
The rapidly evolving field of decadal climate prediction, using initialized climate models 

to produce time-evolving predictions of regional climate, is producing new results for 

predictions, predictability, and prediction skill.
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T he importance of improved information about  
 near-term (from 1 year to several decades in  
 advance) regional climate for many societal 

applications has prompted considerable research in 
the field of decadal climate prediction that addresses 
those time scales. Meehl et al. (2009a) outlined the 
problems and issues involved with decadal climate 
prediction, and reviewed some of the first results 
from the few model studies that had been performed 
up to that time. The purpose of this paper is to pro-
vide scientists and possible users of such near-term 
climate information with an update of research 
in this rapidly evolving field since the Meehl et al. 
(2009a) paper, including recent multimodel studies 
and Coupled Model Intercomparison Project phase 5 
(CMIP5) results. CMIP5 includes, as part of the stan-
dard multimodel experiments to be run for analysis 
and comparison, a set of decadal climate prediction 
experiments—both hindcasts and predictions (Taylor 
et al. 2012). This multimodel ensemble represents a 
major contribution to climate science in general and 
decadal climate prediction in particular in allowing 
this coordinated set of initialized hindcasts and 
predictions to be made available to the international 
climate science community to advance our under-
standing of the decadal climate prediction problem.

For example, in part due to results from the ini-
tialized decadal climate predictions from CMIP5, 
the assessed range of near-term global warming 
(2016–2035) was less than the uninitialized simula-
tions in the IPCC AR5 (Kirtman et al. 2013).

To provide an example of a group of users who 
could conceivably make use of decadal climate 
predictions, water managers must make decisions 
regarding water supply and infrastructure on time 
scales of one to several decades in advance (Barsugli 
et al. 2009; Means et al. 2010). Regional climate vari-
ability and change involving temperature and precipi-
tation are important inputs for those decisions, and it 
is on those time scales of interest to water managers 
that decadal climate prediction is being applied as 
noted above. One question that could be asked is do 
current decadal climate predictions have sufficient 
skill or reliability on those time and space scales to 
be useful in helping water managers make better 
decisions? A corollary is whether initial conditions 
are playing a significant role in providing more skill 
than uninitialized projections.

Decadal climate prediction involves not only the 
skill of the predictions themselves but also the science 
questions that can be addressed that should lead to 
a better understanding of processes and modeling of 
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climate variability, climate sensitivity, transient cli-
mate response, and climate prediction at other time 
scales, such as seasonal prediction.

The “Terminology” section defines terminology, 
and the “Technical issues” section addresses a number 
of technical issues involved with decadal climate 
prediction such as initialization, ensemble genera-
tion, bias adjustment, and prediction verification and 
evaluation. The “Science issues” section includes a 
discussion of some of the science issues involved in 
decadal climate prediction studies focusing on the 
Indian, Atlantic, and Pacific Oceans, as well as over 
land areas. The “Initialized decadal climate predic-
tions for near-term climate change” section presents 
near-term decadal climate predictions that have been 
made for time periods up to 2035, followed by conclu-
sions in the “Conclusions and prospects for the future 
of decadal climate prediction” section.

TERMINOLOGY. Vice Admiral Robert Fitzroy, 
inspired by the loss of a ship in a violent storm in 
1859, was the first person to coin a term for antici-
pating future weather conditions; he chose the word 
“forecast” (Fitzroy 1863). Later, Lewis Fry Richardson 
chose the word “prediction” in the title of his book, 
which first discussed how to produce an estimate 
of future weather by solving differential equations 
numerically (Richardson 1922).

Fitzroy and Richardson’s different choice of 
words to describe the process of determining future 
weather should be clarified in the realm of estimating 
the climate for the coming decades. Here the words 
forecast and prediction are used interchangeably. 

In relation to short-term climate, a decadal climate 
prediction provides information about the future 
evolution of the statistics of regional climate from 
the output of a numerical model that has been 
initialized with observations and run with multiple 
ensemble members either with a single model or a 
multimodel ensemble on time scales of 1–30 years. 
A numerical weather prediction (NWP) or forecast 
is also generated from a numerical model that has 
been initialized with observations, but it attempts 
to track the time evolution of individual weather 
features typically using multimember ensembles in 
a probabilistic format on time scales of a week or so. 
Such predictions or forecasts also can take the form of 
a synthesis product that might include incorporation 
of statistical methods, statistical corrections to raw 
model output, or the combination of different models.

Probabilistic forecasts are thus common on all 
time scales. The weather man announcing scattered 
showers for the afternoon only predicts their statis-
tics, not the actual places and times where these occur. 
The same holds for the ensemble prediction systems 
that provide probabilistic forecasts up to 10 days in 
advance and the seasonal climate forecasts now in 
operational use. The aim is to extend this to the 1- to 
30-yr predictions discussed here. Thus, the common 
elements of initialization with observations and the 
goal of probabilistic weather and climate information 
can constitute a seamless or unified approach for 
weather and climate predictions/forecasts (Palmer 
et al. 2008; Hurrell et al. 2009).

An “outlook” is a summary of forecast infor-
mation (e.g., probabilities of ENSO or a short text 
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description), which could include subjective judg-
ments. This is already done, for instance, for the 
seasonal time scale by the International Research 
Institute for Climate and Society (IRI) and by the 
National Oceanic and Atmospheric Administration 
(NOAA)’s Climate Prediction Center, which provides 
a seasonal climate outlook. The term “projection” 
indicates an estimate of future climate that is depen-
dent on the externally forced climate response (e.g., 
the response to changes in anthropogenic greenhouse 
gases or aerosols) inherent in a particular emission 
scenario.

“Predictability” characterizes the theoretical 
limit of predictive skill in optimum conditions. 
It is the “ability to be predicted” rather than the 
current “ability to predict” some feature or quantity. 
Predictability arises from both externally forced and 
internally generated variability. Estimates of climate 
predictability are mainly, but not exclusively, based 
on the behavior of climate models and regions where 
skillful predictions on the time scales of interest may 
be possible as discussed in the “Predictability and 
forecast skill” section. Finally, the terms “hindcast” 
and “retrospective forecast” are perhaps more prob-
lematic. The ocean reanalysis community refers to 
hindcast for an atmosphere-forced ocean-only simu-
lation. But this term is also used in the literature for 
initialized predictions of past cases. In the decadal 
climate prediction context, retrospective prediction, 
retrospective forecast, and hindcast are used inter-
changeably to refer to this type of initialized forecast 
of past cases.

TECHNICAL ISSUES. Initialization and ensemble 
generat ion. Beyond reducing the model biases 
themselves, one of the biggest technical challenges 
affecting the quality of decadal climate predictions 
is the initialization of the model from observations 
to start a decadal prediction. Modeling groups are 
actively exploring different techniques and method-
ologies for initializing decadal climate predictions. 
The main features of the initialization procedures 
used by modeling groups participating in CMIP5 
are summarized in Table 1, with a list of acronyms 
given in Table 2. These include either partial or fully 
coupled assimilation of ocean and/or atmospheric 
observations, forcing the ocean with atmospheric 
observations, and, additionally, full-field or anomaly 
initialization. Evaluations of two of these methods, 
the three-dimensional initialization of the ocean with 
observations and the use of observed surface forcing 
to initialize the ocean (Matei et al. 2012c; Yeager et al. 
2012; Meehl and Teng 2012; Swingedouw et al. 2012), 

have shown that the latter may constitute a simple 
but successful alternative strategy for initialization, 
especially over the extratropical regions (Doblas-
Reyes et al. 2011).

There are also various methods to deal with model 
drift away from the observed initial state. Full-field 
initialization brings the ocean model state close to 
observations and the model then drifts toward its 
systematic error state during the prediction and 
requires bias adjustment in predictions (discussed 
below). Anomaly initialization adds the anomalous 
component of the observed state to the model clima-
tology to minimize the drift during the prediction. 
A comparison of the two methods shows that the 
former generally produces more skillful predictions 
on the seasonal time scale (Magnusson et al. 2012), 
though the latter provides more skillful predictions 
in hindcasts where it has been tested (Smith et al. 
2012a). Hazeleger et al. (2013b, manuscript submitted 
to Geophys. Res. Lett.) find there is no significant dif-
ference between full-field and anomaly initialization 
in decadal prediction skill. However, the anomaly ini-
tialization method can produce mismatches between 
the observational anomalies and the model clima-
tology in some regions (e.g., in sharp Gulf Stream 
gradient locations). A majority of modeling groups 
at present are leaning toward full-field initialization, 
but further evaluations are necessary with more 
models to draw definitive conclusions as to the best 
initialization technique.

Weather and climate predictions are well known 
to be sensitive to small perturbations in the initial 
state (e.g., Du et al. 2012), and an ensemble of initial 
conditions and subsequent predictions is typically 
generated in order to investigate this. Ensemble gen-
eration can utilize the different methodologies for 
perturbation, extending from ensemble Kalman 
filter-type assimilation methods (e.g., Karspeck et al. 
2013), different start days for the initial state of the 
atmosphere around the time of the prediction (e.g., 
Yeager et al. 2012), application of breeding methods to 
generate optimal initial perturbations (e.g., Ham et al. 
2014), or variations on those methods. This diversity 
of approaches results from different philosophical 
approaches to the initialization and ensemble genera-
tion problem.

Bias adjustment. Biases in decadal climate predictions 
that develop as a function of time come from a range 
of sources, including model drift from the observed 
initial state to its own preferred state, which is a 
product mainly of its own set of systematic errors 
that can happen quite rapidly (sometimes called 
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Table 1. (right) Brief summaries of initialization strategies used by (left) modeling groups for the CMIP5 
decadal prediction experiments. Acronyms in this table are defined in Table 2.

Model/modeling center Initialization method

BCC-CM1.1

BCC, China

Full-field initialization. Coupled model integration with ocean T nudged to SODA ocean 
reanalysis product above 1500 m.

CanCM4

CCCma, Canada

Full-field initialization. Atmosphere: assimilate ERA-40 and Interim ECMWF Re-Analysis 
(ERA-Interim) with nudging to observed SSTs. Ocean: offline assimilation of SODA and 
GODAS subsurface ocean T. S adjusted to preserve model T–S relationship

CCSM4

NCAR, United States

Full-field initialization:

(hd-i1) Ocean hindcast forced with CORE2 atmospheric dataset.

(da-i2) Loosely coupled ocean–atmosphere Ensemble Kalman Filter (EnKF, see Table 2) analysis. 
Atmosphere: assimilates raw atmospheric observations, forced with observed SST dataset. 
Ocean: assimilates observations of subsurface T and S, forced with atmospheric EnKF analysis.

CFSv2–2011

NCEP, United States

Full-field initialization. Coupled (atmosphere, ocean, ice, land) three-dimensional varia-
tional data assimilation (3DVAR) using the NCEP CFSR. Atmosphere constrained by raw 
observations, ocean constrained by observed T and S, sea ice constrained by a combination 
of gridded and satellite-derived products. Additional nudging of ocean surface temperatures 
to SST reanalysis products (HADISST and Reynolds SST).

CFSv2–2011

COLA, United States

Full-field initialization. Ocean initialized using the NEMOVAR ocean reanalysis interpolated 
to the ocean model grid. Atmosphere, sea ice, and land initialized from CFSR reanalysis.

CMCC-CM

CMCC, Italy

Full-field initialization. Atmosphere: uninitialized twentieth-century coupled model simula-
tions. Ocean: three realizations of CMCC-INGV ocean synthesis of T and S.

CNRM-CM5

CNRM-CERFACS (France)

Full-field initialization. Coupled model integration with ocean T and S nudged to NEMOVAR 
ocean reanalysis product (NEMOVAR is a multivariate 3DVAR data assimilation of T and S 
observations into the NEMO ocean model).

EC-Earth (consortium) Full-field initialization. Atmosphere and land: initialized from ERA-40 and ERA-Interim. 
Ocean: NEMOVAR ocean reanalysis product. Sea ice initial conditions come from a LIM2 
run forced with the DFS4.3 atmospheric forcing.

FGOALS-g2

LASG-CESS, China

FGOALS-s2

LASG-IAP, China

Full-field initialization. Atmosphere/land: none. Ocean: nudging to SST, T, and S with 
dynamic bias correction. Sea ice: none. Ensembles: perturbed atmosphere/ocean/land/sea 
ice with different initial time.

GEOS-5

NASA-GMAO, United States

Full-field initialization. Coupled assimilation with atmosphere constrained by MERRA 
reanalyses and observed precipitation. Ensemble OI used in ocean to assimilate observed 
subsurface T and S and surface height, temperature, and salinity. Ensembles: two-sided 
breeding method used to generate optimal initial perturbations

GFDL-CM2.1

NOAA-GFDL (United States)

Full-field initialization. Coupled assimilation using EnKF. Atmosphere: constrained by an 
atmospheric reanalysis. Ocean: assimilates observations of T, S, and SST

HadCM3

Met Office Hadley Centre, 
United Kingdom

(i1) Anomaly initialization: coupled integration with relaxation to atmospheric anomalies 
and HadCM3 climatology from ERA-40 and operational ECMWF analysis, and ocean 
anomalies and HadCM3 climatology from an offline anomaly ocean reanalysis product.

(i2) Full-field initialization: as in anomaly initialization in (i1) above, but with coupled 
integration relaxed to full values rather than anomalies.

IPSL-CM5A-LR

IPSL (France)

Anomaly initialization. Ensemble of coupled integrations with nudging toward anomalous 
Extended Reconstructed Sea Surface Temperature (ERSST) data (www.esrl.noaa.gov/psd/) 
(nudging strength: –40 W m–2 K–1).

MIROC4h, MIROC5

MIROC, Japan

Anomaly initialization. Coupled integration using observation-based gridded ocean T and S 
dataset.

MPI-ESM-LR, MPI-ESM-MR

MPI-M, Germany

Anomaly initialization. Coupled integration using ocean T and S fields from an offline ocean 
hindcast forced with NCEP atmospheric reanalysis.

MRI-CGCM3,

MRI, Japan

Anomaly initialization. Coupled integration using observation-based gridded ocean T and S 
dataset.
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Table 2. Definition of acronyms used in Table 1.

3DVAR Three-dimensional variational data assimilation

BCC-CM Beijing Climate Center Climate Model

CanCM4 Canadian Coupled Global Climate Model version 4

CCCma Canadian Centre for Climate Modeling and Analysis

CCSM4 Community Climate System Model version 4

CFSR Climate Forecast System Reanalysis

CFSv2 Climate Forecast System version 4

CMCC Centro Euro-Mediterraneo per i Cambiamenti Climatici

CMCC-CM CMCC Climate Model

CMCC-INGV CMCC Instituto Nazionale di Geofisica e Vulcanologia

CNRM-CERFACS Centre National de Recherches Météorologiques-European Centre for Research and Advanced Training in 
Scientific Computation

CNRM-CM5 CNRM Climate Model version 5

COLA Center for Ocean–Land–Atmosphere

CORE2 Coordinated Ocean-Ice Reference Experiments, phase 2

DFS4.3 Drakkar Forcing Set version v.3

EC-Earth European Earth System Model

EnKF Ensemble Kalman filter

ERA-40 40-yr ECMWF Re-Analysis

FGOALS Flexible Global Ocean–Atmosphere–Land System model [also FGOALS g2 (s2)]

GEOS-5 Goddard Earth Observing System version 5

GFDL Geophysical Fluid Dynamics Laboratory

GFDL-CM2.1 GFDL Climate Model version 2.1

GODAS Global Ocean Data Assimilation System

HadCM3 Hadley Centre Climate Model version 3

HADISST Hadley Centre Sea Ice and Sea Surface Temperature dataset

IPSL Institute Pierre Simon Laplace

IPSL-CM5A-LR IPSL Climate Model version 5A, Low Resolution

LASG-IAP (CESS) State Key Laboratory Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics–
Institute of Atmospheric Physics (Center of Earth System Sciences)

LIM2 Louvain-la-Neuve Sea Ice Model version 2

MERRA Modern-Era Retrospective Analysis for Research and Applications

MIROC Model for Interdisciplinary Research on Climate

MPI-M Max-Planck-Institut für Meteorologie

MPI-ESM-LR/MR MPI Earth System Model Low Resolution/Medium Resolution

MRI Meteorological Research Institute

MRI-CGCM3 MRI Coupled Global Climate Model version 3

NASA-GMAO National Aeronautics and Space Administration Global Modeling and Assimilation Office

NCAR National Center for Atmospheric Research

NCEP National Centers for Environmental Prediction

NEMO Nucleus For European Modeling of the Ocean

NEMOVAR Variational data assimilation system for NEMO

NOAA National Oceanic and Atmospheric Administration

OI Optimal interpolation

SODA Simple Ocean Data Assimilation
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initialization shock), inability to realistically simulate 
the natural modes of interannual-to-multidecadal 
variability, uncertain future levels of radiative 
forcings (such as volcanic eruptions and aerosols), and 
insufficient and imperfect observations. Additionally, 
there is uncertainty from insufficient sampling of the 
natural variability owing to both the short history of 
the hindcasts as well as the limited number of predic-
tions. The rate and spatial pattern of bias growth may 
give useful information about the physical processes 
that lead to prediction error and may allow targeted 
model improvements. Nevertheless, current predic-
tions generally must attempt to remove this bias in 
order to be useful in predicting small signals.

Some of the issues in adjusting prediction biases are 
given by WCRP (2011), which discusses the removal 
of the mean bias from the predictions. The result for 
full-field bias adjustment (see Smith et al., 2013, for 
discussion of bias adjustment for anomaly initializa-
tion versus full-field initialization) is equivalent to 
calculating a predicted climatological average for each 
forecast range and considering the forecast anomalies 
obtained by subtracting the average. The same calcula-
tion is done for the observations, and the anomalies 
are compared. Mean bias adjustment does not address 
issues such as potential trends (time dependence) in 
the drift/bias. Bias adjustment can be illustrated in a 
schematic of a set of decadal predictions (Fig. 1). In 
this example, which is more comparable to the case 
for full-field initialization, the model drifts from its 
observed initial states (dashed lines) toward its pre-
ferred climate state, which is closer to the uninitialized 
model state (gray line) with a stronger trend than is 
observed. Systematic model errors may be removed 
by subtracting the average rate of drift over all hind-
casts (inset). In this example, however, removal of 
the mean bias produces states that remain biased low 
early in the period and biased high later in the period, 
indicating the bias adjustments are too small early on, 
and too large later (solid line). Replacing the average 
drift correction with a correction that varies over the 
period may be needed (van Oldenborgh et al. 2012). In 
other words, an “average” bias adjustment is an issue 
if the model drift has a substantial trend. Additional 
corrections may be possible for conditional biases 
related to different estimated magnitudes of modeled 
and observed variability (Goddard et al. 2012a). A 
further complication is that the character of the drift 
in initialized predictions can depend on the observing 
system or the particular initial state (e.g., Kumar et al. 
2012; Vecchi et al. 2013), which can lead to changes in 
observing systems being imprinted on the bias adjust-
ments and thus on the predictions.

Mean bias also can be removed by calculating 
a model climatological average for each hindcast 
time period, creating anomalies by subtracting that 
model climatology for each time period from the 
model hindcasts from those same time periods, and 
doing the same calculation for the observations (e.g., 
García-Serrano and Doblas-Reyes 2012, and applied 
in Figs. 4 and 8 below).

Assessing the required number of start dates, the 
number of ensemble members, and suitable adjust-
ment methodologies to enable a reliable estimate of 
the bias is important in order to improve the decadal 
predictions. Because of issues involved with sampling 
model variability, trend, and conditional bias as noted 
above, more robust estimates of the bias adjustment 
are possible with more start dates for the hindcasts. 
This can involve start dates every year, rather than 
every 5 years as originally planned for CMIP5 
(García-Serrano and Doblas-Reyes 2012), and this 
has become a recommendation as part of CMIP5. 
For the 30-yr predictions for CMIP5, where there are 
only three start dates for the hindcasts, correcting the 
bias presents an even greater challenge. One method 
is to use the year 10 bias adjustment for years 11–30, 
assuming most of the drift occurs by year 10 (Meehl 
and Teng 2012, 2014). There are additional compli-
cations for precipitation compared to temperature 
(Doblas-Reyes et al. 2013). For example, the more 
noisy spatial character of precipitation likely requires 
some spatial averaging (Goddard et al. 2012a) and 
presents even greater challenges for skillful decadal 
climate predictions at local scales.

A side benefit of dealing with the technical issues 
of removing model bias is a method to help quantify 
the observed transient climate response (TCR) and 
equilibrium climate sensitivity (ECS) to increasing 
CO2. Hawkins et al. (2014) show that after all the 
temperature biases mentioned above are removed 
from model hindcasts, what is left is the model bias 
that is due to the transient response to increasing 
greenhouse gases (GHGs) compared to uninitialized 
runs. This is effectively the conditional bias, at least 
for temperature, where the bulk of that bias is in the 
trend. Utilizing different versions of the same set 
of predictions with models with a range of climate 
sensitivities allows a constraint on the uncertainties 
in the observed TCR and ECS.

Additionally, it has been shown that the bias 
adjustment procedure can correct for model trends 
that may differ from observations. For example, bias 
adjustments for the CMIP5 multimodel dataset can 
reduce a greater-than-observed decadal trend in 
the models, and thus improve hindcast skill in both 
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initialized and uninitialized simula-
tions (Meehl and Teng 2014). Since 
the magnitude of the bias adjustment 
can be large relative to the signals 
predicted (Kharin et al. 2012; Kim 
et al. 2012), it is an important goal to 
reduce the systematic errors of the 
models to minimize the initialization 
shock. An analog can be found in the 
early days of global coupled climate 
models that used “flux correction” 
to account for egregious model 
systematic errors—for example, a 
very weak or nonexistent Atlantic 
meridional overturning circulation 
(AMOC) (Manabe and Stouffer 
1988). However, even with such 
large model errors being corrected 
in that way, relevant climate change 
information from that generation of 
models was obtained as anomalies 
from control or reference runs (e.g., 
Cubasch et al. 2001). Such results 
have been consistent with later generations of models 
that were improved and consequently made less use 
of f lux correction (Meehl et al. 2007), and none of 
the present generation of atmosphere–ocean general 
circulation models (AOGCMs) in CMIP5 (Taylor 
et al. 2012) use flux correction. Presumably the need 
for bias adjustment for decadal climate prediction 
will be reduced as subsequent generations of models 
continue to improve.

Predictability and forecast skill. Evaluating the skill of 
hindcasts is important for quantifying the spatial–
temporal credibility of predictions as well as provid-
ing a lower bound for the predictability of the system 
(e.g., Goddard et al. 2012a; Wang et al. 2012). Boer 
et al. (2013) use hindcasts to evaluate both predictabil-
ity and skill in a forecast system. Predictability may be 
quantified in a variety of ways including correlation 
or mean square error (e.g., Goddard et al. 2012a). The 
spread of states in prediction ensembles can also be 
used to determine for how long and by how much 
the predicted probability density function (PDF) is 
distinguishable from the corresponding climatologi-
cal PDF, thus providing an estimate of predictability 
(e.g., Branstator and Teng 2010). Some investigators 
have used relative entropy from information theory 
(Kleeman 2002; Majda et al. 2005; DelSole 2004) as 
a comprehensive measure of predictability, though 
this method works best with large ensembles or large 
numbers of hindcasts.

Hawkins and Sutton (2009a) schematically 
suggested that as a prediction progresses, initial 
condition predictability would become relatively 
unimportant as the spread from past and projected 
changes in anthropogenic external forcing increased, 
with some crossover point reached at around a decade. 
Subsequent studies have now quantified the timing of 
that crossover point for some regions and variables. 
For example, Branstator and Teng (2010, 2012) use 
relative entropy to measure the predictability of upper-
ocean heat content in the North Atlantic (Fig. 2). 
Early in the predictions there is the potential for the 
initial state to have a large impact, but that steadily 
decreases. The predictive information due to past and 
ongoing changes in greenhouse gases is lower at first 
but increases with forecast range until, after about 
8 years, the crossover point is reached and there is 
greater potential skill provided by the external forcing. 
These results are in broad agreement with indirect 
estimates of the predictability of the relative contribu-
tions of internally generated and forced components 
of temperature as characterized by variance ratios in 
CMIP3 experiments (Boer 2011) and in measures of 
predictability and prediction skill for hindcasts made 
with the CCCma model (Boer et al. 2013).

This raises one key difference between numerical 
weather prediction and decadal climate prediction—
namely, the much smaller number of independent 
initial states in the latter from which to sample in 
order to assess decadal climate prediction skill. As 

Fig. 1. Schematic figure illustrating the potential difficulty of bias 
adjustment when there is a long-term background trend that differs 
from the observed, together with short-term model drift following 
initialization. The drift of the raw initialized hindcasts from the initial-
ized “observations” (solid black line) are the thin colored solid lines 
that approach the uninitialized model-forced simulation (solid gray 
line). In the inset, the mean drift (heavy solid brown line) is calculated 
as the average of the drifts from each initial state (colored lines). If 
this mean drift is removed from each hindcast, the resulting dashed 
colored lines drift negative early in the hindcast period and positive 
later in the hindcast period as a consequence of the difference in the 
observed and simulated trends. This is overcome by using drift cor-
rections that depend on the initial time of the forecast rather than 
the average drift (Kharin et al. 2012).
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noted above, modeling groups have used initial 
states starting in 1960 and run either every 5 years 
or every year thereafter. The question of how many 
independent initial states would be needed to pro-
duce statistical confidence has yet to be definitively 
answered. Such studies need to be performed to de-
fine the limits of a properly validated forecast system. 
However, as will be discussed later, measures of reli-
ability suggest that even with the limited number of 
initial states available, there may be some regions that 
produce reliable (i.e., the probabilities of the hind-
casts for a specific event match the relative observed 
frequencies) climate information (Corti et al. 2012), 
although this needs to be explored in other models 
(e.g., Ho et al. 2013).

Statistical methods have also been applied to 
quantify predictability. These include linear inverse 
modeling (Penland 1989; Newman 2007, 2013; 
Hawkins and Sutton 2009b; Teng and Branstator 
2011; Hawkins et al. 2011; Zanna 2012), multivariate 
regression propagators (DelSole and Tippett 2009; 
Branstator et al. 2012), analogs (Branstator et al. 2012; 

Ho et al. 2012), and coarse-grain clusters. Each has 
been used to study various aspects of predictability 
that can provide measures of possible predictive skill. 
For example, Branstator et al. (2012) and Branstator 
and Teng (2012) used two of these methods to com-
pare the predictability properties of various com-
prehensive AOGCMs and found average saturation 
times (i.e., the time at which initialized predictions 
cannot be discerned from randomly generated vari-
ability) for subsurface temperature had substantial 
model-to-model variations, especially in the North 
Atlantic. In that region saturation occurred in less 
than 6 years in some models and after more than 15 
years in others (Fig. 2), thus highlighting the extent to 
which estimates of North Atlantic predictability can 
be model dependent. It is also likely that statistical 
predictions can be used as a benchmark to assess the 
skill of dynamical predictions (Hoerling et al. 2011; 
Smith et al. 2012b; Ho et al. 2012; DelSole et al. 2013).

Techniques for evaluation of skill of decadal pre-
dictions can benefit from the extensive experience 
gained from the much longer history of seasonal 
predictions and their verifications. Seasonal predic-
tions share features that are common to their decadal 
counterpart (Goddard et al. 2012b): a prediction 
format that is probabilistic, a need for prediction 
calibration, and a need to convey estimates of skill 
to the users as the skill varies strongly with region 
and season.

An essential measure for the probabilistic predic-
tions is their reliability. The reliability of a probabi-
listic prediction, though not necessarily a measure of 
accuracy, refers to a comparison of prediction prob-
ability of an event against the observed frequency. 
For reliable probabilistic prediction, the prediction 
probability for an event to happen should be the same 
as the observed frequency of occurrence (Kumar 
2007). For example, if an event such as precipitation 
at a particular location is predicted to be above the 
climatological average with a 60% chance, then, in 
this definition of a reliable prediction, for 60% of 
cases the precipitation for the verifying analysis will 
be above its mean value. Unreliable probabilistic 
predictions have severe implications on the efficacy 
of economic decision-making processes (Vizard et al. 
2005). Decadal prediction reliability will be discussed 
further in the “Predictive skill over land” section.

The U.S. Climate Variability and Predictabil-
ity (CLIVAR) Decadal Prediction Working Group 
(DPWG) recommends evaluating decadal predic-
tions for different time and space averages (Goddard 
et al. 2012a). Though initialized decadal climate 
predictions can be run for time scales of 1–30 years 

Fig. 2. Predictability of upper 300-m temperature 
of the North Atlantic for 12 CMIP5 models resulting 
from initialization (dashed blue lines) and the response 
to RCP4.5 forcing (dashed red lines). Here, predict-
ability is indicated by the information contained in 
perfectly predicted distributions, as measured by 
relative entropy. The thick solid lines are multimodel 
averages of the relative entropy. The crossover point 
near year 8 for the multimodel averages is where infor-
mation originating in the initial conditions (blue line) 
begins to be exceeded by information resulting from 
external forcing (red line). The horizontal dashed line 
indicates the 90th percentile of relative entropy from 
ensembles of approximately 18 random states drawn 
from a control run. (From Branstator and Teng 2012.)
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(Taylor et al. 2012), for time averages the recommen-
dation is to evaluate prediction skill for 2–5- and 
6–9-yr lead-time averages to represent interannual 
time scales (but not to include year 1 so as to exclude 
skill from the seasonal time scale) and for 2–9-yr lead-
time averages to assess subdecadal-scale predictions. 
For spatial scales, the recommendation is to provide 
evaluations for at least the observational grid scale 
and the regional scale. The choice for the spatial ex-
tent of the regional scale is guided by a compromise 
between the correlation skill and spatial signal-to-
noise ratios. Such an analysis suggests that at least 
5° latitude by 5° longitude represents a reasonable 
scale for smoothing precipitation and temperature 
(Räisänen and Ylhäisi 2011). Statistical significance 
of skill depends crucially on the length of the veri-
fication time series and autocorrelation within the 
period, with robust estimates requiring verification 
over a large sample or long time series (Kumar 2009).

Decadal hindcast skill is frequently compared 
with uninitialized climate change simulations. 
Both are intended to capture the forced response 
to changing atmospheric composition, but only the 
initialized decadal hindcasts carry potential infor-
mation on the time evolution of internally generated 
climate variability. Another approach is to attempt 
to remove the forced component from the hindcasts 
and the observations and to consider the skill of the 
remaining variability (van Oldenborgh et al. 2012). 
However, the identification of the forced component 
is difficult, especially in the observations, and is 
usually approximated by fitting to some curve.

It has been noted in earlier studies that for other 
climate model applications a multimodel ensemble 
outperforms most single model results (e.g., Reichler 
and Kim 2008). This characteristic seems also to 
apply to most initialized decadal climate hindcasts 
as has been shown in various ways, for example, by 
Chikamoto et al. (2012a), Kim et al. (2012), and Smith 
et al. (2012b).

SCIENCE ISSUES. To advance the science of 
decadal climate prediction, there have been several 
coordinated climate modeling exercises such as the 
Ensembles-Based Predictions of Climate Changes 
and their Impacts Project (ENSEMBLES; van der 
Linden and Mitchell 2009; van Oldenborgh et al. 
2012; García-Serrano and Doblas-Reyes 2012) and the 
most recent CMIP5 (Taylor et al. 2012) as noted above. 
Most of the decadal climate prediction experiments in 
CMIP5 are hindcasts designed to assess historical pre-
dictive skill. For the near-term future decadal climate 
predictions, the current representative concentration 

pathway (RCP) scenarios (Moss et al. 2010) used in 
climate model simulations of future climate change 
in CMIP5 do not diverge much in terms of globally 
averaged climate response until nearly 2035 (e.g., 
Meehl et al. 2012). Therefore, the CMIP5 decadal 
predictions used the RCP4.5 scenario. However, the 
observed time evolution of aerosols and short-lived 
species could provide some uncertainty not captured 
in the RCP scenarios (Moss et al. 2010) since the RCP 
scenarios all provide estimates of aerosol removal that 
could be different from recent observations (Shindell 
et al. 2012, though there are indications that recent 
observed sulfate aerosol concentrations are compa-
rable to those in the RCP scenarios (Klimont et al., 
2013). Thus, there is the possibility that near-term 
climate predictions in CMIP5 could have aerosols in 
RCP4.5 that are not necessarily consistent with recent 
observations in some regions.

There is also evidence that aerosol changes could 
influence Atlantic hurricane activity in the coming 
decades, with aggressive mitigation in RCP2.6 leading 
to increased storm frequency (Villarini and Vecchi 
2012, 2013; Dunstone et al. 2013). With regards 
to other external forcings, some groups include a 
climatological solar cycle in spite of issues with its 
predictability, and it is acknowledged that volcanoes 
are inherently unpredictable so they are not included 
in the future predictions.

Another science issue involved with decadal cli-
mate prediction is the possible conditional nature 
of the prediction skill; that is, some initial states 
could be more predictable and thus lead to more 
accurate predictions than others (Griffies and Bryan 
1997; Collins et al. 2006; Branstator and Teng 2010). 
Reliable estimates of skill conditioned on the occur-
rence of specific circumstances in the initial states are 
even more difficult to determine owing to the smaller 
sample for verification.

Distinguishing between skill arising from external 
factors and internal variability is not always pos-
sible (Solomon et al. 2011). Decadal climate vari-
ability combines elements of stochastic forcing and 
internally generated mechanisms such as the AMOC 
(Latif and Keenlyside 2011; Srokosz et al. 2012; Liu 
2012). Initialized predictions that aim to capture the 
evolution of internal variability may be hindered by 
the aforementioned initialization shocks. For surface 
temperature, some of the near-term predictive skill 
arises from the warming trend associated with 
increases in anthropogenic greenhouse gases (Smith 
et al. 2010; van Oldenborgh et al. 2012) as was shown 
to be the case for North Atlantic upper-ocean heat 
content in Fig. 2.
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To understand sources of regional predictive skill, 
analysis of single model results and multimodel 
experiments has recently pointed to possible sources 
of predictive skill arising from either internally 
generated decadal variability related to physical 
mechanisms, external forcing, or a combination 
of both (Fyfe et al. 2011). A multimodel example 
showing regions where there is additional prediction 
skill from initialization on the subdecadal time scale 
over and above uninitial-
ized simulations is shown 
in Fig. 3. Additional skill 
coming from initialization 
has a regional pattern, with 
significantly improved skill 
compared to uninitialized 
simulations over areas of 
the North Atlantic and 
eastern Pacific.

Another multimodel ex-
ample of predictive skill for 
years 6–9 at the subdecadal 
t ime scale (Fig. 4 af ter 
Doblas-Reyes et al. 2013) 
shows regions where overall 
predictive skill for temper-
ature (with contributions 
from initialization and ex-
ternal forcing, including 
volcanoes) from the CMIP5 
multimodel ensemble has 

been quantified. There are 
indications of greater skill 
(relative to other areas in 
the initialized hindcasts, 
not necessarily relative to 
uninitialized simulations) 
over the North Atlantic, 
western Pacific, eastern 
tropical Pacific, and Indian 
Oceans (darker red colors), 
with less skill over parts of 
the North Pacific (lighter 
colors) as also noted by 
other multimodel studies 
for different prediction 
time frames (Goddard et 
al. 2012a; see also http://
clivar-dpwg.iri.columbia 
.edu): Kim et al. (2012) for 
years 2–5, Chikamoto et al. 
(2012a) for years 2–4 and 
5–9, van Oldenborgh et al. 

(2012) for years 2–5 and 6–9, and Guémas et al. (2013) 
for years 2–5 and 6–9. Thus, the pattern in Fig. 4 
seems relatively robust for the current generation of 
multimodel decadal climate hindcasts, and the main 
question that is now being addressed is why this 
pattern arises (i.e., internally generated mechanisms 
captured by initialization or products of external 
forcing). We address this below for each ocean basin 
and then for land areas.

Fig. 3. Mean squared skill score (MSSS) differences for decadal temperature 
hindcasts from a 12-member multimodel ensemble from CMIP5, for the initial-
ized hindcasts (“forecasts”) minus the uninitialized hindcasts (“reference”) as 
predictions of the observed climate. The forecast target is years 2–9 following 
the initialization every 5 years from 1961 to 2006 (i.e., 10 hindcasts for each 
model). The verification takes place at the grid scale of 5° × 5° of the observa-
tions. Contour line indicates statistical significance that the MSSS is positive at 
the 95% confidence level, with areas in yellow and orange indicating enhanced 
predictive skill from initialization (after Goddard et al. 2012a).

Fig. 4. Surface air temperature predictive skill (correlation with observations), 
predictions for years 6–9 averages based on CMIP5 multimodel ensemble mean 
hindcasts (see Table 1 for details). Results are from initialized hindcasts with 
5-yr intervals between start dates from 1960 to 2005. Correlations are calcu-
lated by averaging all the hindcasts from all the models for each start date for 
the 6–9-yr hindcasts, subtracting the model climatologies to form anomalies, 
then taking the time series of those anomalies for each start date at each grid 
point and correlating corresponding gridpoint time series from the observa-
tions formulated in the same way as the model hindcast anomalies, and those 
correlations are plotted at each grid point to form the map. Stippling indicates 
significance at the 95% level, and darker red colors with stippling indicate areas 
with more significant predictive skill (Doblas-Reyes et al. 2013).
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Predictive skill in the Indian Ocean. The Indian Ocean 
area repeatedly stands out as the region with the high-
est surface temperature prediction skill worldwide in 
state-of-the-art decadal climate prediction studies (e.g., 
Fig. 4). This skill has so far been shown to be in large 
part due to the externally forced trend from increasing 
GHGs, which has been greater than the internally 
generated decadal climate variability (Ho et al. 2012; 
Guémas et al. 2013a). Therefore, such predictive skill 
due to external forcing is also present in uninitialized 
projections (Goddard et al. 2012a) as shown by the 
comparison between forced and internally generated 
components (Boer 2011) and uninitialized and initial-
ized historical simulations (Guémas et al. 2013). For 
the studies performed so far, it is likely that predic-
tive skill for near-term climate change in the Indian 
Ocean region is mainly due to the externally forced 
response, and decadal predictions are quite reliable 
there (Corti et al. 2012). However, decadal variability 
of regional SST patterns in the Indian Ocean has been 
shown to modulate interannual variability across the 
entire Indo-Pacific region (Meehl and Arblaster 2011, 
2012). Subsequent studies need to 
be performed to assess these aspects 
related to initialization in the Indian 
Ocean that could improve predictions 

of interannual variability with significant regional 
impacts involving the Asian–Australian monsoon.

Predictive skill in the Atlantic Ocean. A number of stud-
ies find that initialization improves the predictive 
skill of temperature in the North Atlantic (e.g., Smith 
et al. 2010; van Oldenborgh et al. 2012; Pohlmann 
et al. 2009; Keenlyside et al. 2008; Matei et al. 2012c; 
Doblas-Reyes et al. 2013; Yang et al. 2013; A. Rosati 
et al. 2014, unpublished manuscript; R. Msadek et al. 
2014, unpublished manuscript; Ho et al. 2012; Ham 
et al. 2014; Hazeleger et al. 2013a). Enhanced skill 
from initialization in a multimodel context for sur-
face temperature at the subdecadal time scale (Fig. 4) 
shows improved skill in the North Atlantic region, 
and this is expected to be at least partially related 
to skillful predictions of the AMOC coming from 
initialization (Delworth et al. 2007; Knight et al. 
2005; Swingedouw et al. 2012). The reasoning behind 
this is that there is likely a connection between the 
AMOC and surface temperature associated with the 
Atlantic multidecadal oscillation [AMO; sometimes 

Fig. 5. Correlation skill for (a) the 
AMO index and (b) the PDO index, 
computed from seven models from 
the CMIP5 multimodel ensemble. 
Correlations are calculated from the 
time series obtained by averaging 
hindcasts and model results for vari-
ous prediction times (e.g., 1–4 years, 
2–5 years, etc.). The corresponding 
observational anomalies for each of 
those hindcast periods are formed into 
a comparable time series, and then 
the correlation of the two time series 
is calculated for each prediction time 
period and plotted in the two panels. 
High correlations indicate better pre-
dictive skill, and are generally better 
for prediction time periods closer to 
the initial time (e.g., predictions for 
years 1–4 are generally better than 
for those for years 6–9). Each model 
is represented by a colored line, the 
multimodel ensemble is the solid black 
line, and persistence (taking the initial 
state and persisting it in time) is the 
dashed black line. The solid and dashed 
horizontal lines represent significance 
at the 95% and 90% levels, respectively 
(Kim et al. 2012).
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more generically referred to as Atlantic multidecadal 
variability (AMV)] to produce decadal climate 
prediction skill at time scales less than 10 years for 
North Atlantic SSTs associated with the AMO (Fig. 5) 
and, thus, for consequent atmospheric variability in 
the northern North Atlantic region. For example, 
Gastineau and Frankignoul (2012) showed that in 
six climate models, an intensification of the AMOC 
is followed by a weak sea level pressure response that 
resembles a negative phase of the North Atlantic 
Oscillation (NAO). However, current models do not 
yet show any skill in decadal NAO forecasts.

As noted above, accurate initialization of the 
AMOC is likely key for extending the predictive skill 
of North Atlantic SST and upper-ocean heat content 
up to a decade ahead beyond the skill of persistence 
(Latif and Keenlyside 2011; Srokosz et al. 2012; Matei 
et al. 2012c; Yeager et al. 2012; Robson et al. 2012a,b; 

R. Msadek et al. 2014, unpublished manuscript). 
However, assessing skill in predicting the AMOC is 
difficult because of the strong seasonal cycle and the 
relatively short dataset for evaluation. The recent dis-
course between Matei et al. (2012a,b) and Vecchi et al. 
(2012) highlights this challenge. Matei et al. (2012a,b) 
reported multiyear predictive skill in the initialized 
decadal predictions of the AMOC when assessed 
against RAPID observations. However, Vecchi et al. 
(2012) argue that these findings are sensitive to the 
choice of validation metrics and the treatment of the 
AMOC seasonal cycle.

Consistent with observations of the NAO, 
Labrador Sea convection, and North Atlantic subpo-
lar gyre strength, recent multimodel ocean analyses 
suggest that the AMOC at 45°N increased from the 
1960s to the mid-1990s, and decreased thereafter 
(Pohlmann et al. 2013). Aspects of this multimodel 
AMOC behavior are simulated in predictions up to 5 
years ahead with initialized climate models (Fig. 6a), 
potentially providing a physical basis for improved 
skill in the North Atlantic from initialization. This 
potential predictability is not found in models driven 
only by external radiative forcing changes (Fig. 6b). 
This analysis also shows that the multimodel hind-
casts fail to predict the rise between 1991 and 1995. 
Meanwhile, other studies show potential skill in pre-
dicting the mid-1990s climate shift in the northern 
North Atlantic associated with AMOC variations 
(Yeager et al. 2012; Robson et al. 2012b; R. Msadek 
et al. 2014, unpublished manuscript). Chikamoto et al. 
(2012b) tie this shift in the North Atlantic to predict-
ability of a climate shift in the western Pacific around 
this same time in initialized hindcasts. Consistent 
with earlier comparisons made by Collins et al. 
(2006) of AMOC potential predictability in several 
models, Msadek et al. (2010) found the leading mode 
of AMOC variability to have a potential predict-
ability up to two decades, while Teng et al. (2011) 
and Persechino et al. (2012) found it saturates after 
only about a decade. Interestingly, these studies and 
many others (Branstator et al. 2012; García-Serrano 
and Doblas-Reyes 2012; van Oldenborgh et al. 2012; 
Smith et al. 2010; Matei et al. 2012c; Yang et al. 2013; 
A. Rosati et al. 2014, unpublished manuscript; Terray 
2012; García-Serrano et al. 2012) point to upper-layer 
ocean temperature and SST being more predictable in 
the subpolar gyre of the North Atlantic than in other 
regions. However, this result appears to be model de-
pendent (Kim et al. 2012; Ham et al. 2014) and is likely 
influenced by model biases. Additionally, if a model 
has significant “oscillatory” variability in AMOC, this 
translates into longer predictability if the oscillatory 

Fig. 6. Decadal predictions of the AMOC. (a) Multi-
model annual mean AMOC at 45°N of retrospective 
predictions (colored, each color representing a differ-
ent start year), together with the multimodel mean 
analysis (black). Squares are plotted for the first 
year of the retrospective predictions and the gray 
shading represents their 95% ensemble range. (b) As 
in (a) but for uninitialized retrospective predictions 
with HadCM3. The dashed black curve in (b) shows 
the ensemble mean of the transient simulations 
(Pohlmann et al. 2013).
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behavior is realistic, with the reverse also being true. 
Thus, the predictability ranges in these studies can 
be explained to a certain extent by their AMOC vari-
ability. This has practical consequences since surface 
temperature is the connection through which the 
AMOC can impact the overlying atmosphere (e.g., 
Gastineau et al. 2012).

As an example, beginning in the winter of 1995/96 
in the space of just a few years, sea surface tempera-
tures in the North Atlantic subpolar gyre rose by about 
1°C, and upper-ocean heat content also underwent a 
major step change. Yeager et al. (2012) and Robson 
et al. (2012a,b) conclude that the warming was primar-
ily caused by the enhanced meridional heat transport 
associated with a strengthened AMOC, which was 
itself a response to the persistent positive phase of 
the NAO that occurred in the 1980s and early 1990s. 
The initialization with very anomalous AMOC con-
ditions in the early 1990s is what allows the Hadley 
Centre’s Decadal Prediction System (DePreSys) and 
the National Center for Atmospheric Research’s Com-
munity Climate System Model version 4 (CCSM4) 
decadal predictions to capture the rapid warming, 
despite relatively poor skill at predicting surface heat 
flux. The unusually negative NAO index that occurred 
in the winter of 1995/96 contributed to the rapidity 
of the warming but was not the fundamental cause. 
In addition, the impacts of this event over land also 
appear somewhat predictable (Robson et al. 2013). 
Consistent results are being found using other models 
and prediction systems (e.g., R. Msadek et al. 2014, 
unpublished manuscript), with strong precondition-
ing by the NAO essential for the correct initialization 
of AMOC strength and subsequent skillful prediction 
of the anomalous heat advection from the south. 
While the warming was predicted by the hindcasts 
initialized as early as in 1991 in the National Center for 
Atmospheric Research (NCAR) and DePreSys predic-
tion systems (Yeager et al. 2012; Robson et al. 2012b), 
only the 1995 prediction was found to yield a rise in 
ocean heat content comparable to observations in 
the Geophysical Fluid Dynamics Laboratory (GFDL) 
predictions (R. Msadek et al. 2013, unpublished manu-
script). This suggests that a preconditioning of a few 
years is needed to get the anomalous enhancement of 
the AMOC that drives the northward heat transport 
but that the duration of that preconditioning might 
be model dependent.

Although the North Atlantic stands out in most 
CMIP5 models as the primary region where skill 
might be improved because of initialization (e.g., 
Fig. 4), encouraging results have also been found in the 
tropical Atlantic. Retrospective multiyear predictions 

of North Atlantic hurricane frequency have been 
investigated in two climate models: DePreSys and 
the GFDL CM2.1 (Smith et al. 2010; Vecchi et al. 
2013). High correlations that are significant relative 
to climatology were found from as early as 10 years in 
advance in both models. Key to the large retrospective 
correlation in the initialized predictions is capturing 
the observed upward shift in hurricane frequency in 
the mid-1990s and the resulting trend over the whole 
time period. In DePreSys, initialization improves the 
skill via remote ocean conditions in the North Atlantic 
subpolar gyre and tropical Pacific, which influence 
the tropical Atlantic through atmospheric teleconnec-
tions (Dunstone et al. 2013). In the Vecchi et al. (2013) 
study, the improvement in skill from initialization 
was related to improvements in the tropical North 
Atlantic. However, much of the skill in both models 
arose from external forcings. It has been suggested that 
aerosols from previous volcanic eruptions (Otterå et al. 
2010) and/or anthropogenic sources (Booth et al. 2012) 
could play a nonnegligible role in producing additional 
skill in the decadal hindcasts for the Atlantic. Indeed, 
models suggest that anthropogenic aerosols may have 
depressed Atlantic hurricane activity since 1860, with 
a particularly prominent influence in recent decades, 
possibly producing decadal modulations in phase with 
those observed (Dunstone et al. 2013; Villarini and 
Vecchi 2013). The role of external forcing in decadal 
climate prediction therefore deserves particular atten-
tion in future studies.

Predictive skill in the Pacific. As seen in Figs. 3 and 4, pre-
diction skill in the North Pacific is less compared with 
the Atlantic and Indian Oceans. This is due, in part, 
to the Pacific being inherently more sensitive to initial 
state uncertainty (Branstator et al. 2012; Branstator 
and Teng 2012) as well as to uncertainty in the mecha-
nisms of internally generated decadal climate variabil-
ity in the Pacific. Interannual climate variability in the 
Pacific is dominated by El Niño–Southern Oscillation 
(ENSO) and the relationship between ENSO and 
decadal variability in the Pacific remains a subject 
of debate. Some argue that the broad “ENSO like” 
pattern of Pacific decadal variability (PDV) related to 
the Pacific Decadal Oscillation (PDO) or Interdecadal 
Pacific Oscillation (IPO) is simply a residual pattern 
that results from the spatial asymmetries of ENSO 
and skewness in ENSO statistics. Others argue that 
decadal changes in the tropical Pacific mean state are 
forced by separate mechanisms, and may in fact influ-
ence the amplitude, frequency, and teleconnections of 
ENSO (Power et al. 1999a; Meehl and Hu 2006; Matei 
et al. 2008; Meehl et al. 2010).
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A case for initialization providing additional 
decadal prediction skill by capturing a mechanism 
producing decadal variability was made by Mochizuki 
et al. (2010), who found predictive skill over the 
extratropical North Pacific related to the PDO. 
This was confirmed also by updated versions of the 
prediction system (Mochizuki et al. 2012). Mochizuki 
et al. (2010) and Chikamoto et al. (2012a) show that 
the source of skill resides in the model’s ability to 

follow observed subsurface temperature changes 
in the North Pacific. In a different set of models, 
Guémas et al. (2012) show that the failure in rep-
resenting two major warming events that occurred 
around 1963 and 1968 is the primary explanation 
for the low predictive skill in that basin (Folland 
et al. 2002; Salinger et al. 2001; Power et al. 1999a). 
They also show, in agreement with Mochizuki et al. 
(2010), that the 1963 warm event stemmed from the 

Fig. 7. Spatial distribution of 5-yr mean surface air temperature changes (°C) for the CMIP5 models during 
the mid-1970s shift (1978–82 minus 1961–75 for hindcasts initialized in 1976) and during the early 2000s hiatus 
period (2007–11 minus 1990–2004 for hindcasts initialized in 2005). Area-weighted globally averaged surface 
air temperature anomalies are shown at the top right of each panel. Pattern correlations and RMS errors are 
shown at the lower left in each panel, with higher correlations and lower RMS errors indicating more skillful 
predictions. For the mid-1970s shift and early-2000s hiatus, the (b),(f) initialized predictions show significant 
pattern correlations with observations, while the (c),(g) uninitialized free-running simulations have lower values 
that are not significant. Bias-adjusting the uninitialized simulations (d), (h) produces improvements over the 
raw uninitialized (Meehl and Teng 2012, 2014).
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propagation of a warm anomaly along the Kuroshio–
Oyashio Extension. However, the spatial extent of 
observed decadal variability over the Pacific is not 
limited to the northern extratropics but also extends 
into the tropics and the Southern Hemisphere. Others 
have presented modeling evidence that some of the 
decadal variability in the South Pacific represents 
the low frequency and oceanic responses to prior 
ENSO activity that arises through the accumulation 
of ENSO-driven surface heat flux forcing or through 
the excitation of low frequency wind-driven Rossby 
waves (Power and Colman 2006).

Keenlyside et al. (2008), Smith et al. (2010), and 
van Oldenborgh et al. (2012) also show some signs of 
improved skill through initialization in predictions 
of multiyear tropical Pacific temperatures. That skill 
related to physical mechanisms associated with the 
IPO/PDO in the North Pacific and the AMO in the 
Atlantic is greater than for the PDO (Doblas-Reyes 
et al. 2013; Kim et al. 2012). However, case studies 
in two models (Meehl and Teng, 2012) and in the 
CMIP5 models (Meehl and Teng, 2014) for the mid-
1970s climate shift and the early 2000s hiatus show 
improved skill for those large climate fluctuations of 
the IPO compared to the free-running uninitialized 
models (Meehl and Teng 2012), and this was shown 
to be the case for the CMIP5 multimodel ensemble 
as well (Meehl and Teng 2014). Results from an ini-
tialized model indicates greater skill in predicting 
the hiatus compared to uninitialized (Guemas et al., 
2013b). Figure 7 shows that initialized hindcasts for 
the mid-1970s shift have greater anomaly pattern cor-
relations with the observations in the Pacific than for 
the uninitialized free-running simulations (Fig. 7c). 
Similar results are shown for the early-2000s hiatus 
(initialized hindcasts in Fig. 7 have higher anomaly 
pattern correlations with the observations than the 
free-running uninitialized simulations). Meanwhile, 
the hindcasts are improved in the uninitialized simu-
lations if they are bias adjusted as noted earlier.

Predictive skill over land. One of the ultimate aims of 
decadal climate prediction is to provide skillful and 
reliable predictions of societally relevant quantities 
over land areas where there are large human popula-
tions that could be affected by decadal climate vari-
ability. Skillful decadal predictions of North Atlantic 
Ocean temperatures could lead to skillful predictions 
of important climate impacts over land, including 
rainfall over the African Sahel, India, and Brazil; 
Atlantic hurricanes; and summer climate over Europe 
and America (Sutton and Hodson 2005; Zhang and 
Delworth 2006; Knight et al. 2005; Dunstone et al. 

2011; Sutton and Dong 2012). In particular, with 
regards to Sahelian precipitation, it has been found 
that there is currently a lack of overall predictive skill 
for precipitation in West Africa, though there are 
hints of an ability to predict large shifts associated 
with the Sahelian drought of the 1970s and 1980s 
at multiannual time scales (van Oldenborgh et al. 
2012; MacLeod et al. 2012; García-Serrano et al. 2013; 
Gaetani and Mohino 2013).

Older studies detrended the AMO with a linear 
trend, which implied that many of the effects are in 
fact the signature of the nonlinear global warming 
trend. When the AMO is defined relative to a 
nonlinear global warming trend the effects over land 
are much smaller. Nevertheless, there is emerging 
evidence of skillful predictions of temperature and 
precipitation over the United States and Europe 
following the mid-1990s warming of the subpolar 
gyre (Robson et al. 2013).

Similarly, skillful decadal predictions of Pacific 
SSTs associated with, for example, the IPO, could 
produce improved decadal predictions of rainfall 
over North and South America, Asia, Africa, and 
Australia (Power et al. 1999b; Deser et al. 2004; Meehl 
and Hu 2006; Smith et al. 2012a). The combination of 
Pacific and Atlantic decadal variability of SSTs may 
help to explain multidecadal U.S. drought frequency 
(McCabe et al. 2004; Schubert et al. 2004, 2009), thus 
implying that better decadal predictions of SSTs in 
both basins could produce more skillful drought 
outlooks over the United States.

Despite improved predictions of Atlantic and 
Pacific Ocean temperatures arising from initial-
ization, improved predictions of temperature and 
rainfall over land appear to be less robust (Goddard 
et al. 2012a). Predictive skill of temperature over some 
land areas is less than over ocean areas (Fig. 4), and 
the patterns of predictive skill for precipitation over 
land are noisier than for temperature (comparing 
Figs. 4 and 8). However, there are a number of regions 
over land where there are indications of some skill 
for predictions of years 6–9 (Fig. 8)—for example, 
over the western and parts of the northeastern 
United States, areas of western and southern Africa, 
northern Europe and northern Asia, and southern 
South America. Some of these characteristics have 
also been seen in the projections where the same 
models are used for both initialized and uninitial-
ized hindcasts. Similar results have also been found 
in a number of individual decadal prediction systems 
(Matei et al. 2012c; Bellucci et al. 2013; Müller et al. 
2012). Furthermore, the frequency of extreme events 
is predicted with higher skill than persistence in 
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many land regions for temperature and over Europe 
for rainfall, although this skill arises mainly from 
radiative forcing beyond the first year (Eade et al. 
2012; Hanlon et al. 2013).

As noted earlier, decadal climate predictions ulti-
mately need to be assessed for their reliability, and this 
is particularly relevant for, at minimum, temperature 
and precipitation over land areas owing to near-term 
decadal climate impacts on water resources, agricul-
ture, and other societally relevant applications. Policy 
makers need to have a good measure of the reliability 
of a decadal prediction to factor into the decision-
making process. An attempt to quantify reliability 
of surface temperature decadal predictions is illus-
trated in an analysis of a multimodel ensemble from 
the European Centre for Medium-Range Weather 
Forecasts (ECMWF) in Fig. 9. Reliable temperature 
predictions for lead times up to 6–9 years are shown 
for global and selected regions over land (i.e., Europe 
and Africa) and ocean areas of the North Atlantic and 
Indian Ocean, while the North Pacific is less reliable 
than the North Atlantic and Indian Oceans. However, 
the forecast resolution (a measure of how much the 
forecast probabilities differ from the climatological 
probability of the event) is reduced when the forced 
trends are removed (Corti et al. 2012). That is, in 
all regions considered in Corti et al. (2012), with 
the exception of the Indian Ocean, the reliability is 
maintained after detrending, but the forecast resolu-
tion is reduced, thus reducing the Briar skill score. In 

addition, Ho et al. (2013) 
explore the spread-error 
ratio (or dispersion) of SST 
predictions in different sets 
of DePreSys hindcasts and 
find that the dispersion is 
very lead-time dependent, 
with the ensembles tending 
to be underdispersed on 
lead times up to around 2 
years and overdispersed at 
longer lead times, revealing 
that the forecast system is 
not well calibrated.

Up to now most em-
phasis in decadal climate 
prediction has been on 
surface temperature and 
understanding the possible 
associated mechanisms 
and processes that could 
produce predictive skill. 
More evaluations of skill in 

predicting regional precipitation must be performed 
(e.g., Doblas-Reyes et al. 2013), and also include other 
quantities such as winds and humidity that will influ-
ence the usefulness of decadal climate predictions.

I N ITI A L I Z E D D E C A DA L C L I M AT E 
PREDICTIONS FOR NEAR-TERM CLIMATE 
CHANGE. Some of the first decadal climate predic-
tions for near-term climate change were made in the 
pioneering work of Smith et al. (2007), Keenlyside 
et al. (2008), and Pohlmann et al. (2009). More recent 
initialized predictions of globally averaged surface 
air temperature agree with Smith et al. (2007) and 
Keenlyside et al. (2008) in predicting somewhat 
smaller global warming magnitude compared to 
uninitialized simulations out to 2020 (Fyfe et al. 2011; 
Mochizuki et al. 2012), and this was reflected by a 
similar assessment in the IPCC AR5 for the period 
2016-2035 (Kirtman et al. 2013). This is attributed 
partly to the negative phase of the IPO in the initial-
ized state. Similarly, Meehl and Teng (2012) analyzed 
30-yr initialized predictions from a single model using 
two different initialization methodologies to show 
that for the 20-yr average of 2016–35, the initialized 
predictions had an average of about 15% less globally 
averaged warming than the free-running uninitialized 
projections for that same time period. Subsequently, 
they analyzed the CMIP5 multimodel ensemble and 
found a similar result (Meehl and Teng 2014). They 
attributed this to the recent hiatus of global warming 

Fig. 8. Precipitation predictive skill (correlation with observations), predic-
tions for years 6–9 averages based on CMIP5 multimodel ensemble mean 
hindcasts (see Table 1 for details). Results are from initialized hindcasts 
with 5-yr intervals between start dates from 1960 to 2005. Correlations are 
calculated by averaging all the hindcasts from all the models for each start 
date for the 6–9-yr hindcasts, subtracting the model climatologies to form 
anomalies, then taking the time series of those anomalies for each start date 
at each grid point and correlating corresponding gridpoint time series from 
the observations formulated in the same way as the model hindcast anoma-
lies, and those correlations are plotted at each grid point to form the map. 
Stippling indicates significance at the 95% level, and darker red colors with 
stippling indicate areas with more significant predictive skill (Doblas-Reyes 
et al. 2013).
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associated with the negative phase of the IPO and the 
bias adjustment procedure that reduces a larger-than-
observed warming trend in the models.

A recent exercise has been organized to perform 
experimental decadal climate predictions with 
a multimodel dataset (Smith et al. 2012b). Those 
predictions use nine initialized AOGCMs as well 
as two empirical models (Lean and Rind 2009; Ho 
et al. 2012). The predictions are initialized in 2011 
and made for the time periods 2012–16 and 2016–20. 
Results for this latter period are shown in Fig. 10 and 
indicate somewhat less warming than indicated by 
uninitialized projections in most regions, consistent 
with the Meehl and Teng (2012, 2014) results. Based 
on earlier assessments of predictive skill and reli-
ability in various regions from different initialized 
model datasets, including, for example, ENSEMBLES, 
DePreSys, and CMIP5 (e.g., Figs. 4 and 9), and taking 
into account the more consistent results from the 
larger number of models in CMIP5, these predictions 
are likely most reliable and therefore useful in the 
North Atlantic, western Pacific, and Indian Oceans 
and over land areas of Europe and Africa (e.g., Corti 
et al. 2012).

CONCLUSIONS AND PROSPECTS FOR 
THE FUTURE OF DECADAL CLIMATE 
PREDICTION. The decadal climate prediction 
element of the CMIP5 experimental design provides a 
coordinated multimodel dataset of decadal hindcasts 
and predictions that extend earlier decadal predic-
tion activities like DePreSys and ENSEMBLES. This 

Fig. 9. Attributes diagrams for ECMWF multimodel 
decadal hindcast for surface air temperature above the 
(top) median for global land areas, (middle) European 
land areas, and (bottom) African land areas for years 
6–9 of the hindcasts. The size of the bullets represents 
number of predictions in each probability category. 
The blue horizontal and vertical lines indicate the cli-
matological frequency of the event in observations and 
predictions, respectively. Gray vertical bars indicate 
the uncertainty in the observed frequency for each 
probability category estimated at the 95% confidence 
level. The Brier skill score (BSS) and its components 
(reliability and resolution) are indicated at the top left 
corner of each panel (positive values indicate predic-
tion skill better than climatology, and in bold when 
BSS indicates a reliable prediction significant at the 
95% level). Black dashed line separates skillful (below 
the dashed line) from unskillful (above the dashed line) 
predictions. A flatter slope of lines connecting red 
bullets indicates an overconfident and thus unreliable 
prediction; a steeper slope indicates a more reliable 
prediction (Corti et al. 2012).
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information is useful for analysis of predictability 
and predictions on time scales from 1 to 30 years 
as defined by CMIP5, and also has the potential to 
provide insights into the workings of the climate 
system—for example, through identifying mecha-
nisms in the Atlantic associated with the AMOC or in 
the Pacific associated with the IPO. There are advan-
tages of initializing with observations because there 
is predictive skill in some areas for the first few years 
of an initialized prediction compared to simulations 
with only external forcing factors such as increasing 
greenhouse gases. Analyses of multimodel datasets 
have shown that contributions from initialization 
and externally forced trends in various combinations 
for the North Atlantic, Indian, and western Pacific 
make SSTs in those regions more predictable than 
other oceanic areas and that a multimodel average 
outperforms most single models for the decadal 
prediction problem.

Though modeling groups have applied a variety 
of methods for initialization, there is still no clear 

indication of which method is the best. Model 
initialization and how it is applied to the decadal 
climate prediction problem is still an active research 
problem, particularly whether there are advantages 
to better initialization of the cryosphere and land 
surface.

Bias adjustment derives from model errors and 
how to account for them in the predictions, and has 
been addressed using a wide variety of techniques. 
It is likely that, with further model improvements, 
bias adjustment will become less of an issue. In the 
meantime, the bias adjustment process can be used 
for other purposes, such as deriving estimates of cli-
mate sensitivity of the observed climate system. As 
the current decadal climate predictions are verified 
over the next several years, it will be interesting to see 
if the predictions of a somewhat reduced rate of global 
warming, compared to free-running uninitialized 
projections, will be accurate.

Focused studies of predictability of specific, 
highly predictable patterns (DelSole et al. 2011; Yang 
et al. 2013), or of high predictability found in certain 
regions (Branstator et al. 2012; Branstator and Teng 
2012) may be avenues of future research that can 
enhance the benefits of initialization for decadal 
climate predictions. Understanding the physical pro-
cesses and sources of skill will be crucial for gaining 
confidence in forecasts. Consideration of more than 
oceanic conditions is another direction that predict-
ability studies are likely to take. However, recent 
investigations of surface conditions over land (Jia and 
DelSole 2011; Teng et al. 2011) and of Arctic sea ice 
(Holland et al. 2010; Blanchard-Wrigglesworth et al. 
2011; Toyoda et al. 2011) find predictability is limited 
to just a few years for those quantities.

The producers of decadal climate predictions must 
be careful to quantify and caveat future predictions 
so as not to raise expectations and ensure that the 
output will be put to appropriate uses. To return to 
the example of the water resource planning commu-
nity as potential users of decadal climate prediction 
information involving temperature and precipitation 
and associated evapotranspiration, there are indica-
tions that initialized predictions contain more reliable 
climate information for some land regions than unini-
tialized predictions (Corti et al. 2012). Since climate 
information is only one of a number of factors taken 
into account for water resource management deci-
sions, water managers are already using uninitialized 
projections as input to their decision-making process 
over the next few years to several decades in the 
future (Means et al. 2010). Improvements to climate 
information, such as the initialized predictions that 

Fig. 10. (a) Initialized predictions for a multimodel 
average (eight models) of surface air temperature for 
the 5-yr period 2016–20, and (b) initialized results mi-
nus those for uninitialized simulations, with negative 
values indicating that the initialized predictions are 
cooler than the uninitialized simulations, with stip-
pling indicating differences significant at the 90% level 
(Smith et al. 2012b).
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show about 15% less global warming over the next few 
decades compared to the uninitialized projections, are 
of use to that community right now with regards to 
evapotranspiration impacts on water resources, even 
with the caveats that accompany them. Predictions 
of the time evolution of regional temperature and 
precipitation will likely be more reliable in the next 
generation of decadal climate predictions, and will 
be of even more use to that community. However, 
the reliability characteristics of hindcasts need to be 
explored in a wider range of models.

A useful analog as to how these types of activities 
evolve arises from the ENSO community (McPhaden 
et al. 2010). They progressed to where they had the 
modeling capability and physical understanding to 
begin to make initialized ENSO predictions in the 
early 1990s (Stockdale et al. 1998). However, as with 
decadal climate prediction, they were dealing with 
model systematic errors and initialization shock. 
As a consequence, methods were developed, such 
as the “two tier” approach, whereby the initialized 
ocean was run, and then SSTs from that simulation 
were used to force an atmospheric model to produce 
temperature and precipitation climate predictions 
over North America and elsewhere (Bengtsson 
et al. 1993). As the models continued to improve 
and initialization shock became less of an issue, a 
number of modeling groups made experimental 
ENSO predictions with fully coupled global climate 
models, and the groups began to compare their pre-
dictions informally to build credibility (McPhaden 
et al. 2010). This is similar to what is happening now 
in the decadal climate prediction community (Smith 
et al. 2012b). Early in the twenty-first century, ENSO 
prediction transitioned to an operational activity, and 
today ENSO predictions are used by a wide variety of 
stakeholders (Jin et al. 2008). It is likely that such an 
evolution will take place for decadal climate predic-
tion for global climate.

Regarding upcoming decadal prediction activities, 
first and foremost the climate models used to make 
such predictions must improve. Though there is a 
desire to add more complexity to climate models, 
there is also a push to improve the representation 
of processes and feedbacks and use models of ever 
higher resolution. All these efforts should improve 
the model simulations, reduce the need for bias 
adjustments, and provide more reliable predictions. 
In addition, hindcasts from larger numbers of initial 
states and larger ensemble sizes will be of value to 
better define reliability of decadal climate predic-
tions, although metrics such as the dispersion may 
be relatively robust with limited start dates (Ho et al. 

2013). More assessments of precipitation predictions 
will be performed to go beyond analysis of surface 
temperatures in the predictions. Projects such as 
Seasonal-to-Decadal Climate Prediction for the 
Improvement of European Climate Services (SPECS) 
and “Mittelfristige Klimaprognose” (meaning decadal 
climate prediction) (MiKlip) are underway, and plan-
ning has begun to incorporate a new set of decadal 
climate predictions experiments into the sixth phase 
of CMIP (CMIP6). As noted above, future decadal 
climate predictions will likely use higher-resolution 
versions of global coupled climate models, which 
should result in improved predictions of regional 
climate variability and change through better repre-
sentation of climate processes. For example, a great 
improvement in the representation of the quasi-
persistent Euro-Atlantic flow regimes is found with 
increasing model resolution (Dawson et al. 2012). If 
the ENSO prediction experience noted above is any 
guide, experimental decadal predictions done now 
within the climate science community (e.g., Smith 
et al. 2012b) will likely become more formalized in 
operational decadal climate prediction activities and 
climate services within the next 5–10 years.

It remains an important question as to whether or 
not decadal climate predictions will end up providing 
useful information to a wide group of stakeholders. 
Indications now are that temperature, with a greater 
signal-to-noise ratio, shows the most promise, with 
precipitation being more challenging. These two 
quantities are typically the ones that have been 
addressed so far in the literature. Since sources of 
skill are time dependent, it is important to emphasize 
that for the first 5 or so years of a decadal prediction, 
skill could come from the initial state, and after that 
skill arises because of the external forcing, with some 
regions having potentially greater skill than others. 
Further quantification with other variables needs to 
be done and applied in reliability studies, which are 
just now beginning, in order to demonstrate useful-
ness of decadal climate predictions.
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