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Abstract. The formal identification between a two-mode waveguide and a system of two mutually coupled

single-mode waveguides stems from the symmetries of the evolution operator. When the gap tends to zero,
the super-modes of the coupled system merge continuously into the modes of the multimode waveguide.
For modelling purposes, it is very tempting to extend the analogy to three-mode waveguides (and beyond).

But not without some precautions. ..

1 Introduction

Multimode waveguides are the core element for Spatial-
Division Multiplexing (SDM), a technique where one
wavelength can carry several channels of information,
each one allocated to a specific modal distribution [1].

From the point of view of its effective indices, a two-
mode waveguide (TMWG) can be thought of as formally
equivalent to a symmetric set of two coupled single-
mode waveguides (SMWG) of wavevector f, with
coupling constant y. When the gap tends towards zero,
the even and odd super-modes of the coupled system, of
wavevectors f,,., and S,44, merge into the fundamental
and first-order of the TMWG, respectively [2]. The
identification proceeds as follows:
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A similar extension of Coupled-Mode Theory (CMT)
to a three-mode waveguide (3MWG) — and beyond — is
tempting, but far from obvious. Investigating the ternary
slab system as a reference case (whose properties can be
calculated with arbitrary precision), we will observe that
even in the basic symmetric configuration made of three
identical SMWG, the simplest CMT model must be
completed by at least one degree of freedom, in order for
the propagation constants of the super-modes to be
correctly accounted for.

In Section 2, we use a matrix formalism to derive the
wavevectors and the transverse profile of the super-
modes. In Section 3, we point out the discrepancies,
before proposing several ways to recover the missing
degree of freedom.
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2 The slab waveguide system

The ternary slab system is depicted in Fig. 1:
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Fig. 1. The symmetric ternary slab system, made of three
identical single-mode waveguides of higher index », and width
h, separated by a gap of lower index #7; and width d. In the
external cladding, only decaying evanescent waves are
supported, imposing w, = g = 0.

For numerical applications, wavelength in vacuum is
Ao=15um; n=1; n= 1.5;. h=0,67 um; ko= alc.
Time dependence is taken as ™ .

2.1 Matrix description

The matrix description of the slab system stems from the
linearity of Maxwell equations [3-5]. For a given state of
polarization (TE/TM), the transverse components of the
wavevector of the isolated SMWG guided mode, of
longitudinal propagation constant f, are either real
(y'=4e’™, y =Be"™" if propagative) or purely
imaginary (w" =Ae”", w =Be”" if evanescent),
with -y =n'k;, B +x’=nk;>n’k,. The
boundary conditions ensure that no exponential increase
is allowed in the semi-infinite cladding.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution

License 4.0 (http://creativecommons.org/licenses/by/4.0/).
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The matrix of the isolated SMWG is such as:
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For the SMWG, the modal equation reads m,, =0,
whereas for the IMWG, we get M, =0, with:
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By solving the modal equation, as schematically
depicted in Fig. 2, we obtain the quantized values of x#;
hence the values for the longitudinal wavevector £.
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Fig. 2. Graphic depiction of the solution(s) for the TE modal
equation, both for the SMWG (m;; = 0) and the SMWG
(M;, = 0), in the case where d = h/2.

The three super-modes of the 3MWG are a slow
(fundamental) one, a “neutral” one (1¥-order) and a fast
one (2"-order), of respective wave-vectors (Bs, Pvs Pr)-

2.2 Mode profile

For several values of the gap d, we report in Fig. 3 the
mode profile y(x) = w" + y, normalized so that:

Jly@F dx=1. 3)
For a vanishing gap (d = 0), the super-modes merge

continuously into the fundamental, 1%-order and 2™-
order modes of a unique 3SMWG of width 34.
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Fig. 3. TE mode profile (in complex amplitude) of the slow,
“neutral” and fast super-modes of the ternary slab system:
(@) d=h; (b)d=h/2;(c)d=0.

3 Coupled-Mode Theory

3.1. The simplest model

The simplest model for the symmetric ternary slab
system is based on intuitive, realistic assumptions: three
identical SMWG, of propagation constant f, are
similarly coupled to their nearest neighbour(s) through a
real-valued coupling constant y. Instead of the three
fields (F), F,, F3), let us define the Slowly-Varying
Envelope Amplitudes 4, such as F,=4,¢" Pz these
obey the evolution equation:
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By submitting the reduced operator to a standard
diagonalization procedure, we easily derive the eigen-
value spectrum to find out that S, = ﬂ—;{ﬁ, By =0,
and B, = B+ 2.
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Within this simplest model, the wavevectors of the
three super-modes appear equidistant in k-space, which
does not coincide with their actual distribution, as
determined by an exact matrix analysis: (at least) one
more degree of freedom is required.

3.2 Corrective assumptions

The first correction that comes to mind is a possible
mismatch affecting the central waveguide, under the
influence of its immediate surroundings [Fig. 4].

LLoa
F, ?><:
_>ﬂz
AR ?><:

Fig. 4. Ternary slab system with central mismatch.

In this “diagonal perturbation” scheme, we have to
consider three slightly different waveguides. The
average wavevector £ and the mismatch A are:
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With 6= A/y, the new evolution equation is:
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The calculation of the mismatch-dependent eigen-
values is straightforward: with R=8+9 52, we get, for
any X € {F, N, S}, By =+ x A, where

5-R 5+R
ﬁ’F = 7 s ﬁ’N = _5a ﬁ’S = 2 . (7)

Within this corrective model, the only knowledge of
(Br, Pn, Ps) enables one to proceed to a complete
identification of (f3, x, A), since = (fr+ by + fs)/3 and

7 =\/(ﬂs _:BN)z(IBN _:BS)

s A=p=py. (8

Unfortunately, another (fundamentally different)
corrective assumption also ensures the missing degree of
freedom: that of the “auxiliary coupling” [Fig. 5]:
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Fig. 5. Ternary phase-matched slab system with auxiliary
coupling y’ (with [y’] << p).

In this scheme, the waveguides are again identical,
but there is an extra coupling y’ between F; and F3. With
&= y’ly, the new evolution equation is:

(4 01 &£\(4
i—| 4 [=x|1 0 1] 4, )
0z

4, e 1 0)(4

The calculation of the coupling-dependent eigen-
values is straightforward: with P =8 + 52, we get, for
any X € {F, N, S}, By =p+x A, where

5P _5+P
2 2

Ap = , Ay =—-0, A (10)
Within this alternative corrective model, the only
knowledge of (fr, By, fPs) enables one — once again — to

proceed to a complete identification of (5, y, A), since

L= Br+ Pv+ Po)/3, A= - Py, and

_J(zﬂs_ﬂN_ﬂF)(ﬂs"_ N_2ﬁF)
r= 18 '
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But there is no obvious reason to choose between
the two possible corrections: the modal equation doesn’t
provide enough information to settle the matter.

4 Conclusions

In the frame of Coupled-Mode Theory, we can exploit
the properties of the super-modes in order to derive the
formal identity between a 3-mode waveguide and a set
of three mutually coupled single-mode waveguides. On
the “textbook™ example of slab systems, we show that
the simplest model for a ternary coupler, although based
on intuitive realistic assumptions, is incomplete. We
explore two different corrective hypotheses that lead to
similar results in terms of mode indices. This means that,
if a strict term-to-term equivalence is actually legitimate,
the solution is not unique. We are currently investigating
another criterion: the super-mode profile.
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