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Devices using power electronics are ubiquitous today and they are unfortunately intrinsic sources of electromagnetic interference.
To address these electromagnetic compatibility problems at the initial design phase, a predictive method based on multipole expansion
in spherical harmonics of the near field around each device was developed. To determine the basic expansions of a given source,
a dedicated measurement bench has been designed. In this paper, some important issues of this approach and the measurement
bench are studied, especially the error analysis on the measurements and the inverse problems. Some experimental results are also
shown in the end.

Index Terms—Electromagnetic Compatibility, spherical harmonic, power electronics devices, quasi-static fields.

I. INTRODUTION

W ITH the advance of technology, electronic devices are
moving in the direction of smaller size and increased

power, which results in an increase of the electromagnetic
interference (EMI) between two power electronic systems.
These EMI may even cause malfunctions of the equipment.
Hence, the issue of electromagnetic compatibility (EMC)
becomes an essential activity in the conception of a new
device. Conventionally, for the sake of the verification of the
EMC norms, a large quantity of experimental tests is necessary
after the production of a prototype. It causes additional costs
and significant delays if the required standards are not reached.
The origin of the problems is usually the magnetic near-
field coupling. This coupling can be between components
(intra system coupling) and also between systems (inter system
coupling). In order to solve this problem, a predictive method
has been developed at Ampère Laboratory [1]. This method
is based on the multipole expansion of the magnetic filed
around the Device Under Test (DUT). The DUT can then be
represented by an equivalent punctual source, which allows
calculating the near-field coupling with other components.

A new automated measurement bench has been designed,
dedicated to magnetic near-field measuring, which will be
detailed later. Some related researches and experimental mea-
surements will also be shown.

II. MULTIPOLE EXPANSION IN SPHERICAL HARMONICS

A commonly used approach to determine the magnetic field
development is to introduce the magnetic scalar potential ψ :

B = −µ0∇ψ (1)

with B the magnetic induction field. In this work, the fre-
quency range starts from 20 kHz to 30 MHz. In this case, the
quasi-static approximation is suitable because the size of the
system is quite small compared to the wave length (d < 0.1λ).
Neglecting the displacement current and supposing that the

wave only propagates in the air (σ = 0), the Laplace equation
can be applied:

∇ · B = −∇2ψ = 0 (2)

By separating the variables in spherical coordinates (r, θ, ϕ),
the magnetic field for a point outside the sphere of validity (the
minimal sphere which encloses the device) can be expressed
in a multipole expansion [2]:

B(r, θ, ϕ) =
+∞∑
n=1

+n∑
m=−n

−µ0

4π
Qnm∇

(
1

rn+1
Ynm(θ, ϕ))

)
(3)

where r is the distance from the origin of the expansion to the
point where the field is expressed, Qnm are the coefficients
characterizing the source, Ynm is the real spherical harmonic
(SH) functions of nth degree and mth order given by [3].

Once the harmonic coefficients of the two systems are iden-
tified, the inductive coupling between them can be determined
through the calculation of the mutual inductance:

MAB =
1

µ0IAIB

+∞∑
n=1

+n∑
m=−n

(−1)m(AQ1n,−m · BQ1nm) (4)

where IA and IB are the currents circulating in the source A
and B. It is important that the two developments in SH have the
same origin, which can be achieved by the Addition Theorem
for Spherical Harmonics [4]. The accuracy of the source
representation and mutual inductance calculation increase with
Nmax. The truncation of the terms higher than Nmax will
necessarily engender a bias between the measurement and the
reconstructed model. Thus, the choice of Nmax needs a lot of
prudence, which will be shown in VI.

III. PRESENTATION OF THE NEW AUTOMATED
MEASUREMENT BENCH

A new automated measurement bench was developed at
Ampère laboratory. This bench allows two rotational move-
ments via: a PVC arm in the vertical direction (θ) and a source
support in the horizontal direction (ϕ) as shown in Fig. 1.
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Fig. 1. Automated measurement bench

These rotations are controlled by a JAVA program and realized
by two stepper motors and pulleys which are dedicated to
avoid the parasitic influence. The DUT is placed at the center
and is supplied by a Vector Network Analyzer (VNA). The
voltage ratio between the sensor and the DUT is measured.
The measurement bench is surrounded by the electromagnetic
absorber, which allows to reduce the environmental noise. A
set of measurements can be done with the measuring positions
uniformly distributed on a spherical surface. The radiation of
the DUT can then be identified and expressed in multipole
expansion. Meanwhile, the length of the measuring arm (l) and
the dimension of the magnetic flux sensor can both be changed
according to the DUT size. These two parameters have a direct
influence on the calculation accuracy, as it will be detailed in
the followed section. Due to mechanic restrictions, the vertical
measuring range (θ) is limited between −120◦ and 120◦.

IV. THE OPTIMAL DIMENSION OF THE SENSOR

In the previous work, a measurement bench has been
developed which is based on spatial filtering [5]. Therefore,
this bench was limited to the fourth degree (Nmax = 4) and
a large quantity of measurements is necessary to identify the
non-zero-order component. As an inheritance of the former
bench, we chose a circular coil as the sensor to measure the
magnetic flux. The question now is how to choose the size
of the coil. Ideally, the sensor dimension has no influence on
the identification of the DUT. However, the uncertainties must
be considered in experimental measurements. In this research,
the involved uncertainties consist: sensor position (≈ 0.1◦),
DUT position (≈ 2 mm), DUT orientation (≈ 0.5◦), arm
length (≈ 5 mm) and the environmental noise (≈ 10−10 Wb).
The environmental noise is characterized by the measurement
without sources, which is considered as a white noise. An
academic example with several vertical coils is studied, which
is actually the assemblage of the canonical sources of the first
four degrees. Thanks to the axi-symmetry, the identification
of the DUT needs only the vertical measurements. With all
the mentioned uncertainties, a large quantity of samples were
achieved for each sensor size. The sensors are always placed
20 cm away from the DUT center in the first place. The
corrected sample standard deviation is calculated for each
harmonic component (Fig. 2) as a function of the radius of
the sensor. In order to make the comparisons more visible,
the deviations are all normalized to the same scale. It is noted
that the deviations decrease at the beginning between 1 cm to
6 cm. Because the more the sensor size increases, the more
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Fig. 2. Normalized sample standard deviations of each SH component as a
function of the sensor dimension
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Fig. 3. The sum of the normalized sample standard deviation as a function
of the sensor dimension

magnetic flux will be captured, the more the signal-to-noise-
ratio will be important. However, the sensor size determines
also the sphere of measurement. There is a risk of losing
information of high orders when the sphere of measurement
is too large. For this reason, the deviations on the components
of third and fourth degree begin to increase from 8 cm. In
order to find a compromise between the signal-to-noise-ratio
and the information of high degrees, the summation of all
the normalized standard deviations of the first four degrees
is shown in Fig. 3. It is worth noting that the sums of the
deviations are in the form of a parabola, which possesses a
minimum for a given sensor size. We can also see that the
closer the measurement is (l = 15 or 10 cm), the more we
need to reduce the size of the sensor. In fact, when the sensor
is closer to the DUT, the quantity of the captured magnetic flux
increases, so the influence of the sensor size on the signal-to-
noise-ratio will be less important. From here on, in this paper,
the radius of the sensor is fixed to 5 cm.

V. ITERATIVE NORMALIZATION TO DECREASE THE
CONDITION NUMBER

Once a set of measurements is done for a DUT, the
identification is possible. The problem is a linear system which
can be expressed in the matrix form:

A · X = B (5)

where A contains the SH functions, B represents the measure-
ments of the magnetic flux and X contains the SH coefficients
of the DUT to be identified. There are a lot of methods to
invert the system and find X0, which is the nearest solution to
the measurement. The condition number, which is the ratio
between the largest and the smallest singular value of A,
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represents the sensibility of the system. Taking the positions
of measurement shown in Fig. 4 as an example, the obtained
condition number is 3·105, making the system ill-conditioned.
On the one hand, it means that the output value of the system
could vary enormously with a small change in the input
argument. On the other hand, it means that among all the
measurements, some carry no information in the calculation.
That is why the condition number is a very important property
for a linear system.

There exist many methods of regularization to reduce the
condition number of the ill-conditioned system. However, the
effects are sometimes not sufficient because the value of each
row is not taken into account in calculating the norm of each
column. The natural idea is to normalize the lines after the
columns. However, the normalization of the lines inevitably
degrades those of the columns and vice versa. This is why
an iterative process is used, which normalizes columns and
lines until the condition number of the matrix stabilizes to
its minimum. This method is frequently used to obtain better
conditioned linear systems[6][7].

Each iteration consists of finding respectively two new
matrices of normalization of columns and rows: W(i)

c and
W(i)
l . After the ith iteration, the solution of X is given by

[6]:

X0 =
∏
i

W(i)
c ·

[∏
i

W(i)
l · A ·

∏
i

W(i)
l

]+
·
∏
i

W(i)
c · B (6)

where + represents the generalized inverse. This algorithm
shows fast linear convergence with an asymptotic rate of about
0.5. The condition number converges and is reduced to about 7
after 10 iterations. At this point, our system is well-conditioned
and thus much more insensitive to the noises and measurement
uncertainties.

VI. THE RESIDUAL OF THE MEASUREMENT

The residual in the least squares method represents the bias
of the model estimation compared to the measurements, which
could be a criterion of the estimation quality [8]. The vector
of residual is defined by:

R = A · X0 − B (7)

R is a random variable with expected value of zero and vari-
ance E

{
R · Rt

}
, which gives the distribution of the deviation

between the model and the measurements and is an important
statistical tool for system diagnosis. On the one hand, it is
easier to detect and eliminate erroneous measurements, for
example when the residuals of some measurements are much
more important than others. On the other hand, the residual can
help to determine the maximal degree Nmax for a multipole
expansion. Let us take a coil with a radius of 5 cm as an
example. Due to the axi-symmetry of the source, only the zero-
order components exist. 25 vertical measurements from 0◦ to
120◦ are performed at a distance of 10 cm from the DUT.
The sensor is always orthogonal to the spherical surface of
measurement. In Fig. 5, the different curves are the estimated
model with different maximal degree Nmax. It is noted that
as Nmax increases, the curve fits better and better to the
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Fig. 4. The measured magnetic flux around two circular coils with different
sizes, the black points represent the positions of measurement.

Angle (◦)
0 20 40 60 80 100 120

M
ag

ne
tic

flu
x

(W
b)

×10−9

-10

-8

-6

-4

-2

0

2

4

6
Measurement
Nmax=1
Nmax=2
Nmax=3
Nmax=4

Fig. 5. The measurements of the magnetic flux and the estimated model
reconstructed by SH with different degrees

measurements and they practically superpose when Nmax = 4.
However, this visual method is not accurate and it becomes
unpractical when the non-zero-order components exist with
the spatial measurements. This is why the introduction of the
residual is so significant.

In Table I, the standard deviation of the residual is shown
as a function of Nmax. The standard deviation decreases with
Nmax and tends to a constant. It has been mentioned in
section III that the environmental noise is a white noise with
an magnitude order of 10−10 Wb. Hence, it is meaningless
to continue to increase Nmax if the standard deviation of
the residual is already smaller than the noise. Indeed, if
the standard deviation of the residual is much smaller than
the environmental noise, there could be deviations in the
high degree SH components. In the case of the circular coil,
Nmax = 4 is appropriate for the identification.

VII. EXPERIMENTAL RESULTS

In order to test and verify the measuring bench, two printed
circular coils with radius of 5 and 3 cm are identified in
spherical harmonics (Fig. 4) with the shown positions of
measurement. The mutual inductance between them along
different directions is also calculated and compared to the
analytical formulas [9]. The measured magnetic flux is shown,
which proves the axi-symmetry of the two coils. However, to
ensure that the power wires are taken into account, the DUTs
are identified with all-order components by the approaches of
section V. Afterwards, by applying equation (4), the mutual in-
ductance between the two coils can be calculated with respect
to their relative position. In the Fig. 6, the coils are positioned
respectively vertical and horizontal. In both situations, the
mutual inductance is obtained in three ways: analytical, direct
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TABLE I

Nmax 1 2 3 4 5 6

Standard deviation of the residual 1.1 · 10−9 7.1 · 10−10 1.2 · 10−10 5.9 · 10−11 1.3 · 10−11 1.1 · 10−11
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Fig. 6. The mutual inductance between two circular coils as a function of
the distance between them: a) vertical; b) horizontal
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Fig. 7. a) the toroid inductor, one-third is powered between A and B; b) its
magnetic induction (T); c) primary SH components of this toroid inductor

measurement and SH approach. It is noted that the direct
measurements correspond perfectly to the analytical results
and the accuracy of the SH approach increases with the
maximal degree considered (Nmax). When Nmax = 4, the
three curves almost superpose and the relative error between
the analytical and the SH approach is much lower than former
results obtained in [1]. However, exceptions still exist such as
Nmax = 5 for the vertical case a). The accuracy is worse
than Nmax = 4 when the two sources are very close to each
other. Indeed the fifth degree is affected by the environmental
noise to a great extent in minimizing the standard deviation as
mentioned in section VI. And the high degree SH components
account for a large proportion in the near-field computation
because of the term of rn+1 in equation (3). Consequently,
the mutual inductance with Nmax = 5 is less accurate than
Nmax = 4 when the coils are very close. The process is strictly
the same for the identification of the complex sources, such
as a toroid inductor as shown in the Fig. 7a). Only a third part
of the toroid inductor is powered. After the measurements all
around the DUT, it is noted that for reducing the standard
deviation of the residual until necessary (smaller than 10−10

Wb), Nmax must be equal to or greater than 5. The magnetic
radiation 5 cm away from its center is also shown in Fig. 7b),
which is reconstructed by its SH components as shown in c).
With these SH components, the mutual inductance between
this toroid inductor and any other devices can be computed in
terms of their relative position.

VIII. CONCLUSION AND PERSPECTIVE

In this paper, a new automated bench is presented, which
is based on the measurement of magnetic near-field. The
multipole expansion is applied allowing not only the iden-
tification of any radiation source, but also the calculation of
the inductive couplings with other devices. By studying the
accuracy of the bench, the optimal dimension of the sensor
is deduced and the introduction of the residual can help us
to choose the Nmax according to the environmental noise. In
the end, some experimental results are shown, including the
mutual inductance between two printed circular coils and the
identification of a toroid inductor. Due to the rn+1 term in
equation (3), in the measurement, it is noticed that when the
sensor is further from the DUT, the accuracy of the low degree
SH components is better than the high degree and it is contrary
when the sensor is closer. Our future work is to take advantage
of this propriety by measuring the DUT by several steps with
different arm lengths. The Bayesian method could be applied
to insert the results of the previous measurements to the new
measurements as a prior information. The prior information
could also be the knowledge of the geometry of the DUT or
mechanic uncertainties in the measurements [10].

This work is supported by the French Agence Nationale de
la Recherche (PolHar-CEM project : ANR-14-CE22-0009).
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propulsion navale,” Ph.D. dissertation, INP, 2006.

[9] E.Durand, Magnetostatique. Masson et Cie Editeurs, 1968.
[10] L. Schmerber, L. L. Rouve, and A. Foggia, “Spherical harmonic iden-

tification using a priori information about an electrical device,” IEEE
Transactions on Magnetics, vol. 43, no. 4, pp. 1781–1784, April 2007.


