination of measures with minimum q-energy is one of the main subjects in potential theory, see, e.g., [START_REF] Landkof | Foundations of Modern Potential Theory[END_REF], [START_REF] Saff | Logarithmic potential theory with applications to approximation theory[END_REF]. A design X * n,E q minimising E q (X n ) is called a set of n Fekete points. When q ≥ d, a sequence of Fekete points in X is asymptotically uniformly distributed, with ∑ n i, j=1, i = j x i -x j -q growing as n 1+q/d for q > d and as n 2 log n when q = d. When 0 < q < d, a minimum energy measure exists, it is called the q-equilibrium energy measure and is the weak limit of a sequence of empirical measures associated with Fekete points, see [START_REF] Hardin | Discretizing manifolds via minimum energy points[END_REF]. Minimum-energy measures in a design context are considered for instance in (Zhigljavsky et al., 2010). Optimal design based on the minimisation of E q (X n ) has been proposed by [START_REF] Audze | New approach for planning out of experiments[END_REF] for q = 2. From the results just mentioned, values of q larger than d are preferable in a space-filling perspective, see [START_REF] Pronzato | Extremal measures maximizing functionals based on simplicial volumes[END_REF]. Numerical experiments indicate that in general the minimisations of E 10d (X n ) and Φ G NN ,-d (X n ) yield designs resembling X * Mm,n .

Model-based optimal design

Consider the random-field modeling framework of Section 2.1. Suppose that the covariance

E{Z x Z x } = σ 2 K(x, x ) is isotropic, with K(x, x ) = K (s) (x, x ) = C s ( x -x ) for all x, x
, where s > 0, C(0) = 1 and C(t) is a decreasing function of t. [START_REF] Johnson | Minimax and maximin distance designs[END_REF] show that a minimaxoptimal design X * mM,n with highest index minimises the maximum over X of the kriging variance ρ 2 n (x), asymptotically, as s → ∞.

Maximum Entropy Sampling (MES) supposes that Z x is Gaussian and selects a design X n such that the entropy of the distribution of z n = (Z x 1 , . . . , Z x n ) is maximum, and this amounts to maximising det K n , see [START_REF] Shewry | Maximum entropy sampling[END_REF]. For K(x, x ) = K (s) (x, x ) = C s ( xx ), [START_REF] Johnson | Minimax and maximin distance designs[END_REF] show that a maximin-optimal design X * Mm,n with lowest index is asymptotically optimum in the sense of MES when s → ∞.

Inspired from results in [START_REF] Joseph | Maximum projection designs for computer experiments[END_REF], we can also make a connection between MES and the maximisation of (an estimator of) the entropy of the distribution of design points. Consider the Gaussian process model with K(x, x ) = K θ (x, x ) = exp(-θ xx 2 ), θ > 0. For any design X n ∈ X n , det K n < 1 from Hadamard's inequality. On the other hand, for θ large enough K n is strictly diagonally dominant, and Gershgorin's theorem implies that each interval

[1 -∆ j , 1 + ∆ j ], with ∆ j = ∑ n i=1, i = j {K n } i j < 1, j = 1, . . . , n, contains exactly one eigenvalue of K n . Therefore, for large θ , 0 > log det K n > n ∑ i=1 log(1 -∆ i ) -∑ i = j K θ (x i -x j ) = n + n 2 (π/θ ) d/2 [H 2 ( φn ) -1] ,
where H 2 ( φn ) is the second-order Tsallis entropy (10) and φn is given by ( 9) with σ 2 n = 1/(4θ ). When the random-field model actually represents some prior knowledge on the function f (•) to be approximated/interpolated, a large θ urges that we take the trend behaviour of the model into account. However, when it is only used as a convenient tool to design a space-filling experiment, we may maximise H 2 ( φn ), or log det K n , to obtain designs with good maximin performance.

General global and local methods for maximin and minimax optimal design

The criterion Φ Mm and its extensions Φ G NN ,-q (X n ) and E q , respectively given by ( 11) and ( 13) with q > 0, are generally multimodal, and their global optimisation forms a difficult task. In fact, there is little hope to construct a certified maximin-optimal design already for d = 2 and n larger than a few dozen, and the situation gets worse for larger d. The determination of minimax-optimal designs is even more difficult. For suitable convex sets, maximin-optimal design is equivalent to sphere-packing, see Section 2.2, and the case d = 2 has attracted substantial attention, in geometry first (see for instance Croft et al. (1991, Chap. D) and the references therein), and then in the optimisation community for the challenges it raises. It is worthwhile to mention a few results that give an idea of the difficulty of the problem. When X is a square, exact solutions were known for some time for n = 1, . . . , 9, 10 and then n = p 2 with p = 4, 5, 6, see [START_REF] Maranas | New results in the packing of equal circles in a square[END_REF]. Solutions are provided in the same paper for all n ≤ 30, using nonlinear programming with multistart (repetitions of runs with different initial designs). [START_REF] Graham | Repeated patterns of dense packings of equal disks in a square[END_REF] investigate disk packings that exhibit repeated patterns as n increases. For p ≤ 6, the optimal packing with p 2 points is made of p rows of p disks, but this is no longer true for p ≥ 7 as shown by [START_REF] Nurmela | Packing up to 50 equal circles in a square[END_REF] who provide packings up to n = 50. Their optimisation method relies on the minimisation of an energy criterion E q with large q (up to 10 50 ), using a continuous steepest-descent algorithm with multistart; the design variables x i , which lie in the square [-1, 1] 2 , are first reparameterised as (sin(θ 1,i ), sin(θ 2,i )) where θ 1,i , θ 2,i are unconstrained. Proving optimality of a given packing is also a difficult task, and [START_REF] Nurmela | More optimal packings of equal circles in a square[END_REF] extend the range of known certified optimal packings to n ≤ 27. Extension to n = 28 and 29 is provided in [START_REF] Markót | A new verified optimization technique for the "packing circles in a unit square" problems[END_REF] using branch and bound and interval analysis (with a computational time exceeding 50h for one optimality certification). Results for disk packing in a circle are provided for n ≤ 65 by [START_REF] Graham | Dense packings of congruent circles in a circle[END_REF], who minimise E q with large q, as in [START_REF] Nurmela | Packing up to 50 equal circles in a square[END_REF], and also use a billiard algorithm, see Section 4.2.1. Best known packings (d = 2 and 3) are collected at the web site http://www.packomania.com/, see also https://spacefillingdesigns.nl/ for other metrics than Euclidean and results in higher dimension for Latin hypercube designs.

The objective of this section is to present rather simple algorithms that can be used to generate acceptable solutions in reasonable computational time. Global optimisation is considered first; the solution that it provides can then be used to initialise one of the local-search algorithms presented in Section 3.2.

Global optimisation via simulated annealing

Global optimisation methods based on simulated annealing are easy to implement and provide reasonably good solutions provided that enough iterations are performed. Although convergence to a global optimum is guaranteed for some suitable versions of the algorithm, it is recommended to repeat several optimisations initialised at different designs (e.g., randomly generated). One may refer to [START_REF] Bertsimas | Simulated annealing[END_REF] for a short illuminating exposition of simulated annealing applied to optimisation over a finite set, and to [START_REF] Auffray | Maximin design on non hypercube domains and kernel interpolation[END_REF] for a detailed presentation in the case of maximin-optimal design over a compact set X . See also Fang et al. (2006, Chap. 4) for a description of design optimisation algorithms in the finite setting (the construction of optimal Latin-hypercube designs for instance). Below we give the principles of a simple simulated-annealing algorithm which can be straightforwardly applied to maximin and minimax optimal design.

Let Φ denote the design criterion considered; we suppose that Φ > 0 must be minimised and denote Φ * = min X n ∈X n Φ(X n ). The algorithm relies on the construction of a Markov chain

X (k) n → X (k+1) n (initialised at some X (1)
n ) with stationary regime such that its invariant measure is the Gibbs measure with density proportional to exp[-C Φ(X n )] for some C > 0. Then, when C = C k increases slowly enough with k (typically, C k = c log(k + 1) for some sufficiently large c), one can ensure that lim k→∞ Prob[Φ(X

(k) n ) < Φ * + ε] = 1 for any ε > 0. A faster increase of C k , such as C k = c
k, is often used; it usually yields faster convergence to a local minimiser of Φ, without the previous convergence guarantee, however. The usual practice is to construct transitions with a Metropolis-Hastings algorithm, see [START_REF] Tierney | A note on Metropolis-Hastings kernels for general state spaces[END_REF], generally incorporating a Gibbs sampler, see [START_REF] Roberts | Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains[END_REF]. Then, if X (k+) n denotes the proposal generated from

X (k) n , with density Q[X (k) n , •], X (k+) n is accepted (i.e., X (k+1) n = X (k+) n ) with proba- bility P acc (k, X (k) n , X (k+) n ) = min exp(C k [Φ(X (k) n ) -Φ(X (k+) n )]) Q[X (k+) n , X (k) n ]/Q[X (k) n , X (k+) n ], 1 and X (k+1) n = X (k)
n otherwise. There are two hidden difficulties here: first, the ratio of densities

Q[X (k+) n , X (k) n ]/Q[X (k) n , X (k+) n
] may be difficult to compute, especially when X has a complicated shape or is not known explicitly, see [START_REF] Auffray | Maximin design on non hypercube domains and kernel interpolation[END_REF] for a thorough discussion; second, the choice of the constant c in C k = c log(k + 1), or C k = c k, is often critical. We thus suggest a simplified kernel, based on the acceptance probability The transition kernel obtained for C k = C constant does not leave invariant the associated Gibbs measure, and we cannot guarantee the convergence property above. On the other hand, defining

P acc (k, X (k) n , X (k+) n ) = min exp C k Φ(X (k) n ) -Φ(X (k+) n ) Φ(X (k) n ) , 1 . (14) 
τ k = arg min i=1,...,k Φ(X (i) n ), we have lim k→∞ Prob[Φ(X (τ k ) n ) < Φ * + ε]
= 1 for any ε > 0 (note that this property, although comforting, is rather weak and is also satisfied for a pure random search, or when C k = C constant in ( 14)).

Consider the two criteria 11), (13). For q large enough, their minimisation is almost equivalent to the minimisation of 14) in order to set P acc (1, X n , γX n ) to some prescribed value when γ is close to 1. For the three Φ i above, P acc (1, X n , γX n ) = 1 for γ ≥ 1 and can be approximated by 1 + C 1 (γ -1) for γ 1, which equals 0 for γ = γ 0 = 1 -1/C 1 . We may then consider that P acc (1, X n , γX n ) is negligible for γ < γ 0 , and take C 1 = 1/(1γ 0 ) obtained for a reasonable value of γ 0 , for instance γ 0 = 0.99 when C k = c log(k + 1) with c = 1/[(1γ 0 ) log 2], and γ 0 = 0.75 when C k = c k with c = 1/(1γ 0 ) (a smaller γ 0 is preferable here since the acceptance probability decreases faster). Similar reasoning with the minimisation of Φ 4 (X n ) = Φ mM (X n ) yields the approximation 1 +C k (1γ) for P acc (1, X n , γX n ) when γ 1 (and P acc (1, X n , γX n ) = 1 when γ ≤ 1), and then c = 1/[(γ 0 -1) log 2] and c = 1/(γ 0 -1) for the two cases C k = c log(k + 1) and C k = c k, respectively.

Φ 1 (X n ) = (∑ e i ∈G NN (X n ) |e i | -q ) 1/q and Φ 2 (X n ) = [E q (X n )] 1/q , q > 0, see (
Φ 3 (X n ) = 1/Φ Mm (X n ). These criteria are positively homogeneous of degree -1, that is, Φ i (γX n ) = (1/γ) Φ i (X n ), i = 1, 2, 3. One may then choose C k in (
To summarize, the proposed algorithm is as follows. 0) Select an initial design X

n , choose some large

K, set k = 1. 1) Construct a random permutation I k of the index set {1, . . . , n}, set X n = X (k) n . For i = 1, . . . , n, do -compute x j = Proj X (x j + z i ), where j denotes the i-th element of I k , z i ∼ N (0, σ 2 I d )
and Proj X is the projection on X (a simple truncation when X is an hypercube) -replace X n by X n = X n \ {x j } ∪ {x j } with probability P acc (k, X n , X n ) given by ( 14).

2) Set

X (k+1) n = X n , k ← k + 1; if k = K, stop, otherwise return to step 1.
The systematic scan of step 1, where j takes successively all values in I k , can be replaced by a random scan where j is sampled from I k with some distribution. It may be uniform over I k , or biased in favour of the x j that influence most the current value of Φ (for instance, considering pairs of closest points for Φ Mm , or points x j such that Φ mM (X n ) = max x∈X xx j for Φ mM ), seemingly without crucial influence on performance. The choice σ = R * n given by (4) gives satisfactory results, letting σ decrease with k may improve performance close to the optimum.

Local optimisation via gradient-type algorithms

Maximin optimal design

Energy minimisation. A rather straightforward approach for the local maximisation of Φ Mm consists in using a differentiable surrogate, such as E q given by (13) for a large q > 0. Indeed, E q can be minimised with a standard nonlinear programming method (e.g., steepest descent or conjugate gradient), without constraints when a suitable reparametrisation adapted to the particular form of X can be used, such as {x i } j = sin(θ i j ), i = 1, . . . , n, j = 1, . . . , d when X = [-1, 1] d , see, e.g., [START_REF] Nurmela | Packing up to 50 equal circles in a square[END_REF]. Generalised gradient. The direct maximisation of Φ Mm is more difficult, since the criterion is non-differentiable and not concave. However, Φ Mm is globally Lipschitz (with constant √ 2) and is thus differentiable almost everywhere; see Cortés andBullo (2005, 2009), who consider the equivalent disk-packing problem in the case d = 2. Considering X n as a d × n matrix, for any pair i = j ∈ {1, . . . , n} 2 the gradient at X n of the function d i j : X n ∈ X n → x i -x j is the d × n matrix ∇ d i j (X n ) with all columns equal to 0, except the i-th and j-th ones, respectively equal to (x i -x j )/ x i -x j and -(x i -x j )/ x i -x j . The generalised gradient of Φ Mm at X n is then the set ∂ Φ Mm (X n ) given by the convex hull of the ∇ d i j (X n ) such that x i -x j = Φ Mm (X n ), and when X is convex one may use a subgradient-type algorithm based on iterations

X (k+1) n = Proj X X (k) n + γ k ∇Φ Mm (X (k) n ) , (15) 
with ∇Φ Mm (X

(k) n ) any element of ∂ Φ Mm (X (k)
n ) and (γ k ) a positive sequence of step-sizes satisfying lim k→∞ γ k = 0 and ∑ k γ k = ∞. An abundant documentation exists on the choice of a suitable sequence (γ k ). The choice γ k = c/k for some c > 0 is typical (c of the same order of magnitude as

Φ Mm (X (1) n ) is reasonable). One may take ∇Φ Mm (X (k) n ) = ∇ d i j (X (k) n ) corresponding to a pair of points (x i , x j ) in X (k)
n at minimal distance. The iteration (15) then leaves all points in X n unchanged but x i and x j , which are respectively updated into Proj X [x i + γ k u i j ] and Proj X [x jγ k u i j ], with u i j = (x i -x j )/ x i -x j having norm 1. One may also individualise the step-sizes and use a different sequence (γ (i) k ) for each x i in X n . Following the idea of [START_REF] Kesten | Accelerated stochastic approximation[END_REF], the decrease of step-sizes can be individualised too, with γ (i)

k i = c/k i for x i ,
where k i is updated into k i + 1 only when two successive directions of move for x i make an angle larger than π/2.

The algorithm converges to a local maximum of Φ Mm , but convergence is non-monotonic and rather slow -very slow if c is too small or too large. The extension to sphere packing in a polytope is straightforward: we maximise Φ SP (X n ) = min{Φ Mm (X n ), 2 min i=1,...,n d(x i , B(X ))}, with B(X ) the border of X (which consists of (d -1)-dimensional hyperplanes), and the generalised gradient of Φ SP can be constructed easily, see Cortés andBullo (2005, 2009). An advantage of sphere packing (which is equivalent to maximin optimal design for suitable X , see Section 2.2), is that the generalised gradient directly accounts for the constraints X n ∈ X n .

Steepest ascent. A naive implementation of the (projected) steepest-ascent method, which consists in determining the direction of fastest increase of Φ Mm at X (k) n , and then maximising Φ Mm in that direction (an unidimensional problem), may not converge to a local maximum, see, e.g., Example 9.1 in [START_REF] Bonnans | Numerical Optimization. Theoretical and Practical Aspects[END_REF]. One may use instead the method of successive approximations, where at iteration k all pairs of points such that x i -x j ≥ Φ Mm (X n )ε k are taken into account for the construction of a generalised gradient, for a decreasing sequence of positive constants ε k , see Sections III-7 and IV-6 of (Dem'yanov and Malozemov, 1974). The method ensures monotonic convergence towards a local maximum of Φ Mm and is easy to implement when X has a simple shape. However, its slow convergence confines its use to problems with small n and d, and the billiard simulations of Section 4.2.1 seem more efficient. 

Minimax optimal design

Similar ideas can be used for the minimisation of Φ mM , which is non-differentiable and non-convex but is globally Lipschitz with constant 1. When X is convex, one may use a subgradient-type algorithm based on

X (k+1) n = X (k) n -γ k ∇Φ mM (X (k) n ) (16) 
(note that no projection on X is required, compare with (15)). One may take ∇Φ mM (X (k)

n ) having all its columns equal to 0 but the i-th one, which is equal to (x i -x * )/ x i -x * , where x i ∈ X n and x * ∈ X are such that x i -x * = Φ mM (X n ). The sequence (γ k ) is as in Section 3.2.1, x i and x * can be obtained by the methods used in Section 2.4 to evaluate Φ mM . As discussed in that section, this confines the use of the algorithm to small dimension d.

When a Voronoï tessellation is used, one may apply a subgradient iteration similar to (16) to each x i individually, considering the furthest point from x i in its own Voronoï cell. This gives

x (k+1) i = x (k) i -γ k,i (x (k) i -x * ,i )/ x (k) i -x * ,i , where x * ,i = arg max x∈C (k) i x -x (k) i and C (k) i
is the Voronoï cell with generator x (k) i , see Cortés andBullo (2005, 2009); see also the kmeans method in Section 4.3.3. A discrete version can also be used, based on a Voronoï tessellation of a discretisation X Q of X .

Specific methods for maximin and minimax optimal design

The objective of this section is to present a few optimisation methods that rely upon the particular form of the design problem. The first one is a simple greedy (one-step-ahead) algorithm, called "coffee-house design" in [START_REF] Müller | Coffee-house designs[END_REF], (Müller, 2007, Chap. 4). See also [START_REF] Kennard | Computer aided design of experiments[END_REF]. We show that it generates designs X n having at least 50% minimax and maximin efficiency.

A greedy algorithm with 50% efficiency

The algorithm is as follows:

0) Select x 1 ∈ X , set X 1 = {x 1 } and k = 1. 1) For k = 1, 2 . . . do find x * = arg max x∈X d(x, X k ), set X k+1 = X k ∪ {x * }.
The point x * can be obtained by a Voronoï tessellation of X (when d is small enough) or a MCMC method, see Section 2.4. Of course, its determination is much facilitated when a finite set X Q is substituted for X . An illustration is presented in Figure 6-left. Besides its simplicity, an important merit of this construction is that it guarantees the following efficiency bounds for X k (efficiencies belong to [0, 1] by definition): see [START_REF] Gonzalez | Clustering to minimize the maximum intercluster distance[END_REF]. The design X n generated by this algorithm can be used to initialise those presented in Sections 4.2.2 and 4.3.3 (which preserve the 50% efficiency bound for the criterion that is optimised).

Φ * mM,k Φ mM (X k ) ≥ 1 2 (k ≥ 1) and Φ Mm (X k ) Φ * Mm,k ≥ 1 2 (k ≥ 2) . (17) Indeed, by construction Φ Mm (X k+1 ) = d(x k+1 , X k ) = Φ mM (X k ) for all k ≥ 1. Therefore, (2) im- plies that Φ * mM,k ≥ (1/2) Φ mM (X k ) and that Φ * Mm,k+1 ≤ 2Φ * mM,k ≤ 2 Φ mM (X k ) = 2 Φ Mm (X k+1 ),

Maximin optimal design

4.2.1. Billiards

For small d, following [START_REF] Lubachevsky | Geometric properties of random disk packings[END_REF] and [START_REF] Lubachevsky | How to simulate billiards and similar systems[END_REF], one can efficiently generate tight (jammed) packings in X by simulating a billiard with n rigid balls B(x i , r) in X , having identical radius r and initial velocities v i , i = 1, . . . , n. In absence of collision, the balls move along straight lines, and the model assumes that all collisions, against boundaries or between balls, are elastic. When a ball encounters a boundary, the velocity component parallel to the boundary is unchanged, but the sign of normal component is reversed. When two balls have a collision, their normal velocity components are unchanged, but the balls exchange their parallel velocity components. If r is fixed, the behaviour is typical of a chaotic system, see, e.g., [START_REF] Sinai | Ergodic properties of certain systems of two-dimensional discs and three-dimensional balls[END_REF]. To ensure that jamming occurs at a finite time, we let r = r(t) = r(0) + st increase with the simulation time t at constant speed s. The normal velocity components of the balls must then be increased by some factor h ≥ 2s after each of their collision, to avoid that they overlap or stick to each other or to a border (this steady increase of velocities can be compensated by a periodic renormalisation of the v i to avoid numerical difficulties). In its simplest form, the billard algorithm advances from collision to collision, the calculation of next collision time being straightforward (as the minimum solution of a set of quadratic equations). Collision times t i then correspond to time steps for the algorithm, with i indicating the iteration number. The implementation is rather straightforward when X is an hypercube, and the extension to general polytopes of R d does not raise any particular difficulty. A more advanced and more efficient version is proposed in [START_REF] Lubachevsky | Geometric properties of random disk packings[END_REF][START_REF] Lubachevsky | How to simulate billiards and similar systems[END_REF]. The choice of r(0) is not critical, one may take r(0) = 0 (there are few collisions when r is small, and therefore r grows quickly during the initial iterations). The initial velocities can be taken i.i.d. with the uniform distribution in [0, 1] d , the initial design X n (0) is arbitrary (one must simply ensure that all initial balls B(x i (0), r(0)) do not overlap and lie in the interior of X ). Large values of s give fast convergence to a local (jamming) solution, but small s favour convergence to a better solution (with large final radius r(∞)). Different stopping rules may be used. For instance, one may stop the algorithm at iteration k such that k > K and max

k-K≤ j≤k-1 max i x i (t j+1 ) -x i (t j ) < ε , (18) 
for some ε > 0 and a large enough window K (K = 10 n, say). The method is quite efficient for generating fairly good designs for small d, also when n is large (several thousands in [START_REF] Lubachevsky | Geometric properties of random disk packings[END_REF][START_REF] Lubachevsky | How to simulate billiards and similar systems[END_REF]), and eventually optimal packings when combined with a multistart procedure.

Computational geometry and exchange algorithm

When d is small (d = 2 or 3, say), design constructions can exploit powerful tools from computational geometry, such as Delaunay triangulation and Voronoï tessellation (see Section 2.4). For instance, [START_REF] Persson | A simple mesh generator in MATLAB[END_REF] present a mesh generator based on Delaunay triangulation, with repulsion forces between mesh points (exercised along the edges of Delaunay simplices) and repulsion forces acting normally to the boundary of X (just as large to prevent the nodes from moving outside X ). The simulation of the corresponding dynamical system typically generates meshes of high quality, with nodes that present the characteristics of a good space-filling design.

The method can be used for sets X or arbitrary shape (not necessarily convex, possibly with holes).

The arguments used in Section 2.2 to prove (3) motivate the following algorithm, of the exchange-type (see [START_REF] Fedorov | Theory of Optimal Experiments[END_REF]).

0) Select an initial design X

(1) n (e.g., generate X

(1) n with the algorithm of Section 4.1), set k = 1. 1) Construct a random permutation I k of the index set {1, . . . , n}, set

X n = X (k) n . For i = 1, . . . , n, do -find a point x * ∈ Arg max x∈X min x ∈X n , = j x -x , with j the i-th element of I k , -replace x j by x * in X n . 2) If Φ Mm (X n ) = Φ Mm (X (k) n ) stop; otherwise set X (k+1) n = X n , k ← k + 1, return to step 1.
When d = 2 or 3, the fastest determination of a x * at step 1 is via Voronoï tessellation, see Section 2.4. The MCMC method presented in the same section permits to use the algorithm for larger d. As usual for such exchange algorithms, convergence to a global optimum is not guaranteed. An illustration is presented in Figure 6-right. The same algorithm can also be used when X is replaced by X Q finite, see [START_REF] Marengo | A new algorithm for optimal, distance-based, experimental design[END_REF]. Instead of replacing each x j at step 1, one may perform the best replacement only among the n considered, which makes the method more similar to Fedorov's exchange algorithm [START_REF] Fedorov | Theory of Optimal Experiments[END_REF]. FIGURE 6. Left: greedy construction of Section 4.1 when X is a square centered at x 1 : the design points are arranged regularly, in the order indicated; the design is clearly sub-optimal for Φ mM and Φ Mm (the circles have radius Φ Mm (X 7 )/2) but it nevertheless satisfies (17). Right: illustration of the algorithm of Section 4.2.2 when X is a square: at iteration k the design point x j (square) is replaced by x * (star), equidistant from the three design points on the circle in dashed line (and maximising d(x, X The criterion Φ Mm is easier to optimise (and to evaluate) than Φ mM . When a maximin-optimal (or almost optimal) design X n is available, one may try to improve its minimax performance (while, on the other hand, suffering a reduction of Φ Mm (X n )) by shrinking X n towards the centre of X . For instance, when X = [0, 1] d , we can consider the shrunk design X n (δ ) = {x 1 (δ ), . . . , x n (δ )}, with x i (δ ) = c + (x i -c)/(1 + δ ) for all i and c = 1/2 being the centre of X , and choose a design X n (δ * ) by minimising φ (δ ) = Φ mM [X n (δ )] with respect to δ ≥ 0. Note that the function δ → φ (δ ) may have local minima. The design X n (δ * ) can be used in particular to initialise the algorithms of Sections 3.2.2 and 4.3.3.

Exchange algorithm for grid-restricted relaxed minimax optimal design

When X is replaced by a finite set X Q = {x (1) , . . . , x (Q) }, a regular grid for instance, for X n = {x 1 , . . . , x n } one may approximate ΦmM (

X n ) = max X ∈X Q d(x, X n ) by Φ p (X n ) = 1 Q Q ∑ k=1 d p (x (k) , X n ) 1/p or Φ p,q (X n ) =   1 Q Q ∑ k=1 n ∑ i=1 x (k) -x i -q -p/q   1/p , with p, q > 0, which satisfy 1 Q 1/p ΦmM (X n ) ≤ Φ p (X n ) ≤ ΦmM (X n ) and 1 n 1/q Q 1/p ΦmM (X n ) ≤ Φ p,q (X n ) ≤ ΦmM (X n )
and therefore lim p→∞ Φ p (X n ) = ΦmM (X n ) and lim p,q→∞ Φ p,q (X n ) = ΦmM (X n ). One may then apply an exchange algorithm, similar to that in Section 4.2.2, to the minimisation of Φ p (•) or Φ p,q (•), see [START_REF] Royle | An algorithm for the construction of spatial coverage designs with implementation in SPLUS[END_REF].

kmeans and centroids

Let T n = {C i , i = 1, . . . , n} form a tessellation of X and let X n be an arbitrary set of n points in

X . The functional (T n , X n ) → E 2 (T n , X n ) = ∑ n i=1 C i x -x i 2 
dx is minimised when the C i are the Voronoï regions defined by the generators x i , and simultaneously the x i are the centroids of the corresponding C i , that is, x i = ( C i x dx)/vol(C i ), the condition being necessary but not sufficient, see [START_REF] Flury | Estimation of principal points[END_REF]; [START_REF] Du | Centroidal Voronoi tessellations: applications and algorithms[END_REF]. These centroids, called principal points in [START_REF] Flury | Estimation of principal points[END_REF], form a design X n that should thus perform reasonably in terms of space-filling, see [START_REF] Lekivetz | Fast flexible space-filling designs for nonrectangular regions. Quality and Reliability Soumis[END_REF] for another type of clustering-based design that uses Ward's minimum-variance criterion [START_REF] Jr | Hierarchical grouping to optimize an objective function[END_REF] for a discretised version of X . The randomised kmeans method presented below does not require the explicit construction of a Voronoï tessellation, see [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF]. 0) Select X

(1) n , set k = 1 and n i = 1 for all i = 1, . . . , n. 1) Select x at random (uniformly) in X .

Soumis au Journal de la Société Française de Statistique File: LP_jsfds-2016-REV1.tex, compiled with jsfds, version : 2009/12/09 date: January 19, 2017 theory), see Pronzato et al. (2016a). For any weights w, denote ε = ε(w) = max i=1,...,m z ic(w) 2φ (w). Following an approach similar to [START_REF] Harman | Improvements on removing non-optimal support points in D-optimum design algorithms[END_REF], we can show that c(w) -c * ≤ ε/2 and that any z i such that z i -c(w) 2 < φ (w) + εε(2φ (w) + ε) necessarily lie in the interior of B * , and therefore do not need to be considered further. A natural choice for filtering the z i before using the QP solver is w i = 1/m for all i, but the initial w of [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF], defined by w i 1 = w i 2 = 1/2 and w i = 0 for all i = i 1 , i 2 , with i 1 = arg max i=1,...,m z iz 1 and i 2 = arg max i=1,...,m z iz i 1 , is generally more efficient. Also, choosing c 0 out of the convex hull of the z i generally yields a faster solution (one may take for instance c 0 = 2z i a -z i b with i a = arg max i=1,...,m {z i } 1 and i b = arg min i=1,...,m {z i } 1 ).

Although there is no guaranteed convergence to a minimax-optimal design, for small enough d this centroid method, possibly combined with a multistart procedure, is rather efficient for generating designs with good minimax performance at reasonable computational cost.

Bayesian optimal design and Karhunen-Loève decomposition of a random-field model

The construction presented here is based on the developments in (Gauthier andPronzato, 2014, 2016), following the original ideas of [START_REF] Fedorov | Design of spatial experiments: model fitting and prediction[END_REF], and is motivated by the connection between minimax-optimal design and minimisation of the maximum kriging variance, see Section 2.5.2. As in Section 2.1, we consider a kernel K defining a RKHS H , and suppose that f corresponds to the realisation of a centred random field Z x with covariance E{Z x Z x } = K(x, x ). We suppose that K is continuous on X × X . Let µ denote a measure on X , typically a measure of interest for the definition of an Integrated Mean Squared Error X ρ 2 n (x)dµ(x) on X . The computations are facilitated when µ is supported on a discretised version X Q of X , see [START_REF] Gauthier | Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models[END_REF]; in particular µ may be uniform on X Q . Consider the linear operator T µ on L 2 (X , µ) defined by T µ [ f ](x) = X f (y)K(x, y)dµ(y), f ∈ L 2 (X , µ), x ∈ X , and respectively denote by λ j and ϕ j the eigenvalues and eigenfunctions of its Mercer decomposition. We assume that the λ j are ordered by decreasing values and that the ϕ j are orthonormal in L 2 (X , µ). The Karhunen-Loève decomposition of Z x corresponds to ∑ k:λ k >0 λ k ζ k ϕ k (x), where the random variables ζ k are orthogonal, centred, with variance 1. A truncation to the m largest λ j yields a linear regression model, Z x = ∑ m j=1 β j ϕ j (x) + ε(x) = φ (x)β + ε(x), with correlated errors ε satisfying E{ε(x)} = 0, E{ε(x)ε(x )} = K(x, x ) -∑ m j=1 λ j ϕ j (x)ϕ j (x ), and parameters β j having a prior distribution with zero mean and covariance Λ m = diag{λ 1 , . . . , λ m }. To facilitate the construction of optimal designs, we shall neglect the effect of correlations, and consider an approximate model Z x = ∑ m j=1 β j ϕ j (x) + ε (x), where now E{ε (x)ε (x )} = 0 for x = x . An heteroscedastic model with E{ε 2 (x)} = K(x, x) -∑ m j=1 λ j ϕ 2 j (x) is used in [START_REF] Gauthier | Convex relaxation for IMSE optimal design in random field models[END_REF]), but we consider here a model with constant variance E{ε 2 (x)} = σ 2 for all x (for instance σ 2 = [1/µ(X )] X [K(x, x) -∑ m j=1 λ j ϕ 2 j (x)] dµ(x)). We can then easily compute an optimal design for this approximate model. Indeed, the regularised LS estimator β that minimises σ -2 (z n -P m β ) I n (z n -P m β ) + β Λ -1 m β , with {P m } i j = ϕ j (x i ), has covariance C m = (M n + Λ -1 m ) -1 , where M n = (1/σ 2 ) ∑ n i=1 φ (x i )φ (x i ), and an IMSE-optimal design minimises X φ (x)C m φ (x) dµ(x) = trace[(M n +Λ -1 m ) -1 ]. One may then use all the machinery of approximate design theory, i.e., consider information matrices M(ξ ) = (1/σ 2 ) X φ (x)φ (x) dξ (x) defined for probability measures ξ on X (called design measures), and determine an opti- mal design measure that minimises the (convex) Bayesian A-optimality criterion ξ → Φ(ξ ) = trace[(M(ξ ) + Λ -1 m /n) -1 ], see [START_REF] Pilz | Bayesian Estimation and Experimental Design in Linear Regression Models[END_REF][START_REF] Fedorov | Design of spatial experiments: model fitting and prediction[END_REF], [START_REF] Spöck | Spatial sampling design and covariance-robust minimax prediction based on convex design ideas[END_REF], [START_REF] Gauthier | Convex relaxation for IMSE optimal design in random field models[END_REF]. Similarly, a Bayesian D-optimal design measure ξ * maximises the concave function ξ → det(M(ξ ) + Λ -1 m /n), an optimisation problem for which many algorithms are available, see, e.g., (Pronzato and Pázman, 2013, Chap. 9). Concavity implies that the directional derivative at ξ * in the direction of any other probability measure ν on X is non-positive, from which we obtain

max x∈X φ (x)(M(ξ * ) + Λ -1 m /n) -1 φ (x) ≤ σ 2 m -trace[Λ -1 m (nM(ξ * ) + Λ -1 m ) -1 ] ,
which sets an upper bound on the maximum mean-squared prediction error for the optimal design ξ * . Numerical experiments show that optimal design measures with m ≈ n often concentrate their mass around n ≈ n points, and that the designs X n corresponding to those n support points are well spread over X , with good minimax performance when K(x, x ) = C( xx ) with C(t) decreasing fast enough with t. Further investigations are required to quantify this performance more precisely. The procedure described in [START_REF] Gauthier | Convex relaxation for IMSE optimal design in random field models[END_REF]) can be used to construct a design of given size n.

Conclusions and perspectives

We have listed a few properties of minimax and maximin optimal designs, including connections with other space-filling approaches, and indicated several methods which, in principle, can be used for the construction of optimal designs. The high complexity of the optimisation problems involved means that, in general, one should be satisfied with a suboptimal design, or even with a design that simply performs "not too badly" in terms of Φ Mm or Φ mM . In this respect, simulated annealing (Section 3.1) or the specific methods of Section 4.2 perform reasonably well. However, the dimension of the optimisation problem is n × d, which may quickly become prohibitive. A reasonable solution can usually be reached when n is large with d small, but the case when d is large (say, d ≈ 10) is much more problematic, especially for minimax-optimal design. Indeed, methods based on computational geometry are then inefficient, and kmeans and centroids suppose a discretisation of X which may provide inaccurate results for large d. Combining the MCMC method proposed in Section 2.4 for the evaluation of Φ mM with an optimisation algorithm is a challenging and motivating issue. Finally, as explained in Section 2.3, minimax and maximin optimal designs are not adapted to problems with very large d, and a few suggestions have been made in the same section on possible extensions and topics for further investigation.
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  FIGURE 2. Equivalence between maximin-optimal design and sphere packing when X is the square [0, 1] 2 , with n = 7 (left, the same design is presented in Figure1-left) and n = 10 (right); (4) gives R * 7 0.21324 and R * 10 0.17841; n * = 4 for d = 2 and (8) gives R * 7 0.74364 and R * 10 0.55479.
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 5 FIGURE 5. Boxplot of log(computing times) (in seconds) for the evaluation of Φ mM (X n ) with Delaunay triangulation (De), Voronoi tessellation (Vo) and a MCMC algorithm (MCMC). 100 repetitions with X n a random Latin-hypercube design in [0, 1] d , n = 50 and d = 2, 3, 4, 5; the median, 25% and 75% percentiles are indicated, together with most extreme values.

  Soumis au Journal de la Société Française de Statistique File: LP_jsfds-2016-REV1.tex, compiled with jsfds, version : 2009/12/09 date: January 19, 2017

  j }), x ∈ X ).Soumis auJournal de la Société Française de Statistique File: LP_jsfds-2016-REV1.tex, compiled with jsfds, version : 2009/12/09 date: January 19, 2017 4.3. Minimax optimal design 4.3.1. Initialisation by shrinkage of a maximin-optimal design

  d/2 ) , For n > n * (and therefore (nV d ) 1/d > 2), we get

	we have the trivial bound Φ * Mm,n ≤ R	* n =	√ d (consider X * Mm,2 formed by two opposite vertices of
	X ).		
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Pronzato

2) Find i * = arg min i=1,...,n x i -x , x i ∈ X (k) n ; substitute (n i * x i * + x)/(n i * + 1) for x i in X (k) n , n i * ← n i * + 1.

3) If some convergence criterion is met, such as (18) for some ε > 0 and K > 1, then stop; otherwise k ← k + 1, and return to step 1. A more popular version is Lloyd's method (1982), which corresponds to fixed-point iterations for the mapping T (•) defined by

where the C i (X n ) form a Voronoï tessellation of X with the x i in X n as generators.

The C i (X (k) n ) can be computed exactly when d is small enough, see Section 2.4. Constructing Voronoï tessellations for a discretised version X Q of X can be considered too, and the corresponding kmeans algorithm is available in standard statistical toolboxes. Note that it converges to what [START_REF] Flury | Estimation of principal points[END_REF] calls self-consistent points, but not necessarily to a design X n (and a Voronoï tessellation T n ) minimising E 2 . Since minimax-optimal design is related to the construction of a centroidal tessellation for the energy functional E q (T n , X n ) = ∑ n i=1 C i xx i q dx when q → ∞, we propose the following modified version of Lloyd's algorithm; see also Cortés andBullo (2005, 2009, Sect. 5.3). 0) Select X

(1)

decreases monotonically along iterations, so that one can use the stopping rule Φ mM (X

1 at step 3. When the Voronoï tessellation is computed for a finite set X Q , the B(c i , r i ) of step 2 are the smallest balls containing a finite set of points. This is also the case when X is a polytope of R d , since the B(c i , r i ) should simply contain the vertices of the polytopic cells C i . The determination of the smallest ball containing a given set of points of R d is a classical optimisation problem (its centre is called the Chebyshev centre of the set), for which many algorithms have been proposed in the literature, see, e.g., [START_REF] Botkin | An algorithm for finding the Chebyshev center of a convex polyhedron[END_REF], [START_REF] Xu | Solution methodologies for the smallest enclosing circle problem[END_REF], [START_REF] Yildirim | Two algorithms for the minimum enclosing ball problem[END_REF]. In fact, exploiting the equivalence with a convex Quadratic-Programming (QP) problem in R d+1 , any standard QP solver gives the solution (exactly in finite time for some solvers). Indeed, denote by z i ∈ R d the m points considered, the smallest enclosing ball

, and the minimisation of f (c) is equivalent to the minimisation of cc 0 2 + t, subject to the m linear constraints z i -c 0 2 -2(z i -c 0 ) (c -c 0 )} ≤ t, i = 1, . . . , m, with respect to (c,t) ∈ R d+1 (when the QP solver requires a strictly convex problem, one may add a small regularisation term, quadratic in t, to the objective function, 10 -12 t 2 say).

When m is large, it is convenient to remove the z i that will lie for sure in the interior of B * . From Lagrangian theory, the dual of the smallest-ball problem is the following: maximise φ (w) = ∑ m i=1 w i z i -c(w) 2 , where c(w) = ∑ m i=1 z i and w = (w 1 , . . . , w m ) with w i > 0 and ∑ m i=1 w i = 1. This dual problem presents some ressemblance with an experimental design problem (approximate