N

N

Approximating Event System Abstractions by Covering
their States and Transitions

Jacques Julliand, Olga Kouchnarenko, Pierre-Alain Masson, Guillaume Voiron

» To cite this version:

Jacques Julliand, Olga Kouchnarenko, Pierre-Alain Masson, Guillaume Voiron. Approximating Event
System Abstractions by Covering their States and Transitions: Version 1. [Research Report] RR-
FEMTO-ST-2496, FEMTO-ST. 2017. hal-01496470

HAL Id: hal-01496470
https://hal.science/hal-01496470
Submitted on 27 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01496470
https://hal.archives-ouvertes.fr

femto-st T

MO EMSCIENCES &
TECHNOLOGIES

INSTITUT FEMTO-ST

UMR CNRS 6174

Approximating Event System Abstractions by Covering
their States and Transitions

Version 1

Jacques Julliand — Olga Kouchnarenko — Pierre-Alain Masson — Guillaume Voiron

Rapport de Recherche n® RR-FEMTO-ST-2496
DEPARTEMENT DISC - March 9, 2017

B WY SCIENCES &
TECHNOLOGIES

Approximating Event System Abstractions by Covering their States and
Transitions

Version 1

Jacques Julliand , Olga Kouchnarenko , Pierre-Alain Masson , Guillaume Voiron

Département DISC

Vesontio

Rapport de Recherche no RR -FEMTO-ST-2496 March 9, 2017 (pages)

Abstract: Inevent systems, contrarily to sequential ones, the control flow is implicit. Consequently,
their abstraction may give rise to disconnected and unreachable paths. This paper presents an algorithmic
method for computing a reachable and connected under-approximation of the abstraction of a system
specified as an event system. We compute the under-approximation with concrete instances of the
abstract transitions, that cover all the states and transitions of the predicate-based abstraction. To be
of interest, these concrete transitions have to be reachable and connected to each other. We propose
an algorithmic method that instantiates each of the abstract transitions, with heuristics to favour their
connectivity. The idea is to prolong whenever possible the already reached sequences of concrete
transitions, and to parameterize the order in which the states and actions occur. The paper also reports
on an implementation, which permits to provide experimental results confirming the interest of the
approach with related heuristics.

Key-words: Predicate abstraction; under-approximation; event systems

FEMTO-ST Institute, DISC research department

UFR Sciences - Route de Gray - F-25030 BESANCON cedex FRANCE
Tel: (33 3) 81 66 65 15 — Fax: (33 3) 81 66 64 50 — e-mail: fvernill@femto-st.fr

Approximation d’abstractions de systemes d’événements en couvrant leurs
états et transitions

Version 1

Résumé : Dans les systemes d’événements, contrairement aux systemes séquentiels, le flot de
controle est implicite. En conséquence, leur abstraction peut conduire a des chemins non connexes
et innateignables. Ce papier présente une méthode algorithmique permettant le calcul d’une sous-
approximation, connexe et atteignable, de 1’abstraction d’un systeme d’événements. Notre sous-
approximation est constituée d’instances concretes des transitions abstraites, et couvre tous les états et
transitions d’une abstraction par prédicats. Pour étre exploitables, ces instances concretes doivent Etre
atteignables et connexes entre elles. Nous proposons un algorithme qui instancie chaque transition
abstraite, avec des heuristiques visant a favoriser leur connexité. Le principe est de prolonger chaque
fois que c’est possible les séquences d’instances concretes déja atteintes, et de paramétrer 1’ordre
dans lequel les états et les événements sont considérés. Ce papier décrit aussi une implantation de la
méthode, qui nous a permis d’obtenir des résultats expérimentaux confirmant I’intérét de la méthode.

Mots-clés : Abstraction par prédicats; sous-approximation; systeémes d’événements

FEMTO-ST Institute, DISC research department

UFR Sciences - Route de Gray - F-25030 BESANCON cedex FRANCE
Tel: (33 3) 81 66 65 15 — Fax: (33 3) 81 66 64 50 — e-mail: fvernill@femto-st.fr

Approximating Event System Abstractions 1

Approximating Event System Abstractions by Covering their
States and Transitions

Jacques Julliand , Olga Kouchnarenko , Pierre-Alain Masson , Guillaume Voiron
FEMTO-ST, UMR 6174 CNRS and Univ. Bourgogne Franche-Comté
16, route de Gray F-25030 Besangon Cedex France
{jjulliand, okouchna, pamasson, gvoiron}@femto-st.fr

March 9, 2017

Abstract

In event systems, contrarily to sequential ones, the control flow is implicit. Consequently,
their abstraction may give rise to disconnected and unreachable paths. This paper presents
an algorithmic method for computing a reachable and connected under-approximation of the
abstraction of a system specified as an event system. We compute the under-approximation
with concrete instances of the abstract transitions, that cover all the states and transitions
of the predicate-based abstraction. To be of interest, these concrete transitions have to be
reachable and connected to each other. We propose an algorithmic method that instantiates
each of the abstract transitions, with heuristics to favour their connectivity. The idea is
to prolong whenever possible the already reached sequences of concrete transitions, and to
parameterize the order in which the states and actions occur. The paper also reports on
an implementation, which permits to provide experimental results confirming the interest
of the approach with related heuristics.

Keywords. Predicate abstraction; under-approximation; event systems

1 Introduction

Abstracting a program or its specification allows to control the size of its state space description,
at the price of a loss in accuracy. That facilitates their algorithmic exploitation, otherwise
limited by the huge if not infinite number of concrete states. The general idea of abstraction is
to gather states that share common properties into super-states. In predicate abstraction [GS97]
the concrete states are mapped onto a finite set of abstract ones, by means of a set of predicates
that characterizes each abstract state. An abstract transition links two abstract states when it
has at least one concrete instantiation. Such transitions are called may [GJ03|, meaning that
they may be instantiated. Still there is no guarantee that two consecutive may transitions can
necessarily be instantiated as two consecutive connected concrete transitions: their respective
target and source concrete states may differ.

This paper aims at computing connected and reachable concrete paths from a predicate
abstraction of a system formally specified as an event system [Abr10], which is a special kind
of action system [Dij75], [Dij76]. We propose an algorithmic method for computing an under-
approximation that covers all the states and transitions of this abstraction.

An event in an event system specifies state variable modifications by means of a guarded
action. The actions are activated whenever their guard becomes true, so that there is no natural
control flow as in a program. As a result, paths of the system may become disconnected and
even unreachable in the abstraction. Still, we are interested in covering the reachable part

RR -FEMTO-ST-2496

2 Julliand, Kouchnarenko, Masson, Voiron

of the abstraction as best as possible. This work has been motivated by a testing purpose:
our intention is to cover paths of an abstraction by tests. But the method could also apply
for example to the model-checking of safety properties. These potential applications are not
presented in this paper due to lack of space.

We propose to under-approximate the abstraction by computing concrete instances of the
abstract event sequences. The idea behind our method is to favour the connectivity and reach-
ability of the successive concrete instances by prolonging whenever possible the already reached
concrete transitions. Our proposal in this paper is as sketched:

e we instantiate each of the abstract transitions by enumerating all the possibilities of con-
necting two abstract states by any event,

e we use heuristics for controlling the order in which the events and states are enumerated,
according to some know-how of the natural flow of the events succession,

e we use concrete state coloration, similarly to [VY03], for prolonging preferably the se-
quences known to be reachable and connected.

Our contributions allow then generating a concrete transition system from an event sys-
tem. We also report on an implementation, which permits us to provide experimental results
confirming the interest of the approach with the related heuristics.

The technical background of our paper regarding event systems, predicate abstraction and
may transition systems is given in Sec.[2} Section[3|presents an electrical system as an illustrative
example. The algorithm for computing both an abstraction and its approximation is presented
in Sec.[d The heuristics that we propose to enhance the coverage achieved by the algorithm are
given in Sec. 5] Our experimental results are presented in Sec. [6] Section [7] describes related
work, and Sec. 8] concludes the paper.

2 Background

In this paper systems are specified by event systems (ES) described in the B syntax [Abr96,
AbrlO]D Notice however that our proposals and results are generic since event system semantics
is defined by concrete labelled transition systems.

In this section we first present the syntax and the semantics of the B event systems. Then
we present the concept of predicate abstraction and formalize the abstraction of event systems
by means of May Transition Systems (MTS).

2.1 Model Syntax and Semantics

We start by introducing B event systems in Def. [l The events are defined by means of guarded
actions [Dij75] by composition of five primitive actions where E, F' are arithmetic expressions
and P, P’ are predicates: skip an action with no effect, x,y := E, F a multiple assignment,
P = a a guarded action, a1[Jaz a bounded non-deterministic choice between a; and ag, and
@z.a an unbounded non-deterministic choice a, [|as,[] ... for all the values of z satisfying the

guard of a denoted as grd(a). Here grd is defined on the primitive actions by: grd(skip) def true,
grd(z,y := E,F) e, grd(P' = a) L pra grd(a), grd(ai[]az) o grd(ai) V grd(az) and
grd(Qz.a) Lfg,. grd(a).

We could alternatively use a syntax with guarded commands [Dij75], such as Abstract State Ma-
chines [GKOTO00, [Gur00].

FEMTO-ST Institute

Approximating Event System Abstractions 3

Definition 1 (Event System) Let Ev be a set of event names. A B event system is a tuple
(X, I, Init,EvDef) where X is a set of state variables, I is a state invariant, Init is an initial-
ization action such that I holds in any initial state, EvDef is a set of event definitions, each in

d
the shape of e :efa for any e € Ev, and such that every event preserves I.

Figure depicts an example of an event system that illustrates Def. I} Following [BC00],
we use labelled transition systems to define the semantics of event systems.

Let ¢ % 4 be an event. Tt has a weakest precondition [Dij76] and a weakest conjugate
precondition [BCO0] w.r.t. a set of target states Q' denoted respectively as wp(a,Q’) and
wep(a, Q). wp(a, Q') is the largest set of states from which applying a always leads to a state
of @ whereas wep(a, Q') is the largest set of states from which it is possible to reach a state
of Q' by applying a. An event also defines a relation between the values of the state variables
X before and after the application of the event. It is expressed by the before after predicate of

the event e & ¢ denoted as prdx(a).

Let us now formally define wp, wep and prdx following [BJMI6]. Basically, we directly
consider the set of states @ and @ as predicates of the same name. We define the wp w.r.t.
the five primitive actions as:

o wp(skip, Q") £ @,

o wp(z:=FE,Q) def Q'[E/x] that is the usual substitution of by F as in [Hoa69],

e wp(P=a,Q) ¥ P = wpa,Q),

e wp(allaz, @) = wpl(ar, Q') A wp(as, Q).
e wp(Qz.a,Q’) def Vz.wp(a, Q') where z is not free in Q'.

We define the wep and prdx w.r.t. wp as:

o wep(a, Q') & —wp(a, ~Q"),

e prdx(a) def wep(a, zy = x1 A... ANz, = x,) that is a predicate on the state variables X =
{z1,..., 2z} in the source state before a and the target state variables X’ = {a},... 2]}
after a.

2.2 Predicate Abstraction

Predicate abstraction [GS97] is a special instance of the framework of abstract interpreta-
tion [CC92] that maps the potentially infinite state space C' of a CTS onto the finite state

space A of an abstract transition system wia a set of n predicates P def {p1,p2,...,pn} over
the state variables. The set of abstract states A contains 2" states. Each state is a tuple

q def (q1,92,--.,qn) with g; being equal either to p; or to —p;, and we also consider ¢ as the
predicate A, ¢.. We define a total abstraction function « : C' — A such that a(c) is an
abstract state ¢ where c satisfies ¢; for all ¢ € 1..n. By a misuse of language, we say that c is in
q, or that c is a concrete state of q.

Let us now define the abstract transitions as may ones. Consider two abstract states ¢ and
¢’ and an event e. There exists a may transition from ¢ to ¢’ by e, denoted by ¢ = ¢/, if and
only if there exists at least one concrete transition ¢ — ¢ where ¢ and ¢ are concrete states
with a(c) = ¢ and a(d) = ¢'.

RR -FEMTO-ST-2496

4 Julliand, Kouchnarenko, Masson, Voiron

Let us define for any predicate P the solver call SAT(P), which returns either a model satis-
fying P or unsat if P is unsatisfiable or unknown if the solver couldn’t determine the satisfiability
of P. Let e % 4 be an event definition, ¢ = ¢’ is a may transition iff SAT (wep(a,q’) A q). We
compute a concrete witness ¢ — ¢’ by using the before after predicate: (c,c) := SAT (prdx (a) A
¢'[X'/X] A q) where ¢'[X’/X] is the predicate ¢’ in which each state variable z; is substituted
by .

2.3 May Transition Systems

Let us introduce may transition systems (MTS), which are transition systems with abstract
states, and abstract may transitions. They are closely related to Modal Transition Systems
defined in [LT8S8| (GHJ01, Bal04].

: d
Definition 2 (May Transition System) Let Ev be a finite set of event names and P v

{p1,p2,...,pn} be a set of predicates. Let A be a finite set of abstract states defined by {p1, —p1 } X
{p2, P2} X ... X{pn, pn}. A tuple (Q,Qo,A) is an MTS if it satisfies the following conditions:

e Q(C A) is a finite set of states,
e Qo(C Q) is a set of abstract initial states,

e A(CQ xEvxQ) is amay labelled transition relation.

Now, Definition |3| associates an abstraction defined by an MTS with an event system.

Definition 3 (MTS associated with an ES) Let ES o (X,I,Init, EvDef) be an event

system and P) {p1,p2, ..., Pn} be a set of n predicates over variables of X defining a set of

o abstract states A %Y {p1, 71} X {p2, "2} X ... X {pn, pn}. A tuple (Q,Qo,A) is an MTS
associated to ES and P if it satisfies the following conditions:

¢ QY g AR, e).(¢d5d AV Sqe),
o QoY {qlq € ANSAT(sp(Init,I) Aq)}
e A d:ef{q Sdlge AN €ANne “ € EvDef N SAT (wep(a,q') A q)}.

An example of an MTS, whose ES is described in Fig. can be seen in Fig. [2| (in dashed
lines). The four abstract states named gy to g3 appear as rounded rectangular dashed boxes.
The predicates p; and po from which they are defined are explicitly given in Sec.[3] The abstract
transitions of A are represented as dashed arrows labelled by event names.

3 Illustrative Example: an Electrical System

To illustrate our approach, this section describes an electrical (EL) system example. It is a
finite state control and command system that illustrates the MTS, as represented in Fig.
Figure shows a device D powered via a switch to one of three batteries Bi, Bs, and
Bs. A clock H periodically sends a signal that causes a commutation of the closed switch. The
system has to meet the following requirements: one and only one switch is closed at a time, and
a clock signal changes the switch that is closed. The batteries may break down. If it happens to
the one that is powering D, an exceptional commutation is triggered. We assume that there is

FEMTO-ST Institute

Approximating Event System Abstractions 5

X = {H, Sw, Bat}

1 ¥ He {tic,tac} A Sw € 1.3 A (Bat € 1..3 — {ok, ko}) A
Bat(Sw) = ok

Init gef H, Sw, Bat := tac,1, {1+ ok, 2+ ok, 3 — ok}

Tic gef H =tac = H := tic

Com % 3(4,5).(€1.305€1.3Ni+#jABat(i) = ok A

Bat(j) = ok) N H = tic =
@ns.(ns € 1..3 A Bat(ns) = ok Ans # Sw = H, Sw := tac, ns)
Fail % 3(i,j).G € 1.3Aj € 1.3 i # j A Bat(i) = ok A Bat(j) = ok) =
@nb.(nb € 1..3 A Bat(nb) = ok) =
(nb= Sw = @ns.(ns € 1.3 Ans # Sw A
Bat(ns) = ok = Sw, Bat(nb) := ns, ko))
[I(nb # Sw = Bat(nb) := ko))
Rep = @nb.(nb € 1..3 A Bat(nb) = ko) = Bat(nb) := ok)
(b) Specification

(a) Physical Representation

Figure 1: Electrical system and its specification

always at least one battery working. When there is only one battery working, the clock signals
are ignored.

The event system in Fig. uses three variables. H models the clock and takes two
values: tic to ask for a commutation, and tac when it has occurred. Sw models the switches by
indicating which one is closed. Bat models the batteries breakdowns by a total function that
associates ok or ko (for a broken battery) to each battery. The state changes occur by applying
four events: Tic sends a commutation signal, Com changes the closed switch responding to a
Tic, Fail breaks down at random a battery, and Rep repairs at random a broken battery.

The part in dashed lines in Fig. [2| shows the MTS that abstracts the model of Fig. [1(b)

w.r.t. the set Py def {p1,p2} of abstraction predicates, where p; 4f i — tic and Do def (i, 7).(i €
1.3ANj€1.3Ni#jA Bat(i) = ok A Bat(j) = ok).

4 Abstraction and Approximated Transition System Computa-
tion

This section presents an algorithm used to compute both an abstraction that is an MTS, and
an under-approximation. The reunion of both is called an Approximated Transition System
(see Def. , in which (C, Cy, A°) is an under-approximation of the labelled transition system
that is the semantics of the event system from which the MTS is deduced. In the rest of the
paper, for the abstract states, we distinguish between the may-reachability and the reachability.
The former is the reachability by the abstract may transition relation A, and the latter is the
reachability by the concrete transition relation A° in the ATS. We say that an abstract state
q is reachable if there exists at least one concrete instance of g that is reachable thanks to the
transition relation A°. By extension, an abstract transition is reachable if there exists at least
one concrete instance in A¢ whose source state is reachable. The concretization of the may
transitions is performed on the fly during the computation of the MTS. This algorithm guaran-
tees that every may transition between two abstract states is concretized. A total abstraction
function o maps each concrete state of C' to an abstract state of Q.

The algorithm comes in two versions, both of them being presented in the same figure due
to a lack of room. The first version is the one presented in this section. It is referred to as
Alg. 1. The second version, referred to as Alg. 2, is enhanced by heuristics that are explained
in Sec. The differences between Alg. 1 and Alg. 2 are highlighted and enclosed in square
brackets. Read the left hand highlighted parts for Alg. 1, and replace them with the right hand
ones for Alg. 2. Notice that since Alg. 2 computes more things than Alg. 1, some fictive empty
parts (the empty highlighted square brackets []) have been added in Alg. 1.

RR -FEMTO-ST-2496

6 Julliand, Kouchnarenko, Masson, Voiron

Definition 4 (Approximated Transition System) Let (Q,Qo,A) be an MTS. A tuple (Q,
Qo, A, C, Cy, a, A€) is an ATS whose (C,Cy,a, A°) is a concretization of the MTS (Q, Qo,
A) where:

o (. Cy are sets of respectively concrete states and concrete initial states,
e « is a total abstraction function from C to @,
o A°(CC x EvxC)is a concrete labelled transition relation.

Figure [2[shows the ATS computed by Alg. 2 for the electrical system of Fig. with
predicates Py (see Sec. . The MTS appears in dashed lines while the full lines represent its
concretization. The concrete states are showed as big dots numbered according to their order
of discovery by Alg. 2.

« /// \\ H /// \\
Rep, Fail ¢ ! Rep, Fail ¢ \
\ \

!
|
|
|

ea(1,100)

= {opnope} (h=tae) 0w ={pyowe) (W=t

Figure 2: Example MTS and ATS of the Electrical System. The values of the concrete states
are indicated in parentheses right by them. For example with state cg, (2,011) means that
battery 2 is used, and that battery 1 is ko while batteries 2 and 3 are ok. The value of h is
given globally in the abstract states.

Lines 1 to 8 of Alg. 1 compute the set of initial abstract states g, an instance of each being
recorded as a concrete witness in Cy with its association in «. Lines 9 to 34 compute the may
transition relation A. Each abstract transition is concretized by a witness {c,, — ¢}, and the
concrete states ¢, and ¢}, are recorded in C' with their associations in «. For that it computes
in the set RQ the set of may-reachable states. For each may-reachable source state, it checks
for each potential abstract state (line 12) and for each event (line 13) if a may transition exists
(line 14). When it is the case, the algorithm records the witness transition (see lines 16 and
27), but also possibly another concrete transition (see lines 17 to 26) whose source state is one
of the existing concrete states of the current source state ¢ when it exists. This last transition
is computed first to improve the reachability of the concrete transition relation. Indeed, the
existing concrete states are more likely to be connected to the initial states than the witness
source state provided by the solver in line 14. Last, line 30 adds ¢’ as a may-reachable state
that has not been taken into account yet to compute the may transition relation.

FEMTO-ST Institute

Approximating Event System Abstractions 7

Algorithm: ATS Computation [1: without Heuristics] [2: with Heuristics]

Inputs : (X, I, Init, EvDef): an Event System EvDef def {e def gy | e € Ev}

A: a finite set of abstract states
[] [orderStates: 24 x Q — list of Abstract States
(ordering function of the abstract states)]

[] [oEv: ordered list of the events of Fv]
Output 1 (Q,Q0,A,C,Co,a, A, []): (K]

an ATS [] [provided with a coloration function x € C' — {green, blue}]
Variables : RQ: the set of abstract states remaining to be handled

q,q’: the source and target abstract states of the current transition

¢, c’: the concrete source and target states of respectively ¢ and ¢’

cw, cl,: the witness concrete source and target states of a may-transition

GC:': the set of [already known] concrete states of g [green C-reachable]

[] [BC: the set of blue concrete states of g]

Q:=0; Qo:=0; A:=0; Co:=0; a:=0; A®:=0;[] [k := 03]
foreach ¢ € A do
c:= (SAT(prdx (Init) A q[X'/X]))[X/X']
if ¢ ¢ {unsat, unknown} then
Qo = Qo U {g}; Co := Co U {c}; a(c) :=¢
[] [5(c) == greens]
end
end
¢ := Co; RQ := Qo;
10 while RQ # 0 do

© 0 N O G W N

11 choose ¢ € RQ; RQ := RQ —{q}; Q :=QU{q}

12 | foreach ¢’ € [A] do [list orderStates(A, q)]

13 foreach (e &t a) € [EvDef] do [list oEw]

14 (cw,) = SAT (prdx (a) N¢'[X'/X] N q)

15 if (cw,cl,) ¢ {unsat,unknown} then

16 A:=AU{qS ¢}

17 GC:={s|a(s)=q[]} [A k(s) = green]

18 (¢, d) := SAT(prdX(a)/\q’[X’/X]/\\/Secc s)

19 if (¢, ') ¢ {unsat,unknown} then

20 C:=CUu{c}; ald) :=¢; A=A U{c >},

21 [] [k(c) := green; BC :={s' | a(s’) = ¢’ A k(s") = blue};]
22 [] [(c,¢) := SAT (prdx(a) A (Vaepo)X /X] AV eae 9)i)
23 [[if (¢, ') ¢ {unsat, unknown}then

24 A= AU {c > }; k() := green;

25 end]

26 end

27 C:=CU{cw,d,}; A := AU {cy >, }; alcw) := q; alcl,) == q';

28 [] [if cw & domain(k) then k(cy) := blue end |

29 [] [if ¢/, & domain(k) V k(cw) = green then r(c),) := k(cw) end]
30 if ¢ ¢ Q then RQ := RQ U {¢'} end

31 end

32 end

33 end

34 end

5 Heuristics for Better Abstraction Coverage

Using Alg. 1, the connectivity and the reachability of the computed ATS might be weak, since
it strongly depends on the solver’s choices. This section provides two heuristics, integrated into
Alg. 2, for improving both the connectivity and the reachability. The first heuristic addresses
this problem by allowing the engineer to firstly define an order for the set of events of Ev in
an ordered list oFEv (line and, secondly, a custom function ordering the set of abstract
states A (line . The second heuristic, exposed in Sec. adapts the partial computation of
reachability proposed in [VY03] to our purpose for integrating it into Alg. 2. The resulting new
algorithm’s complexity is the same as the previous one.

RR -FEMTO-ST-2496

8 Julliand, Kouchnarenko, Masson, Voiron

5.1 Events and States Ordering

Our first heuristic consists of providing means to control the order in which the events and
abstract target states are handled by the algorithm.

Indeed, usually in reactive systems, some events can only be fired after other events have
previously been executed. Let us consider the EL system where no battery repairing (modelled
by the Rep event) can occur unless at least one battery has broken down first (modelled by the
Fail event). Since Alg. 1 currently uses an unordered set of events EvDef, it might attempt
to concretize a Rep transition before trying to concretize any Fail transition. In this case,
the concrete source state of the Rep transition would not be a reachable one. To fix this,
we introduce the ordered list of events oEv as an input in Alg. 2. To compute a complete
abstraction, i.e. covering all events and all states, oFv must contain at least one occurrence
of each event of the set FvDef. For example, for the EL system, in all judicious orders, F'ail
must precede Rep for the aforementioned reason, and Tic must precede Com because Com is
a response to the event T'ic.

Similarly, the orderStates function parameterizes Alg. 2. Thanks to this function, the order
in which the abstract target states are handled can be controlled. To compute a complete
abstraction, the list returned by orderStates must contain at least all the abstract states of
A. While being completely customizable by the engineer, the function used in our experiments
presented in Sec. [0] gives better results for an order in which the first target abstract state handled
is the source abstract state (state ¢ in line 11) and the other states are ordered arbitrarily.
Indeed, treating reflexive abstract transitions first tends to increase the number of reachable
concrete states within the source abstract state. As a result, the chances that the next abstract
transitions can be concretized from a reachable source state are increased.

When applying Alg. 1 to the EL system with a set of abstraction predicates (first AP in
Table [1)), 33.33% of the abstract states and 11.11% (see line 1) of the abstract transitions are
covered by the ATS. Integrating the event and state ordering without coloration improved these
ratios respectively to 66.67% and 44.44%.

These ordering heuristics are integrated into Alg. 2, along with the concrete states coloration
discussed in Sec. 5.2l Even though our results did not focus on that point, an interesting
perspective could be to consider the concretization of a same abstract transition multiple times.
This could be useful for instance for systems requiring initialization steps that repetitively
apply the same event, such as a credit card system for example. In fact, this behaviour can
already be implemented using our algorithm by adding the same event to oFv several times,
and by adding the target state of the abstract transition several times to the list returned by
the orderStates function.

5.2 Concrete States Coloration

The reachability of the concrete states of the under-approximation is improved and computed
on the fly in Alg. 2 without increasing its complexity w.r.t. Alg. 1. The principle is to associate
a colour with each concrete state. A reachable state is coloured in green and a state whose
reachability is unknown is coloured in blue. While Alg. 1 tried to concretize the abstract
transitions from an already known concrete state, Alg. 2 uses the reachability information when
concretizing the abstract transitions. It first tries to concretize an abstract transition from any
known and reachable state (see lines 17 and 18). If it is indeed possible (line 19), the solver
returns a first reachable concrete transition, added to the ATS, whose concrete target state
becomes green (see lines 20 and 21). To improve the connectivity, the algorithm also tries to
join a green source concrete state to a target blue one, whose reachability is thus currently
unknown (line 22). If it is possible (line 23), its colour becomes green (line 24) since it is a

FEMTO-ST Institute

Approximating Event System Abstractions 9

target of a concrete transition starting from a reachable (green) concrete state. Even if the
concretization from a known green concrete state is not possible, the abstract transition is still
concretized. The corresponding concrete source and target states may already be known. In
this case, their reachability remain the same. Otherwise, since we have no information about
their reachability, they are coloured in blue (see lines 28 and 29).

When applying Alg. 2 with coloration and without events and states ordering to the EL
system with the first set of abstraction predicates in Table (I} 100% of the abstract states and
77.78% of the abstract transitions are covered by the ATS. This is better than with Alg. 1 that
gives respectively 33.33% and 11.11%. Moreover, integrating the two heuristics seen in Sec.
into Alg. 1 improved these two ratios to 100%.

These heuristics allow improving the reachability of the ATS for all the systems that we use
in our experiments (see Sec. [6.2).

6 Implementation and Experimentation

This section introduces in Sec. our proof-of-concept tool developed to evaluate the effects of
the heuristics. The experimental results on four examples in Table [I| are presented in Sec.
Then, in Sec. we analyse these results and conclude on the contributions of the heuristics
presented in this paper.

6.1 About the Tool

The developed tool can be seen as a library for handling abstract and concrete transition
systems as well as event systems. It embeds an event-B parser and allows to manipulate
most event-B systems. The two algorithms are implemented and can be applied to them.
The library also provides the user with many facilities for dealing with event systems. For
instance, pre-implemented functions allow to easily compute an abstraction of a model from a
set of abstraction predicates, as well as the wp, wep and before-after predicates prdx of events
defined by guarded actions. The library also contains functions to check the modality of abstract
transitions and to find a concretization of an abstract state or an abstract transition. It can
also be seen as a simple API for multiple SMT-solvers since the tool automatically generates
SMT-Lib2 code for checking the satisfiability of any first order boolean formula. The tool is
constituted of more than 5000 lines of JAVA code (version 8) and uses Z3 [dMBO0S] as default
SMT-solver. The library can be downloaded at https://github. com/stratosphr/stratest/
wiks. This website also gives information on how to use the tool.

6.2 Experimental Results

This section provides the results obtained when applying Alg. 1 and Alg. 2 to a set of four
realistic event systems of increasing size. These event systems were taken back from various
previous work without modification so as not to influence the experiment and threaten the
validity of the results.

The set of examples contains the electrical system (EL) presented in Sec. |3 a phone book
service (PH), a coffee machine system (CM), and a car alarm system (CA). For each of them,
two different sets of abstraction predicates have been used (see the AP column).

The following column names appear in Table [I} Sys for the system studied and an upper
approximation of its size between parentheses, #Ev for the number of events in the event
system, AP for an identification of the set of abstraction predicates used, # AP for the number

RR -FEMTO-ST-2496

https://github.com/stratosphr/stratest/wiki
https://github.com/stratosphr/stratest/wiki

10 Julliand, Kouchnarenko, Masson, Voiron

M1 1 e alal

[Sys | #Ev | AP | #AP | Alg. || #A&bleglksh TS Compytaien RIS [7., (%) [#CT [por || Time |

1 9 1 3 1 33.33 9 1 11.11 13 13 00:00.283

EL 4 2 3 3 100 9 9 100 18 2 00:00.297
(24) 9 9 1 4 4 100 11 8 72.73 15 1.88 || 00:00.429
2 4 4 100 11 11 100 17 1.55 || 00:00.449

1 3 1 3 3 100 12 11 91.67 16 1.45 || 00:00.261

PH 4 2 3 3 100 12 12 100 22 1.83 || 00:00.287
(219) 9 6 1 8 8 100 62 60 96.77 83 1.38 || 00:01.994
2 8 8 100 62 62 100 88 1.42 || 00:02.204

1 3 1 4 3 75 30 5 16.67 47 9.4 00:00.753

CM 3 2 4 4 100 30 24 80 54 2.25 || 00:00.854
(216) 9 3 1 6 3 50 52 7 13.46 83 11.86 || 00:01.639
2 6 6 100 52 25 48.08 7 3.08 || 00:01.629

1 6 1 8 5 62.5 31 18 58.065 44 2.44 || 00:13.818

CA 2 2 8 8 100 31 25 80.65 50 2 00:13.283
(21%) 9 9 1 9 5 55.56 30 11 36.67 37 3.36 || 00:23.978
2 9 9 100 30 28 93.33 52 1.86 || 00:25.381

of abstraction predicates in AP, Alg. for the algorithm applied, #£AS for the number of may-
reachable abstract states, #AS,.cqcn for the number of reachable abstract states computed, 745
for the abstract state coverage that is the ratio %, #AT for the number of abstract
transitions, # AT, qcn for the number of reachable abstract transitions computed. Note that
we say that an abstract transition is reachable if there exists a concrete instance of it in the ATS
that is reachable. Next, there are the following column names: 747 for the abstract transition

coverage that is the ratio %, #CT for the number of concrete transitions computed, por

for the ratio #fTiiTach which measures the efficiency of the method, by indicating in average how
many concrete transitions have been computed for making an abstract transition reachable,
and finally Time for the ATS computation runtime (in minutes). The connectivity between
transitions is indirectly measured via the coverage and efficiency rates, since a reachable state
or transition is necessarily connected to a concrete initial state.

The main results of our method are the coverage ratios of abstract states (745) and abstract
transitions (747). For almost identical computation time(s), an improvement of these ratios
indicates a better performance of the method. For pcop, a value between 3 and 1 indicates
that the algorithm covers one abstract transition per iteration step. When this ratio decreases
that indicates an improvement of the efficiency. Indeed, for each abstract transition, each
iteration step computes one up to three transitions according to the conditions in lines 19 and
23. For the EL system, with the first set of abstraction predicates, por decreases from 13 to 2,
meaning that the heuristic allowed to compute more interesting concrete transitions, increasing
the abstraction transition coverage from 11.11% to 100%.

6.3 Analysis of the Obtained Results

This section gives some conclusions and insights about the results exposed in Table

As expected, the ATS computation times are nearly identical, no matter which version of
the algorithm has been used. Note that for two cases out of eight the ATS computation time
with Alg. 2 is on average slightly faster than with Alg. 1. Since the formulas whose satisfiability
is checked are different between the two algorithms, the solver may be faster to provide an
answer for the formulas in Alg. 2 than in Alg. 1.

We observe that Alg. 2 improves both the abstraction coverage rates and the efficiency por
compared to Alg. 1. In particular, we point out the CM case with the first AP where the
transition coverage and the efficiency achieved by Alg. 2 is about respectively five and four
times better than by Alg. 1.

FEMTO-ST Institute

Approximating Event System Abstractions 11

For all systems and all sets of abstraction predicates, the abstraction coverage is improved
by Alg. 2. Depending on the set of predicates used, the coverages for states and transitions can
reach up to 100%. On most examples however, Alg. 1 covers less than half of the abstract states
and transitions. Note for example the CM case with the second set of abstraction predicates
where the abstract states and transitions coverage(s) are respectively twice and three times
better using the heuristics. All these results empirically confirm the interest of the proposed
heuristics to improve the abstraction coverage.

The heuristics also produced good results concerning the efficiency rate por. For most cases,
its value is decreased by Alg. 2 thanks to the heuristics, which means that they generally help
concretizing abstract transitions by useful transitions improving the abstraction coverage. For
the CM system with the second AP and Alg. 1 for example, an average of 11.86 concrete
transitions need to be computed in order to cover one abstract transition. When the heuristics
are used however, an average of only 3.08 concrete transitions computation is needed to cover
one abstract transition.

The ordering heuristic alone does not necessarily improve the abstraction coverage w.r.t.
Alg. 1, whereas the coloration heuristic alone always improves the results. Nevertheless, for four
cases out of the eight presented in this paper, combining the ordering and coloration heuristics
improves the abstraction coverage compared to coloration only. For the CM system with the
first AP for example, the ordering heuristic alone covers two abstract states compared to three
with Alg. 1, and six abstract transitions compared to five. The coloration heuristics alone
covered all of the four abstract states, and twenty-two out of the thirty abstract transitions.
When combining both heuristics, the four abstract states and twenty-four abstract transitions
are covered.

7 Related Work

In [NKOO] and in [PPVOQT7], the set of abstraction predicates is iteratively refined in order to
compute a bisimulation of the semantics of the model when it exists. None of these two methods
is guaranteed to terminate, because of the refinement step that sometimes needs to be repeated
endlessly. SYNERGY |[GHK™06] and DASH [BNR10| combine under-approximation and over-
approximation computations to check safety properties on programs. As we aim at proposing an
efficient method to build a reachable under-approximation of a system that covers all abstract
states and all abstract transitions w.r.t. a specification and a set of predicates, our algorithm
does not refine the approximation and so always terminates.

The closest methods to ours are those that are proposed in [GGSV02] and in [VY03]. These
approaches propose algorithms that compute an under approximated concretization of a predi-
cate abstraction covering its abstract states and transitions. Both these methods are exploited
for generating tests. The algorithm in [GGSV02] does not traverse nor compute the may ab-
straction. It builds a partial concretization of the abstract states that are reached from an
initial concrete state by a forward walk. To improve this method, the algorithm in [VY03]
computes exhaustively the may abstraction by random abstract state generation. Therefore,
some generated concrete states are not reached. Then Veanes and al. [VY03] propose to distin-
guish between four kinds of abstract transitions: green transitions when there exists an instance
that is reached from an initial concrete state, blue transitions when there exists instances, but
none known to be reachable from an initial state, red transitions when there does not exist any
instance, and grey transitions for the transitions that have not been concretized yet. In our
method, we compute and concretize only the part of the may abstraction that is may-reachable
by an abstract transition from an initial abstract state. We do not record the red transitions
that are non-existing transitions in the MTS, and we do not need the grey transitions that are

RR -FEMTO-ST-2496

12 Julliand, Kouchnarenko, Masson, Voiron

the ones which remain to be treated. In contrast with [VY03], our method colours the concrete
states instead of the abstract transitions. This allows us to distinguish between the reached
states (green) and the states for which we do not know whether they are reached (blue) or not.
So for improving the method, Alg. 2 connects in priority a green source state s to a blue target
state t. That has a “domino effect” because all the blue reached states from ¢ remain blue, but
become reachable.

Other works are about generating an under approximation to generate tests from abstrac-
tion. The tools Agatha [RGLGO03], DART [GKS05], CUTE [SMAQ5], EXE [CGPT06] and
PEX [TdHOS] also compute abstractions from models or programs, but only by means of sym-
bolic executions [PV09]. This data abstraction approach computes an execution graph. Its set
of abstract states is possibly infinite whereas it is finite with our method.

Our method can be applied to generate tests as the concolic execution in [SMAQ5]. The
concolic method allows to generate structural tests of systems covering partially the control flow
that must be explicited. Our approach allows to generate tests covering the paths defined by
the set of abstraction predicates for systems whose control flow is implicitly defined.

8 Conclusion and Further Work

This paper has presented an algorithmic method for computing a concrete approximation of the
predicate abstraction of an event system. All of the abstract states and transitions are covered,
but as the control flow is implicit in an event system, our method focuses on computing concrete
sequences that are connected and reachable. We have presented two heuristics allowing us to
better reach and connect these sequences. One heuristic colours the states that are known
to be reachable, and the other takes a user defined order on the events and abstract states
enumeration as parameters. Experimental results on four case studies are exhibited to confirm
the practical interest of our approach.

As future work, we intend to define other means for guiding the sequences instantiation, in
addition to the events ordering. We could introduce a relevance function on concrete states, as
is done in [GGSV02], for targeting peculiar concrete states considered as more relevant. Also,
our intention is to use the concrete sequences that we compute as model-based tests issued from
a formal model of the specification. Abstracting this model would allow selection criteria such
as paths selection to be used, when the size of the explicit model would prevent it.

References
[Abr96] J.-R. Abrial. The B Book. Cambridge Univ. Press, 1996.

[Abr10] J.-R. Abrial. Modeling in FEvent-B: System and Software Design. Cambridge Univ.
Press, 2010.

[Bal04] T. Ball. A theory of predicate-complete test coverage and generation. In FMCO,
volume 3657 of LNCS, pages 1-22, 2004.

[BCOO] Didier Bert and Francis Cave. Construction of finite labelled transition systems
from B abstract systems. In IFM, pages 235254, 2000.

[BJM16] Hadrien Bride, Jacques Julliand, and Pierre-Alain Masson. Tri-modal under-
approximation for test generation. Science of Computer Programming, 132(P2):190—
208, 2016.

FEMTO-ST Institute

Approximating Event System Abstractions 13

[BNR*10]

[CC92]

[CGP06]

[Dij75]

[Dij76]
[AMBOS]

[GGSV02]

(GHJO1]

[GHK™*06]

[GJ03]

[GKOTO0]

[GKS05]

[GS97]

[Gur00]

[Hoa69)

[LT88]

[NKOO]

[PPV07]

Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, Robert J. Simmons, SaiDeep
Tetali, and Aditya V. Thakur. Proofs from tests. IEEE Trans. Software Eng.,
36(4):495-508, 2010.

Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. J. Log.
Comput., 2(4):511-547, 1992.

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. EXE: automatically generating inputs of death. In ACM CCS, pages 322—
335, 2006.

E.W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of pro-
grams. Com. of the ACM, 18(8):453-457, 1975.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

L. de Moura and N. Bjorner. An efficient SMT solver. In TACAS, volume 4963 of
LNCS, pages 337-340, 2008.

Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, and Margus Veanes. Gener-
ating finite state machines from abstract state machines. In ISSTA, pages 112-122,
2002.

Patrice Godefroid, Michael Huth, and Radha Jagadeesan. Abstraction-based model
checking using modal transition systems. In CONCUR, pages 426—440, 2001.

Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V. Nori, and
Sriram K. Rajamani. Synergy: a new algorithm for property checking. In SIGSOFT
FSE, pages 117-127, 2006.

P. Godefroid and R. Jagadeesan. On the expressiveness of 3-valued models. In
VMCAIL volume 2575 of LNCS, pages 206—222. Springer, 2003.

Yuri Gurevich, Philipp W. Kutter, Martin Odersky, and Lothar Thiele. Abstract
State Machines, Theory and Applications, volume 1912 of LNCS. Springer, 2000.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated
random testing. In PLDI, pages 213-223, 2005.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV,
volume 1254 of LNCS, pages 72—83. Springer, 1997.

Yuri Gurevich. Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Log., 1(1):77-111, 2000.

C.A.R. Hoare. An axiomatic basis for computer programming. Com. of the ACM,
12(10):576-580, 1969.

Kim Guldstrand Larsen and Bent Thomsen. A modal process logic. In LICS, pages
203-210, 1988.

K. S. Namjoshi and R. P. Kurshan. Syntactic program transformations for automatic
abstraction. In CAV, volume 1855 of LNCS, pages 435-449, 2000.

Corina S. Pasareanu, Radek Pelanek, and Willem Visser. Predicate abstraction with
under-approximation refinement. LMCS, 3(1:5):1-22, 2007.

RR -FEMTO-ST-2496

14 Julliand, Kouchnarenko, Masson, Voiron

[PV09] Corina S. Pasareanu and Willem Visser. A survey of new trends in symbolic execu-
tion for software testing and analysis. STTT, 11(4):339-353, 20009.

[RGLGO03] N. Rapin, C. Gaston, A. Lapitre, and J.-P. Gallois. Behavioral unfolding of formal
specifications based on communicating extended automata. In ATVA, 2003.

[SMAO05] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine
for C. In ESEC/SIGSOFT FSE, pages 263-272, 2005.

[TdHO8] Nikolai Tillmann and Jonathan de Halleux. Pex-white box test generation for .net.
In TAP, volume 4966 of LNCS, pages 134-153, 2008.

[VYO03] Margus Veanes and Rostislav Yavorsky. Combined algorithm for approximating a
finite state abstraction of a large system. In ICSE 2003/Scenarios Workshop, pages
86-91, 2003.

FEMTO-ST Institute

MY WP SCIENCES &
TECHNOLOGIES

FEMTO-ST INSTITUTE, headquarters

15B Avenue des Montboucons - F-25030 Besancon Cedex France
Tel: (33 3) 63 08 24 00 — e-mail: contact@femto-st.fr

FEMTO-ST — AS2M: TEMIS, 24 rue Alain Savary, F-25000 Besan¢on France
FEMTO-ST — DISC: UFR Sciences - Route de Gray - F-25030 Besangon cedex France
FEMTO-ST — ENERGIE: Parc Technologique, 2 Av. Jean Moulin, Rue des entrepreneurs, F-90000 Belfort France
FEMTO-ST — MEC'APPLI: 24, chemin de I'épitaphe - F-25000 Besancon France
FEMTO-ST — MN2S: 15B Avenue des Montboucons - F-25030 Besancon cedex France
FEMTO-ST — OPTIQUE: 15B Avenue des Montboucons - F-25030 Besancon cedex France
FEMTO-ST — TEMPS-FREQUENCE: 26, Chemin de I'Epitaphe - F-25030 Besancon cedex France

http://www.femto-st.fr

	Introduction
	Background
	Model Syntax and Semantics
	Predicate Abstraction
	May Transition Systems

	Illustrative Example: an Electrical System
	Abstraction and Approximated Transition System Computation
	Heuristics for Better Abstraction Coverage
	Events and States Ordering
	Concrete States Coloration

	Implementation and Experimentation
	About the Tool
	Experimental Results
	Analysis of the Obtained Results

	Related Work
	Conclusion and Further Work

