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Abstract - In this paper, an optimization of the control rods parameters of a nuclear power plant is presented.
Using a multi-physics simulator, the criteria of interest are computed in few minutes of computation and
the optimization problem is solved thanks to a parallel asynchronous master-worker (1 + λ)-Evolutionary
Algorithm. Two criteria are minimized independently: the first one based on the control diagram is a measure
of the energy heterogeneity of the core, and a second one corresponding to the volume of effluents resulting
from the use of the soluble boron. The main goal of this paper is then to analyze the solutions found by the
optimization. Moreover, it is known that the burnup of the core has a strong influence on the use of the soluble
boron, so different starting points have been considered, showing that the evolution of the performances of
the good solutions as regards the two criteria are not the same. Finally, this paper shows that two gathered
mono-objective optimizations are not satisfactory enough if one considers the burnup evolution, and that a
bi-objective optimization must be considered to solve this problem.

I. INTRODUCTION

In the actual context of energetic transition, the increase
of the intermittent renewable energies contribution (as wind
farms or solar energy) is a major issue. On the one hand, the
French government aims at increasing their part up to 30% [1]
by 2030, against 6% today. On the other hand, their intermit-
tent production may lead to an important imbalance between
production and consumption. Consequently, the other ways of
production must adapt to those variations, especially nuclear
energy which is the most important in France. The power vari-
ations occur at different time scales (hour, day, or even week)
and in order to counterbalance their effects on the electric grid,
the nuclear power plants (NPP) are already able to adjust their
production. NPPs which take part in the response of the power
variations operate in the so-called load-following mode. In
this operating mode, the power plant is controlled using con-
trol rods (neutron absorber) or soluble boron. However, the
control rods may introduce unacceptable spatial perturbations
in the core, especially if the power variations are large and/or
fast, and the use of the soluble boron produces waste effluents
that need to be processed. The purpose of this work is to
optimize the manageability of the power plants to cope with a
large introduction of intermittent renewable energies, and its
final goal is to tune the control parameters in order to be able
to make the load-following at a shorter time scale and larger
power amplitude scale, or increase the safety margins to do
so.

Such an optimization is a real challenge, considering the
size of the search domain, the computation cost and the un-
known properties of the objective function to minimize. Due
to the design of the nuclear power plants, and in a goal to
propose only simple modifications of the current management,
11 integer variables are used to describe the control rods such
as speed, overlaps between rods, etc. (details are given in
Sect. II.). The soluble boron use will be a consequence of
those parameters selection. Therefore, the optimization is a
large size combinatorial problem where no full enumeration

is possible. Moreover, a multi-physics simulator is used to
compute according to the variables of the main parameters of
the control rods several criteria such as the evolution of the
axial power offset, the rejected volume of effluent, etc.

The use of Evolutionary Algorithms (EA) in order to opti-
mize some variables of a nuclear power plant as regards perfor-
mance or safety is not new. Offline optimizations can already
be found, and studies such as [2] or [3] deal with the In-Core
Fuel Management Optimization (ICFMO) and loading pattern
optimization which is a well-known problem of Nuclear En-
gineering and aims for instance at maximizing the use of the
fuel (increase the cycle length for example) while keeping the
core safe (minimize the power peak). Pereira and Lapa con-
sider in [4] an optimization problem that consists in adjusting
several reactor cell variables, such as dimensions, enrichment
and materials, in order to minimize the average peak-factor
in a reactor core, considering some safety restrictions. This
is extended in [5] to stochastic optimization algorithms con-
ceptually similar to Simulated Annealing. Sacco et al. even
perform in [6] an optimization of the surveillance tests policy
on a part of the secondary system of a Nuclear Power Plant,
using a metaheuristic algorithm, which goal is to maximize
the system average availability for a given period of time.

To the best authors’ knowledge, the only optimizations
of the plant operation are made online, like in [7], where
Na et al. develop a fuzzy model predictive control (MPC)
method to design an automatic controller for thermal power
control in pressurized water reactors. The objectives are to
minimize both the difference between the predicted reactor
power and the desired one, and the variation of the control
rod positions. A genetic algorithm is then used to optimize
the fuzzy MPC. Kim et al. propose in [8] another MPC by
applying a genetic algorithm, to optimize this time the discrete
control rod speeds. The offline Nuclear Reactor Operation
Optimization (NROO) proposed in this paper and using an
Evolutionary Algorithm (EA) is then an original combinato-
rial black-box problem. Moreover, the black-box objective
function, which is also called fitness function in the context of
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evolutionary computation, is computationally expensive (one
evaluation typically takes on average about 40 minutes) so that
only few candidate solutions and their corresponding fitness
value, which is the value of the criterion, can be computed.
Otherwise, no property on the search space is a priori known.

With the increasing number of computing resources
(cores, gpgpu, etc.), EAs which are population-based stochas-
tic optimization algorithm, and more specifically parallel EAs
become more and more popular to solve complex optimization
problems. Usually, parallel EA [9] can be classified into two
main models: the coarse-grained model (or island model) in
which several EA share candidate solutions within the migra-
tion process, and the fine-grained model (or cellular model)
where the search population is spread into a grid and evolution-
ary operators are locally executed. Moreover, the execution
of parallel EA follows two main architectures. In the P2P
architecture, the computation is fully distributed on all com-
putation units, and in the Master-Worker (M/W) architecture,
the fitness evaluation is on workers. The M/W architecture
has been extensively used and studied [10]. It is simple to
implement, and does not require sophisticated parallel tech-
niques and communications. Two communication modes are
usually considered. In the synchronous mode, the parallel
algorithm is organized by round. The master sends candidate
solutions on each worker for evaluation, and waits until re-
ceiving a response from all workers before the next round.
In the asynchronous mode, the master does not need to wait,
and communicates individually with each worker on-the-fly.
The asynchronous mode could improve the parallel efficiency
when the evaluation time of the fitness function vary substan-
tially [11]. In this paper, an asynchronous M/W parallel EA is
used to solve the NROO problem.

The main goals of the paper are then : (i) perform for
the first time an optimization of the control rods using an
evolutionary algorithm (ii) analyze the efficient solutions as
regards an axial offset criterion as well as the effluents volume
and (iii) study the suitability of a bi-objective optimization.

The rest of this paper is organized as follows. The next
section introduces the NROO problem, that is to say the tun-
able parameters and the criteria. The proposed algorithm is
described in Sect. III., and in Sect. IV., the experimental
analysis of the found solutions is conducted. At last, the paper
concludes on the main results, and future works.

II. PROBLEM DEFINITION

The optimization process is based on the current load-
following transient [12] and this analysis focuses on a single
Pressurized Water Reactor (PWR) type (1300 MW) of the
French nuclear fleet. The typical load-following transient
considered here is presented on Fig.1, and corresponds to the
most penalizing scenario in the specifications of a nuclear
power plant.

In a general way, when an electrical power variation oc-
curs (demand of the grid) a chain of feedback is setting up in
the whole reactor, leading to a new steady state. It is usual
to take advantage of this self-regulation in the case of small
variations, but the regulated variables such as the temperature
or the pressure in the primary or secondary circuits may reach

100%
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Fig. 1. Load-following scenario considered for this optimiza-
tion exercise. It is made of a power decrease at 5%PN/min to
reach the lower plateau at 30%PN (point B), then the power
is kept constant during 6 hours (until point C) before coming
back to nominal power (point D).

unacceptable values in case of such a load-following, possibly
leading to damages of the whole system. The control rods are
then used in order to cope with this variation, and maintain
the primary coolant temperature close to the target. However,
those control rods have to be handled carefully as they could
cause axial or radial heterogeneity in the core, inducing high
power peaks or Xenon oscillations.

1. Description of the System

The reactor core is a grid of square assemblies in a cylin-
drical vessel. Each assembly is 21 centimeters side length and
about four meters high. There are 193 assemblies, split into
two kinds : 120 assemblies made of Uranium oxide (UOX)
and 73 ones made of Uranium plus Gadolinium oxides (UGd).
Fig.2 shows the core of the reactor : the UOX assemblies are
in orange, the UGd ones in purple, and the green stands for
the steel vessel.

Fig. 2. Position of the types of assemblies in a typical
PWR1300.

Each control rod is made of pins of a neutron absorber
that are inserted together from the top of the core in some
assemblies. The positions of the assemblies where they are
inserted and the materials of which they are made correspond
to the French "G" mode [12]. There are two kinds of rods in
this "G" mode : the black rods made of very absorbing pins
(B4C and Ag+In+Cd) and the gray rods (giving their name
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to the mode), made of less absorbing pins (stainless steel and
Ag+In+Cd). Those rods are then organized in two families,
depending on their function : (i) the power shimming rods
(PSR) and (ii) the regulation rods (TRR).

The first ones are used to shim the power effects during
the power transient, and are split in four groups (four gray rods
G1, eight gray rods G2, eight black rods N1 and eight black
rods N2). All the rods of a same group move together, and the
groups are inserted successively in this order : G1, G2, N1,
N2, as it is shown in Fig.3. An overlap is also defined between
all the groups, so that they follow an insertion program as
illustrated from frames (a) to (d). A convenient definition is
used to describe the positions of the four groups using a single
value : the totalizer (T). It represents the cumulative number
of inserted steps, only incremented by the last moving group.
Moreover, the totalizer is linked to the electrical power by a
calibration function, established at the beginning of the cycle
and updated every 60 equivalent full-power days to take into
account the burnup effects. Those rods, however, do not enable
to shim the evolution of the Xenon concentration during the
transient, as well as the use of the soluble boron.

G1 N2N1G2

G1 N2N1G2G1 N2N1G2

50 steps

40 steps

T = 50

T = 225 T = 360 

175 steps
0

260
255

Steps

0

260
255

Steps

G1 N2N1G2

185 steps

overlap

T = 185

(a)

(c) (d)

(b)

Fig. 3. Insertion sequence of the Power Shimming Rods (PSR).
The totalizer value (T ) is given on each frame, and the last
moving group is in purple.

The second family is made of nine black rods gathered in
a single group and enables a control of the average coolant tem-
perature of the core (the targeted temperature, called reference
temperature, is a linear function of the thermal power). In-
deed, the Xenon evolution is managed mainly with the soluble
boron, and another family of rods is then needed to cope with
the resulting temperature discrepancies. This group moves
independently and automatically, following a speed program
depending on the difference between the reference tempera-
ture (Tre f ) and the mean temperature (Tm) as shown in Fig.4.
One can see a dead band of ±0.8°C in which the rods do not
move, avoiding continuous displacement and corresponding
to the self-regulation of the core. Finally, as they are very
efficient and for safety reasons, they can only move inside a
maneuvering band of about 50 centimeters in the upper part
of the core. For more details, please refer to [13].

ΔT (°C)
(= Tref – Tm )

Speed
(steps/min)

8

- 8
0,8

- 0,8
1,7

- 1,7
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- 72

72

Withdrawal

Insertion

Fig. 4. Speed program of the Temperature Regulation Rods
(TRR). The dead band corresponds to the null speed and the
maximal and minimal speeds (±72 steps/min) are for an abso-
lute temperature difference larger than 2.8°C.

The variables to be tuned for the optimization are then
the four nominal speeds and the three overlaps for the PSR,
the maximal and minimal speeds, the dead band width and the
maneuvering band height for the TRR. Eleven variables are
then considered, and they are coded as integer values corre-
sponding to a discrete number of steps or of temperature (the
dead band is discretized by steps of 0.1°C). Tab. I summarizes
the variables, their initial values (current management) and
ranges.

TABLE I. Integer variables of the design : lower bound (l.),
upper bound (u.), and values of the current reference manage-
ment (r.). The dead band (db) parameter is expressed in tenth
of degree, and all the other variables are expressed in steps.

PSR Overlaps PSR Velocities TRR V. TRR B.
o1 o2 o3 v1 v2 v3 v4 V v mb db

l. 0 0 0 10 10 10 10 42 3 7 8
u. 255 255 255 110 110 110 110 102 13 117 16
r. 70 80 95 60 60 60 60 72 8 27 8

The values in the table take into account some technologi-
cal and logical constraints. For example, the overlaps cannot
be greater than the total height of the rods, the velocity ranges
are bounded by the mechanisms, etc. A number of other vari-
ables could have been studied, like swaps between groups,
or splitting groups, but the study is confined to the variables
listed above for two reasons : simplify the problem for a first
optimization, and be able to propose a solution without major
technological breakthroughs and similar to the current one.
Nevertheless, the search domain is huge (at least 3 × 1020

possible configurations).
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2. Criteria Definition and Calculation

This seek of simplification is even more understandable
when it is known that the black-box evaluation function is
very costly. Each unitarian calculation corresponds to a given
management configuration running on a complete typical load-
following transient, corresponding to about eleven hours. The
value of interest is then determined thanks to a model of the
whole reactor described in [14], and developed within the
APOLLO3® [15] calculation code. The optimization aims
at minimizing this value of interest, which represents either
a global operating criterion, based on the control diagram, or
the rejected volume of effluents. The control diagram is used
by the operator to manage the power plant and represents the
evolution of the relative thermal power (Pr) as a function of
the power axial imbalance ∆I:

∆I = Pr × AO

where AO is the axial offset defined as AO = PT−PB
PT +PB

and stand-

ing for the unbalance between the lower and upper half parts
of the core as regards the power. PT (resp. PB) is the power in
the upper (resp. lower) part of the core.

An example of such a diagram is to be found on Fig.5,
which draws the path of the state of the core during a power
variation (blue line) and the bounds for this path. On the
right side, the forbidden region (red line) is based on many
studies and ensures the safety of the core in case of accidental
situations. The impossible working region just comes from
the definition (AO ∈ [−1, 1]). Finally, the green line starting
at the same point as the path corresponds to a constant axial
offset, and is called reference line in the following.

0

20

40

60

80

100

-30 -20 -10 0 10 20 30

ΔI = Pr*AO (%PN)

Impossible working

Forbidden working

Relative Power
Pr (%Pn)

path

reference line

D(ΔI)

Fig. 5. A control diagram showing the principle of the criterion
computation to be minimized. The relative thermal power is
expressed in percent of the nominal power (%PN).

The criterion derived from the control diagram is defined

by:

CAO =
1
4

∑
i

|P2
r,i+1 − P2

r,i| ·
(
D(∆Ii+1) + D(∆Ii)

)
(1)

where D(∆Ii) = |∆Ii − ∆Ire f
i |. The point (Pr,i, ∆Ii) rep-

resents the state of the core at the time step i in the control
diagram, and ∆Ire f

i the power axial imbalance given by the
reference line at the power Pr,i. The criterion corresponds to
the sum of all the areas as illustrated on Fig. 5, weighted by the
relative power to take into account the fact that an important
axial offset at high power is worse than at low power. Mini-
mizing this criterion enables to reduce the area of the path and
avoids being close to the forbidden region while staying close
to the reference line.

The second criterion, Veffluents, corresponds to the efflu-
ents volume produced during the transient. To increase (resp.
decrease) the boron concentration in the core, some water of
the primary circuit is replaced by highly boron-concentrated
(resp. clear) water. Such a boration (resp. dilution) produces
a lot of fluid wastes to be processed, called effluents. This
volume is determined using the flow rate at which the new
fluid is injected (equal to the one at which the current fluid is
removed) by the pump :

Veffluents =
∑

i

Qi ∗ ∆ti

where ∆ti and Qi are the length of the time step and the
flow rate (in m3.s−1) of the pump at the time step i. The flow
rate is given by :

Qi = −
V
∆ti
∗ log

(
1 +

[B]i − [B]i−1

[B]i−1 − [B]∗
)

(2)

with V the volume of the primary circuit and [B]i the
boron concentration at the time step i. [B]∗ is the concentration
of the highly boron-concentrated water (7700 ppm) in case of
boration, or of the clear water (0 ppm) in case of dilution.

Both criteria have to be minimized : one wants to reduce
as well the axial perturbations on the core and the use of the
soluble boron. They are a priori contradictory, because an
important use of the control rods increases the axial pertur-
bations, but reduces the use of the soluble boron. On the
contrary, a limited use of the control rods produces few per-
turbations, but in that case, the soluble boron is used instead.
The optimization process aims at finding a good compromise.

III. ASYNCHRONOUS PARALLEL EA

In this section, we propose a parallel EA dedicated to the
NROO problem with computational expensive simulation cost,
and to the high performance computing environment com-
posed by a large number of computation units. The parameters
of the EA algorithm are also studied.

1. Algorithm Design

Two keys guide the design of the optimization algorithm.
First, the time of fitness evaluation computed by the simula-
tor is on average about 40 minutes and with a large variance.
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Second, a large number of computing units (w = 3072) are
available to run the optimization algorithm, but they are avail-
able for only few hours (around 15 hours per job [16]). As
a consequence, a master-worker (M/W) framework with fit-
ness evaluation on each worker seems to be relevant. Indeed,
on average we can expect one fitness evaluation every 0.78
second, meaning that the master node is not to be overflowed
by the request of the workers, and with respect to the fitness
evaluation time, an idle working time of few seconds will not
reduce the performance. In addition, some simulations crash
before the end of the calculation, increasing even more the
discrepancies in calculation times. All considered, the model
of the M/W has been made asynchronous : the workers are
updated on the fly without a synchronization barrier, and each
worker only computes the fitness value using the multi-physics
simulator.

The number of evaluations per worker is small, on aver-
age 23 fitness function evaluations is possible on each worker
within 15 hours of computation. As a consequence, the EA
should converge quickly. We propose then an asynchronous
(1 + λ)-EA where λ is the large number of computation units
minus one. Roughly speaking, an iteration of the algorithm
produces λ new candidate solutions (which are random vari-
ants of the so far best-known solution) by the mutation opera-
tor, and updates the best solution for the next iteration. The
Algo. 1 and 2 show the details of the algorithm.

Algorithm 1: Asynchronous M/W (1+λ)-EA on master

1 for i in Workers do
2 xi ← Initialization using quasi-random numbers
3 Send (non-blocking) Msg(xi) to worker i
4 end
5 f ? ← maximal value
6 while pending message and time is not over do
7 Receive Msg from worker i
8 f i ←Msg[0]
9 if f i 6 f ∗ then

10 x? ← xi ; f ? ← f i

11 end
12 xi ←Mutate(x?)
13 Send (non-blocking) Msg(xi) to worker i
14 end
15 return x?

Algorithm 2: Asynchronous M/W (1 +λ)-EA on work-
ers
1 Receive (blocking) Msg from master
2 xi ←Msg[0]
3 f i ← Evaluate xi with simulator
4 Send (blocking) Msg( f i) to master

First, the algorithm on master node produces λ = w − 1
quasi-random solutions (integer vectors of dimension n = 11)
using a Design of Experiments (DoE) based on Sobol of quasi-
random numbers. This initialization is used to improve the

spreading of the initial solutions in the search space. Every ini-
tial solution is then sent asynchronously to a worker, running
the Algo. 2 : receive the solution from the master, compute
the fitness value by running the multi-physics simulator, and
send back the result to the master node. In the meantime, the
main loop of the Algo. 1 is executed on the master node : wait
for a message from a worker i, and when the fitness value is re-
ceived, the best so far solution is updated if necessary. Notice
that the best solution is replaced by the new solution evalu-
ated by the worker even when the fitness values are equals.
In that way, the algorithm is able to drift on plateaus of the
search space which are solutions with the same criterion value.
A new candidate solution is then computed by the mutation
operator of the best-known solution and sent in non-blocking
mode to the same worker i. The master is then able to manage
the requests of the other worker nodes by the asynchronous
communication mode. The stopping criterium of the algorithm
is the time limit.

The mutation operator is based on the classical mutation
operator for vectors of numbers. The mutation rate p defines
the parameter of the Bernouilli distribution to modify each
number of the vector. Therefore, the number of modified
variables follows a binomial distribution of parameters n and
p, and the expectation of the number of modified variables
is np. When an integer variable is modified according to
the mutation rate, a random integer number is drawn using
a uniform distribution centered on the current value. Let x j
be the current value of the variable j, and δ j the gap defined
by br.(ub j − lb j)c where lb j and ub j are respectively the lower
bound and the upper bound of the variable j defined in the
Tab. I, and r ∈ [0, 1] is a mutation parameter. The new integer
value of variable j after mutation is selected uniformly in the
interval [x j − δ j, x j + δ j] ∩ [lb j, ub j] \ {x j}. The parameter r
tunes the range width for the new value of variable after the
mutation, and is expressed relatively to the total range width
of the parameters.

In addition, to avoid multiple costly evaluations of the
same candidate solution, a hash-map is used on the master
node to save all evaluated solutions. The mutation is applied
on the solution until a new candidate solution which is not in
the hash-map is produced by the mutation random process.

2. Parameters Tuning

First, the performance of the algorithm with a baseline
parameters setting is studied with 3072 computing units during
24 hours (approx. 73, 728 hours of CPU time). Following the
value of the mutation rate parameter of 1/n commonly used in
EA, the mutation rate has been set roughly to the inverse of the
number of variables (p0 = 0.1), so that the mutation operator
modify on average one variable. The width of the random
variation range has been arbitrarily set to about r0 = 0.05 (5%
of the total variation range of the variable).

The use of an asynchronous algorithm to avoid idle time is
justified by the discrepancies of the computation costs from a
candidate solution to another one : the mean computation time
is 2426 seconds, and the faster computation is done in 1629
seconds whereas the longer is performed in 6169 seconds.

Fig.6 shows the dynamic of the run. The CAO value is
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drawn as a function of the number of evaluations received by
the master node. A point is plotted when the best solution
so far is updated (included for equal fitness values) and the
fitness values are normalized by the fitness value of the current
management (see Tab. I). The solutions for which the number
of evaluations is lower than 3072 are from the initial quasi-
random population. Even if the baseline settings enable to
reduce the fitness of about 40% compared to the current man-
agement, it can be seen that the number of strictly improving
solutions is low (about 10 improving steps). The dynamic is a
punctuated equilibrium dynamic with a lot of plateaus (made
of solutions of the same quality), and therefore few improving
solutions. For instance, the process is stuck on a plateau at
the end of the run and almost 50, 000 fitness evaluations are
necessary to find another plateau with strictly better solutions.
This first experiment shows the relevance of the algorithm to
find better solutions than the current management, but it also
suggests that the settings of the mutation parameters could be
improved.
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Fig. 6. Evolution of the normalized fitness as a function of the
number of evaluations for some mutation parameters settings,
and starting populations. Notice the log scale

Four values of mutation rates p and mutation ranges
r are then investigated : p ∈ {0.1, 0.2, 0.3, 0.4} and r ∈
{0.05, 0.1, 0.2, 0.5}. All the combinations are considered, given
16 possible mutation settings of the mutation operator. More-
over, to reduce the intrinsic random effect of the algorithm,
each couple of mutation parameters values (p,r) have been
launched five times with different initial populations generated
by the Sobol sequence of quasi-random numbers. However,
the five initial populations are the same for each couple of
parameters settings. The algorithm is launched this time on
3072 computing units during five hours (approx. 15, 360 hours
of CPU time per run), giving a total computation cost of more
than 1, 2 × 106 hours of computation, and it was not possible
to execute more than five runs per mutation settings.

Two sets of mutation parameters are shown on Fig.6 (mut1
and mut2). The first set corresponds to (2p0, 2r0), and is
shown starting either from the same population as the baseline
settings (init1), or from another pseudo-random population
(init2). The second set is the best set found with this parametric
study and corresponds to (3p0, 10r0).

The (mut1, init1) configuration is better than (baseline,
init1), and enables to find another local minimum. In the same
way (mut2, init2) is better than (mut1, init2). By increasing
the mutation rate p and the random range r, one increases the
differences between a solution and his mutant, improving the
exploration phase. On the other hand, lower mutation rate and
random range improve the exploiting around a good solution.
Given the computing time, the number of cores, and the al-
gorithm structure, it appears that the better the exploration,
the better the solution. The initial population has also a huge
influence on the solution, as it can be seen between (mut1,
init1) and (mut1, init2).

One can see the importance of optimizing the parameters
of the algorithm : a gain of about 65% is reached against 40%
with the baseline settings.

IV. EXPERIMENTAL ANALYSIS

1. Mono-objective Optimizations

This section deeply analyzes the optimizations with re-
spect to both criteria. To do so, the optimization process is
launched again in order to optimize this time the effluents
volume. The parameters of the algorithm are the one cor-
responding to the so far best configuration, which is (mut2,
init2). The dynamic of the optimization is similar to the one
for the axial offset criterion, and is not presented here. This
optimization results and the ones coming from the best run as
regards the axial offset criterion are then gathered (all the so-
lutions are kept, and not only the improving ones as in Fig.6),
and the Pareto set is built. The Pareto set is made of all the
non-dominated (or Pareto-optimal) solutions. Let X be the
search space, and f : X → Rn the fitness function which
associates to each candidate solution the scalar values to be
minimized (here n = 2). A solution x in search space is said
dominated by a solution x′ if :

∀i ∈ {1, . . . , n} | z′i ≤ zi and ∃ j ∈ {1, . . . , n} | z′j < z j

where z′ = f (x′) and z = f (x). A solution x is then non-
dominated if there does not exist any solution x′ that dominates
it. The set of Pareto-optimal solutions is the Pareto set, and its
mapping in objective space is the Pareto front, which is shown
in Fig.?? for the gathered optimization results.

It is satisfactory to see that the two mono-objective op-
timizations give a well-distributed front, and that the two
optimizations contribute almost the same way to the front
(same number of points from the optimization as regards CAO
than Veffluents). The two criteria are contradictory as expected,
since an optimization with respect to one degrades the other.
Moreover, the current management is well improved for both
criteria, and is dominated by about 15 points. It is interesting,
however, to note that the Pareto front is centered around the
current management, meaning that this management can be
seen as an already improved solution as regards those two
criteria.

Three candidate solutions are pointed out on this Pareto
front : the one giving the best axial offset criterion (best AO),
the one giving the best effluents volume (best Veff ), and one
in the middle of the Pareto front (at (0.75,0.8)) called best
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Fig. 7. Pareto front obtained with the mono-objective opti-
mizations as regards both criteria. The points coming from the
two optimizations are distinguished. The values are normal-
ized with the ones of the current management, which is at the
center of the dotted cross.

Compromise, giving one of the best compromise between the
two criteria, and dominating the current management. Fig.8
presents the corresponding control diagrams, and the evolution
of the soluble boron concentration all along the load-following
transient. It was said previously that the volume of effluents
characterizes the use of the soluble boron, and consequently,
the less the amplitude of the soluble boron concentration, the
less the rejected volume of effluents.

First of all, Fig.8 (top) shows that the area of the best
AO path is well reduced (65% reduction) compared to the
current management, and the axial offset stays very close to
the reference line. In comparison, even if the area of the path
of best Veff is small, the curve stays far from the reference line,
explaining why CAO is important for this solution. As expected,
best Compromise is between the two : reducing the use of the
soluble boron but still ensuring a good behavior of the control
diagram. The "S" shape of all the control diagrams excepted
the best AO is due to the differential worth discrepancies of the
PSR. One can avoid this effect by modifying their overlaps so
that the reactivity insertion from one group to another is done
in a smoother way, but also by reducing the velocities in such
a way that the rods do not reach their expected position (given
by the calibration function), reducing their axial effects on the
core. Their final position is reached once finished the power
variation. However, this strategy implies an important use of
the soluble boron, which is used to shim the power effects
(instead of the PSR), as it can be seen on Fig.8 (bottom) from
point A to B where the boron concentration increases. On
the contrary, an important use of the PSR to shim the power
effects like for best Veff, leads to a reduced use of the soluble
boron (variation of 120 ppm in the case of best AO compared
to 60 ppm for best Veff ).

Tab. II summarizes the parameters of the three previous
candidate solutions, and remind the one of the current manage-
ment. The overlaps of the best AO management are slightly
higher than the current management ones, implying a priori
higher perturbation on the core (a maximal overlap between
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Fig. 8. Control diagram and evolution of the soluble boron
concentration for the three candidate solutions of the Pareto
front, and for the current management. Current reference man-
agement (r.), best AO (a.), best Veff (b.) and best Compromise
(c.). The A, B, C and D points corresponding to the power
transient are indicated on the control diagram of the current
management.

two groups means that they are inserted together, contrary
to a null overlap meaning that the first one is completely in-
serted before the second one starts moving). This is avoided
by setting the G1 velocity to its minimal value, so that the rods
cannot reach their expected position. Consequently, during
the power decrease for instance, they are not enough inserted,
meaning fewer effects on the core. Plus, the maneuvering
band of the TRR is thin so they cannot be used neither. The
boron is then used instead, and its almost uniform effect on
the core explains why best AO ensures a path very close to
the reference line, meaning that the axial offset is kept almost
constant.

The best Veff configuration, however, maximizes the use
of the PSR : G1 is inserted alone and when it reaches the
bottom of the core, the power is around 75%PN. From that
point, G2 and N1 are inserted together, and N2 starts moving
shortly after them. This produces a huge decrease of the
axial offset, as it can be seen on Fig.8 (top). Moreover, the
maneuvering band of the TRR is wide, so that the use of the
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soluble boron in this case is reduced to the minimum. Finally,
the best Compromise configuration appears to be very close to
the best AO, and the main difference is for the PSR velocities :
with higher velocities, the power shimming is better, enabling
to reduce the use of soluble boron.

TABLE II. Summary of the parameters of the previous candi-
date solutions : current reference management (r.), best AO
(a.), best Veff (b.) and best Compromise (c.).

PSR Overlaps PSR Velocities TRR V.
o1 o2 o3 v1 v2 v3 v4 V v mb db

r. 70 80 95 60 60 60 60 72 8 27 8
a. 113 84 215 10 67 26 91 68 11 8 13
b. 1 253 202 42 109 47 47 47 7 93 12
c. 113 83 74 85 78 97 60 76 11 12 9

In order to generalize the comments made on the parame-
ters of the three candidate solutions of the Pareto front, other
candidate solutions are considered. For both optimization pro-
cess (as regards CAO and Veffluents), all the solutions under a
chosen normalized value are taken into account. This limit is
set to 0.6 in case of CAO, and 0.75 in case of Veffluents. The two
values are different because the variation ranges on the two
criteria are different, and the choice is made so that only the
best solutions are kept, without removing too many solutions.
Moreover, the number of kept solutions in both cases is almost
the same (about 1350 solutions). Fig.9 shows the parame-
ter values distribution for the solutions found during the CAO
optimization (left) and the Veffluents optimization (right).
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Fig. 9. Summary of the parameter values for the best solutions
found with the CAO (left) and Veffluents (right) optimization. The
bottom (resp. top) of the boxes corresponds to the first (resp.
third) quartiles, and the lower (resp. upper) whiskers extend
from the boxes to the lowest (resp. highest) value within 1.5
times the distance between the first and third quartile. Values
beyond or above are plotted as points. The median values are
represented by the horizontal segments inside the boxes. The
red points correspond to the current management.

In both cases, the parameters o3, and v4 seem to have
almost no influence on the values of interest, as the corre-
sponding standard deviations are high. This can be explained
by the fact that N2 is only used in few management configura-

tions. Particular attention must be paid to the values of o1, o2,
v1 and mb, which are the values that present the main discrep-
ancies between the two optimizations. On Fig.9 (left), the first
quartile of the overlaps is always higher than the current man-
agement. For o1, the current management corresponds even
to the lowest value. Moreover, the values of v1 and mb are
close to the minimum. Consequently, the previous discussion
on the strategy of the best AO management can be generalized
to the good solutions found as regards CAO : by decreasing the
velocity of the rods and the maneuvering band, one imposes
the use of the soluble boron as the main control mechanism,
and thus enable to improve the axial offset criterion. Keeping
high overlaps opens, nevertheless, the possibility to decrease
the use of the soluble boron by increasing the velocities. In
the same way, the discussion on the strategy of the best Veff
management is verified here, as it can be seen that o1 is min-
imal and o2 is maximal excepted for few solutions. On the
one hand, the overlaps must be high in order to have a good
shimming effect, as it is the case for best Veff, and leading to a
reduced used of the soluble boron. The TRR enable to control
the resulting average temperature and axial offset, and a high
maneuveuring band is thus needed. But on the other hand, a
too strong impact of the PSR on the core may also require the
use of the soluble boron, which would increase the effluents
volume, and that is probably why the first overlap is kept low.

2. Influence of the Burnup

The soluble boron is also known to be used to counter-
balance the decrease of reactivity all along the cycle, and its
concentration never stops decreasing during the cycle. Usu-
ally, the maximum burnup for the load-following is given by
a minimum amount of soluble boron left in the core. After a
given burnup (about 80% of the cycle length), the reactor is
not able anymore to load-follow, because the remaining sol-
uble boron is not enough to counterbalance the Xenon effect.
Moreover, the principle of boration and dilution of the soluble
boron (Eq. (2)) implies that at low concentration, the boration
is fast and the dilution is low. Consequently, at high burnup,
a fast dilution is not possible, and that could also limit the
possibilities of a core to load-follow. One can deduce that
the burnup has an important effect on the performances of
the solutions, especially if the use of the boron differs from
a solution to another. As it is difficult to change online the
management during the cycle, a candidate solution must be
good all along the cycle to be chosen. Here, the robustness of
the solutions with respect to the burnup is studied, by replay-
ing the load-following transient for the solutions in the Pareto
set, but with different initial states of burnup. The control
diagrams of the best AO, best Veff and current management
configurations are shown on Fig.10, and correspond to a load-
following starting at 80% of the cycle length. The best Veff
configuration is better than either the current management and
best AO for both criteria. Its control diagram shape is the
same as in Fig.8 (top) : by minimizing the use of the soluble
boron and maximizing the use of the control rods, one enables
robustness as regards the burnup. When starting with a core at
high burnup, the managements that need more soluble boron
are consequently penalized. This is what Fig.10 shows. For
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the current management and best AO, the needed boration and
dilution speeds cannot be reached, making it difficult to fully
counterbalance the power effects during the power decrease,
and the xenon effect during the lower plateau. This is the cause
of the drift observed during the lower plateau, resulting in a
high CAO value.
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Fig. 10. Control diagrams for the current management, best
AO and best Veff at 80% of the cycle length.

Knowing the importance of the burnup on the values of
interest for those three management configurations, the effect
of the burnup on the whole Pareto front is now shown in Fig.11.
From top to bottom, the initial burnup increases from 20% to
50% and then 80% of the cycle length (CL), and its effects on
the front can be seen thanks to the color scale. The circle points
stand for the initial Pareto front, and the triangle for the same
management configuration, starting from the corresponding
increased burnup. The references are at the center of the dotted
cross.

As expected, the effect of the burnup on the Pareto front
is important. Surprisingly, the more the burnup, the fewer
the effects on the whole front. Even if the huge majority of
the solutions is dominated by the initial Pareto front, some
dominate it, meaning, as we discussed before that the effects
are not uniform from a solution to another. More precisely, the
color scale shows that the solutions optimized as regards the
effluents volume tend to be improved as the burnup increases,
whereas the solutions optimized as regards the axial offset
criterion tend to be degraded. Indeed, the Veffluents-optimized
solutions start from the bottom right corner and go to the
bottom left corner, meaning that they dominate the current
management, whereas the CAO-optimized solutions start from
the top left corner and go to the top right corner, meaning that
they are dominated by the current management, and thus by
the Veffluents-optimized solutions. The solutions in the middle
of the front stay close, most of the time, from the current
management. The behavior of the Pareto front as a function of
the burnup is still not well understood, but the final state (at
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Fig. 11. Effects of an increasing burnup on the Pareto front.
0.2CL (top), 0.5CL (middle) and 0.8CL (bottom). The values
corresponding to managements starting from an increased
burnup are normalized with respect to the values of the current
management, starting from the same increased burnup.

80% of the cycle length) corresponds to the discussion above.
The absolute axial offset criterion of the Veffluents-optimized
solutions do not change much, whereas the value of the current
management increases, making the normalized axial offset cri-
terion decrease, and the normalized effluents volume of those
solutions stays lower the one of the current management. Con-
cerning the CAO-optimized solutions, the normalized effluents
volume stays almost constant also (or slightly increases), but
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most of all, the axial offset criterion is increased, and gets
closer to the reference. Fig.10 shows indeed that the best AO
and current managements are very similar to each other. One
can conclude that the Veffluents-optimized solutions are more
robust than the CAO-optimized solutions as regards the burnup.
It is not possible, however, to simply choose those solutions,
because Fig.8 shows that the maximal corresponding axial
offset may be important, which is not acceptable with respect
to the safety, particularly linear power and xenon oscillations.
Consequently, the gathering of the two mono-objective op-
timizations is not enough (because not robust enough as it
has been shown), and a bi-objective optimization is needed to
find a compromise between Veffluents-optimized solutions and
acceptable axial offset variations.

V. CONCLUSIONS

A study concerning the optimization of the management
of a Pressurized Water Reactor during a load-following tran-
sient have been presented, and the first results demonstrate the
possibility of an improvement of the current management as
regards two criteria which are the effluents volume and a crite-
rion based on the axial offset calculation. It has been possible
to improve the later by 65% and the former by 40%. However,
some work is still to be done in order to optimize them jointly,
and find good solutions as regards the two criteria. Those
solutions will have, moreover, to be efficient as far as possible
in the cycle length.

This is the next step of the work : develop a multi-
objective algorithm, based on the mono-objective one, en-
abling to find those solutions. The optimization will be done
considering the beginning of the cycle in a first time, as it was
the case here, and increased burnups in a second time. By com-
paring the results of those two bi-objective optimization, one
will be able to point out the common solutions, thus efficient
for the several burnups.
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