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Abstract

In this paper, we study a class of stochastic time-inconsistent linear-quadratic

(LQ) control problems with control input constraints. These problems are investi-

gated within the more general framework associated with random coefficients. This

paper aims to further develop a new methodology, which fundamentally differs from

those in the standard control (without constraints) theory in the literature, to cope

with the mathematical difficulties raised due to the presence of input constraints.

We first prove that the existence of an equilibrium solution is equivalent to the ex-

istence of a solution to some forward-backward stochastic differential equations with

constraints. Under convex cone constraint, an explicit solution to equilibrium for

mean-variance portfolio selection can be obtained and proved to be unique. Finally,

some examples are discussed to shed light on the comparison between our established

results and standard control theory.
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1 Introduction

In dynamic decision making, the presence of time inconsistency is often identified in so-

cioeconomic systems and accordingly, its study has important values in various fields, such

as engineering, management science, finance and economics (for example, see Kydland and

Prescott [16]). More recently, considerable research attention has been paid in studying

this family of stochastic time-inconsistent control problems as well as their financial ap-

plications. The study on time-inconsistency by economists can be traced back to Strotz

[20] in the 1950s, who initiated the formulation of time-inconsistent decision making as a

game between incarnations of the decision maker himself. For the sake of motivation and

to make our discussion concrete, let us briefly lay out a simple but illustrating example of

time inconsistency in dynamic setting.

Example 1.1 Let λ > 0 be a constant. Then we consider the following dynamic mean-

variance portfolio problem

(1.1)



































min
u

J(u) := Var(XT )− 2λE[XT ],

s.t. dXs = θ′usds+ u′sdWs, s ∈ [0, T ],

X0 = x0,

where X· ∈ R, u· ∈ R2, θ = (1, 1)′ andW· is a two-dimensional standard Weiner process. Its

dynamic counterpart yields the following optimization problem over [t, T ], for any t ∈ [0, T ],

(1.2)



































min
u

Jt(u) := Vart(XT )− 2λEt[XT ],

s.t. dXs = θ′usds+ u′sdWs, s ∈ [t, T ],

Xt = xt,

where Et [·] = E [·|Ft] is the conditional expectation and Vart(·) is the conditional variance

under Et [·].

An admissible control u∗,0,x0

· is optimal for the problem (1.1) if J(u∗,0,x0

· ) = min
u
J(u).

Also, we define the optimal control u∗,t,xt
· for the problem (1.2) similarly. We say the

problem (1.2) is time-consistent if, for any t ∈ [0, T ], it holds that

(1.3) u∗,t,X
∗,0,x0
t

s = u∗,0,x0

s for t ≤ s ≤ T.
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However, applying results obtained in [10, 12, 17, 18], we have an optimal control u∗,0,x0

s =

(x0 −X∗,0,x0

s + λe2T )θ, 0 ≤ s ≤ T for Problem (1.1), where

X∗,0,x0

s = x0 + 2

∫ s

0

(x0 −X∗,0,x0

v + λe2T )dv +

∫ s

0

(x0 −X∗,0,x0

v + λe2T )θ′dWs.

Again, as before we should have an optimal control on [t, T ], u
∗,t,X

∗,0,x0
t

s = (X∗,0,x0

t −

X
∗,t,X

∗,0,x0
t

s + λe2(T−t))θ, t ≤ s ≤ T for Problem (1.2), where

X
∗,t,X

∗,0,x0
t

s = X
∗,0,x0

t + 2

∫ s

t

(X∗,0,x0

t −X∗,t,X
∗,0,x0
t

v + λe2(T−t))dv

+

∫ s

t

(X∗,0,x0

t −X∗,t,X
∗,0,x0
t

v + λe2(T−t))θ′dWv.

It is obvious that u
∗,t,X

∗,0,x0
t

s 6= u∗,0,x0

s for t ≤ s ≤ T . The dynamic optimization problem

(1.2) is called time-inconsistent since (1.3) fails to hold. Therefore, time inconsistency

reflects that an optimal strategy at present may no longer be optimal in the future. �

In response, Strotz suggested two possible fundamental schemes to circumvent time

inconsistency: (i) “He may try to precommit his future activities either irrevocably or by

contriving a penalty for his future self if he should misbehave”, which is named the strategy

of pre-commitment; and (ii) “He may resign himself to the fact of intertemporal conflict and

decide that his ‘optimal’ plan at any date is a will-o’-the-wisp which cannot be attained,

and learn to select the present action which will be best in the light of future disobedience”,

which is termed the strategy of consistent planning. The strategy of consistent planning

is also called the time-consistent policy in the literature. For a dynamic mean-variance

model, Basak and Chabakauri [1] reformulated it as an intrapersonal game model where

the investor optimally elicits the policy at any time t, on the premise that he has already

decided time-consistent (equilibrium) policies applied in the future.

The game formulation is tractable to capture time inconsistency when the underlying

time setting is (finite or countable) discrete. Nevertheless, when the time setting is con-

tinuous, the formulation should be generalized or modified in different ways. Additionally,

some tailor-made arguments, to be shown later, should also be introduced to handle the

continuous-time setting. We remark that it is still unclear which is the best one among dif-

ferent definitions of a solution to time-inconsistent decision problem. Mathematically, both

the existence and the uniqueness of a solution make a definition more acceptable. Although

it is common that a game problem admits multiple solutions, the time-inconsistent decision

problem is a decision problem for single player, and hence, an identical value process for
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all solutions is considered to be more reasonable even if the control may allow multiple

solutions. Instead of seeking an “optimal control”, some kind of equilibrium controls are

worthy to be developed in both theoretical methodology and numerical computation algo-

rithm. This is mainly motivated by practical applications in statistical economics and has

recently attracted considerable interest and attempts.

Yong [21] and Ekeland and Pirvu [8] established the existence of equilibrium solutions,

with their own definitions for equilibrium solutions, for the time inconsistency caused by

hyperbolic discounting. Grenadier and Wang [9] also studied the hyperbolic discounting

problem in an optimal stopping model. In a Markovian system, Björk and Murgoci [4]

proposed a definition of a general stochastic control problem with time-inconsistent terms,

and presented some sufficient condition for a control to be a solution by a system of partial

differential equations. They constructed some solutions for some examples including an

LQ one, but it looks very hard to find not-too-harsh condition on parameters to ensure the

existence of a solution. Björk, Murgoci and Zhou [5] also derived an equilibrium for a mean-

variance portfolio selection with state-dependent risk aversion. Basak and Chabakauri

[1] studied an equilibrium strategy for a mean-variance portfolio selection problem with

constant risk aversion and got more details on the constructed solution. Hu, Jin and Zhou

in [10] generalized the discrete-time game formulation for an LQ control problem with

time-inconsistent terms in a non-Markovian system, which is slightly different from the one

in Björk and Murgoci [4], and constructed an equilibrium strategy for quite general LQ

control problem, including a non-Markovian system, and then in [11], they proved that the

constructed equilibrium strategy is unique. Bensoussan, Frehse and Yam [2] introduced a

class of time-inconsistent game problems of mean-field type and provided their equilibrium

solutions; Karnam, Ma and Zhang [13] introduced the idea of “dynamic utility” under

which the original time-inconsistent problem (under the fixed utility) is transferred to

time-consistent one. In addition, Cui, Li, Wang and Zhu [6] showed that the multi-period

mean-variance problem does not satisfy time consistency in efficiency and developed a

revised mean-variance strategy. By relaxing the self-financing restriction to allow the

withdrawal of money from the market, the revised mean-variance strategy dominates the

original dynamic mean-variance strategy in the mean-variance space. Furthermore, Cui,

Li, Li and Shi [7] further investigated the time-consistent strategy for a behavioral risk

aversion model by solving a nested mean-variance game formulation.

Recently, Bensoussan, Wong, Yam and Yung [3] studied the time-consistent strategies

in the mean-variance portfolio selection with short-selling prohibition in both discrete-
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time and continuous-time settings and showed that the discrete-time equilibrium controls

converge to that in the continuous-time setting. In their work, the cost functional just

includes the terminal mean and variance terms without the running cost part. In this

paper, we further consider a class of time-inconsistent stochastic LQ control problems

under control constraint involving the integral part in the cost functional. Also, we in-

vestigate these problems within the framework of random coefficients. Hu, Jin and Zhou

[10, 11] introduced the new methodology which distinguishes significantly from those in

classic control (without constraints) theory in the literature, to tackle time-inconsistent

stochastic LQ control problem without constraints. Our work aims to further develop the

new methodology proposed in [10] to cope with the mathematical difficulties rooted in

the presence of control constraints. We first prove that the existence of an equilibrium

solution is equivalent to the existence of a solution to some forward-backward stochastic

differential equations (FBSDE) with constraints. Then we present an explicit solution to

equilibrium for mean-variance portfolio selection under convex cone constraint and show

that the constructed solution is unique. Finally, we illustrate the established results using

examples. In particular, we compare our results with that in Bensoussan, Wong, Yam and

Yung [3] for the deterministic coefficients. Our current work is one further step toward

understanding the role of input constraint in time-inconsistency decision making, and we

expect to see more research progress along this direction.

The rest of this paper is organized as follows. In Section 2, we give the formulation of

the LQ control problem without time consistency under constraint. Then we give an equiv-

alent characterization of a solution by a system of forward-backward stochastic differential

equations in Section 3. Finally in Section 4, we give an explicit solution to equilibrium

for mean-variance portfolio selection under convex cone constraint and show that the thus

constructed solution is unique.

2 Problem Formulation

Let (Wt)0≤t≤T = (W 1
t , · · · ,W

d
t )0≤t≤T be a d-dimensional Brownian motion on a probability

space (Ω,F ,P). Denote by (Ft) the augmented filtration generated by (Wt).
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We will use the following notation. Let p ≥ 1.

Sl: the set of symmetric l × l real matrices.

L
p
G(Ω; R

l): the set of random variables ξ : (Ω,G) → (Rl,B(Rl)) with E [|ξ|p] < +∞.

L∞
G (Ω; Rl): the set of essentially bounded random variables ξ : (Ω,G) → (Rl,B(Rl)).

L
p
G(t, T ; R

l): the set of {Gs}s∈[t,T ]-adapted processes f = {fs : t ≤ s ≤ T} with

E

[

∫ T

t
|fs|

p ds
]

<∞.

L∞
G (t, T ; Rl): the set of essentially bounded {Gs}s∈[t,T ]-adapted processes.

L
p
G(Ω; C(t, T ; R

l)): the set of continuous {Gs}s∈[t,T ]-adapted processes

f = {fs : t ≤ s ≤ T} with E
[

sups∈[t,T ] |fs|
p
]

<∞.

We will often use vectors and matrices in this paper, where all vectors are column

vectors. For a matrix M , define M ′ as transpose and |M | =
√

∑

i,jm
2
ij as Frobenius norm

of a matrix M , respectively.

Now we introduce the model under consideration in this paper.

Let T > 0 be given and fixed. The controlled system is governed by the following

stochastic differential equation (SDE) on [0, T ]:

(2.1) dXs = [AsXs +B′
sus + bs]ds+

d
∑

j=1

[Cj
sXs +Dj

sus + σj
s]dW

j
s , X0 = x0,

where A is a bounded deterministic function on [0, T ] with values in Rn×n, B,Cj, Dj

are all essentially bounded adapted processes on [0, T ] with values in Rl×n, Rn×n, Rn×l,

respectively, and b and σj are stochastic processes in L∞
F (0, T ;Rn). LetK be a given convex

set in Rl. The process u ∈
⋃

p>2

L
p
F(0, T ; K) is the control, and X ∈ L

p
F(Ω; C(0, T ; R

n)) is

the corresponding state process with initial value x0 ∈ Rn and with u ∈ L
p
F(0, T ; K).

When time evolves to t ∈ [0, T ], we need to consider the controlled system starting

from t and state xt ∈ L
p
Ft
(Ω; Rn):

(2.2) dXs = [AsXs +B′
sus + bs]ds+

d
∑

j=1

[Cj
sXs +Dj

sus + σj
s]dW

j
s , Xt = xt.

For any control u ∈ L
p
F(t, T ;K), there exists a unique solutionX t,xt,u ∈ L

p
F(Ω; C(t, T ;R

n)).
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At time t with the system state Xt = xt, our aim is to minimize

J(t, xt; u)
△
=

1

2
Et

∫ T

t

[〈QsXs, Xs〉+ 〈Rsus, us〉] ds+
1

2
Et[〈GXT , XT 〉]

−
1

2
〈hEt [XT ] ,Et [XT ]〉 − 〈µ1xt + µ2,Et [XT ]〉(2.3)

over u ∈ L
p
F (t, T ; K), where X = X t,xt,u, and Et [·] = E [·|Ft]. In the above Q and R are

both positive semi-definite and essentially bounded adapted processes on [0, T ] with values

in Sn and Sl respectively, G, h, µ1, µ2 are constants in Sn, Sn, Rn×n, Rn respectively, and

moreover G is positive semi-definite.

We define an equilibrium (control) in the following manner. Given a control u∗, for any

t ∈ [0, T ), ε > 0 and v ∈
⋃

p>2

L
p
F(t, T ; K), define

(2.4) ut,ε,vs = u∗s + (vs − u∗s)1s∈[t,t+ε), s ∈ [t, T ].

Definition 2.1 Let u∗ ∈
⋃

p>2

L
p
F(0, T ; K) be a given control and X∗ be the state process

corresponding to u∗. The control u∗ is called an equilibrium if

lim inf
ε↓0

J(t, X∗
t ; u

t,ε,v)− J(t, X∗
t ; u

∗)

ε
≥ 0,

where ut,ε,v is defined by (2.4), for any t ∈ [0, T ) and v ∈
⋃

p>2

L
p
F (t, T ; K).

Remark 2.2 There is some difference between our definition and that of [10], because

there is a control constraint K in our situation. Note that the convexity of K is not

needed in our definition.

3 Necessary and Sufficient Condition of Equilibrium

Controls

In this section, we present a general necessary and sufficient condition for equilibria. This

condition is made possible by a stochastic Lebesgue differentiation theorem involving con-

ditional expectation.

To proceed, we start with some relevant known result from [10]. Let u∗ be a fixed

control and X∗ be the corresponding state process. For any t ∈ [0, T ), define in the time

interval [t, T ] the processes (p(·; t), (kj(·; t))j=1,··· ,d) ∈ L2
F(t, T ;R

n)× (L2
F(t, T ;R

n))d as the
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unique solution to

(3.1)











































dp(s; t) = −

[

A′
sp(s; t) +

d
∑

j=1

(Cj
s)

′kj(s; t) +QsX
∗
s

]

ds

+
d
∑

j=1

kj(s; t)dW j
s , s ∈ [t, T ],

p(T ; t) = GX∗
T − hEt [X

∗
T ]− µ1X

∗
t − µ2.

Notice that if u∗ ∈ L
p
F (0, T ; K), then p(·; t) ∈ L

p
F(t, T ;R

n) in fact.

Furthermore, define (P (·; t), (Kj(·; t))j=1,··· ,d) ∈ L∞
F (t, T ; Sn) × (L2

F (t, T ; S
n))d as the

unique solution to

(3.2)



























































dP (s; t) = −

{

A′
sP (s; t) + P (s; t)As

+
d
∑

j=1

[(Cj
s)

′P (s; t)Cj
s + (Cj

s )
′Kj(s; t) +Kj(s; t)Cj

s ] +Qs

}

ds

+

d
∑

j=1

Kj(s; t)dW j
s , s ∈ [t, T ],

P (T ; t) = G.

Notice that neither the terminal condition nor the coefficients of this equation depend

on t; so it can be taken as a BSDE on the entire time interval [0, T ]. Denote its solution as

(P (s), K(s)), s ∈ [0, T ]. It then follows from the uniqueness of the solution to BSDE that

(P (s; t), K(s; t)) = (P (s), K(s)) at s ∈ [t, T ] for any t ∈ [0, T ].

The following estimate under local spike variation is reproduced from [10, Proposition

3.1].

Proposition 3.1 For any t ∈ [0, T ), ε > 0 and v ∈
⋃

p>2

L
p
F(0, T ; K), define ut,ε,v by (2.4).

Then

(3.3)

J(t, X∗
t ; u

t,ε,v)−J(t, X∗
t ; u

∗) = Et

∫ t+ε

t

(

〈Λ(s; t), vs−u
∗
s〉+

1

2
〈H(s)(vs−u

∗
s), vs−u

∗
s〉

)

ds+o(ε),

where Λ(s; t)
△
= Bsp(s; t) +

∑d
j=1(D

j
s)

′kj(s; t) +Rsu
∗
s and H(s)

△
= Rs +

∑d
j=1(D

j
s)

′P (s)Dj
s.

In view of Proposition 3.1 and the fact that H(s) � 0, it is straightforward to get the

following sufficient condition of an equilibrium.
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Corollary 3.2 A control u∗ ∈ L
p
F(0, T ;K) is an equilibrium if

(3.4) lim inf
ε↓0

1

ε

∫ t+ε

t

Et [〈Λ(s; t), vs − u∗s〉] ds ≥ 0, a.s., ∀t ∈ [0, T ).

The necessary condition is somewhat different.

Proposition 3.3 If a control u∗ ∈ L
p
F(0, T ;K) is an equilibrium, then for θ ∈ (0, 1],

(3.5) lim inf
ε↓0

1

ε
Et

∫ t+ε

t

(

〈Λ(s; t), vs − u∗s〉+
θ

2
〈H(s)(vs − u∗s), (vs − u∗s)〉

)

ds ≥ 0.

Proof: We set, for v ∈
⋃

p>2

L
p
F(0, T ; K) and θ ∈ (0, 1],

v̄s = u∗s + θ(vs − u∗s) ∈ L
p
F(t, T ;K).

Then

(3.6)
J(t, X∗

t ; u
t,ε,v̄)− J(t, X∗

t ; u
∗)

= Et

∫ t+ε

t

(

θ〈Λ(s; t), vs − u∗s〉+
θ2

2
〈H(s)(vs − u∗s), (vs − u∗s)〉

)

ds+ o(ε).

Hence,

lim inf
ε↓0

1

ε
Et

∫ t+ε

t

(

〈Λ(s; t), vs − u∗s〉+
θ

2
〈H(s)(vs − u∗s), (vs − u∗s)〉

)

ds ≥ 0.

Q.E.D.

The next result provides a key property for the solution to BSDE (3.1), and represents

the process Λ(s; t) in a special form.

Proposition 3.4 For any given pair of state and control processes (X∗, u∗), the solution

to BSDE (3.1) satisfies k(s; t1) = k(s; t2) for a.e. s ≥ max (t1, t2). Moreover, there exist

λ1 ∈ L
p
F (0, T ;R

l), λ2 ∈ L∞
F (0, T ;Rl×n) and ξ ∈ Lp(Ω;C(0, T ;Rn)), such that Λ(s; t) has

the representation

Λ(s; t) = λ1(s) + λ2(s)ξt.

Proof: Define the function ψ(·) as the unique continuous solution to the following matrix-

valued ordinary differential equation (ODE)

dψ(t) = ψ(t)A(t)′dt, ψ(T ) = In,

where In denotes the n×n identity matrix. It is clear that ψ(·) is invertible, and both ψ(·)

and ψ(·)−1 are bounded.
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Let p̂(s; t) = ψ(s)p(s; t) + hEt [X
∗
T ] + µ1X

∗
t + µ2 and k̂j(s; t) = ψ(s)kj(s; t) for j =

1, · · · , d. Then by Itô’s formula, on the time interval [t, T ], (p̂(·; t), k̂(·; t)) satisfies

(3.7)























dp̂(s; t) = −

[

d
∑

j=1

ψ(s)(Cj
s )

′ψ(s)−1k̂j(s; t) + ψ(s)QsX
∗
s

]

ds+
d
∑

j=1

k̂j(s; t)dW j
s ,

p̂(T ; t) = GX∗
T .

It is clear that neither the terminal condition nor the coefficients of this equation depend

on t; so it can be taken as a BSDE on the entire time interval [0, T ]. We denote its

solution as (p̂(s), k̂(s)), s ∈ [0, T ]. It follows from the uniqueness of the solution to BSDE

that (p̂(s; t), k̂(s; t)) = (p̂(s), k̂(s)) at s ∈ [t, T ] for any t ∈ [0, T ]. As a result, k(s; t) =

ψ(s)−1k̂(s) := k(s), proving the first claim of the proposition.

Next, from the definition of p̂(s; t),

p(s; t) = ψ(s)−1p̂(s)− ψ(s)−1(hEt [X
∗
T ] + µ1X

∗
t + µ2) = p(s) + ψ(s)−1ξt,

where ξt := −hEt [X
∗
T ]−µ1X

∗
t −µ2 defines the process ξ ∈ L

p
F (Ω;C(0, T ;R

n)) and p(s) :=

ψ(s)−1p̂(s) defines the process p ∈ L
p
F (Ω;C(0, T ;R

n)). Hence,

Λ(s; t) = Bsp(s; t) +
d
∑

j=1

(Dj
s)

′kj(s; t) +Rsu
∗
s

= Bsp(s) +
d
∑

j=1

(Dj
s)

′kj(s) +Rsu
∗
s +Bsψ(s)

−1ξt

= λ1(s) + λ2(s)ξt,

where λ1(s) := Bsp(s) +
∑d

j=1(D
j
s)

′kj(s) +Rsu
∗
s and λ2(s) := Bsψ(s)

−1. Q.E.D.

We now set out to derive our general necessary and sufficient condition for equilibrium

controls. Although (3.4) and (3.5) already provide characterizing conditions, they are

nevertheless not very useful because they involve a limit. It is tempting to expect that the

limit therein is Λ(t; t), in the spirit of the Lebesgue differentiation theorem. However, one

needs to be very careful, since in both (3.4) and (3.5), the conditional expectation with

respect to Ft is involved. The following lemma generalizes Lemma 3.4 in [11] from q = 2

to any q > 1, and we provide a complete proof here for the sake of self-containedness.

Lemma 3.5 Let Y ∈ L
q
F(0, T ;R), q > 1 be a given process. If lim inf

ε↓0

1

ε

∫ t+ε

t

Et [Ys] ds ≥

0, a.e. t ∈ [0, T ), a.s., then Yt ≥ 0, a.e. t ∈ [0, T ), a.s..
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Proof: Since Lq∗

FT
(Ω;R+) (q∗ is the conjugate of q) is a separable space, it follows from

the (deterministic) Lebesgue differentiation theorem that there is a countable dense subset

D ⊂ L
q∗

FT
(Ω;R+) ∩ L

∞
FT

(Ω;R+), such that for almost all t, we have

(3.8) lim
ε↓0

1

ε

∫ t+ε

t

E [Ysη] ds = E [Ytη] , ∀η ∈ D,

and lim
ε↓0

1

ε

∫ t+ε

t

E [Y q
s ] ds = E [Y q

t ] .

For any η ∈ D, define ηs = Es[η]. Then E [Ysη] = E [Ysηs]. We have the following

estimates:

∣

∣

∣

∣

lim
ε↓0

1

ε

∫ t+ε

t

E [Ys(ηs − ηt)] ds

∣

∣

∣

∣

≤ lim
ε↓0

1

ε

(
∫ t+ε

t

E [Y q
s ] ds

)

1

q
(
∫ t+ε

t

E
[

(ηs − ηt)
q∗
]

ds

)

1

q∗

= lim
ε↓0

(

1

ε

∫ t+ε

t

E [Y q
s ] ds

)

1

q
(

1

ε

∫ t+ε

t

E
[

(ηs − ηt)
q∗
]

ds

)

1

q∗

≤ lim
ε↓0

(

1

ε

∫ t+ε

t

E [Y q
s ] ds

)

1

q

(

sup
s∈[t,t+ε]

E
[

(ηs − ηt)
q∗
]

)
1

q∗

≤ q lim
ε↓0

(

1

ε

∫ t+ε

t

E [Y q
s ] ds

)

1

q
(

E
[

(ηt+ε − ηt)
q∗
])

1

q∗ = 0,

where the last inequality is due to Doob’s martingale inequality as ηs is an L
q∗-integrable

martingale. Hence for any η ∈ D,

E [Ytηt] = E [Ytη]

= lim
ε↓0

1

ε

∫ t+ε

t

E [Ysη] ds

= lim
ε↓0

1

ε

∫ t+ε

t

E [Ysηs] ds

= lim
ε↓0

1

ε

∫ t+ε

t

E [Ysηt] ds

= lim
ε↓0

1

ε

∫ t+ε

t

E [(Et [Ys])ηt] ds

= lim
ε↓0

E

[(

1

ε

∫ t+ε

t

Et [Ys] ds

)

ηt

]

.

11



Since (recall that q∗ is the conjugate of q)

E

[(

1

ε

∫ t+ε

t

Et [Ys] ds

)q]

=
1

εq
E

[(
∫ t+ε

t

Et [Ys] ds

)q]

≤
1

εq
E

[

(
∫ t+ε

t

ds

)q/q∗ ∫ t+ε

t

Et [Ys]
q
ds

]

=
1

εq
E

[

εq/q
∗

∫ t+ε

t

Et [Ys]
q
ds

]

=
1

ε
E

[
∫ t+ε

t

Et [Ys]
q
ds

]

≤
1

ε

∫ t+ε

t

E [Y q
s ] ds,

and lim
ε↓0

1

ε

∫ t+ε

t

E [Y q
s ] ds = E [Y q

t ], there exists a constant δt > 0, such that

E

[(

1

ε

∫ t+ε

t

Et [Ys] ds

)q]

≤ 2E [Y q
t ] , ∀ ε ∈ (0, δt).

This implies that 1
ε

∫ t+ε

t
Et [Ys] ds is uniformly integrable in ε ∈ (0, δt). Since η is essentially

bounded, so is ηt; hence by Fatou’s lemma, for a.e. t ∈ [0, T ], and any η ∈ D,

E [Ytη] = lim inf
ε↓0

E

[(

1

ε

∫ t+ε

t

Et [Ys] ds

)

ηt

]

≥ E

[

lim inf
ε↓0

((

1

ε

∫ t+ε

t

Et [Ys] ds

)

ηt

)]

≥ 0,

which implies

Yt ≥ 0, a.e. t ∈ [0, T ], a.s..

Q.E.D.

Theorem 3.6 Given a control u∗ ∈ L
p
F (0, T ;R

l), let X∗ be the corresponding state process

and (p(·; t), k(·; t)) ∈ L
p
F(t, T ;R

n)× (L2
F(t, T ;R

n))d be the unique solution to BSDE (3.1).

Then u∗ is an equilibrium control if and only if

(3.9) 〈Λ(t; t), vt − u∗t 〉 ≥ 0, a.s., a.e. t ∈ [0, T ].

Proof: Recall that we have the representation Λ(s; t) = λ1(s) + λ2(s)ξt. Then

1

ε

∫ t+ε

t

Et [〈Λ(s; t), vs − u∗s〉] ds−
1

ε

∫ t+ε

t

Et [〈Λ(s; s), vs − u∗s〉] ds

=
1

ε

∫ t+ε

t

Et [〈λ2(s)(ξt − ξs), vs − u∗s〉] ds.
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Hence

(3.10) lim
ε↓0

∣

∣

∣

∣

1

ε

∫ t+ε

t

Et [〈Λ(s; t), vs − u∗s〉] ds−
1

ε

∫ t+ε

t

Et [〈Λ(s; s), vs − u∗s〉] ds

∣

∣

∣

∣

= 0.

If (3.9) holds, then from (3.10),

lim inf
ε↓0

1

ε

∫ t+ε

t

Et [〈Λ(s; t), vs − u∗s〉] ds = lim inf
ε↓0

1

ε

∫ t+ε

t

Et [〈Λ(s; s), vs − u∗s〉] ds ≥ 0,

i.e. (3.4) holds, and from Corollary 3.2, u∗ is an equilibrium.

Now we suppose that u∗ is an equilibrium, then from (3.5) and (3.10),

lim inf
ε↓0

1

ε
Et

∫ t+ε

t

(

〈Λ(s; s), vs − u∗s〉+
θ

2
〈H(s)(vs − u∗s), (vs − u∗s)〉

)

ds ≥ 0.

Then, from Lemma 3.5, for any θ ∈ (0, 1],

〈Λ(t; t), vt − u∗t 〉+
θ

2
〈H(t)(vt − u∗t ), (vt − u∗t )〉 ≥ 0.

Sending θ → 0+, we obtain (3.9). Q.E.D.

When n = 1, the state process X is a scalar-valued process evolving by the dynamics

(3.11) dXs = [AsXs +B′
sus + bs]ds+ [CsXs +Dsus + σs]

′dWs; X0 = x0,

where A is a bounded deterministic scalar function on [0, T ]. The other parameters B,C,D

are all essentially bounded and Ft-adapted processes on [0, T ] with values in Rl, Rd, Rd×l,

respectively. Moreover, b ∈ L∞
F (0, T ;R) and σ ∈ L∞

F (0, T ;Rd).

In this case, the two adjoint equations for the equilibrium become


















dp(s; t) = −[Asp(s; t) + C ′
sk(s; t) +QsX

∗
s ]ds+ k(s; t)′dWs, s ∈ [t, T ],

p(T ; t) = GX∗
T − hEt[X

∗
T ]− µ1X

∗
t − µ2;

(3.12)



































dP (s; t) = −[(2As + |Cs|
2)P (s; t) + 2C ′

sK(s; t) +Qs]ds

+K(s; t)′dWs, s ∈ [t, T ],

P (T ; t) = G.

(3.13)

For reader’s convenience, we state here the n = 1 version of Theorem 3.6.

Theorem 3.7 An admissible control u∗ ∈ L
p
F(0, T ;R

l) is an equilibrium control if and

only if, for any time t ∈ [0, T ),
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(i) the system of SDEs

(3.14)



















































dX∗
s = [AsX

∗
s +B′

su
∗
s + bs]ds+ [CsX

∗
s +Dsu

∗
s + σs]

′dWs, s ∈ [0, T ],

X∗
0 = x0,

dp(s; t) = −[Asp(s; t) + C ′
sk(s; t) +QsX

∗
s ]ds+ k(s; t)′dWs, s ∈ [t, T ],

p(T ; t) = GX∗
T − hEt[X

∗
T ]− µ1X

∗
t − µ2, t ∈ [0, T ],

admits a solution (X∗, p, k);

(ii) Λ(·; t)
△
= p(·; t)B· +D′

·k(·; t) +R·u
∗
· satisfies the condition (3.9).

4 Mean-Variance Equilibrium Strategies in a Market

under Convex Cone Constraint

As an application of the time-inconsistent LQ theory, we consider the continuous-time

Markowitz mean–variance portfolio selection model in a market under convex cone con-

straint with random model coefficients. We aim to establish the existence and uniqueness

of the equilibrium strategy. The model is mathematically a special case of the general LQ

problem formulated earlier in this paper, with n = 1 naturally.

We use the classical setup. The wealth equation is governed by the SDE

(4.1)



















dXs = [rsXs + θ′sus]ds+ u′sdWs, s ∈ [t, T ],

Xt = xt,

where r is the (bounded) deterministic interest rate function, and θ is the essentially

bounded stochastic risk premium process. In particular, x0 > 0.

The objective at time t with state Xt = xt is to minimize

J(t, xt; u)
△
=

1

2
Vart(XT )− γt(xt)Et[XT ](4.2)

=
1

2

(

Et[X
2
T ]− (Et[XT ])

2
)

− µ1xtEt[XT ].

There are two sources of time-inconsistency in this model, one from the variance term

and the other from the state-dependent tradeoff between the mean and the variance. We

suppose that the portfolio constraint K is a convex cone here.
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The FBSDE (2.1) and (3.1) specializes to

(4.3)



































dX∗
s = [rsX

∗
s + θ′su

∗
s]ds+ (u∗s)

′dWs, X∗
0 = x0,

dp(s; t) = −rsp(s; t)ds+ k(s; t)′dWs,

p(T ; t) = X∗
T − Et[X

∗
T ]− µ1X

∗
t ,

and the process Λ(s; t) in condition (3.9) is

Λ(s; t) = p(s; t)θs + k(s; t).

We require that

(4.4) 〈Λ(t; t), vt − u∗t 〉 ≥ 0.

4.1 Existence

In this subsection, we construct a solution to (4.3) and (4.4).

Let us first assume the following Ansatz:

p(s; t) =MsX
∗
s − Et[MsX

∗
s ]− ρsµ1X

∗
t ,

with

dMs = −FM,U(s)ds+ U ′
sdWs,

and

ρs = e
∫ T

s
rvdv.

Applying Itô’s formula to MsX
∗
s , we get

d(MsX
∗
s ) =

[

(−FM,U(s) + rsMs)X
∗
s + (θsMs + Us)

′us
]

ds+ (X∗
sUs +Msus)

′dWs,

and then

dEt[MsX
∗
s ] = Et

[

(−FM,U(s) + rsMs)X
∗
s + (θsMs + Us)

′us
]

ds.

Hence

k(s) = X∗
sUs +Msus,

and

p(t; t) = −ρtµ1X
∗
t .
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Then (4.4) becomes

〈−ρtµ1θtX
∗
t +X∗

t Ut +Mtut, vt − u∗t 〉 ≥ 0.

We will construct a solution with X∗
t ≥ 0, thus

u∗t = ProjK
(

M−1
t (ρtµ1θt − Ut)

)

X∗
t .

Denoting

αt = ProjK
(

M−1
t (ρtµ1θt − Ut)

)

,

and coming back to (4.3), we get:

FM,U(s) = 2rsMs + (θsMs + Us)
′αs.

To proceed, let us recall some facts about bounded-mean-oscillation (BMO) martin-

gales; see Kazamaki [14]. The process Z ·W
△
=
∫ ·

0
Z ′

sdWs is a BMO martingale if and only

if there exists a constant C > 0 such that

E

[
∫ T

τ

|Zs|
2ds
∣

∣

∣
Fτ

]

≤ C

for any stopping time τ ≤ T . For every such Z, the stochastic exponential of Z ·W denoted

by E(Z ·W ) is a positive martingale, and for any p > 1, there exists a constant Cp > 0

such that

E

[(
∫ T

τ

|Zs|
2ds

)p
∣

∣

∣
Fτ

]

≤ Cp

for any stopping time τ ≤ T . Moreover, if Z ·W and V ·W are both BMO martingales,

then under the probability measure Q defined by dQ
dP

= ET (V ·W ), WQ
t

△
= Wt −

∫ t

0
Vsds is

a standard Brownian motion, and Z ·WQ is a BMO martingale.

Lemma 4.1 The following quadratic BSDE

(4.5) dMs = −
[

2rsMs + (θsMs + Us)
′ProjK

(

M−1
s (ρsµ1θs − Us)

)]

ds+ U ′
sdWs, MT = 1,

admits a solution (M,U) ∈ L∞
F (0, T ;R)×L2

F(0, T ;R
d) satisfying M ≥ c for some constant

c > 0. Moreover, U ·W is a BMO martingale.

Proof: We can prove the existence by a truncation argument together with a Girsanov

transformation.
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Let c > 0 be a given number to be chosen later. Consider the following quadratic

BSDE:

(4.6)


















dMs = −
[

2rsMs +
(

θs(Ms ∨ c) + Us

)′
ProjK

(

(Ms ∨ c)
−1(ρsµ1θs − Us)

)]

ds+ U ′
sdWs,

MT = 1.

This BSDE is a standard quadratic BSDE. Hence there exists a solution (M c, U c) ∈

L∞
F (0, T ;R)× L2

F(0, T ;R
d), and U c ·W is a BMO martingale; see [15] and [19].

We can rewrite the above BSDE as, by noticing that θ′sProjK(θs) = |ProjK(θs)|
2 because

K is a convex cone,

(4.7)



















dM c
s = −(2rsM

c
s + ρsµ1|ProjK(θs)|

2)ds+ (U c
s )

′[dWs − βsds],

M c
T = 1,

where

βs = ProjK
(

(M c
s∨c)

−1(ρsµ1θs−U
c
s )
)

+
θ′s
(

ProjK(ρsµ1θs − U c
s )− ProjK(ρsµ1θs)

)

|U c
s |

2
U c
s1{Uc

s 6=0}.

It is easy to see that |β| ≤ C(1 + |U c|), hence β ·W is a BMO martingale.

As β ·W is a BMO martingale, there exists a new probability measure Q such that

WQ
t = Wt −

∫ t

0

βsds

is a Brownian motion under Q.

Hence,

M c
s = EQ

s

[

e2
∫ T

s
rtdt +

∫ T

s

ρvµ1e
2
∫ v

s
rtdt|ProjK(θv)|

2dv

]

,

from which we deduce that there exists a constant η > 0 independent of c such thatM ≥ η.

Taking c = η, we obtain a solution. Q.E.D.

Now we can state our main existence theorem:

Theorem 4.2 The following feedback

u∗s = ProjK
(

M−1
s (ρsµ1θs − Us)

)

X∗
s

is an equilibrium strategy.
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Proof: Set

dX∗
s =

[

rsX
∗
s + θ′sProjK

(

M−1
s (ρsµ1θs − Us)

)

X∗
s

]

ds

+
[

ProjK
(

M−1
s (ρsµ1θs − Us)

)

X∗
s

]′
dWs, X∗

0 = x0;

u∗s = ProjK
(

M−1
s (ρsµ1θs − Us)

)

X∗
s ,

p(s; t) = MsX
∗
s − Et[MsX

∗
s ]− ρsµ1X

∗
t ,

and

k(s) = X∗
sUs +Msu

∗
s.

Then, X∗
s > 0, and

dX∗
s = [rsX

∗
s + θ′su

∗
s]ds+ (u∗s)

′dWs, X∗
0 = x0.

Let us now prove that u∗ is in
⋃

p>2

L
p
F (0, T ; K). Applying Ito’s formula toMs(X

∗
s )

2, we

obtain (recall that αs = ProjK
(

M−1
s (ρsµ1θs − Us)

)

),

d
(

Ms(X
∗
s )

2
)

= −(X∗
s )

2
[

2rsMs + (θsMs + Us)
′αs

]

ds+ (X∗
s )

2U ′
sdWs

+
(

2Ms[rs + θ′sαs] +Ms|αs|
2
)

(X∗
s )

2ds+ 2Msα
′
s(X

∗
s )

2dWs + 2(X∗
s )

2U ′
sαsds

=

([

θs +
Us

Ms

]′

αs + |αs|
2

)

Ms(X
∗
s )

2ds+Ms(X
∗
s )

2

(

2αs +
Us

Ms

)′

dWs.

As K is a convex cone,

a′ProjK(a) = |ProjK(a)|
2,

from which we deduce that

d
(

Ms(X
∗
s )

2
)

=
(

1 +M−1
s ρsµ1

)

θ′sαsMs(X
∗
s )

2ds+Ms(X
∗
s )

2

(

2αs +
Us

Ms

)′

dWs.

Hence

Mt(X
∗
t )

2 =M0x
2
0e

∫ t

0
(1+M−1

s ρsµ1)θ′sαsdsE

(

(

2α +
U

M

)

·W

)

t

.

From John-Nirenberg’s inequality (see Kazamaki [14, Theorem 2.2, p.29]), we deduce

that there exists ε > 0 such that E
[

eε
∫ T

0
|αs|2ds

]

< +∞. Thus, e
∫ T

0
(1+M−1

s ρsµ1)θ′sαsds ∈
⋂

p>1

Lp.

Moreover, as (2α+ U
M
) ·W is a BMO martingale, sup

t

[

E

(

(

2α+
U

M

)

·W

)

t

]

∈
⋃

p>1

Lp.

As M ≥ c > 0, we deduce that sup
t

|X∗
t | is in

⋃

p>2

Lp, and then u∗ is in
⋃

p>2

L
p
F (0, T ; K).

18



Now we calculate dp. Applying Ito’s formula to MsX
∗
s , we obtain

d(MsX
∗
s ) = −X∗

s

[

2rsMs + (θsMs + Us)
′αs

]

ds+X∗
sU

′
sdWs

+Ms[rs + θ′sαs]X
∗
s ds+Msα

′
sX

∗
s dWs +X∗

sU
′
sαsds

= −rsMsX
∗
s ds+ k(s)′dWs,

and then

dp(s; t) = −rsMsX
∗
sds+ k(s)′dWs + rsEt[MsX

∗
s ]ds+ rsρsµ1X

∗
t ds

= −rsp(s; t)ds+ k(s)′dWs.

Hence (X∗, u∗, p, k) is a solution to (4.3), and (4.4) is easily checked.

Q.E.D.

4.2 Uniqueness

Theorem 4.3 The following feedback

u∗s = ProjK
(

M−1
s (ρsµ1θs − Us)

)

X∗
s

is the unique equilibrium strategy.

Proof: Suppose that (X, u, p, k) is a solution to

(4.8)



































dXs = [rsXs + θ′sus]ds+ (us)
′dWs, X0 = x0,

dp(s; t) = −rsp(s; t)ds+ k(s; t)′dWs,

p(T ; t) = XT − Et[XT ]− µ1Xt,

and the process Λ(s; t) in condition (3.9) is

Λ(s; t) = p(s; t)θs + k(s; t).

We require that

(4.9) 〈Λ(t; t), vt − ut〉 ≥ 0.

There exist two adapted processes α+ and α+ with 0 ≤ α+ ≤ 1, −1 ≤ α− ≤ 0 and

α+ − α− = 1, such that X+
t = α+(t)Xt, and X−

t = α−(t)Xt. Consider the following

19



quadratic BSDE:

(4.10)
dM̃s = −

{

2rsM̃s + (θsM̃s + Ũs)
′M̃−1

s

[

ProjK

(

(ρsµ1θs − Ũs)
)

α+(s)

+ProjK

(

−(ρsµ1θs − Ũs)
)

α−(s)
]

}

ds+ Ũ ′
sdWs.

We note that

(θsM̃s)
′M̃−1

s

[

ProjK (ρsµ1θs)α+(s) + ProjK (−ρsµ1θs)α−(s)
]

= θ′s
[

ProjK (ρsµ1θs)α+(s) + ProjK (−ρsµ1θs)α−(s)
]

= ρsµ1[|ProjK(θs)|
2α+(s)− |ProjK(−θs)|

2α−(s)]

≥ 0.

Applying the same method as that of Lemma 4.1, the quadratic BSDE (4.10) admits a

solution (M̃, Ũ) ∈ L∞
F (0, T ;R) × L2

F (0, T ;R
d) satisfying M̃ ≥ c for some constant c > 0.

Moreover, Ũ ·W is a BMO martingale. Let us take any such solution (M̃, Ũ).

It is important to note that

M̃−1
s ProjK

(

(ρsµ1θs − Ũs)Xs

)

= M̃−1
s

[

ProjK

(

(ρsµ1θs − Ũs)
)

α+(s) + ProjK

(

−(ρsµ1θs − Ũs)
)

α−(s)
]

Xs

= α̃sXs,

where

α̃s = M̃−1
s [ProjK

(

(ρsµ1θs − Ũs)
)

α+(s) + ProjK

(

−(ρsµ1θs − Ũs)
)

α−(s)].

Setting

p̄(s; t) = p(s; t)−
(

M̃sXs − Et[M̃sXs]− ρsµ1Xt

)

,

and

k̄(s) = k(s)− (XsŨs + M̃sus).

Then

Λ(s; t) =
[

p̄(s; t) + M̃sXs − Et[M̃sXs]− ρsµ1Xt

]

θs + k̄(s) +XsŨs + M̃sus,

and then condition (4.9) becomes: for any vt ∈ K,

〈

[p̄(t; t)− ρtµ1Xt]θt + k̄(t) +XtŨt + M̃tut, vt − ut

〉

≥ 0,
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from which we deduce that there exists one bounded adapted process A, such that

ut = M̃−1
t ProjK

(

−p̄(t; t)θt − k̄(t) + (ρtµ1θt − Ũt)Xt)
)

= M̃−1
t At

(

−p̄(t; t)θt − k̄(t)
)

+ M̃−1
t ProjK

(

(ρtµ1θt − Ũt)Xt

)

= M̃−1
t At

(

−p̄(t; t)θt − k̄(t)
)

+ α̃tXt.

After some calculus, we arrive at:

(4.11)



















































dp̄(s; t) = −
{

rsp̄(s; t) + (θs + ŨsM̃
−1
s )′As[−θsp̄(s; s)− k̄(s)]

−Et

[

(θs + ŨsM̃
−1
s )′As[−θsp̄(s; s)− k̄(s)]

]}

ds

+k̄(s)′dWs, s ∈ [t, T ],

p̄(T ; t) = 0.

Applying the same method as in [11], we deduce that p̄(s; t) = 0 and k̄(s) = 0. Therefore

ut = α̃tXt,

and then

Xt > 0, α+ = 1, α− = 0.

As Xt > 0, replacing (M̃, Ũ) by (M,U), and using the above procedure again, we

deduce then

us = ProjK
(

M−1
s (ρsµ1θs − Us)

)

Xs,

and we conclude the proof. Q.E.D.

From the above theorem, we deduce immediately the uniqueness of solution to BSDE

(4.5).

Corollary 4.4 The solution to BSDE (4.5) is unique.

Proof: Let (M̄, Ū) be another such solution. Then from the above theorem, we deduce

that

ProjK
(

M−1
s (ρsµ1θs − Us)

)

X∗
s = ProjK

(

M̄−1
s (ρsµ1θs − Ūs)

)

X∗
s .

As X∗
s > 0, we deduce that,

ProjK
(

M−1
s (ρsµ1θs − Us)

)

= ProjK
(

M̄−1
s (ρsµ1θs − Ūs)

)

,

from which we deduce the uniqueness of solution. Q.E.D.
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4.3 Deterministic Risk Premium

Let us first consider the case when the risk premium is a deterministic function of time.

Then U = 0 and

Ms = e2
∫ T

s
rvdv

(

1 + µ1

∫ T

s

e−
∫ T

v
rzdz|ProjK(θv)|

2dv

)

.

The equilibrium strategy is given by

u∗s =
µ1e

∫ T

s
rvdv

Ms
ProjK(θs)X

∗
s .

In the appendix, we obtain that the precommitted optimal control for the problem

starting at t = 0 is also in an affine feedback form

u∗pre(s, x) = −ProjK(θs)x+ e
∫ s

0
rvdv
(

x0 + µ1x0e
∫ T

0
(|ProjK(θv)|2−rv)dv

)

ProjK(θs).

In [3], the equilibrium is defined for the class of feedback controls as in [5]. Therein the

equilibrium strategy is derived in a linear feedback form u
∗fbe
t = c

fbe
t X∗

t with cfbet uniquely

determined by an integral equation and iterated by numerical method. However, we can

show that the linear coefficient of our equilibrium above is not a solution of the integral

equation in [3]. This implies the difference between the two definitions of equilibrium

(open-loop and feedback).

To compare the performance of these two different equilibrium controls, together with

the precommitted optimal control at time t = 0, we calculate J(0, x0; u) for u = u∗, u∗fbe,

and u∗pre, respectively. Denote cs =
µ1e

∫T
s rvdv

Ms
ProjK(θs), then it is an easy exercise to get

X∗
T = x0e

∫ T

0
(rs+c′sθs−

|cs|
2

2
)ds+

∫ T

0
c′sdWs. Hence

E [X∗
T ] = x0e

∫ T

0
(rs+c′sProjK(θs))ds, Var(X∗

T ) = x20e
2
∫ T

0
(rs+c′sProjK(θs))ds(e

∫ T

0
|cs|2ds − 1),

leading to

J(0, x0; u
∗) =

x20
2
e2

∫ T

0
(rs+c′sProjK(θs))ds

(

e
∫ T

0
|cs|2ds − 1

)

− x20µ1e
∫ T

0
(rs+c′sProjK(θs))ds.

Similarly,

J(0, x0; u
∗fbe) =

x20
2
e2

∫ T

0
(rs+(cfbes )′ProjK(θs))ds

(

e
∫ T

0
|cfbes |2ds − 1

)

− x20µ1e
∫ T

0
(rs+(cfbes )′ProjK(θs))ds.

By the calculation in the appendix, we have

J(0, x0; u
∗pre) = −

x20
2
µ2
1

(

e
∫ T

0
|ProjK(θs)|2ds − 1

)

− x20µ1e
∫ T

0
rsds.

Clearly,

J(0, x0; u
∗) > J(0, x0; u

∗pre), J(0, x0; u
∗fbe) > J(0, x0; u

∗pre).

Moreover, we can easily compare J(0, x0; u
∗) and J(0, x0; u

∗fbe) due to their explicit ex-

pressions.
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5 Concluding Remarks

In this paper, we consider some time-inconsistent LQ control problem under constraint.

We define the equilibrium strategy via spike perturbation of open control and deduce the

necessary and sufficient condition by applying the stochastic maximum principle, following

the ideas of [10, 11]. LQ control problem with control constraint is useful because of

its wide applications in finance and economics. Our necessary and sufficient conditions

are general enough to cover many interesting time-inconsistent LQ control problem under

various constraint. We also shed light on important application in mean-variance portfolio

under convex cone constraint and present its explicit equilibrium. In particular, we can

treat the random coefficient case, while the HJB method used by Bensoussan, Wong, Yam

and Yung [3] seems not applicable in random coefficient case.

A Appendix.

Precommitted Mean–Variance Portfolio with Cone

Constraint

We consider the precommitted optimal control problem at time t = 0,

(A.1)

min J(t, x0; u)
△
=

1

2
Var(XT )− γ(x0)E[XT ]

=
1

2

(

E[X2
T ]− (E[XT ])

2
)

− (µ1x0 + µ2)E[XT ],

s.t. dXt = [rtXt + u′tθt]dt+ u′tdWt,

X0 = x0.

From the existing study on precommitted mean–variance problems such as [12, 17, 18],

it follows that, when the parameters r· and θ· are deterministic, we can get the explicit

optimal value for the precommitted problem (A.1):

V pre(x0) = −
1

2
(µ1x0 + µ2)

2
(

e
∫ T

0
|ProjK(θs)|2ds − 1

)

− (µ1x0 + µ2)e
∫ T

0
rsdsx0.

Furthermore, the corresponding optimal control can be written as the affine feedback con-

trol

u∗pre(s, x) = −ProjK(θs)x+ e
∫ s

0
rvdv
(

x0 + (µ1x0 + µ2)e
∫ T

0
(|ProjK(θv)|2−rv)dv

)

ProjK(θs).
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