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Introduction

In dynamic decision making, the presence of time inconsistency is often identified in socioeconomic systems and accordingly, its study has important values in various fields, such as engineering, management science, finance and economics (for example, see Kydland and Prescott [START_REF] Kydland | Rules rather than discretion: The inconsistency of optimal plans[END_REF]). More recently, considerable research attention has been paid in studying this family of stochastic time-inconsistent control problems as well as their financial applications. The study on time-inconsistency by economists can be traced back to Strotz [START_REF] Strotz | Myopia and inconsistency in dynamic utility maximization[END_REF] in the 1950s, who initiated the formulation of time-inconsistent decision making as a game between incarnations of the decision maker himself. For the sake of motivation and to make our discussion concrete, let us briefly lay out a simple but illustrating example of time inconsistency in dynamic setting. 

                 min u J(u) := Var(X T ) -2λE[X T ],
s.t. dX s = θ ′ u s ds + u ′ s dW s , s ∈ [0, T ],

X 0 = x 0 ,
where X • ∈ R, u • ∈ R 2 , θ = (1, 1) ′ and W • is a two-dimensional standard Weiner process. Its dynamic counterpart yields the following optimization problem over [t, T ], for any t ∈ [0, T ],

(1.2)

                 min u J t (u) := Var t (X T ) -2λE t [X T ], s.t. dX s = θ ′ u s ds + u ′ s dW s , s ∈ [t, T ], X t = x t , where E t [•] = E [•|F t ]
is the conditional expectation and Var t (•) is the conditional variance

under E t [•].
An admissible control u * ,0,x 0

• is optimal for the problem (1.1) if J(u * ,0,x 0 • ) = min u J(u).

Also, we define the optimal control u * ,t,xt

• for the problem (1.2) similarly. We say the problem (1.2) is time-consistent if, for any t ∈ [0, T ], it holds that (1.3) u * ,t,X * ,0,x 0 t s = u * ,0,x 0 s for t ≤ s ≤ T.

However, applying results obtained in [START_REF] Hu | Time-inconsistent stochastic linear-quadratic control[END_REF][START_REF] Hu | Constrained stochastic LQ control with random coefficients, and application to portfolio selection[END_REF][START_REF] Li | Continuous-time Markowitz's model with constraints on wealth and portfolio[END_REF][START_REF] Li | Dynamic mean-variance portfolio selection with no-shorting constraints[END_REF], we have an optimal control u * ,0,x 0 s = (x 0 -X * ,0,x 0 s + λe 2T )θ, 0 ≤ s ≤ T for Problem (1.1), where X * ,0,x 0 s = x 0 + 2 s 0 (x 0 -X * ,0,x 0 v + λe 2T )dv + s 0 (x 0 -X * ,0,x 0 v + λe 2T )θ ′ dW s .

Again, as before we should have an optimal control on [t, T ], u * ,t,X * ,0,x 0 t s = (X * ,0,x 0 t -X * ,t,X * ,0,x 0 t s + λe 2(T -t) )θ, t ≤ s ≤ T for Problem (1.2), where X * ,t,X * ,0,x 0 t s = X * ,0,x 0 t + 2 s t (X * ,0,x 0 t -X * ,t,X * ,0,x 0 t v + λe 2(T -t) )dv + s t (X * ,0,x 0 t -X * ,t,X * ,0,x 0

t v + λe 2(T -t) )θ ′ dW v .
It is obvious that u * ,t,X * ,0,x 0 t s = u * ,0,x 0 s for t ≤ s ≤ T . The dynamic optimization problem (1.2) is called time-inconsistent since (1.3) fails to hold. Therefore, time inconsistency reflects that an optimal strategy at present may no longer be optimal in the future.

In response, Strotz suggested two possible fundamental schemes to circumvent time inconsistency: (i) "He may try to precommit his future activities either irrevocably or by contriving a penalty for his future self if he should misbehave", which is named the strategy of pre-commitment; and (ii) "He may resign himself to the fact of intertemporal conflict and decide that his 'optimal' plan at any date is a will-o'-the-wisp which cannot be attained, and learn to select the present action which will be best in the light of future disobedience", which is termed the strategy of consistent planning. The strategy of consistent planning is also called the time-consistent policy in the literature. For a dynamic mean-variance model, Basak and Chabakauri [START_REF] Basak | Dynamic mean-variance asset allocation[END_REF] reformulated it as an intrapersonal game model where the investor optimally elicits the policy at any time t, on the premise that he has already decided time-consistent (equilibrium) policies applied in the future.

The game formulation is tractable to capture time inconsistency when the underlying time setting is (finite or countable) discrete. Nevertheless, when the time setting is continuous, the formulation should be generalized or modified in different ways. Additionally, some tailor-made arguments, to be shown later, should also be introduced to handle the continuous-time setting. We remark that it is still unclear which is the best one among different definitions of a solution to time-inconsistent decision problem. Mathematically, both the existence and the uniqueness of a solution make a definition more acceptable. Although it is common that a game problem admits multiple solutions, the time-inconsistent decision problem is a decision problem for single player, and hence, an identical value process for all solutions is considered to be more reasonable even if the control may allow multiple solutions. Instead of seeking an "optimal control", some kind of equilibrium controls are worthy to be developed in both theoretical methodology and numerical computation algorithm. This is mainly motivated by practical applications in statistical economics and has recently attracted considerable interest and attempts.

Yong [START_REF] Yong | Time-inconsistent optimal control problems and the equilibrium HJB equation[END_REF] and Ekeland and Pirvu [START_REF] Ekeland | Investment and consumption without commitment[END_REF] established the existence of equilibrium solutions, with their own definitions for equilibrium solutions, for the time inconsistency caused by hyperbolic discounting. Grenadier and Wang [START_REF] Grenadier | Investment under uncertainty and timeinconsistent preferences[END_REF] also studied the hyperbolic discounting problem in an optimal stopping model. In a Markovian system, Björk and Murgoci [START_REF] Björk | A general theory of Markovian time inconsistent stochastic control problems[END_REF] proposed a definition of a general stochastic control problem with time-inconsistent terms, and presented some sufficient condition for a control to be a solution by a system of partial differential equations. They constructed some solutions for some examples including an LQ one, but it looks very hard to find not-too-harsh condition on parameters to ensure the existence of a solution. Björk, Murgoci and Zhou [START_REF] Björk | Mean-variance portfolio optimization with state dependent risk aversion[END_REF] also derived an equilibrium for a meanvariance portfolio selection with state-dependent risk aversion. Basak and Chabakauri [START_REF] Basak | Dynamic mean-variance asset allocation[END_REF] studied an equilibrium strategy for a mean-variance portfolio selection problem with constant risk aversion and got more details on the constructed solution. Hu, Jin and Zhou in [START_REF] Hu | Time-inconsistent stochastic linear-quadratic control[END_REF] generalized the discrete-time game formulation for an LQ control problem with time-inconsistent terms in a non-Markovian system, which is slightly different from the one in Björk and Murgoci [START_REF] Björk | A general theory of Markovian time inconsistent stochastic control problems[END_REF], and constructed an equilibrium strategy for quite general LQ control problem, including a non-Markovian system, and then in [START_REF] Hu | Time-inconsistent stochastic linear-quadratic control: characterization and uniqueness of equilibrium[END_REF], they proved that the constructed equilibrium strategy is unique. Bensoussan, Frehse and Yam [START_REF] Bensoussan | Mean Field Games and Mean Field Type Control Theory[END_REF] introduced a class of time-inconsistent game problems of mean-field type and provided their equilibrium solutions; Karnam, Ma and Zhang [START_REF] Karnam | Dynamic approaches for some time inconsistent problems[END_REF] introduced the idea of "dynamic utility" under which the original time-inconsistent problem (under the fixed utility) is transferred to time-consistent one. In addition, Cui, Li, Wang and Zhu [START_REF] Cui | Better than dynamic mean-variance: Time inconsistency and free cash flow stream[END_REF] showed that the multi-period mean-variance problem does not satisfy time consistency in efficiency and developed a revised mean-variance strategy. By relaxing the self-financing restriction to allow the withdrawal of money from the market, the revised mean-variance strategy dominates the original dynamic mean-variance strategy in the mean-variance space. Furthermore, Cui, Li, Li and Shi [START_REF] Cui | Time consistent behavioral portfolio policy for dynamic mean-variance formulation[END_REF] further investigated the time-consistent strategy for a behavioral risk aversion model by solving a nested mean-variance game formulation.

Recently, Bensoussan, Wong, Yam and Yung [START_REF] Bensoussan | Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting[END_REF] studied the time-consistent strategies in the mean-variance portfolio selection with short-selling prohibition in both discrete-time and continuous-time settings and showed that the discrete-time equilibrium controls converge to that in the continuous-time setting. In their work, the cost functional just includes the terminal mean and variance terms without the running cost part. In this paper, we further consider a class of time-inconsistent stochastic LQ control problems under control constraint involving the integral part in the cost functional. Also, we investigate these problems within the framework of random coefficients. Hu, Jin and Zhou [START_REF] Hu | Time-inconsistent stochastic linear-quadratic control[END_REF][START_REF] Hu | Time-inconsistent stochastic linear-quadratic control: characterization and uniqueness of equilibrium[END_REF] introduced the new methodology which distinguishes significantly from those in classic control (without constraints) theory in the literature, to tackle time-inconsistent stochastic LQ control problem without constraints. Our work aims to further develop the new methodology proposed in [START_REF] Hu | Time-inconsistent stochastic linear-quadratic control[END_REF] to cope with the mathematical difficulties rooted in the presence of control constraints. We first prove that the existence of an equilibrium solution is equivalent to the existence of a solution to some forward-backward stochastic differential equations (FBSDE) with constraints. Then we present an explicit solution to equilibrium for mean-variance portfolio selection under convex cone constraint and show that the constructed solution is unique. Finally, we illustrate the established results using examples. In particular, we compare our results with that in Bensoussan, Wong, Yam and Yung [START_REF] Bensoussan | Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting[END_REF] for the deterministic coefficients. Our current work is one further step toward understanding the role of input constraint in time-inconsistency decision making, and we expect to see more research progress along this direction.

The rest of this paper is organized as follows. In Section 2, we give the formulation of the LQ control problem without time consistency under constraint. Then we give an equivalent characterization of a solution by a system of forward-backward stochastic differential equations in Section 3. Finally in Section 4, we give an explicit solution to equilibrium for mean-variance portfolio selection under convex cone constraint and show that the thus constructed solution is unique.

Problem Formulation

Let (W t ) 0≤t≤T = (W 1 t , • • • , W d t )
0≤t≤T be a d-dimensional Brownian motion on a probability space (Ω, F , P). Denote by (F t ) the augmented filtration generated by (W t ).

We will use the following notation. Let p ≥ 1.

S l : the set of symmetric l × l real matrices.

L p G (Ω; R l ): the set of random variables ξ : (Ω, G) → (R l , B(R l )) with E [|ξ| p ] < +∞. L ∞ G (Ω; R l ): the set of essentially bounded random variables ξ : (Ω, G) → (R l , B(R l )). L p G (t, T ; R l ): the set of {G s } s∈[t,T ] -adapted processes f = {f s : t ≤ s ≤ T } with E T t |f s | p ds < ∞. L ∞ G (t, T ; R l ): the set of essentially bounded {G s } s∈[t,T ] -adapted processes. L p G (Ω; C(t, T ; R l )): the set of continuous {G s } s∈[t,T ] -adapted processes f = {f s : t ≤ s ≤ T } with E sup s∈[t,T ] |f s | p < ∞.
We will often use vectors and matrices in this paper, where all vectors are column vectors. For a matrix M, define M ′ as transpose and |M| = i,j m 2 ij as Frobenius norm of a matrix M, respectively. Now we introduce the model under consideration in this paper.

Let T > 0 be given and fixed. The controlled system is governed by the following stochastic differential equation (SDE) on [0, T ]:

(2.1)

dX s = [A s X s + B ′ s u s + b s ]ds + d j=1 [C j s X s + D j s u s + σ j s ]dW j s , X 0 = x 0 ,
where A is a bounded deterministic function on [0, T ] with values in R n×n , B, C j , D j are all essentially bounded adapted processes on [0, T ] with values in R l×n , R n×n , R n×l , respectively, and b and σ j are stochastic processes in

L ∞ F (0, T ; R n ). Let K be a given convex set in R l . The process u ∈ p>2 L p F (0, T ; K) is the control, and X ∈ L p F (Ω; C(0, T ; R n )) is
the corresponding state process with initial value x 0 ∈ R n and with u ∈ L p F (0, T ; K). When time evolves to t ∈ [0, T ], we need to consider the controlled system starting from t and state x t ∈ L p Ft (Ω; R n ):

(2.2)

dX s = [A s X s + B ′ s u s + b s ]ds + d j=1 [C j s X s + D j s u s + σ j s ]dW j s , X t = x t .
For any control u ∈ L p F (t, T ; K), there exists a unique solution

X t,xt,u ∈ L p F (Ω; C(t, T ; R n )).
At time t with the system state X t = x t , our aim is to minimize

J(t, x t ; u) △ = 1 2 E t T t [ Q s X s , X s + R s u s , u s ] ds + 1 2 E t [ GX T , X T ] - 1 2 hE t [X T ] , E t [X T ] -µ 1 x t + µ 2 , E t [X T ] (2.3) over u ∈ L p F (t, T ; K), where X = X t,xt,u
, and

E t [•] = E [•|F t ].
In the above Q and R are both positive semi-definite and essentially bounded adapted processes on [0, T ] with values in S n and S l respectively, G, h, µ 1 , µ 2 are constants in S n , S n , R n×n , R n respectively, and moreover G is positive semi-definite.

We define an equilibrium (control) in the following manner. Given a control u * , for any

t ∈ [0, T ), ε > 0 and v ∈ p>2 L p F (t, T ; K), define (2.4) u t,ε,v s = u * s + (v s -u * s )1 s∈[t,t+ε) , s ∈ [t, T ]. Definition 2.1 Let u * ∈ p>2
L p F (0, T ; K) be a given control and X * be the state process corresponding to u * . The control u * is called an equilibrium if

lim inf ε↓0 J(t, X * t ; u t,ε,v ) -J(t, X * t ; u * ) ε ≥ 0,
where u t,ε,v is defined by (2.4), for any t ∈ [0, T ) and v ∈ p>2 L p F (t, T ; K).

Remark 2.2

There is some difference between our definition and that of [START_REF] Hu | Time-inconsistent stochastic linear-quadratic control[END_REF], because there is a control constraint K in our situation. Note that the convexity of K is not needed in our definition.

Necessary and Sufficient Condition of Equilibrium Controls

In this section, we present a general necessary and sufficient condition for equilibria. This condition is made possible by a stochastic Lebesgue differentiation theorem involving conditional expectation.

To proceed, we start with some relevant known result from [START_REF] Hu | Time-inconsistent stochastic linear-quadratic control[END_REF]. Let u * be a fixed control and X * be the corresponding state process. For any t ∈ [0, T ), define in the time

interval [t, T ] the processes (p(•; t), (k j (•; t)) j=1,••• ,d ) ∈ L 2 F (t, T ; R n ) × (L 2 F (t, T ; R n )) d as the unique solution to (3.1)                      dp(s; t) = -A ′ s p(s; t) + d j=1 (C j s ) ′ k j (s; t) + Q s X * s ds + d j=1 k j (s; t)dW j s , s ∈ [t, T ], p(T ; t) = GX * T -hE t [X * T ] -µ 1 X * t -µ 2 . Notice that if u * ∈ L p F (0, T ; K), then p(•; t) ∈ L p F (t, T ; R n ) in fact. Furthermore, define (P (•; t), (K j (•; t)) j=1,••• ,d ) ∈ L ∞ F (t, T ; S n ) × (L 2 F (t, T ; S n )) d as the unique solution to (3.2)                              dP (s; t) = -A ′ s P (s; t) + P (s; t)A s + d j=1 [(C j s ) ′ P (s; t)C j s + (C j s ) ′ K j (s; t) + K j (s; t)C j s ] + Q s ds + d j=1 K j (s; t)dW j s , s ∈ [t, T ], P (T ; t) = G.
Notice that neither the terminal condition nor the coefficients of this equation depend on t; so it can be taken as a BSDE on the entire time interval [0, T ]. Denote its solution as (P (s), K(s)), s ∈ [0, T ]. It then follows from the uniqueness of the solution to BSDE that (P (s; t), K(s; t)) = (P (s),

K(s)) at s ∈ [t, T ] for any t ∈ [0, T ].
The following estimate under local spike variation is reproduced from [10, Proposition

3.1]. Proposition 3.1 For any t ∈ [0, T ), ε > 0 and v ∈ p>2 L p F (0, T ; K), define u t,ε,v by (2.4).
Then

(3.3) J(t, X * t ; u t,ε,v )-J(t, X * t ; u * ) = E t t+ε t Λ(s; t), v s -u * s + 1 2 H(s)(v s -u * s ), v s -u * s ds+o(ε),
where Λ(s; t)

△ = B s p(s; t) + d j=1 (D j s ) ′ k j (s; t) + R s u * s and H(s) △ = R s + d j=1 (D j s ) ′ P (s)D j s .
In view of Proposition 3.1 and the fact that H(s) 0, it is straightforward to get the following sufficient condition of an equilibrium.

Corollary 3.2 A control u * ∈ L p F (0, T ; K) is an equilibrium if (3.4) lim inf ε↓0 1 ε t+ε t E t [ Λ(s; t), v s -u * s ] ds ≥ 0, a.s., ∀t ∈ [0, T ).
The necessary condition is somewhat different.

Proposition 3.3 If a control u * ∈ L p F (0, T ; K) is an equilibrium, then for θ ∈ (0, 1], (3.5) lim inf ε↓0 1 ε E t t+ε t Λ(s; t), v s -u * s + θ 2 H(s)(v s -u * s ), (v s -u * s ) ds ≥ 0. Proof: We set, for v ∈ p>2 L p F (0, T ; K) and θ ∈ (0, 1], vs = u * s + θ(v s -u * s ) ∈ L p F (t, T ; K). Then (3.6) J(t, X * t ; u t,ε,v ) -J(t, X * t ; u * ) = E t t+ε t θ Λ(s; t), v s -u * s + θ 2 2 H(s)(v s -u * s ), (v s -u * s ) ds + o(ε).
Hence,

lim inf ε↓0 1 ε E t t+ε t Λ(s; t), v s -u * s + θ 2 H(s)(v s -u * s ), (v s -u * s ) ds ≥ 0. Q.E.D.
The next result provides a key property for the solution to BSDE (3.1), and represents the process Λ(s; t) in a special form.

Proposition 3.4 For any given pair of state and control processes (X * , u * ), the solution to BSDE (3.1) satisfies k(s; t 1 ) = k(s; t 2 ) for a.e. s ≥ max (t 1 , t 2 ). Moreover, there exist 

λ 1 ∈ L p F (0, T ; R l ), λ 2 ∈ L ∞ F (0, T ; R l×n ) and ξ ∈ L p (Ω; C(0, T ; R n )), such that Λ(s; t) has the representation Λ(s; t) = λ 1 (s) + λ 2 (s)ξ t .
           dp(s; t) = - d j=1 ψ(s)(C j s ) ′ ψ(s) -1 kj (s; t) + ψ(s)Q s X *
; t) = ψ(s) -1 p(s) -ψ(s) -1 (hE t [X * T ] + µ 1 X * t + µ 2 ) = p(s) + ψ(s) -1 ξ t ,
where

ξ t := -hE t [X * T ] -µ 1 X * t -µ 2 defines the process ξ ∈ L p F (Ω; C(0, T ; R n )) and p(s) := ψ(s) -1 p(s) defines the process p ∈ L p F (Ω; C(0, T ; R n )). Hence, Λ(s; t) = B s p(s; t) + d j=1 (D j s ) ′ k j (s; t) + R s u * s = B s p(s) + d j=1 (D j s ) ′ k j (s) + R s u * s + B s ψ(s) -1 ξ t = λ 1 (s) + λ 2 (s)ξ t ,
where λ 1 (s) := B s p(s)

+ d j=1 (D j s ) ′ k j (s) + R s u * s and λ 2 (s) := B s ψ(s) -1 . Q.E.D.
We now set out to derive our general necessary and sufficient condition for equilibrium controls. Although (3.4) and (3.5) already provide characterizing conditions, they are nevertheless not very useful because they involve a limit. It is tempting to expect that the limit therein is Λ(t; t), in the spirit of the Lebesgue differentiation theorem. However, one needs to be very careful, since in both (3.4) and (3.5), the conditional expectation with respect to F t is involved. The following lemma generalizes Lemma 3.4 in [START_REF] Hu | Time-inconsistent stochastic linear-quadratic control: characterization and uniqueness of equilibrium[END_REF] from q = 2 to any q > 1, and we provide a complete proof here for the sake of self-containedness.

Lemma 3.5 Let Y ∈ L q F (0, T ; R), q > 1 be a given process. If lim inf ε↓0 1 ε t+ε t E t [Y s ] ds ≥ 0, a.e. t ∈ [0, T ), a.s., then Y t ≥ 0, a.e. t ∈ [0, T ), a.s..
Proof: Since L q * F T (Ω; R + ) (q * is the conjugate of q) is a separable space, it follows from the (deterministic) Lebesgue differentiation theorem that there is a countable dense subset

D ⊂ L q * F T (Ω; R + ) ∩ L ∞ F T (Ω; R + )
, such that for almost all t, we have

(3.8) lim ε↓0 1 ε t+ε t E [Y s η] ds = E [Y t η] , ∀η ∈ D,
and lim

ε↓0 1 ε t+ε t E [Y q s ] ds = E [Y q t ] . For any η ∈ D, define η s = E s [η]. Then E [Y s η] = E [Y s η s ].
We have the following estimates:

lim ε↓0 1 ε t+ε t E [Y s (η s -η t )] ds ≤ lim ε↓0 1 ε t+ε t E [Y q s ] ds 1 q t+ε t E (η s -η t ) q * ds 1 q * = lim ε↓0 1 ε t+ε t E [Y q s ] ds 1 q 1 ε t+ε t E (η s -η t ) q * ds 1 q * ≤ lim ε↓0 1 ε t+ε t E [Y q s ] ds 1 q sup s∈[t,t+ε] E (η s -η t ) q * 1 q * ≤ q lim ε↓0 1 ε t+ε t E [Y q s ] ds 1 q E (η t+ε -η t ) q * 1 q * = 0,
where the last inequality is due to Doob's martingale inequality as η s is an L q * -integrable martingale. Hence for any η ∈ D,

E [Y t η t ] = E [Y t η] = lim ε↓0 1 ε t+ε t E [Y s η] ds = lim ε↓0 1 ε t+ε t E [Y s η s ] ds = lim ε↓0 1 ε t+ε t E [Y s η t ] ds = lim ε↓0 1 ε t+ε t E [(E t [Y s ])η t ] ds = lim ε↓0 E 1 ε t+ε t E t [Y s ] ds η t .
Since (recall that q * is the conjugate of q)

E 1 ε t+ε t E t [Y s ] ds q = 1 ε q E t+ε t E t [Y s ] ds q ≤ 1 ε q E t+ε t ds q/q * t+ε t E t [Y s ] q ds = 1 ε q E ε q/q * t+ε t E t [Y s ] q ds = 1 ε E t+ε t E t [Y s ] q ds ≤ 1 ε t+ε t E [Y q s ] ds,
and lim

ε↓0 1 ε t+ε t E [Y q s ] ds = E [Y q t ]
, there exists a constant δ t > 0, such that

E 1 ε t+ε t E t [Y s ] ds q ≤ 2E [Y q t ] , ∀ ε ∈ (0, δ t ).
This implies that Proof: Recall that we have the representation Λ(s; t) = λ 1 (s) + λ 2 (s)ξ t . Then

1 ε t+ε t E t [ Λ(s; t), v s -u * s ] ds - 1 ε t+ε t E t [ Λ(s; s), v s -u * s ] ds = 1 ε t+ε t E t [ λ 2 (s)(ξ t -ξ s ), v s -u * s ] ds. Hence (3.10) lim ε↓0 1 ε t+ε t E t [ Λ(s; t), v s -u * s ] ds - 1 ε t+ε t E t [ Λ(s; s), v s -u * s ] ds = 0.
If (3.9) holds, then from (3.10),

lim inf ε↓0 1 ε t+ε t E t [ Λ(s; t), v s -u * s ] ds = lim inf ε↓0 1 ε t+ε t E t [ Λ(s; s), v s -u * s ] ds ≥ 0,
i.e. (3.4) holds, and from Corollary 3.2, u * is an equilibrium. Now we suppose that u * is an equilibrium, then from (3.5) and (3.10), lim inf

ε↓0 1 ε E t t+ε t Λ(s; s), v s -u * s + θ 2 H(s)(v s -u * s ), (v s -u * s ) ds ≥ 0.
Then, from Lemma 3.5, for any θ ∈ (0, 1],

Λ(t; t), v t -u * t + θ 2 H(t)(v t -u * t ), (v t -u * t ) ≥ 0.
Sending θ → 0 + , we obtain (3.9).

Q.E.D.

When n = 1, the state process X is a scalar-valued process evolving by the dynamics

(3.11) dX s = [A s X s + B ′ s u s + b s ]ds + [C s X s + D s u s + σ s ] ′ dW s ; X 0 = x 0 ,
where A is a bounded deterministic scalar function on [0, T ]. The other parameters B, C, D are all essentially bounded and F t -adapted processes on [0, T ] with values in R l , R d , R d×l , respectively. Moreover, b ∈ L ∞ F (0, T ; R) and σ ∈ L ∞ F (0, T ; R d ). In this case, the two adjoint equations for the equilibrium become

         dp(s; t) = -[A s p(s; t) + C ′ s k(s; t) + Q s X * s ]ds + k(s; t) ′ dW s , s ∈ [t, T ], p(T ; t) = GX * T -hE t [X * T ] -µ 1 X * t -µ 2 ;
(3.12)

                 dP (s; t) = -[(2A s + |C s | 2 )P (s; t) + 2C ′ s K(s; t) + Q s ]ds + K(s; t) ′ dW s , s ∈ [t, T ], P (T ; t) = G.
(3.13) For reader's convenience, we state here the n = 1 version of Theorem 3.6.

Theorem 3.7 An admissible control u * ∈ L p F (0, T ; R l ) is an equilibrium control if and only if, for any time t ∈ [0, T ), (i) the system of SDEs

(3.14)                          dX * s = [A s X * s + B ′ s u * s + b s ]ds + [C s X * s + D s u * s + σ s ] ′ dW s , s ∈ [0, T ], X * 0 = x 0 , dp(s; t) = -[A s p(s; t) + C ′ s k(s; t) + Q s X * s ]ds + k(s; t) ′ dW s , s ∈ [t, T ], p(T ; t) = GX * T -hE t [X * T ] -µ 1 X * t -µ 2 , t ∈ [0, T ],
admits a solution (X * , p, k);

(ii) Λ(•; t) △ = p(•; t)B • + D ′ • k(•; t) + R • u *
• satisfies the condition (3.9).

Mean-Variance Equilibrium Strategies in a Market under Convex Cone Constraint

As an application of the time-inconsistent LQ theory, we consider the continuous-time Markowitz mean-variance portfolio selection model in a market under convex cone constraint with random model coefficients. We aim to establish the existence and uniqueness of the equilibrium strategy. The model is mathematically a special case of the general LQ problem formulated earlier in this paper, with n = 1 naturally.

We use the classical setup. The wealth equation is governed by the SDE (4.1)

         dX s = [r s X s + θ ′ s u s ]ds + u ′ s dW s , s ∈ [t, T ], X t = x t ,
where r is the (bounded) deterministic interest rate function, and θ is the essentially bounded stochastic risk premium process. In particular, x 0 > 0.

The objective at time t with state X t = x t is to minimize

J(t, x t ; u) △ = 1 2 Var t (X T ) -γ t (x t )E t [X T ] (4.2) = 1 2 E t [X 2 T ] -(E t [X T ]) 2 -µ 1 x t E t [X T ].
There are two sources of time-inconsistency in this model, one from the variance term and the other from the state-dependent tradeoff between the mean and the variance. We suppose that the portfolio constraint K is a convex cone here.

The FBSDE (2.1) and (3.1) specializes to

(4.3)                  dX * s = [r s X * s + θ ′ s u * s ]ds + (u * s ) ′ dW s , X * 0 = x 0 , dp(s; t) = -r s p(s; t)ds + k(s; t) ′ dW s , p(T ; t) = X * T -E t [X * T ] -µ 1 X * t ,
and the process Λ(s; t) in condition (3.9) is Λ(s; t) = p(s; t)θ s + k(s; t).

We require that (4.4) Λ(t; t), v tu * t ≥ 0.

Existence

In this subsection, we construct a solution to (

Let us first assume the following Ansatz:

p(s; t) = M s X * s -E t [M s X * s ] -ρ s µ 1 X * t ,
with

dM s = -F M,U (s)ds + U ′ s dW s , and 
ρ s = e T s rvdv . Applying Itô's formula to M s X * s , we get d(M s X * s ) = (-F M,U (s) + r s M s )X * s + (θ s M s + U s ) ′ u s ds + (X * s U s + M s u s ) ′ dW s ,
and then

dE t [M s X * s ] = E t (-F M,U (s) + r s M s )X * s + (θ s M s + U s ) ′ u s ds. Hence k(s) = X * s U s + M s u s , and 
p(t; t) = -ρ t µ 1 X * t .
Then (4.4) becomes

-ρ t µ 1 θ t X * t + X * t U t + M t u t , v t -u * t ≥ 0.
We will construct a solution with X * t ≥ 0, thus

u * t = Proj K M -1 t (ρ t µ 1 θ t -U t ) X * t .
Denoting

α t = Proj K M -1 t (ρ t µ 1 θ t -U t ) ,
and coming back to (4.3), we get:

F M,U (s) = 2r s M s + (θ s M s + U s ) ′ α s .
To proceed, let us recall some facts about bounded-mean-oscillation (BMO) martingales; see Kazamaki [START_REF] Kazamaki | Continuous Exponential Martingales and BMO[END_REF]. The process 

Z • W △ = • 0 Z ′ s dW s is a BMO martingale if and only if there exists a constant C > 0 such that E T τ |Z s | 2 ds F τ ≤ C
= E T (V • W ), W Q t △ = W t - t 0 V s ds is a standard Brownian motion, and Z • W Q is a BMO martingale.
dM s = -2r s M s + (θ s M s + U s ) ′ Proj K M -1 s (ρ s µ 1 θ s -U s ) ds + U ′ s dW s , M T = 1, admits a solution (M, U) ∈ L ∞ F (0, T ; R) × L 2 F (0, T ; R d ) satisfying M ≥ c for some constant c > 0. Moreover, U • W is a BMO martingale.
Proof: We can prove the existence by a truncation argument together with a Girsanov transformation.

Let c > 0 be a given number to be chosen later. Consider the following quadratic BSDE:

(4.6)          dM s = -2r s M s + θ s (M s ∨ c) + U s ′ Proj K (M s ∨ c) -1 (ρ s µ 1 θ s -U s ) ds + U ′ s dW s , M T = 1.
This BSDE is a standard quadratic BSDE. Hence there exists a solution (M c , U c ) ∈

L ∞ F (0, T ; R) × L 2 F (0, T ; R d ),
and U c • W is a BMO martingale; see [START_REF] Kobylanski | Backward stochastic differential equations and partial differential equations with quadratic growth[END_REF] and [START_REF] Morlais | Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem[END_REF]. We can rewrite the above BSDE as, by noticing that θ

′ s Proj K (θ s ) = |Proj K (θ s )| 2 because K is a convex cone, (4.7)          dM c s = -(2r s M c s + ρ s µ 1 |Proj K (θ s )| 2 )ds + (U c s ) ′ [dW s -β s ds], M c T = 1,
where

β s = Proj K (M c s ∨c) -1 (ρ s µ 1 θ s -U c s ) + θ ′ s Proj K (ρ s µ 1 θ s -U c s ) -Proj K (ρ s µ 1 θ s ) |U c s | 2 U c s 1 {U c s =0} .
It is easy to see that |β| ≤ C(1

+ |U c |), hence β • W is a BMO martingale.
As β • W is a BMO martingale, there exists a new probability measure Q such that

W Q t = W t - t 0 β s ds is a Brownian motion under Q.
Hence,

M c s = E Q s e 2 T s rtdt + T s ρ v µ 1 e 2 v s rtdt |Proj K (θ v )| 2 dv ,
from which we deduce that there exists a constant η > 0 independent of c such that M ≥ η.

Taking c = η, we obtain a solution.

Q.E.D.

Now we can state our main existence theorem:

Theorem 4.2
The following feedback

u * s = Proj K M -1 s (ρ s µ 1 θ s -U s ) X * s is an equilibrium strategy. Proof: Set dX * s = r s X * s + θ ′ s Proj K M -1 s (ρ s µ 1 θ s -U s ) X * s ds + Proj K M -1 s (ρ s µ 1 θ s -U s ) X * s ′ dW s , X * 0 = x 0 ; u * s = Proj K M -1 s (ρ s µ 1 θ s -U s ) X * s , p(s; t) = M s X * s -E t [M s X * s ] -ρ s µ 1 X * t , and 
k(s) = X * s U s + M s u * s .
Then, X * s > 0, and

dX * s = [r s X * s + θ ′ s u * s ]ds + (u * s ) ′ dW s , X * 0 = x 0 .
Let us now prove that u * is in

p>2 L p F (0, T ; K). Applying Ito's formula to M s (X * s ) 2 , we obtain (recall that α s = Proj K M -1 s (ρ s µ 1 θ s -U s ) ), d M s (X * s ) 2 = -(X * s ) 2 2r s M s + (θ s M s + U s ) ′ α s ds + (X * s ) 2 U ′ s dW s + 2M s [r s + θ ′ s α s ] + M s |α s | 2 (X * s ) 2 ds + 2M s α ′ s (X * s ) 2 dW s + 2(X * s ) 2 U ′ s α s ds = θ s + U s M s ′ α s + |α s | 2 M s (X * s ) 2 ds + M s (X * s ) 2 2α s + U s M s ′ dW s .
As K is a convex cone,

a ′ Proj K (a) = |Proj K (a)| 2 ,
from which we deduce that

d M s (X * s ) 2 = 1 + M -1 s ρ s µ 1 θ ′ s α s M s (X * s ) 2 ds + M s (X * s ) 2 2α s + U s M s ′ dW s . Hence M t (X * t ) 2 = M 0 x 2 0 e t 0 (1+M -1 s ρsµ 1 )θ ′ s αsds E 2α + U M • W t .
From John-Nirenberg's inequality (see Kazamaki [14, Theorem 2.2, p.29]), we deduce that there exists ε > 0 such that E e ε T 0 |αs| 2 ds < +∞. Thus, e

T 0 (1+M -1 s ρsµ 1 )θ ′ s αsds ∈ p>1 L p . Moreover, as (2α + U M ) • W is a BMO martingale, sup t E 2α + U M • W t ∈ p>1 L p . As M ≥ c > 0, we deduce that sup t |X * t | is in p>2 L p , and then u * is in p>2 L p F (0, T ; K).
Now we calculate dp. Applying Ito's formula to M s X * s , we obtain

d(M s X * s ) = -X * s 2r s M s + (θ s M s + U s ) ′ α s ds + X * s U ′ s dW s +M s [r s + θ ′ s α s ]X * s ds + M s α ′ s X * s dW s + X * s U ′ s α s ds = -r s M s X * s ds + k(s) ′ dW s ,
and then

dp(s; t) = -r s M s X * s ds + k(s) ′ dW s + r s E t [M s X * s ]ds + r s ρ s µ 1 X * t ds = -r s p(s; t)ds + k(s) ′ dW s .
Hence (X * , u * , p, k) is a solution to (4.3), and (4.4) is easily checked.

Q.E.D.

Uniqueness

Theorem 4.3 The following feedback

u * s = Proj K M -1 s (ρ s µ 1 θ s -U s ) X * s
is the unique equilibrium strategy.

Proof: Suppose that (X, u, p, k) is a solution to (4.8)

                 dX s = [r s X s + θ ′ s u s ]ds + (u s ) ′ dW s , X 0 = x 0 , dp(s; t) = -r s p(s; t)ds + k(s; t) ′ dW s , p(T ; t) = X T -E t [X T ] -µ 1 X t ,
and the process Λ(s; t) in condition (3.9) is Λ(s; t) = p(s; t)θ s + k(s; t).

We require that (4.9) Λ(t; t), v tu t ≥ 0.

There exist two adapted processes α + and α + with 0 ≤ α + ≤ 1, -1 ≤ α -≤ 0 and 

α + -α -= 1, such that X + t = α + (t)X t ,
′ M-1 s Proj K (ρ s µ 1 θ s -Ũs ) α + (s) +Proj K -(ρ s µ 1 θ s -Ũs ) α -(s) ds + Ũ′ s dW s .
We note that

(θ s Ms ) ′ M-1 s Proj K (ρ s µ 1 θ s ) α + (s) + Proj K (-ρ s µ 1 θ s ) α -(s) = θ ′ s Proj K (ρ s µ 1 θ s ) α + (s) + Proj K (-ρ s µ 1 θ s ) α -(s) = ρ s µ 1 [|Proj K (θ s )| 2 α + (s) -|Proj K (-θ s )| 2 α -(s)] ≥ 0.
Applying the same method as that of Lemma 4.1, the quadratic BSDE (4.10) admits a Applying the same method as in [START_REF] Hu | Time-inconsistent stochastic linear-quadratic control: characterization and uniqueness of equilibrium[END_REF], we deduce that p(s; t) = 0 and k(s) = 0. Therefore

solution ( M , Ũ ) ∈ L ∞ F (0, T ; R) × L 2 F (0, T ; R d ) satisfying M ≥ c for some constant c > 0. Moreover, Ũ • W is a BMO martingale. Let us take any such solution ( M, Ũ ). It is important to note that M-1 s Proj K (ρ s µ 1 θ s -Ũs )X s = M-1 s Proj K (ρ s µ 1 θ s -Ũs ) α + (s) + Proj K -(ρ s µ 1 θ s -Ũs ) α -(s) X s = αs X s , where αs = M-1 s [Proj K (ρ s µ 1 θ s -Ũs ) α + (s) + Proj K -(ρ s µ 1 θ s -Ũs ) α -(s)]. Setting p(s; t) = p(s; t) -Ms X s -E t [ Ms X s ] -ρ s µ 1 X t , and 
u t = αt X t ,
and then X t > 0, α + = 1, α -= 0.

As X t > 0, replacing ( M , Ũ) by (M, U), and using the above procedure again, we deduce then

u s = Proj K M -1 s (ρ s µ 1 θ s -U s ) X s ,
and we conclude the proof.

Q.E.D.

From the above theorem, we deduce immediately the uniqueness of solution to BSDE (4.5).

Corollary 4.4

The solution to BSDE (4.5) is unique.

Proof: Let ( M , Ū) be another such solution. Then from the above theorem, we deduce that Proj K M -1 s (ρ s µ 1 θ s -U s ) X * s = Proj K M-1 s (ρ s µ 1 θ s -Ūs ) X * s .

As X * s > 0, we deduce that, Proj K M -1 s (ρ s µ 1 θ s -U s ) = Proj K M-1 s (ρ s µ 1 θ s -Ūs ) , from which we deduce the uniqueness of solution.

Q.E.D.

Deterministic Risk Premium

Let us first consider the case when the risk premium is a deterministic function of time.

Then U = 0 and

M s = e 2 T s rvdv 1 + µ 1 T s e -T v rzdz |Proj K (θ v )| 2 dv .
The equilibrium strategy is given by

u * s = µ 1 e T s rvdv
M s Proj K (θ s )X * s .

In the appendix, we obtain that the precommitted optimal control for the problem starting at t = 0 is also in an affine feedback form u * pre (s, x) = -Proj K (θ s )x + e s 0 rvdv x 0 + µ 1 x 0 e T 0 (|Proj K (θv)| 2 -rv)dv Proj K (θ s ).

In [START_REF] Bensoussan | Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting[END_REF], the equilibrium is defined for the class of feedback controls as in [START_REF] Björk | Mean-variance portfolio optimization with state dependent risk aversion[END_REF]. Therein the equilibrium strategy is derived in a linear feedback form u * f be t = c f be t X * t with c f be t uniquely determined by an integral equation and iterated by numerical method. However, we can show that the linear coefficient of our equilibrium above is not a solution of the integral equation in [START_REF] Bensoussan | Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting[END_REF]. This implies the difference between the two definitions of equilibrium (open-loop and feedback).

To compare the performance of these two different equilibrium controls, together with the precommitted optimal control at time t = 0, we calculate J(0, x 0 ; u) for u = u * , u * f be , and u * pre , respectively. Denote c s = µ 1 e T s rv dv

Ms

Proj K (θ s ), then it is an easy exercise to get 

Example 1 . 1

 11 Let λ > 0 be a constant. Then we consider the following dynamic meanvariance portfolio problem(1.1) 

Proof:

  Define the function ψ(•) as the unique continuous solution to the following matrixvalued ordinary differential equation (ODE) dψ(t) = ψ(t)A(t) ′ dt, ψ(T ) = I n , where I n denotes the n × n identity matrix. It is clear that ψ(•) is invertible, and both ψ(•) and ψ(•) -1 are bounded.

  for any stopping time τ ≤ T . For every such Z, the stochastic exponential of Z •W denoted by E(Z • W ) is a positive martingale, and for any p > 1, there exists a constant C p > 0 such that E T τ |Z s | 2 ds p F τ ≤ C p for any stopping time τ ≤ T . Moreover, if Z • W and V • W are both BMO martingales, then under the probability measure Q defined by dQ dP

Lemma 4 . 1

 41 The following quadratic BSDE(4.5) 

X * T = x 0 e T 0

 0 (rs+c ′ s θs-|cs| 2 2 )ds+ T 0 c ′ s dWs . Hence E [X * T ] = x 0 e T 0 (rs+c ′ s Proj K (θs))ds , Var(X * T ) = x 2 0 e 2 T 0 (rs+c ′ s Proj K (θs))ds (e T 0 |cs| 2 ds -1), leading to J(0, x 0 ; u * ) = x 2

  Let p(s; t) = ψ(s)p(s; t) + hE t [X * T ] + µ 1 X * t + µ 2 and kj (s; t) = ψ(s)k j (s; t) for j = 1, • • • , d. Then by Itô's formula, on the time interval [t, T ], (p(•; t), k(•; t)) satisfies

	(3.7)

  It is clear that neither the terminal condition nor the coefficients of this equation depend on t; so it can be taken as a BSDE on the entire time interval [0, T ]. We denote its solution as (p(s), k(s)), s ∈ [0, T ]. It follows from the uniqueness of the solution to BSDE

	d	
	s ds +	kj (s; t)dW j s ,
	j=1	
	p(T ; t) = GX * T .	

that (p(s; t), k(s; t)) = (p(s), k(s)) at s ∈ [t, T ] for any t ∈ [0, T ]. As a result, k(s; t) = ψ(s) -1 k(s) := k(s), proving the first claim of the proposition.

Next, from the definition of p(s; t), p(s

  Ms = -2r s Ms + (θ s Ms + Ũs )

	quadratic BSDE:
	d
	(4.10)

and X - t = α -(t)X t . Consider the following

  k(s) = k(s) -(X s Ũs + Ms u s ). from which we deduce that there exists one bounded adapted process A, such thatu t = M-1 t Proj K -p(t; t)θ t -k(t) + (ρ t µ 1 θ t -Ũt )X t ) = M-1 t A t -p(t; t)θ t -k(t) + M-1 t Proj K (ρ t µ 1 θ t -Ũt )X t = M-1 t A t -p(t; t)θ t -k(t) + αt X t . =r s p(s; t) + (θ s + Ũs M-1 s ) ′ A s [-θ s p(s; s) -k(s)] -E t (θ s + Ũs M-1 s ) ′ A s [-θ s p(s; s) -k(s)] ds + k(s) ′ dW s , s ∈ [t, T ],

	After some calculus, we arrive at:
		
	   	dp(s; t)
		
		
		
		
		
		
		
		
	(4.11)	
		
		
		
		
		
		
		
		
		
		
		
		

Then Λ(s; t) = p(s; t) + Ms X s -E t [ Ms X s ]ρ s µ 1 X t θ s + k(s) + X s Ũs + Ms u s ,

and then condition (4.9) becomes: for any v t ∈ K,

[p(t; t)ρ t µ 1 X t ]θ t + k(t) + X t Ũt + Mt u t , v tu t ≥ 0, p(T ; t) = 0.
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Concluding Remarks

In this paper, we consider some time-inconsistent LQ control problem under constraint.

We define the equilibrium strategy via spike perturbation of open control and deduce the necessary and sufficient condition by applying the stochastic maximum principle, following the ideas of [START_REF] Hu | Time-inconsistent stochastic linear-quadratic control[END_REF][START_REF] Hu | Time-inconsistent stochastic linear-quadratic control: characterization and uniqueness of equilibrium[END_REF]. LQ control problem with control constraint is useful because of its wide applications in finance and economics. Our necessary and sufficient conditions are general enough to cover many interesting time-inconsistent LQ control problem under various constraint. We also shed light on important application in mean-variance portfolio under convex cone constraint and present its explicit equilibrium. In particular, we can treat the random coefficient case, while the HJB method used by Bensoussan, Wong, Yam and Yung [START_REF] Bensoussan | Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting[END_REF] seems not applicable in random coefficient case.

A Appendix.

Precommitted Mean-Variance Portfolio with Cone Constraint

We consider the precommitted optimal control problem at time t = 0, (A.1) min J(t, x 0 ; u)

From the existing study on precommitted mean-variance problems such as [START_REF] Hu | Constrained stochastic LQ control with random coefficients, and application to portfolio selection[END_REF][START_REF] Li | Continuous-time Markowitz's model with constraints on wealth and portfolio[END_REF][START_REF] Li | Dynamic mean-variance portfolio selection with no-shorting constraints[END_REF], it follows that, when the parameters r • and θ • are deterministic, we can get the explicit optimal value for the precommitted problem (A.1):

Furthermore, the corresponding optimal control can be written as the affine feedback con-