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Abstract

In the context of computer experiments, metamodels are largely used to represent the out-
put of computer codes. Among these models, Gaussian process regression (kriging) is very
efficient see e.g Snelson (2008). In high dimension that is with a large number of input vari-
ables, but with few observations the classical anisotropic kriging becomes inefficient and
sometimes completely wrong. One way to overcome this drawback is to use the isotropic
kernel which is more robust because it estimates not as many parameters. However this
model is too restrictive. The aim of this paper is to construct a model between these two,
that is at the same time a robust and a flexible model. These two skills are necessary
for a model in high dimension. We propose a kernel which is an answer to these requests
and that we call isotropic by group kernel. This kernel is a tensor product of few isotropic
kernels built on well-chosen subgroup of variables. The number and the composition of the
groups are found by an algorithm which explores different structures. The choice of the
best model is based on the quality of prediction.

Keywords. kriging, metamodel, kernel, isotropic, anisotropic, clustering, high dimen-
sion

1 Introduction

Complex physical phenomena are more and more studied through numerical simulations. These
numerical models are able to mimic with a high accuracy the real experiments so they pre-
dict the physical measures of interest (outputs) very precisely. Then, we can use them as a
replacement for real experiments because the numerical simulations are less costly in primary
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materials. However, these simulations stay often time-consuming. The idea to overcome this
drawback is to replace the costly numerical model by a metamodel. A metamodel is a less
expensive model adjusted on a few well-chosen simulations. It can be shown that among all the
possible metamodels, Gaussian process regression (kriging) is a very efficient metamodel. Lots
of examples of the use of a metamodel can be found in litterature, see e.g. Marrel et al. (2008),
Antoniadis et al. (2012) and Sudret (2012). A detailed example of kriging is the helicopter test
displayed in Booker et al. (1998). Furthermore Villa-Vialaneix et al. (2012) shows a compara-
tive study of eight metamodeling techniques for the simulation of N20 fluxes and N (Nitrogen)
leaching from corn crops. In this context, Splines and kriging have the best performances for
small and medium training datasets. In addition, kriging is able to model highly complex data,
see e.g. Santner et al. (2003) and Rasmussen and Williams (2006). More precisely kriging is a
spatial interpolation technique which aims at predicting the outputs using an adapted under-
lying correlation function between design points. In fact we assume that the output of interest
is a realization of a Gaussian process (GP) constructed as a sum of a deterministic part (often
called the trend) and a stochastic part assumed to be a zero-mean stationary GP, see Roustant
et al. (2012). In this paper, we focus on the stochastic part and more precisely on the choice
of the covariance kernel structure. In general, people use an anisotropic kernel that is a tensor
product of as many 1D kernels as the number of inputs. Each kernel being parameterized by a
spatial correlation length, called the range parameter . In high dimension with a very restricted
number of data points the estimation of range parameters becomes quite difficult. That’s why
in this context, an isotropic kernel could be a good alternative. This kernel is a function of the
euclidean distance defined on the entire input space, so it depends only on one range parameter.
However isotropic kernels are too restrictive, given that spatial variations are controlled by only
one range parameter. The idea of this paper is to automatically construct a data-driven kernel
that is intermediate between these two extremal choices.

A review of the literature shows that one way to improve performance of kriging is to adapt
the covariance structure to each specific case, see e.g. Durrande (2001) and Ginsbourger et al.
(2016). For example Paciorek and Schervish (2006) create a new class of covariance functions
(kernels) allowing the model to adapt itself to spatial surface whose variability changes with
location. Likewise, Padonou and Roustant (2016) in a microelectronic framework define a GP
model which inserts the geometry of the wafer in the kernel. That’s why they introduce the
polar GP defined with respect to polar coordinates: the covariance function is a sum of a
product kernel of radius and a product kernel of polar angles. In the case of multiple outputs
Fricker et al. (2013) define a nonseparable covariance structure for GP with the aim of well
representing the different simulator outputs and the joint uncertainty.

In general the covariance function only depends on the range parameters and on the sill
parameter (variance) which have to be estimated. But range parameters estimation becomes
very tricky in high dimension. To overcome this difficulty, Yi (2009) proposed a penalized krig-
ing that mimics the penalization techniques used in linear regression. In fact, he penalizes the
likelihood by the norm of the range parameters vector. This methodology selects the variables
that have no effect on the covariance function and the associate range parameters are blowing
up to infinity. In order to solve the dimensionality of the problem, Binois et al. (2015) proposes
different sparse and specific covariance kernels based on expert information or on the work of
Muehlenstaedt et al. (2012) and Durrande et al. (2012). In these articles, they use the ANOVA
kernels that are a sum of sub-groups of variables that interact together, see more details in Stit-
son et al. (1997) and Gao et al. (2002). Muehlenstaedt et al. (2012) found these groups through
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a sensitivity analysis computed from the prediction function of an anisotropic kriging. A first
problem appears here. Because the number of points is often too restrictive, the quality of the
anisotropic kriging can be poor and the result of the sensitivity analysis such as the proposed
partition can be totally wrong. A second problem of the method proposed by Muehlenstaedt
and coauthors is that the number of parameters of the final kernel can be higher than that of
the anisotropic kriging. In Binois et al. (2015) they test different FANOVA constraining them
to have fewer range parameters than the anisotropic one and choosing the best kernel among
them. But this choice of the covariance structure can not be done automatically.

Finally, we can also find in literature the work of Welch et al. (1992) that aims at identi-
fying the active factors. Welch et al. (1992) proposes a likelihood-based forward algorithm to
determine the most important factors and to build the predictor. In this study a tensor product
of power exponential kernels is chosen to catch the function regularity. The dimension of the
kernel, i.e. two parameters (range and power) in each direction, is stepwise reduced by making
some range parameters equal. In our paper the structure of the kernel is different. It is a tensor
product of isotropic kernels by taking an euclidean norm for the distance in each subspace.
We propose to use a Matern kernel of order 5/2 that needs only one parameter (range), that
models intermediate regularity functions and that gives efficient and good results in industrial
cases, see Cornford et al. (2002).

The aim of our article is to propose a sparse kernel adapted to high dimension and that
is constructed automatically from data. We present four different algorithms answering these
goals. The article is structured as follows. In section 2, we introduce the kriging metamodel
and the different kernels. In section 3, we present the four algorithms that automatically select
the structure of the kernel according to the data. In section 4, we study the behavior of our
algorithms on simulation test cases.

2 Statistical models

This section introduce the kriging, anisotropic and isotropic kernels and finally the new general
class of isotropic by group kernel.

2.1 Kriging

Let p be the number of input variables. We consider n observations (xi, yi)i=1,...,n where xi is the
ith input vector with p coordinates, such that x ∈ Rp and where yi is the corresponding output
(yi ∈ R). In the following we denote by y = (y1, . . . , yn)

′ the vector of the outputs. In kriging
we assume that y is a realization of a Gaussian process (Y (x))x∈Rp at points (x1, . . . ,xn)

′ such
that for each x ∈ Rp :

Y (x) = m+ ϵ(x), (1)

where m ∈ R is the trend, the process (ϵ(x))x∈Rp is a centered stationary Gaussian process
with covariance function Cov(ϵ(x),ϵ(x′)) = σ2R(x,x′) = σ2r(x − x′), ∀ (x,x′) ∈ Rp × Rp. In
this paper the trend m and the variance σ2 are assumed to be constant.
In this context we want to construct a linear prediction that minimizes the mean-squared
prediction error and that guarantees uniform unbiasedness. Under these two constrains, the
prediction, see Cressie (1993)), at a point x0 ∈ Rp is given by :

Ŷ (x0) = m+ r(x0)
′R−1(y −m1n) (2)
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and the Mean Square Error (MSE) at point x0 ∈ Rp is given by :

ŝ(x0) = σ2(1− r(x0)
′R−1r(x0)

′) (3)

where 1n = (1, . . . , 1)′ ∈ Rn, R ∈Mn×n is the correlation matrix of the process (Y ) at the
observation points, r(x0) ∈Mn×1 the correlation vector between Y (x0) and the random vector
(Y (x1), . . . , Y (xn))

′.
In the following we will focus on the definition of the correlation function r. First, we

introduce the anisotropic kernel :

r(x− x′) =

p∏
j=1

ρθj
(
|xj − x′

j|
)
, θ = (θ1, . . . , θp) ∈ Rp

+ (4)

where ρθj is a correlation function which only depends on the one dimensional range parameter
θj, see e.g Santner et al. (2003) and Stein (1999). In the following, we denote the model (1)
with kernel (4) as Ma. The parameters m, σ2 and θ are unknown and will be estimated by
maximum likelihood.
In our industrial case study the output is supposed to be two times continuously differentiable
this is why we use a Matern 5/2 kernel usual in that case, see e.g. Cornford et al. (2002) . This
kernel function is defined by :

∀θ ∈ R+,∀h ∈ R+, ρθ(h) =

(
1 +

√
5|h|
θ

+
5h2

3θ2

)
exp

(
−
√
5|h|
θ

)
.

Other examples can be found in Rasmussen and Williams (2006). However, anisotropic kernels
contain as many parameters as the number of variables p. In high dimension the estimation
of these parameters becomes unstable. To stabilize the estimation an idea is to reduce the
number of range parameters. The extremal case is the isotropic kernel, defined as follows for
(x,x′) ∈ Rp:

r(x− x′) = ρθ (∥x− x′∥2) , θ ∈ R+ (5)

where ∥.∥2 is the euclidian norm on Rp. In the following, we denote the model (1) with kernel
(5) asMi. In modelMi, spatial variations are controlled by only one range parameter. If the
value of that parameter is small the process Y fluctuates a lot in all directions. On the contrary
if the value of θ is large, the process varies in a very slow way in all directions. That’s why, one
unique parameter is often too restrictive to characterize the underlying process. In many cases
spatial behavior varies from a direction to another. Therefore we introduce in the next section
a kernel which is a compromise between the too restrictive isotropic kernel and the too flexible
anisotropic one. We call it the isotropic by group kernel.

2.2 Isotropic by group kernel

The isotropic by group kernel is defined as follows:

r(x− x′) =

q∏
ℓ=1

ρθℓ (∥x− x′∥Iℓ) , θ = (θ1, . . . , θq)∈ Rq
+ (6)

where, q < p is the number of groups. Let Iℓ be the set of indexes in the ℓth group with cardinal
|Iℓ| = pℓ, pℓ ∈ {1, . . . , p} such that p1 + . . . + pq = p. We define the norm of the subvector

(xj)j∈Iℓ of the vector x = (x1, . . . , xp) ∈ Rp by ∥x∥Iℓ =

√(∑
j∈Iℓ x

2
j

)
. In the following, we
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denote model (1) with kernel (6) asMq. The anisotropic and isotropic kernel are two particular
cases of isotropic by group kernel with respectively p groups Iℓ = {ℓ} for ℓ = {1, . . . , p}, and
one unique group I1 = {1, . . . , p}, ieMp =Ma andM1 =Mi.

In appendix, we simulate with the same seed a Gaussian Process in 2 dimensions with an
anisotropic and an isotropic kernel (Ma and Mi) to visualize the impact of the choice of the
kernel .

3 Methodology

In this article we propose four strategies to find simultaneously and automatically the number
of groups and the composition of each group. In Yi (2009) and Muehlenstaedt et al. (2012) the
two proposed methodologies to reduce the number of parameters in kriging start with a fully
anisotropic kernel. To gain in robustness in high dimensional problems, in the four procedures
we introduce, we always start with an isotropic kernel that depends on a unique range parameter
and we finish with an isotropic by group kernel. At each stage we compare different models
and we choose the best model under a specific criterion. The model parameters are estimated
by maximum likelihood, that is:

θ̂ = argmin
θ

[l(θ;x1, . . . ,xn,y)] (7)

where l = − log(L) and L is the likelihood function defined by:

L(θ;x1, . . . ,xn,y) =
1

(2πσ̂2)
n
2 |R| 12

e−(y−m̂1n)
tR−1(y−m̂1n) (8)

where m̂ and σ̂2 could be writen as functions of θ :

m̂ = (1t
nR

−1
1n)

−1
1
t
nR

−1y

σ̂2 =
1

n

(
y −m1n)

tR−1(y −m1n

)
Equation (7) shows that the estimation of the range parameter θ is done by minimizing l.

The minimization of l is very difficult due to the nonlinearity of the objective function. We
use a classical numerical method names Limited-memory BFGS to handle optimization. A
well known drawback of the optimization algorithms is the dependence of the solution on the
initialization point. That’s why we create the Algorithm 0 that finds a good initial value for
θ to minimize l and that gives an estimation of θ̂. The principle of Algorithm 0 is to first
select 10 vectors of parameters θ (θ ∈ Rq) that cover space as well as possible and to choose
the set of parameters, says θopt_init, that has the lowest l-value. Then, we minimize l using
θopt_init as initial point and we obtain the estimation of (θℓ)ℓ=1,...,q, denoted by θopt.
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Algorithm 0 Likelihood Optimization
1: crit_vrais = 010;
2: θMat,init = 0q×10, where 0q×10 is the zero matrix of size q × 10;
3: for k = 1 to 10 do
4: θMat,init(k)⇝ U ([0; +∞]q);
5: crit_vrais(k)← lM2(θMat,init(k);x1, . . . ,xn, y1, . . . , yn);
6: end for
7: kopt ← argmin

k
{crit_vrais(k)};

8: θopt_init ← θMat,init(kopt);
9: θopt ← argmin

θ∈D
lM2(θopt_init;x1, . . . ,xn, y1, . . . , yn) with the initialization at θopt_init.

As we estimate parameters by maximum likelihood, it could then be natural to select the
best model under likelihood considerations. However the likelihood is an increasing function of
the number of parameters. As a trade off between estimation qualities and sparsity, a penalized
likelihood criterion is preferred. In our work, we consider the BIC criterion (see e.g. Schwarz
(1978)), that is for a modelMq with q parameters to estimate θq:

BIC(θq,Mq) = lMq(θq;x1, . . . ,xn,y) + q log(n). (9)

In the four strategies, the best model corresponds to the one minimizing the BIC criterion.
Another usual criterion for selecting the best model is based on predictive considerations, called
the cross-validation criterion. But this criterion is very time consuming as the estimation in
the context of high dimensional data. So we decide to not consider this criterion.

3.1 Algorithm 1

General loop:
At each step k, if the previous model is composed of k − 1 groups, the next one will have
k groups. Let Mk−1 be the model at step k − 1, we note I1 = {i1,1, . . . , i1,p1}; . . . ; Ik =
{ik−1,1, . . . , ik−1,pk−1

}, with p1 + . . . + pk−1 = p, the sets of indexes of the variables included in
each group. One of these k − 1 groups is then divided into two groups. We have Jk ways of
choosing this group, with Jk =

∑k−1
ℓ=1 Jk,ℓ and Jk,ℓ is the number of ways of dividing into two

groups the set of indexes Iℓ, ℓ = 1, . . . , k − 1. We noteM1
k, . . . ,M

Jk
k the Jk new models. And

among these Jk models we choose the one minimizing the BIC, saysMℓopt
k .

Algorithm 1:
We start with the estimation of the full isotropic model, noted M1. We follow the previous
procedure and we obtain J2 models noted Mℓ

2, ℓ = 1, . . . , J2. We estimate the parameter θ of
each model and we keep the modelMℓopt

2 that minimizes the BIC. If the BIC of the modelM1

is smallest than the one of M2, we stop the algorithm and we choose M1 as the best model.
Otherwise, we set down M2 =Mℓopt

2 and we build the models Mℓ
3 l = 1, . . . , J3 and so forth

at step 4, 5, . . .. We stop the algorithm whenMk has a larger BIC thanMk. At the end of the
algorithm, we obtain the modelMq that minimizes the BIC.
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Algorithm 1 FindMq

1: We choose θopt thanks to algorithm 0 for modelM1.
2: opt_BIC ← BIC(θopt,M1);
3: k ← 2;
4: while k ≤ p do
5: vect_BIC ← 0Jk

6: for ℓ de 1 à Jk do
7: We choose θopt thanks to algorithm 0 with the modelMℓ

k;
8: vect_BIC(ℓ)← BIC(θopt,Mℓ

k+1);
9: end for

10: ℓopt ← argmin
ℓ
{vect_BIC};

11: Mk ←Mℓopt
k ;

12: if vect_BIC(ℓopt) ≥ opt_BIC then
13: Mq ←Mk−1;
14: returnMq;
15: else
16: opt_BIC ← vect_BIC(ℓopt);
17: k ← k + 1;
18: end if
19: end while

Algorithm 1 is a quasi-exhaustive algorithm since at each step it browses all the possibilities
to divide. But the calculation time grows really fast with the number of inputs p. For example,
the first separation, that consists in separating one group in two, estimates 500 models for
p = 10 and 524287 for p = 20. That’s why we propose several alternative algorithms that take
much less time.

3.2 Algorithm 2

We propose a faster algorithm close to the forward Algorithm W introduced by Welch et al.
(1992) that is described in appendix. The direction of Algorithm 2 is both because it has a
backward step contrary to Algorithm W. Algorithm W is included in Algorithm 2.
We noteMsk−1

the model at step k−1 and sk−1 the number of groups. Let I1 = {i1,1, . . . , i1,p1}
; . . . ; Isk−1

= {isk−1,1, . . . , isk−1,psk−1
}, with p1 + . . . + psk−1

= p, the variables’ indexes of each
group.

Checking step:
At step k, there are 2 possibilities :

(i) If we have grouped some variables at the step k − 1 or if the current step is k < 3
(aggregation is not allowed before k = 3), we create an additional group by taking an
index i1,m ∈ I1, m = 1, . . . , p1 out of the group 1. We have Jk = J+

k = p1 possibilities
and so we build Jk models.

(ii) If we have separated at the step k − 1 and k ≥ 3, we have 2 possibilities. The first
one consists in taking an index i1,s ∈ I1, s = 1, . . . , p1 out of the first group, we have
J+
k = p1 possible indexes. The second consists in grouping the last taken out variable

isk−1,1 (psk−1
= 1) with an other group, we have J−

k = sk−1 − 2 possibilities. Then we
build a total of Jk = J+

k + J−
k = p1 + sk−1 − 2 models.
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In the two cases, we create Jk models notedM1
sk1

, . . . ,MJk
skJk

.

General loop:
We follow the general procedure in introducing a boolean that represents the choice at step
k− 1 of grouping or separating. Then the value of the boolean will be TRUE if we grouped at
the previous step and FALSE if not.

Algorithm 2 FindMq

1: We choose θopt with algorithm 0 in considering modelM1.
2: opt_BIC ← BIC(θ,M1);
3: k ← 2;
4: while k ≤ p do
5: if regbool = false and k ≥ 3 then
6: We construct Jk = p1 + sk−1 − 2 modelsMℓ

skℓ
, ℓ = 1, . . . , Jk;

7: else
8: We construct Jk = p1 modelsMℓ

skℓ
, ℓ = 1, . . . , Jk;

9: end if
10: vect_BIC ← 0J

11: for ℓ from 1 to Jk do
12: We choose θopt with algorithm 0 in considering modelMℓ

skℓ
;

13: vect_BIC(k)← BIC(θ,Mℓ
skℓ

);
14: end for
15: ℓopt ← argmin

ℓ
{vect_BIC};

16: Msk ←M
ℓopt
skℓ

;
17: if vect_BIC(ℓopt) ≥ opt_BIC then
18: Mq ←Msk ;
19: returnMq;
20: else
21: opt_BIC ← vect_BIC(ℓopt);
22: end if
23: end while

Algorithm 2 divides more than Algorithm 1 and browses less possibilities. This algorithm
is largely identical to Algorithm W introduced by Welch Welch et al. (1992) except that we
add a backward step.

3.3 Algorithm 3

Because Algorithm 2 generates a number of clusters often too high, we propose to add a
backward step at the end of the procedure. This step naturally reduces the complexity of the
model.
General loop:
Let Mq the best model found by Algorithm 2, such that I1 = {i1,1, . . . , i1,p1}; . . . ; Iq =
{iq,1 . . . , iq,pq}, with p1 + . . . + pq = p the indexes of variables in each groups. We build a
new model notedMclust with a clustering method that groups variables with close ranges (see
Everitt et al. (2011)). However, in the isotropic by group kernel the ranges are not comparable
since they are linked to variable sets of different sizes. So we introduce the following kernel ,

8



Algorithms alg1 alg2 alg3 alg4 algW
Strategy Quasi Separate Separate Separate Separate

exhaustive + Cluster + Cluster
at the end at each step

Direction Forward Both Both Both Forward

Table 1: Strategy and direction of the 4 algorithms and algorithm proposed by Welch et al.
(1992)

called the product kernel, where range parameters can be compared :

rθ(x− x′) =

q∏
ℓ=1

pℓ∏
j=1

ρθℓ
(
|xj − x′

j|
)

(10)

It is a tensor product kernel with some equal range parameters. In the following, we denote the
model (10) with kernel (4) as modelMprod

q . Then we estimate the modelMprod
q with the same

groups than the model Mq. We build the model Mclust with a clustering method that groups
variables with close range parameter values. Then, if the BIC of the model Mclust is smaller
that the one ofMq we set downMq =Mclust. We replace the step 19 in Algorithm 2 by:

Algorithm 3 FindMq

Step 19bis:
We obtainMclust fromMq with a clustering method;
if BIC(θ,Mclust) < BIC(θ,Mq) then
Mq ←Mclust;

end if
returnMq;

3.4 Algorithm 4

Algorithm 4 combines Algorithm 2 with a clustering method at each step k of the algorithm.
General loop:
At each step k we compute Msk by Algorithm 2. Then, with the same groups composition
we estimate Mprod

sk
to which we apply a classification step to produce Mk,clust. If the BIC of

model Mk,clust is smaller that the one of Msk we set down Msk = Mk,clust. We replace the
step 16 in Algorithm 2 by:

Algorithm 4 FindMq

Step 16bis:

Msk ←M
ℓopt
skℓ

;
We obtainMk,clust fromMsk with a clustering method;
if BIC(θ,Mk,clust) < BIC(θ,Msk) then

vect_BIC(ℓopt)← BIC(θ,Mk,clust);
Msk ←Mk,clust;

end if

3.5 Conclusion and summary

The Table 1 summarizes the general characteristics of the algorithms.
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4 Application

4.1 Analytical examples

In this section we compare the algorithms and we observe the behavior of the best one according
to the number of observations and to the nugget effect.

4.1.1 Algorithms’ Comparison

We simulate a Gaussian process with p = 8 parameters, the simulated model is :

Y (x) = 1 + ϵ(x)

where ϵ is a Gaussian process with a standard deviation σ2 = 1 and an isotropic by group
kernel :

rθ(x− x′) =
3∏

ℓ=1

ρθℓ (∥x− x′∥Iℓ)

where Iℓ = {1}, I2 = {2, 3}, I3 = {4, 5, 6, 7, 8} and ρθ is a Matern5_2. θ = (0.5, 0.9, 0.8). The
learning set is an optimized Latin Hypercube with n observations and the test set is a Sobol
sequences of 1000 points.

We simulate 100 different trajectories of the model with n = 800 points of observations. For
each trajectory we estimate the model with the algorithms. Table 2 shows that each algorithm
finds the correct number and composition of groups for the 100 trajectories except Algorithm
W. This result is not surprising because Algorithm W separates variable by variable and
cannot propose several groups with more than one variable. Among the four algorithms, Table

good groups too separate
alg1 100 0
alg2 100 0
alg3 100 0
alg4 100 0
algW 0 100

Table 2: Gathering errors done by the algorithms for 100 trajectories with one learning set of
size 800.

3 shows that Algorithm 4 is the fastest, it takes 1h21 to find the best model. In the next
sections we only use Algorithm 4.

alg Calculation time by processor
alg1 6h38
alg2 1h52
alg3 1h50
alg4 1h21
algW 1h20

Table 3: Calculation time done by the four algorithms for 100 trajectories with one learning
set of size 800.
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4.1.2 Evolution of the prediction quality with the learning set size

We test 7 learning set sizes : n = {80, 280, 480, 680, 880, 1080, 1280, }. For each size we simulate
1 learning set and 25 trajectories. For a learning set of size 80, the algorithm makes lot of bad

Sample size good groups bad gathering too separate
80 7 17 1
280 23 2 0
480 25 0 0
680 25 0 0
880 25 0 0
1080 25 0 0
1280 25 0 0

Table 4: Gathering errors done by the Algorithm 4 for 25 trajectories with 9 learning set of
size {80, 280, 480, 680, 880, 1080, 1280}

gathering (see Table 4). These errors are serious because they cause a loss of prediction quality.
Figure 1 shows that the estimation time grows with the number of experiments. For a size of

Figure 1: Time in hours to find the best model with the Algorithm 4. 25 trajectories are
simulated for the each size {80, 280, 480, 680, 880, 1080, 1280}.

1280 the estimation takes more than 4 hours (see Table 3). The prediction quality also increases
with the number of experiments. From n = 680, the prediction quality becomes very good (see
Figure 2).

Whatever the size of the learning set kriging with an Isotropic by group kernel stays the
best (see Figure 3).

4.1.3 Evolution of the prediction quality with an error on simulation parameters

We simulate a Gaussian process with p = 8 parameters, the simulated model is :

Y (x) = 1 + ϵ(x)

11



Figure 2: Prediction quality of the model with an isotropic by group kernel found by
Algorithm 4 according to the sample size. 25 trajectories are simulated for each size
{80, 280, 480, 680, 880, 1080, 1280}. The criteria of prediction quality are Q2 and RMSE.

Figure 3: Prediction quality of the model with an isotropic by group kernel found by Algorithm
4 on the left, anisotropic kernel in the middle and isotropic kernel on the right according to
the sample size. 25 trajectories are simulated for each learning set size {280, 680, 1280}. The
criteria of prediction quality are Q2 and RMSE.

where ϵ is a Gaussian process with standard deviation σ2 = 1 and an anisotropic kernel:

rθ(x− x′) =

p∏
j=1

ρθ∗j
(
|xj − x′

j|
)

where ρθ is a Matern5_2 and θ = (0.5, 0.9, 0.9, 0.8, 0.8, 0.8). We simulate the range parameters
with an error ξ = (0, 2, 5, 10, 15, 40) such that θ∗j ∼ U

([
θj − ξk

100
θj; θj − ξk

100
θj
])

, k = 1, . . . , 6 and
j = 1, . . . , p . The learning set is an optimized Latin Hypercube with n = 400 observations and
the test set is a Sobol sequence of 1000 points. For each value of ξ we simulate 25 trajectories.

Adding an error to range parameters doesn’t influence the prediction quality of Mq and it

12



Figure 4: Prediction quality of the model with an isotropic by group kernel found by Algorithm
4 in orange anisotropic kernel in green and isotropic kernel in blue according to an error added
on the range parameters in the simulated model. 25 trajectories are simulated for a learning
set of size 400. The prediction quality criteria are Q2 and RMSE.

stays the best compared toMa andMi, see Figure 4.

4.1.4 Evolution of the prediction quality with a nugget effect

We take the same Gaussian process as previously but with a nugget effect:

rθ(x− x′) =

p∏
j=1

ρθj
(
|xj − x′

j|
)
+ τ 2δ0(x− x′)

where ρθ is a Matern5_2. θ = (0.5, 0.9, 0.9, 0.8, 0.8, 0.8). The learning set is an optimized Latin
Hypercube with n observations and the test set is a Sobol sequence of 1000 points.

δ0(x− x′) =

{
1 if x = x′

0 ifnot

We test 6 different values of nugget effect τ = (0, 0.02, 0.03, 0.05, 0.1, 0.3).
Figure 5 shows a loss of prediction quality for each model. Isotropic by group kernel is not

a good solution in the presence of a nugget effect. It stays comparable to the other models
(anisotropic and isotropic) estimated a without nugget effect. In this context, whatever the
kernel, allowing the estimation of a nugget effect is the correct solution.

4.2 Test function

To motivate the construction of our kriging model, let us consider the function::

f(x) =
15∏
j=1

4xj + ai
1 + ai

with aj = (0, 1, 1, 4.5, 10, 10, 99, 99, 99, 99, 99, 99, 99, 99, 99). y1, ..., yn are the observations such
that yi = f(xi) where f is the function and xi ∈ [0; 1]15. Considering 750 = 50× 15 runs of the
function, we aim to construct a predictive model based on kriging, with three different kernels:
isotropic (Mi), anisotropic (Ma) and isotropic by group (Mq is found automatically by the
Algorithm 4) based on tree different correlation functions:

13



Figure 5: Prediction quality of the model with an isotropic by group kernel found by Algorithm
4 in orange anisotropic kernel in green and isotropic kernel in blue according to the value of a
nugget effect added in the simulated model. 25 trajectories are simulated for a learning set of
size {160}. The prediction quality criteria are Q2 and RMSE.

• Anisotropic (Ma):

rθ(x− x′) =
15∏
j=1

ρθj
(
|xj − x′

j|
)

• Isotropic (Mi):

rθ(x− x′) = ρθ (∥x− x′∥2)

• Isotropic by group (M4):

rθ(x− x′) = ρθ1

√√√√ 3∑
j=1

(xj − x′
j)

2

× ρθ2 (|x4 − x′
4|)× ρθ3

√√√√ 6∑
j=5

(xj − x′
j)

2

× ρθ4

√√√√ 15∑
j=7

(xj − x′
j)

2


The parameters m, σ2 and θ of different models have to be estimated from the sample.

ρθ is the Matern 5_2 correlation function. In Figure 6, we compare the predictive power of
three models : kriging with an isotropic kernel is poor, kriging with an isotropic by group
kernel improves prediction power compared to kriging with an anisotropic kernel. Model M4

estimates 4 range parameters instead of 15 for modelMa and 1 for modelMi. The estimates
of θ, m and σ2 are in Table 5. Table 5 shows that the range parameter groups correspond to
close values of a in the Sobol function. Thus, the isotropic by group kernel allows a rise of the
number of inputs.
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Figure 6: Kriging prediction plots for the function : anisotropic kernel (left), isotropic kernel
(middle), isotropic by group kernel (right).

Anisotropic kernel
θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9
0.646 0.880 0.850 1.47 2.00 1.99 1.99 2.00 1.991
θ10 θ11 θ12 θ13 θ14 θ15 m σ2

1.99 2.00 1.99 1.99 1.99 1.99 7.11 10.1

Isotropic kernel
θ m σ2

2.88 7.11 268

Isotropic by group kernel
θ1(x1, x2, x3) θ2(x4) θ3(x5, x6) θ4(x7, . . . , x15) m σ2

1.23 1.91 3.227334 15.0 31.0 6.40

Table 5: Kriging parameters for an anisotropic kernel (top), an isotropic kernel (middle) and
an isotropic by group kernel (bottom). The learning set is an optimized Latin Hypercube of
size 250. The test set is a Sobol sequence of 8000 points.
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5 Conclusion

In high dimension, kriging model with classical kernels provide poor predictions of the response.
Yet, with a sparse kernel, predictions are much better. After a study of the algorithms’ behavior
on their prediction quality and their time of estimation. It results that Algorithm 4 is the
most efficient. The estimation time does not grow too fast with the number of experiments and
the quality of prediction is always the best. The prediction quality increases with the number of
experiments. Adding an error on the simulate range parameters influences the groups composi-
tion but not the prediction quality of the isotropic by group model. On the other hand adding
a nugget effect to the simulation model degrade the quality of the isotropic by group kernel
predictor but it stays close to the quality of the anisotropic. The comparison of the predictive
power on the test function shows that kriging with the isotropic kernel is poor. Kriging with
an isotropic by group kernel improves the predictive power compared to an anisotropic kernel.
To conclude, the proposed methods enable to improve the prediction quality in the context of
time-consuming simulation in high dimension.

The clustering method used to group the variables is hierarchical and only focus on the value
of the range parameters. An idea is to find a specific method in the case of range parameters
and that takes into account the number of inputs in the groups. In this paper, the algorithms
are used for an isotropic by group kernel but these methods are generic and could be used
for other kernels. For example, an additive kernel presented in Muehlenstaedt et al. (2012)
or a product kernel. The estimation of the range parameters needs an optimization of the log
likelihood function. At each step of the algorithm, the chosen parameter set for initialization of
the optimization is the point that maximizes the log likelihood function among a space filling
design. The idea is to initialize the optimization with the value of range parameters estimated
at the previous step. In the paper of Welch et al. (1992), they propose a modification in their
algorithm to accelerate the optimization. They optimize on only one range parameter. This
modification could be apply in our algorithms.
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Figure 7: Simulation of a Gaussian process trajectory with 2 different kernels. Anisotropic on
the left and isotropic on the right.

A Visualization of isotropic and anisotropic kernels

We simulate in the Figure 7 a Gaussian process with p = 2 parameters, the simulated model is
:

Y (x) = 1 + ϵ(x)

where ϵ is a Gaussian process with a standard deviation σ2 = 1.
With an anisotropic kernel:

rθ(x− x′) = ρθ (|x1 − x′
1|)× ρθ (|x2 − x′

2|)

and an isotropic kernel :

rθ(x− x′) = ρθ (∥x− x′∥2)

where ρθ is a Matern5_2 and θ = 0.5.

B Algorithm W

This algorithm is inspired by Welch et al. (1992). At each step k, if the previous model has
sk−1 = k − 1 groups, the next estimated models will have sk = k groups.
We note Msk the model at step k with sk = k groups. Let I1 = {i1,1, . . . , i1,p1}; I2 =
{i2,1}; . . . ; Isk = {isk,1}, with p1 + sk − 1 = p where (sk − 1 = k) .

Checking step:
We create an additional group in taking an index i1,m ∈ I1, m = 1, . . . , p1 out of the group 1.
We have Jk = p1 possibilities and we obtain sk = sk−1 + 1 groups. we create Jk models noted
M1

sk
, . . . ,MJk

sk
and we follow the General step.

In the Algorithm 2 steps 5-9 are replace by :

Algorithm W FindMq

Step 5bis-9bis:

We construct Jk = p1 modelsMℓ
sk

, ℓ = 1, . . . , Jk;
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