Christophette Blanchet-Scalliet

Céline Helbert

Mélina Ribaud
email: melina.ribaud@doctorant.ec-lyon.fr

Céline Vial

Four algorithms to construct a sparse kriging kernel for dimensionality reduction

Keywords: metamodel, isotropic, anisotropic, clustering

In the context of computer experiments, metamodels are largely used to represent the output of computer codes. Among these models, Gaussian process regression (kriging) is very efficient see e.g Snelson (2008). In high dimension that is with a large number of input variables, but with few observations the estimation of the parameters with a classical anisotropic kriging becomes completely wrong. The number of the parameters to estimate is the same as the number of inputs and it implies that the space of the optimization becomes too big compare to the available informations. One way to overcome this drawback is to use the isotropic kernel which is more robust because it estimates not as many parameters. However this model is too restrictive. The aim of this paper is twofold. Our first objective is to propose a smooth kernel with as few parameters as warranted. We propose a kernel which is a tensor product of few isotropic kernels built on well-chosen subgroup of variables. The main difficulty is to find the number and the composition of groups. Our second objective is to propose algorithmic strategies to overcome the difficulty of finding the number and the composition of the groups. Four forward strategies are proposed. They all start with the simplest isotropic kernel and stop when the best model according to BIC criterion is found. They all show very good accuracy results on simulation test cases. But one of them is the most efficient. Tested on a real data set, our kernel shows very good prediction results.

Introduction

Review : Réorganiser le paragraphe en italique, je vois pas trop comment réorganiser.

Complex physical phenomena are more and more studied through numerical simulations. These numerical models are able to mimic with a high accuracy the real experiments so they predict the physical measures of interest (outputs) very precisely. Then, we can use them as a replacement for real experiments because the numerical simulations are less costly in primary materials. However, these simulations stay often time-consuming.

The idea to overcome this drawback is to replace the costly numerical model by a metamodel. A metamodel is a less expensive model adjusted on a few well-chosen simulations. It can be shown that among all the possible metamodels, Gaussian process regression (kriging) is a very efficient metamodel. Lots of examples of the use of a metamodel can be found in litterature, see e.g. [START_REF] Marrel | An efficient methodology for modeling complex computer codes with Gaussian processes[END_REF], [START_REF] Antoniadis | Spatio-temporal metamodeling for West African monsoon[END_REF] and [START_REF] Sudret | Meta-models for structural reliability and uncertainty quantification[END_REF]. A detailed example of kriging is the helicopter test displayed in [START_REF] Booker | Optimization using surrogate objectives on a helicopter test example[END_REF].

Furthermore [START_REF] Villa-Vialaneix | A comparison of eight metamodeling techniques for the simulation of n 2 o fluxes and n leaching from corn crops[END_REF] shows a comparative study of eight metamodeling techniques for the simulation of N 2 0 fluxes and N (Nitrogen) leaching from corn crops. In this context, Splines and kriging have the best performances for small and medium training datasets. In addition, kriging is able to model highly complex data, see e.g. [START_REF] Santner | The design and analysis of computer experiments[END_REF] and [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF]. More precisely kriging is a spatial interpolation technique which aims at predicting the outputs using an adapted underlying correlation function between design points. In fact we assume that the output of interest is a realization of a Gaussian process (GP) constructed as a sum of a deterministic part (often called the trend) and a stochastic part assumed to be a zero-mean stationary GP, see [START_REF] Roustant | Dicekriging, diceoptim: Two r packages for the analysis of computer experiments by kriging-based metamodeling and optimization[END_REF].

In this paper, we focus on the stochastic part and more precisely on the choice of the covariance kernel structure. In general, people use an anisotropic kernel that is a tensor product of as many 1D kernels as the number of inputs. Each kernel being parameterized by a spatial correlation length, called the range parameter. In high dimension with a very restricted number of data points the estimation of range parameters becomes quite difficult. That's why in this context, an isotropic kernel could be a good alternative. This kernel is a function of the euclidean distance defined on the entire input space, so it depends only on one range parameter. However isotropic kernels are too restrictive, given that spatial variations are controlled by only one range parameter. The idea of this paper is to automatically construct a data-driven kernel that is intermediate between these two extremal choices.

A review of the literature shows that one way to improve performance of kriging is to adapt the covariance structure to each specific case, see e.g. [START_REF] Durrande | Étude de classes de noyaux adaptées à la simplification et à l'interprétation des modèles d'approximation[END_REF] and [START_REF] Ginsbourger | On ANOVA decompositions of kernels and Gaussian random field paths[END_REF]. For example [START_REF] Paciorek | Spatial modelling using a new class of nonstationary covariance functions[END_REF] create a new class of covariance functions (kernels) allowing the model to adapt itself to spatial surface whose variability changes with location. Likewise, [START_REF] Padonou | Polar Gaussian processes and experimental designs in circular domains[END_REF] in a microelectronic framework define a GP model which inserts the geometry of the wafer in the kernel. That's why they introduce the polar GP defined with respect to polar coordinates: the covariance function is a sum of a product kernel of radius and a product kernel of polar angles. In the case of multiple outputs [START_REF] Fricker | Multivariate Gaussian process emulators with nonseparable covariance structures[END_REF] define a nonseparable covariance structure for GP with the aim of well representing the different simulator outputs and the joint uncertainty. In our case, the idea is to use a covariance structure adapted to high dimension In general the covariance function only depends on the range parameters and on the sill parameter (variance) which have to be estimated. But range parameters estimation becomes very tricky in high dimension. To overcome this difficulty, [START_REF] Yi | Variable selection with penalized Gaussian process regression models[END_REF] proposed a penalized kriging that mimics the penalization techniques used in linear regression. In fact, he penalizes the likelihood by the norm of the range parameters vector. This methodology selects the variables that have no effect on the covariance function and the associate range parameters are blowing up to infinity. In order to solve the dimensionality of the problem, [START_REF] Binois | Uncertainty quantification on pareto fronts and high-dimensional strategies in bayesian optimization, with applications in multi-objective automotive design[END_REF] proposes different sparse and specific covariance kernels based on expert information or on the work of [START_REF] Muehlenstaedt | Data-driven Kriging models based on FANOVA-decomposition[END_REF] and [START_REF] Durrande | Additive covariance kernels for highdimensional Gaussian process modeling[END_REF]. In these articles, they use the ANOVA kernels that are a sum of sub-groups of variables that interact together, see more details in [START_REF] Stitson | Support vector regression with anova decomposition kernels[END_REF] and [START_REF] Gao | Adapting kernels by variational approach in SVM[END_REF]. [START_REF] Muehlenstaedt | Data-driven Kriging models based on FANOVA-decomposition[END_REF] found these groups through a sensitivity analysis computed from the prediction function of an anisotropic kriging. A first problem appears here. Because the number of points is often too restrictive, the quality of the anisotropic kriging can be poor and the result of the sensitivity analysis such as the proposed partition can be totally wrong. A second problem of the method proposed by Muehlenstaedt and coauthors is that the number of parameters of the final kernel can be higher than that of the anisotropic kriging. In [START_REF] Binois | Quantifying uncertainty on Pareto fronts with Gaussian process conditional simulations[END_REF] they test different FANOVA constraining them to have fewer range parameters than the anisotropic one and choosing the best kernel among them. But this choice of the covariance structure can not be done automatically.

Finally, we can also find in literature the work of [START_REF] Welch | Screening, predicting, and computer experiments[END_REF] that aims at identifying the active factors. [START_REF] Welch | Screening, predicting, and computer experiments[END_REF] proposes a likelihood-based forward algorithm to determine the most important factors and to build the predictor. In this study a tensor product of power exponential kernels is chosen to catch the function regularity. The dimension of the kernel, i.e. two parameters (range and power) in each direction, is stepwise reduced by making some range parameters equal. In our paper the structure of the kernel is different. It is a tensor product of isotropic kernels by taking an euclidean norm for the distance in each subspace. We propose to use a Matern kernel of order 5/2 that needs only one parameter (range), that models intermediate regularity functions and that gives efficient and good results in industrial cases, see [START_REF] Cornford | Modelling frontal discontinuities in wind fields[END_REF].

The aim of our article is to propose four algorithms that automatically construct from data a sparse kernel adapted to high dimension. The article is structured as follows. In section 2, we introduce the kriging metamodel and the different kernels. In section 3, we present the four algorithms that automatically select the structure of the kernel according to the data. In section 4, we study the behavior of our algorithms on simulation test cases.

Statistical models

This section introduce the kriging, anisotropic and isotropic kernels and finally the new general class of isotropic by group kernel.

Kriging

Let p be the number of input variables. We consider n observations (x i , y i) i=1,...,n where x i is the ith input vector with p coordinates, such that x ∈ R p and where y i is the corresponding output (y i ∈ R). In the following we denote by y = (y 1 , . . . , y n) ′ the vector of the outputs. In kriging we assume that y is a realization of a Gaussian process (Y (x)) x∈R p at points (x 1 , . . . , x n) ′ such that for each x ∈ R p :

Y (x) = m + ϵ(x), (1)
where m ∈ R is the trend, the process (ϵ(x)) x∈R p is a centered stationary Gaussian process with covariance function Cov(ϵ(x)

,ϵ(x ′)) = σ 2 R(x, x ′) = σ 2 r(x -x ′), ∀ (x, x ′) ∈ R p × R p .
In this paper the trend m and the variance σ 2 are assumed to be constant. In this context we want to construct a linear prediction that minimizes the mean-squared prediction error and that guarantees uniform unbiasedness. Under these two constrains, the prediction, see [START_REF] Cressie | Statistics for spatial data[END_REF]), at a point x 0 ∈ R p is given by :

Y (x 0) = m + r(x 0) ′ R -1 (y -m1 n) (2)
and the Mean Square Error (MSE) at point x 0 ∈ R p is given by :

s(x 0) = σ 2 (1 -r(x 0) ′ R -1 r(x 0) ′) (3)
where 1 n = (1, . . . , 1) ′ ∈ R n , R ∈ M n×n is the correlation matrix of the process (Y) at the observation points, r(x 0) ∈ M n×1 the correlation vector between Y (x 0) and the random vector

(Y (x 1), . . . , Y (x n)) ′ .
In the following we will focus on the definition of the correlation function r. First, we introduce the anisotropic kernel :

r(x -x) = p ∏ j=1 ρ θ j (|x j -xj |) , θ = (θ 1 , . . . , θ p) ∈ R p + (4)
where ρ θ j is a correlation function which only depends on the one dimensional range parameter θ j , see e.g [START_REF] Santner | The design and analysis of computer experiments[END_REF] and [START_REF] Stein | Interpolation of spatial data[END_REF]. In the following, we denote the model (1) with kernel (4) as M a . The parameters m, σ 2 and θ are unknown and will be estimated by maximum likelihood. In our industrial case study the output is supposed to be two times continuously differentiable this is why we use a Matern 5/2 kernel usual in that case, see e.g. [START_REF] Cornford | Modelling frontal discontinuities in wind fields[END_REF] . This kernel function is defined by :

∀θ ∈ R + , ∀h ∈ R + , ρ θ (h) = (1 + √ 5|h| θ + 5h 2 3θ 2) exp (- √ 5|h| θ) .
Other examples can be found in [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF]. However, anisotropic kernels contain as many parameters as the number of variables p. In high dimension the estimation of these parameters becomes unstable. To stabilize the estimation an idea is to reduce the number of range parameters. The extremal case is the isotropic kernel, defined as follows for

(x, x ′) ∈ R p : r(x -x) = ρ θ (∥x -x∥ 2) , θ ∈ R + (5)
where ∥.∥ 2 is the euclidian norm on R p . In the following, we denote the model (1) with kernel (5) as M i . In model M i , spatial variations are controlled by only one range parameter. If the value of that parameter is small the process Y fluctuates a lot in all directions. On the contrary if the value of θ is large, the process varies in a very slow way in all directions. That's why, one unique parameter is often too restrictive to characterize the underlying process. In many cases spatial behavior varies from a direction to another. Therefore we introduce in the next section a kernel which is a compromise between the too restrictive isotropic kernel and the too flexible anisotropic one. We call it the isotropic by group kernel.

Isotropic by group kernel

The isotropic by group kernel is defined as follows:

r(x -x) = q ∏ ℓ=1 ρ θ ℓ (∥x -x∥ I ℓ) , θ = (θ 1 , . . . , θ q)∈ R q + (6)
where, q < p is the number of groups. Let I ℓ be the set of indexes in the ℓth group with cardinal |I ℓ | = p ℓ , p ℓ ∈ {1, . . . , p} such that p 1 + . . . + p q = p. We define the norm of the subvector

(x j) j∈I ℓ of the vector x = (x 1 , . . . , x p) ∈ R p by ∥x∥ I ℓ = √ (∑ j∈I ℓ x 2 j)
. In the following, we denote model (1) with kernel (6) as M q . The anisotropic and isotropic kernel are two particular cases of isotropic by group kernel with respectively p groups I ℓ = {ℓ} for ℓ = {1, . . . , p}, and one unique group

I 1 = {1, . . . , p}, ie M p = M a and M 1 = M i .
In appendix, we simulate with the same seed a Gaussian Process in 2 dimensions with an anisotropic and an isotropic kernel (M a and M i) to visualize the impact of the choice of the kernel .

Methodology

In this article we propose four strategies to find simultaneously and automatically the number of groups and the composition of each group. In [START_REF] Yi | Variable selection with penalized Gaussian process regression models[END_REF] and [START_REF] Muehlenstaedt | Data-driven Kriging models based on FANOVA-decomposition[END_REF] the two proposed methodologies to reduce the number of parameters in kriging start with a fully anisotropic kernel. To gain in robustness in high dimensional problems, in the four procedures we introduce, we always start with an isotropic kernel that depends on a unique range parameter and we finish with an isotropic by group kernel. At each stage we compare different models and we choose the best model under a specific criterion. The model parameters are estimated by maximum likelihood, that is:

θ = argmin θ [l(θ; x 1 , . . . , x n , y)] (7)
where l = -log(L) and L is the likelihood function defined by:

L(θ; x 1 , . . . , x n , y) = 1 (2πσ 2) n 2 |R| 1 2 e -(y-mn) t R -1 (y-mn) (8)
where m and σ2 could be writen as functions of θ :

m = (t n R -1 n) -1 t n R -1 y σ2 = 1 n (y -m n) t R -1 (y -m n)
Equation (7) shows that the estimation of the range parameter θ is done by minimizing l. The minimization of l is very difficult due to the nonlinearity of the objective function. We use a classical numerical method names Limited-memory BFGS to handle optimization. A well known drawback of the optimization algorithms is the dependence of the solution on the initialization point. That's why we create the Algorithm 0 that finds a good initial value for θ to minimize l and that gives an estimation of θ. The principle of Algorithm 0 is to first select 10 vectors of parameters θ (θ ∈ R q) that cover space as well as possible and to choose the set of parameters, says θ opt_init , that has the lowest l-value. Then, we minimize l using θ opt_init as initial point and we obtain the estimation of (θ ℓ) ℓ=1,...,q , denoted by θ opt .

Algorithm 0 Likelihood Optimization 1: crit_vrais = 0 10 ; 2: θ M at,init = 0 q×10 , where 0 q×10 is the zero matrix of size q × 10; 3: for k = 1 to 10 do 4:

θ M at,init (k) ⇝ U ([0; +∞] q); 5: crit_vrais(k) ← l M 2 (θ M at,init (k); x 1 , . . . , x n , y 1 , . . . , y n); 6: end for 7: k opt ← argmin k {crit_vrais(k)}; 8: θ opt_init ← θ M at,init (k opt); 9: θ opt ← argmin θ∈D l M 2 (θ opt_init ; x 1 , . . . , x n , y 1 , . . . , y n) with the initialization at θ opt_init .
As we estimate parameters by maximum likelihood, it could then be natural to select the best model under likelihood considerations. However the likelihood is an increasing function of the number of parameters. As a trade off between estimation qualities and sparsity, a penalized likelihood criterion is preferred. In our work, we consider the BIC criterion (see e.g. [START_REF] Schwarz | Estimating the dimension of a model[END_REF]), that is for a model M q with q parameters to estimate θ q :

BIC(θ q , M q) = l Mq (θ q ; x 1 , . . . , x n , y) + q log(n). (9)
In the four strategies, the best model corresponds to the one minimizing the BIC criterion.

Another usual criterion for selecting the best model is based on predictive considerations, called the cross-validation criterion. But this criterion is very time consuming as the estimation in the context of high dimensional data. So we decide to not consider this criterion.

Algorithm 1

General loop: At each step k, if the previous model is composed of k -1 groups, the next one will have k groups. Let M k-1 be the model at step k -1, we note

I 1 = {i 1,1 , . . . , i 1,p 1 }; . . . ; I k = {i k-1,1 , . . . , i k-1,p k-1 }, with p 1 + . . . + p k-1 = p,
the sets of indexes of the variables included in each group. One of these k -1 groups is then divided into two groups. We have J k ways of choosing this group, with J k = ∑ k-1 ℓ=1 J k,ℓ and J k,ℓ is the number of ways of dividing into two groups the set of indexes I ℓ , ℓ = 1, . . . , k -1. We note M 1 k , . . . , M J k k the J k new models. And among these J k models we choose the one minimizing the BIC, says M ℓopt k .

Algorithm 1:

We start with the estimation of the full isotropic model, noted M 1 . We follow the previous procedure and we obtain J 2 models noted M ℓ 2 , ℓ = 1, . . . , J 2 . We estimate the parameter θ of each model and we keep the model M ℓopt 2 that minimizes the BIC. If the BIC of the model M 1 is smallest than the one of M 2 , we stop the algorithm and we choose M 1 as the best model. Otherwise, we set down M 2 = M ℓopt 2 and we build the models M ℓ 3 l = 1, . . . , J 3 and so forth at step 4, 5, We stop the algorithm when M k has a larger BIC than M k . At the end of the algorithm, we obtain the model M q that minimizes the BIC.

Algorithm 1 Find M q 1: We choose θ opt thanks to algorithm 0 for model M 1 . 2: opt_BIC ← BIC(θ opt , M 1); 3: k ← 2; 4: while k ≤ p do 5:

vect_BIC ← 0 J k 6:
for ℓ de 1 à J k do 7:

We choose θ opt thanks to algorithm 0 with the model M ℓ k ;

8:

vect_BIC(ℓ) ← BIC(θ opt , M ℓ k+1); 9:
end for 10:

ℓ opt ← argmin ℓ {vect_BIC};
11:

M k ← M ℓopt k ; 12:
if vect_BIC(ℓ opt) ≥ opt_BIC then 13:

M q ← M k-1 ;

14:

return M q ;

15:

else 16:

opt_BIC ← vect_BIC(ℓ opt);

17: k ← k + 1; 18:
end if 19: end while Algorithm 1 is a quasi-exhaustive algorithm since at each step it browses all the possibilities to divide. But the calculation time grows really fast with the number of inputs p. For example, the first separation, that consists in separating one group in two, estimates 500 models for p = 10 and 524287 for p = 20. That's why we propose several alternative algorithms that take much less time.

Algorithm 2

We propose a faster algorithm close to the forward Algorithm W introduced by [START_REF] Welch | Screening, predicting, and computer experiments[END_REF] that is described in appendix. The direction of Algorithm 2 is both because it has a backward step contrary to Algorithm W. Algorithm W is included in Algorithm 2. We note M s k-1 the model at step k -1 and s k-1 the number of groups. Let

I 1 = {i 1,1 , . . . , i 1,p 1 } ; . . . ; I s k-1 = {i s k-1 ,1 , . . . , i s k-1 ,ps k-1 }, with p 1 + . . . + p s k-1 = p,
the variables' indexes of each group.

Checking step:

At step k, there are 2 possibilities : (i) If we have grouped some variables at the step k -1 or if the current step is k < 3 (aggregation is not allowed before k = 3), we create an additional group by taking an index i 1,m ∈ I 1 , m = 1, . . . , p 1 out of the group 1. We have J k = J + k = p 1 possibilities and so we build J k models.

(ii) If we have separated at the step k -1 and k ≥ 3, we have 2 possibilities. The first one consists in taking an index i 1,s ∈ I 1 , s = 1, . . . , p 1 out of the first group, we have J + k = p 1 possible indexes. The second consists in grouping the last taken out variable i s k-1 ,1 (p s k-1 = 1) with an other group, we have J - k = s k-1 -2 possibilities. Then we build a total of

J k = J + k + J - k = p 1 + s k-1 -2 models.
In the two cases, we create J k models noted M 1

s k 1 , . . . , M J k s k J k
.

General loop:

We follow the general procedure in introducing a boolean that represents the choice at step k -1 of grouping or separating. Then the value of the boolean will be TRUE if we grouped at the previous step and FALSE if not.

Algorithm 2 Find M q 1: We choose θ opt with algorithm 0 in considering model M 1 .

2: opt_BIC ← BIC(θ, M 1); 3: k ← 2; 4: while k ≤ p do 5:

if reg bool = f alse and k ≥ 3 then 6:

We construct

J k = p 1 + s k-1 -2 models M ℓ s k ℓ , ℓ = 1, . . . , J k ; 7: else 8:
We construct M q ← M s k ;

J k = p 1 models M ℓ s k ℓ , ℓ = 1, . . . ,
19:

return M q ; 20:

else 21:

opt_BIC ← vect_BIC(ℓ opt);

22:

end if 23: end while Algorithm 2 divides more than Algorithm 1 and browses less possibilities. This algorithm is largely identical to Algorithm W introduced by [START_REF] Welch | Screening, predicting, and computer experiments[END_REF] except that we add a backward step.

Algorithm 3

Because Algorithm 2 generates a number of clusters often too high, we propose to add a backward step at the end of the procedure. This step naturally reduces the complexity of the model.

General loop:

Let M q the best model found by Algorithm 2, such that I 1 = {i 1,1 , . . . , i 1,p 1 }; . . . ; I q = {i q,1 . . . , i q,pq }, with p 1 + . . . + p q = p the indexes of variables in each groups. We build a new model noted M clust with a clustering method that groups variables with close ranges (see [START_REF] Everitt | Cluster analysis[END_REF]). However, in the isotropic by group kernel the ranges are not comparable since they are linked to variable sets of different sizes. So we introduce the following kernel , (1992) called the product kernel, where range parameters can be compared :

r θ (x -x) = q ∏ ℓ=1 p ℓ ∏ j=1 ρ θ ℓ (|x j -xj |) (10)
It is a tensor product kernel with some equal range parameters. In the following, we denote this model M prod q . Then we estimate the model M prod q with the same groups than the model M q . We build the model M clust with a clustering method that groups variables with close range parameter values. Then, if the BIC of the model M clust is smaller that the one of M q we set down M q = M clust . We replace the step 19 in Algorithm 2 by: Algorithm 3 Find M q Step 19bis:

We obtain M clust from M q with a clustering method;

if BIC(θ, M clust) < BIC(θ, M q) then M q ← M clust ; end if return M q ;

Algorithm 4

Algorithm 4 combines Algorithm 2 with a clustering method at each step k of the algorithm.

General loop:

At each step k we compute M s k by Algorithm 2. Then, with the same groups composition we estimate M prod s k to which we apply a classification step to produce M k,clust . If the BIC of model M k,clust is smaller that the one of M s k we set down M s k = M k,clust . We replace the step 16 in Algorithm 2 by: Algorithm 4 Find M q

Step 16bis:

M s k ← M ℓopt s k ℓ ; We obtain M k,clust from M s k with a clustering method; if BIC(θ, M k,clust) < BIC(θ, M s k) then vect_BIC(ℓ opt) ← BIC(θ, M k,clust); M s k ← M k,clust ; end if

Conclusion and summary

The Table 1 summarizes the general characteristics of the algorithms.

Application

Analytical examples

In this section we compare the algorithms and we observe the behavior of the best one according to the number of observations and to the nugget effect.

Algorithms' Comparison

We simulate a Gaussian process with p = 8 parameters, the simulated model is :

Y (x) = 1 + ϵ(x)
where ϵ is a Gaussian process with a standard deviation σ 2 = 1 and an isotropic by group kernel :

r θ (x -x) = 3 ∏ ℓ=1 ρ θ ℓ (∥x -x∥ I ℓ)
where I ℓ = {1}, I 2 = {2, 3}, I 3 = {4, 5, 6, 7, 8} and ρ θ is a Matern5_2. θ = (0.5, 0.9, 0.8). The learning set is an optimized Latin Hypercube with n observations and the test set is a Sobol sequences of 1000 points.

We simulate 100 different trajectories of the model with n = 800 points of observations. For each trajectory we estimate the model with the algorithms. Table 2 shows that each algorithm finds the correct number and composition of groups for the 100 trajectories except Algorithm W. This result is not surprising because Algorithm W separates variable by variable and cannot propose several groups with more than one variable. Among the four algorithms, (see Table 4). These errors are serious because they cause a loss of prediction quality. Figure 1 shows the estimation time grows with the number of experiments. For a size of 1280 the estimation takes more than 4 hours (see Table 3). The prediction quality also increases with the number of experiments. From n = 680, the prediction quality becomes very good (see Figure 2). Whatever the size of the learning set kriging with an Isotropic by group kernel stays the best (see Figure 3). In addition, with a low number of points (80), we notice that the anisotropic give a completely wrong prediction in 20% of simulations. Contrary to the isotropic by group and isotropic stay efficient. {80, 280, 480, 680, 880, 1080, 1280, 1480, 1680}. The criteria of prediction quality are Q2 and RMSE.

Evolution of the prediction quality with an error on simulation parameters

We simulated the model :

Y (x) = 1 + ϵ(x)
where ϵ is a Gaussian process with standard deviation σ 2 = 1 and an anisotropic kernel:

r θ (x -x) = 8 ∏ j=1 ρ θ * j (|x j -xj |)
where ρ θ is a Matern5_2 and θ = (0.5, 0.9, 0.9, 0.8, 0.8, 0.8). We simulate the range parameters with an error ξ = (0, 2, 5, 10, 15, 40) such that θ * j ∼ U

([θ j -ξ k 100 θ j ; θ j -ξ k 100 θ j])
, k = 1, . . . , 6 and j = 1, . . . , 8 . The learning set is an optimized Latin Hypercube with n = 400 observations and the test set is a Sobol sequence of 1000 points. For each value of ξ we simulate 25 trajectories.

Adding an error to range parameters doesn't influence the prediction quality of M q and it stays the best compared to M a and M i , see Figure 4.

Evolution of the prediction quality with a nugget effect

We take the same Gaussian process as previously but with a nugget effect:

r θ (x -x) = p ∏ j=1 ρ θ j (|x j -xj |) + τ 2 δ 0 (x -x)
where ρ θ is a Matern5_2. θ = (0.5, 0.9, 0.9, 0.8, 0.8, 0.8). The learning set is an optimized Latin Hypercube with n observations and the test set is a Sobol sequence of 1000 points.

δ 0 (x -x) = { 1 if x = x 0 if not
We test 6 different values of nugget effect τ = (0, 0.02, 0.03, 0.05, 0.1, 0.3). Figure 5 shows a loss of prediction quality for each model. Isotropic by group kernel is not a good solution in the presence of a nugget effect. It stays comparable to the other models (anisotropic and isotropic) estimated a without nugget effect. In this context, whatever the kernel, allowing the estimation of a nugget effect is the correct solution.

Test function

To motivate the construction of our kriging model, let us consider the function:: 1, 1, 4.5, 10, 10, 99, 99, 99, 99, 99, 99, 99, 99, 99). y 1 , ..., y n are the observations such that y i = f (x i) where f is the function and x i ∈ [0; 1] 15 . Considering 250 ≃ 17 × 15 runs of the function, we aim to construct a predictive model based on kriging, with three different kernels: isotropic (M i), anisotropic (M a) and isotropic by group (M q is found automatically by the Algorithm 4) based on tree different correlation functions:

f (x) = 15 ∏ j=1 4x j + a i 1 + a i with a j = (0,
• Anisotropic (M a):

r θ (x -x) = 15 ∏ j=1 ρ θ j (|x j -xj |)
• Isotropic (M i):

r θ (x -x) = ρ θ (∥x -x∥ 2)
• Isotropic by group (M 4):

r θ (x -x) = ρ θ1  3 ∑ j=1 (x j -xj) 2   × ρ θ2 (|x 4 -x4 |) × ρ θ3   6 ∑ j=5 (x j -xj) 2   × ρ θ4   15 ∑ j=7 (x j -xj) 2  
The parameters m, σ 2 and θ of different models have to be estimated the sample. ρ θ is the Matern 5_2 correlation function. In Figure 6, we compare the predictive power of three models : kriging with an isotropic kernel is poor, kriging with an isotropic by group kernel improves prediction power compared to kriging with an anisotropic kernel. Model M 4 estimates 4 range parameters instead of 15 for model M a and 1 for model M i . The estimates of θ, m and σ 2 are in Table 5. Table 5 shows that the range parameter groups correspond to close values of a in the Sobol function. Thus, the isotropic by group kernel allows a rise of the number of inputs.

Conclusion

In high dimension, kriging model with classical kernels provide poor predictions of the response. Yet, with a sparse kernel, predictions are much better. After a study of the algorithms' behavior on their prediction quality and their time of estimation. It results that Algorithm 4 is the

Annexes

A Visualization of isotropic and anisotropic kernels

We simulate in the Figure 7 a Gaussian process with p = 2 parameters, the simulated model is :

Y (x) = 1 + ϵ(x)
where ϵ is a Gaussian process with a standard deviation σ 2 = 1.

With an anisotropic kernel:

r θ (x -x ′) = ρ θ (|x 1 -x ′ 1 |) × ρ θ (|x 2 -x ′ 2 |)
and an isotropic kernel :

r θ (x -x ′) = ρ θ (∥x -x ′ ∥ 2)
where ρ θ is a Matern5_2 and θ = 0.5.

B Algorithm W

This algorithm is inspired by [START_REF] Welch | Screening, predicting, and computer experiments[END_REF]. At each step k, if the previous model has s k-1 = k -1 groups, the next estimated models will have s k = k groups. We note M s k the model at step k with s k = k groups. Let I 1 = {i 1,1 , . . . , i 1,p 1 }; I 2 = {i 2,1 }; . . . ; I s k = {i s k }, with p 1 + s k -1 = p where (s k -1 = k) .

Checking step:

We create an additional group in taking an index i 1,m ∈ I 1 , m = 1, . . . , p 1 out of the group 1.

We have J k = p 1 possibilities and we obtain s k = s k-1 + 1 groups. we create J k models noted M 1 s k , . . . , M J k s k and we follow the General step. In the Algorithm 2 steps 5-9 are replace by : Algorithm W Find M q Step 5bis-9bis:

We construct J k = p 1 models M ℓ s k , ℓ = 1, . . . , J k ;

C Code

The code of the algorithms is developed on R. It includes some C code completely integrate in the R code. The entire code and the examples used in the application section is available on the github or in the electronic appendix.

The package kergp is used to construct the C class of the isotropic by group kernel. All the functions needed to compute the four algorithms is on the same file named fonctions.R.

Figure 1 :

 1 Figure 1: Time in hours to find the best model with the Algorithm 4. 25 trajectories are simulated for the each size {80, 280, 480, 680, 880, 1080, 1280, 1480, 1680}.

Figure 2 :

 2 Figure 2: Prediction quality of the model with an isotropic by group kernel found by Algorithm 4 according to the sample size. 25 trajectories are simulated for each size{80, 280, 480, 680, 880, 1080, 1280, 1480, 1680}. The criteria of prediction quality are Q2 and RMSE.

Figure 3 :

 3 Figure 3: Prediction quality of the model with an isotropic by group kernel found by Algorithm 4 on the left, anisotropic kernel in the middle and isotropic kernel on the right according to the sample size. 25 trajectories are simulated for each learning set size {80, 480, 1280}. The criteria of prediction quality are Q2 and RMSE.

FigureFigure

 Figure Prediction quality of the model with an isotropic by group kernel found by Algorithm 4 (IsoGroup) anisotropic kernel (Aniso) and isotropic kernel (Iso) according to an error added on the range parameters in the simulated model. 25 trajectories are simulated for a learning set of size 400. The prediction quality criteria are Q2 and RMSE.

Figure 6 :

 6 Figure 6: Kriging prediction plots for the function : isotropic by group kernel (left), anisotropic kernel(middle), isotropic kernel (right).

Figure 7 :

 7 Figure 7: Simulation of a Gaussian process trajectory with 2 different kernels. Anisotropic on the left and isotropic on the right.

 J k ;

	9:	end if	
	10:	vect_BIC ← 0 J
	11:	for ℓ from 1 to J k do
	12: 13: 14:	We choose θ opt with algorithm 0 in considering model M ℓ s k ℓ vect_BIC(k) ← BIC(θ, M ℓ); s k ℓ end for	;
	15:	ℓ opt ← argmin	{vect_BIC};
		ℓ	
	16:	M s k ← M	ℓopt s k ℓ ;

17:

if vect_BIC(ℓ opt) ≥ opt_BIC then 18:

Table 1 :

 1 Strategy and direction of the 4 algorithms and algorithm proposed byWelch et al.

	Algorithms alg1	alg2	alg3	alg4	algW
	Strategy	Quasi	Separate Separate	Separate	Separate
		exhaustive		+ Cluster + Cluster	
				at the end at each step	
	Direction	Forward	Both	Both	Both	Forward

Table good

 good

		groups too separate
	alg1	100	0
	alg2	100	0
	alg3	100	0
	alg4	100	0
	algW	0	100

Table 2 :

 2 Gathering errors done by the algorithms for 100 trajectories with one learning set of size 800.3 shows that Algorithm 4 is the fastest, it takes 1h21 to find the best model. In the next sections we only use Algorithm 4.

	alg	Calculation time by processor
	alg1	6h38
	alg2	1h52
	alg3	1h50
	alg4	1h21
	algW	1h20

Table 3 :

 3 Calculation time done by the four algorithms for 100 trajectories with one learning set of size 800.4.1.2 Evolution of the prediction quality with the learning set sizeWe test nine learning set sizes : n = {80,280, 480, 680, 880, 1080, 1280, 1480, 1680}. For each size we simulate one learning set and 25 trajectories. For the high size, the algorithm could not converge due to the bad conditioning of the covariance matrix. There is too many observations points for the kriging. For a learning set of size 80, the algorithm makes lot of bad gathering

	Sample size good groups (%) bad gathering (%) too separate (%) Simulations
	80	16	84	0	25
	280	80	4	16	25
	480	100	0	0	25
	680	100	0	0	25
	880	100	0	0	25
	1080	100	0	0	23
	1280	100	0	0	20
	1480	100	0	0	17
	1680	100	0	0	12

Table 4 :

 4 Gathering errors done by the Algorithm 4 for 25 trajectories with different learning set size{80, 280, 480, 680, 880, 1080, 1280}

Table 6 :

 6 The four algorithms are in four files algo1Base.R, algo2Base.R, algo3Base.R, algo4Base.R and algoWelch.R. The functions are describes in the table 7. The algorithms code are parallelized when it is possible. The hierarchical clustering method is done by the function hclust available in the package stats. The function used to cut the dendrogram to obtain the best composition of groups best.cutree is available in the package JLutils. Finally, the code to run the simulations of the applications is on the files given by the table 7. The file DataVisu.R is used to condition the data before visualization. Description of the functions :algo1Base.R, algo2Base.R, algo3Base.R, algo4Base.R and algoWelch.R

	names	class		description	default value
	x	data.frame		Design	NA
	y	vector		Response	NA
	crit	function		AIC, BIC or tune	NA
	stockage	boolean		Data storage or not	FALSE
	itmax	integer	maximum iteration number	500
	ncores	integer		number of cores used	1
	names	class			description
	best	list		groups composition
	critere matrix (size 1 × 1)	Criterion value (BIC, AIC or tune)
	model	gp			GP model
	time	proc_time		Estimation time
	Stock	list		storage of model estimate at each step
		character		"No storage"
	Applications		section	file R	parallelized
	Comparison		4.1.1 Bench.R	Yes
	Learning set size		4.1.2	Size.R	Yes
	Error added on parameters 4.1.3	Err.R	Yes
	nugget effect		4.1.4	Nugg.R	Yes
	Sobol function		4.2	Sobol.R	No

Table 7 :

 7 Files to run the applicationsThe four first examples need the file DataVisu.R to clean the data for the visualization.

This work benefited from the financial support of the ANR project "PEPITO" (ANR-14-CE23-0011)