
HAL Id: hal-01496347
https://hal.science/hal-01496347v1

Submitted on 2 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards landscape-aware automatic algorithm
configuration: preliminary experiments on neutral and

rugged landscapes
Arnaud Liefooghe, Bilel Derbel, Sébastien Verel, Hernan Aguirre, Kiyoshi

Tanaka

To cite this version:
Arnaud Liefooghe, Bilel Derbel, Sébastien Verel, Hernan Aguirre, Kiyoshi Tanaka. Towards landscape-
aware automatic algorithm configuration: preliminary experiments on neutral and rugged landscapes.
EvoCOP 2017 - Conference on Evolutionary Computation in Combinatorial Optimisation, Apr 2017,
Amsterdam, Netherlands. pp.215-232. �hal-01496347�

https://hal.science/hal-01496347v1
https://hal.archives-ouvertes.fr

Towards Landscape-Aware Automatic
Algorithm Configuration: Preliminary

Experiments on Neutral and Rugged Landscapes

Arnaud Liefooghe1,2, Bilel Derbel1,2, Sébastien Verel3,
Hernán Aguirre4, and Kiyoshi Tanaka4

1 Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL, F-59000 Lille, France
2 Inria Lille – Nord Europe, F-59650 Villeneuve d’Ascq, France
3 Univ. Littoral Côte d’Opale, LISIC, F-62100 Calais, France
4 Shinshu University, Faculty of Engineering, Nagano, Japan

Abstract. The proper setting of algorithm parameters is a well-known issue that
gave rise to recent research investigations from the (offline) automatic algorithm
configuration perspective. Besides, the characteristics of the target optimization
problem is also a key aspect to elicit the behavior of a dedicated algorithm, and
as often considered from a landscape analysis perspective. In this paper, we show
that fitness landscape analysis can open a whole set of new research opportuni-
ties for increasing the effectiveness of existing automatic algorithm configuration
methods. Specifically, we show that using landscape features in iterated racing
both (i) at the training phase, to compute multiple elite configurations explicitly
mapped with different feature values, and (ii) at the production phase, to decide
which configuration to use on a feature basis, provides significantly better results
compared against the standard landscape-oblivious approach. Our first experi-
mental investigations on NK-landscapes, considered as a benchmark family hav-
ing controllable features in terms of ruggedness and neutrality, and tackled using
a memetic algorithm with tunable population size and variation operators, show
that a landscape-aware approach is a viable alternative to handle the heterogeneity
of (black-box) combinatorial optimization problems.

1 Introduction
Following the advent of increasingly complex problems coming from different applica-
tion fields, and implying optimization scenarios with different properties, the optimiza-
tion community is continuously pushing towards the design of novel techniques that are
both effective when tackling a particular problem instance, and as generic as possible in
order to be flexibly adapted to a variety of problem classes. In particular, evolutionary
algorithms are extremely effective to deal with a broad range of black-box optimiza-
tion problems, which is one of the major reasons of their widespread uptake. Nonethe-
less, and despite the tremendous knowledge gained on the design of general-purpose
techniques, this success can be seriously impacted by the choice of the algorithm com-
ponents and parameters. For example, when designing a genetic algorithm, one has to
specify what crossover and mutation rates to set in order to reach a good performance,
as well as the choice of the variation operators. Moreover, it is a fact that the robustness
of an algorithm, in terms of the best reachable performance, can be directly related to
to the characteristics of the problem instances being tackled. In this respect, a number

of paradigms, techniques and dedicated software tools from automatic algorithm con-
figuration have been proposed in order to alleviate the design of algorithms from the
challenging and crucially important issue of setting their parameters [1–5]. Similarly,
a huge body of literature from fitness landscape analysis was devoted to eliciting the
features that make a problem instance fundamentally different from another, and to bet-
ter grasp the behavior of evolutionary algorithms. In this paper, we aim at providing a
first step in bridging automatic algorithm configuration with fitness landscape analysis,
towards the achievement of a more powerful offline tuning framework.

Automatic Algorithm Configuration. Informally speaking, given a number of algo-
rithm parameters (that might be numerical, discrete, or categorial), (offline) automatic
algorithm configuration seeks a good configuration, that is a particular choice of the
parameter values that best suits the solving of some a priori unknown instances [2].
Clearly, the motivation is not only to get rid from the burden of a manual calibration
or the bias of personal and ad-hoc configuration processes, but more importantly to
set up a principled approach for algorithm design, allowing to systematically explore
their strengths and weaknesses when tackling a whole family of problems. In this con-
text, several approaches have been proposed, ranging from racing [1, 2] to statistics [3],
experimental design [4], and heuristic search [5].

In this paper, we focus on the iterated racing method, which is gaining a lot of
popularity, especially thanks to the flexibility of the user-friendly irace software [6].
Racing approaches, as most existing automated algorithm configuration methods, can
be viewed from a machine learning perspective as operating in a training phase followed
by a test or a production phase. Based on some given instances forming the training set,
the training phase is intended to learn a good configuration that would hopefully per-
form well when experimented later, on some new unseen instances coming from the
production phase. Roughly speaking, different configurations are first evaluated in par-
allel by racing, and those that are performing poorly are then discarded until one single
configuration remains. Since the parameter space can be huge and an exhaustive search
on the training set of instances prohibitive, a biased sampling procedure is typically
implemented in order to cleverly select which configurations are to be evaluated. More
specifically to iterated racing [6], the sampling distribution associated with each input
parameter is updated at each iteration based on some statistical tests on the performance
of running the considered configurations on some instances chosen from the input train-
ing set. It has been pointed out that the way the parameter sampling procedure and the
statistical evaluation of the performance of different configurations plays a key role
in guiding the iterated racing process towards the most promising configurations [6].
However, and as for any machine learning technique, the properties of the training set
is a key issue in order to guarantee a high accuracy of the output configuration.

To our best knowledge, this issue has been studied only to a small extent in the con-
text of automatic algorithm configuration. In fact, although one can safely claim that
a set of available instances are already known a priori for a particular problem class,
they might have fundamentally different structural properties, thus making them not
homogeneous enough to be tackled using a single configuration. The heterogeneity of
training instances was discussed briefly in [6] in the context of a tuning scenario im-
plying SAT instances and irace. It was argued that such a scenario can constitute a

real challenge for algorithm configuration. We also argue that a single output parameter
configuration might not be suitable for the target algorithm to best suit a whole set of
instances having different properties. In this paper, we rather advocate for the computa-
tion of a set of configurations, not a single one, that can then be mapped accurately with
respect to the characteristics of an instance. Notice that, in iterated racing, a whole set
of elite configurations can be provided as output – the set of configurations that were
found to statistically have similar performance, which actually happens in many tuning
scenarios, especially when the number of parameters is large. Nevertheless, it is still
unclear which configuration has to be chosen in practice. Additionally, it often happens
that the structural properties of a production instance, that is an instance on which the
algorithm was not tuned beforehand, require a seemingly different parameter settings
to reach optimal performance. This is for example typically the case in black-box opti-
mization, where no assumption is made on the structure of the fitness function. This is
precisely where fitness landscape analysis comes into play.

Fitness Landscape Analysis. When tackling black-box optimization problems, for
which expert domain knowledge is typically not available, a fundamental issue is to
understand what makes a problem instance difficult to solve. Similarly, it is essential to
elicit the performance of a randomized search heuristic in light of the structural proper-
ties of the tackled problem. In this respect, fitness landscapes analysis [7, 8] provides a
set of general-purpose tools and a principled approach to systematically investigate the
characteristics of an optimization problem in an attempt to guide algorithm designers
towards a more in-depth understanding of the search behavior, and thus towards more
effective algorithms. A typical issue addressed in fitness landscape analysis consists in
studying how the performance of a given algorithm configuration can be impacted in
light of insightful features from the considered problem instances. In particular, dif-
ferent general-purpose features were studied for this purpose [8], and such landscape
features have prove their interest in successfully distinguishing between instances [9].
The general idea developed in this paper is that such features can actually serve to dif-
ferentiate which parameter configuration can be more suitable for a particular problem
instance, both during the training phase and during the production phase of automatic
algorithm configuration. In other words, since it might be useless to search for just one
single parameter configuration for an heterogeneous instance set, an alternative solution
would be to consider a whole set of configurations that are explicitly associated with
some elicited computable instance features. We, in fact, claim that such an idea is useful
to enhance the robustness of the output configuration.

Contributions. The contributions of this paper can be stated following the next aspects:

• We adopt a landscape-oriented methodology to strengthen the accuracy of auto-
mated algorithm configuration. By partitioning the training set into different groups
based on the value of landscape features, we conduct an independent training phase
in parallel for each group, thus ending up with multiple algorithm configurations
corresponding to the different groups. At the production phase, the appropriate con-
figuration is selected based on the feature value of the considered instance. As a
byproduct, we derive a novel landscape-aware methodology to complement exist-
ing automatic algorithm configuration in deciding on a suitable parameter setting.

• We validate the proposed landscape-aware methodology through an empirical study
on the well-established benchmark family of NK-landscapes. This problem class
allows us to model a black-box optimization scenario with a variety of problem
instances coming from the same (pseudo-boolean) domain, but with seemingly dif-
ferent intrinsic characteristics. By construction, a number of features, that are often
found to impact the performance of evolutionary algorithms, are in fact made con-
trollable. This results in a particularly interesting adversary benchmark for studying
the challenges that automated algorithm configuration has to face when tackling
heterogenous instances. In particular, we focus on the behavior of iterated racing
when tackling problems with a variable degree of ruggedness and neutrality.

• By fairly taking the extra computational cost induced by our methodology into ac-
count, we investigate the gain of deciding which parameter configuration to choose
for an unseen production instance based on general-purpose low-cost computable
features. Our empirical findings reveal that landscape-aware iterated racing is able
to find better configurations when experimented in a conventional memetic algo-
rithm with tunable population size, variation operators, crossover and mutation rates.

Positioning. Our work shares similarities with previous attempts from automatic con-
figuration. In Hydra [10], a portfolio builder is used together with an automatic config-
uration method in order to construct a portfolio of algorithm configurations. The port-
folio builder typically uses problem features to discard or add new configurations found
by automatic configuration, and the method was proved effective when experimented
with SAT specific tools. However, it requires both a suitable portfolio builder and a
domain-specific knowledge, which can constitute a bottleneck in practice for black-box
optimization. In SMAC [11], landscape features are used within the tuning process as
a subset of input variables in order to construct a model predicting algorithm perfor-
mance, but a single recommended algorithm configuration is returned for the whole
instance set. In ISAC [12], features are used for instance-specific algorithm configura-
tion, but the authors consider problem-specific features, whereas our proposal attempts
to address black-box optimization problems.

Outline. For the sake of presentation and completeness, we first start by describing
in Section 2 the rationale behind NK-landscapes, as well as by defining some general-
purpose features that we shall use in order to empirically revisit the characteristics of
NK-landscapes. In Section 3, which is the core of the paper, we describe the proposed
landscape-aware methodology for automatic algorithm configuration and experimen-
tally investigate its accuracy on NK-landscapes. In Section 4, we conclude the paper
while providing some future research questions.

2 Initial Considerations on Pseudo-Boolean Landscapes
2.1 NK-, NKq- and NKp-Landscapes

The family of NK-landscapes constitutes a problem-independent model used for con-
structing multimodal benchmark instances with variable ruggedness [13]. The fitness
function f is a pseudo-boolean function f : {0, 1}N → [0, 1] to be maximized. Candi-
date solutions are binary strings of size N , i.e. the solution space is X := {0, 1}N . The

fitness value f(x) of a solution x = (x1, . . . , xi, . . . , xN) is an average value of the in-
dividual contributions associated with each variable xi. Indeed, for each xi, i ∈ J1, NK,
a component function fi : {0, 1}K+1 → [0, 1] assigns a positive contribution for every
combination of xi and its K epistatic interactions {xi1 , . . . , xiK}. Thus, the individual
contribution of a variable xi depends on the value of xi, and on the values of K < N
other binary variables {xj1 , . . . , xjK}. The problem can be formalized as follows:

arg max
x∈{0,1}N

f(x) =
1

N

N∑
i=1

fi(xi, xi1 , . . . , xiK)

The epistatic interactions, i.e. the K variables that influence the contribution of xi,
are here set uniformly at random among the (N − 1) other variables, following the
random model from [13]. By increasing the number of epistatic interactions K from
0 to (N − 1), NK-landscapes can be gradually set from smooth to rugged. It is worth
noticing that this is intended to provide a family of black-box benchmark functions that
allow to study challenging aspects that can make a practical combinatorial optimization
problem instance difficult to solve, such as ruggedness or multimodality [7, 13, 14].

Moreover, NK-landscape were shown to be extendable to optimization scenarios in
the presence of different degrees of neutrality, which is also a critical issue when deal-
ing with combinatorial optimization problems [15, 16]. Accordingly, Newman [17] and
Barnett [18] introduced a controllable level of neutrality as follows. In the so-called
quantized NKq-landscapes [17], the fi-values are generated following a discrete uni-
form distribution J0, q − 1K, and are scaled down by a factor of 1

q−1 . In the so-called
probabilistic NKp-landscapes [18], the fi-values are set to 0 with a probability p, and
otherwise generated as in the original NK-landscapes with a probability (1− p), where
p is a benchmark parameter. To summarize, we shall consider NKq|p-landscapes as de-
scribed above, where it is expected that the larger K the higher the level of ruggedness,
and that the smaller q (respectively the larger p) the higher the level of neutrality.

2.2 NKq|p-Landscapes Features

As mentioned earlier, fitness landscape analysis aims at studying the topology of a com-
binatorial optimization problem by gathering important information such as ruggedness
or multimodality [7, 14]. It is important to remark that such an information is typi-
cally not available a priori, when effectively solving a given unseen problem instance.
Actually, in a typical black-box optimization scenario, even the parameters that origi-
nate a particular problem instance might not be available. With respect to the NKq|p-
benchmark family, we might typically consider a configuration scenario where the in-
stance parameter values such as K, p or q, are not known by the optimizer. In this
context, a fitness landscape analysis might allow us to extract valuable information on
the structural properties of an instance. For this purpose, we first report some general-
purpose properties of the considered NKq|p benchmarks by taking inspiration from [18].
Our goal is also to provide empirical evidence that this benchmark family is rather
heterogenous, and is indeed a good adversary candidate for evaluating the behavior
of automatic algorithm configuration. We consider an instance dataset of 800 NKq|p-
landscapes with a problem size N ∈ J500, 2 000K, an epistatic degree K ∈ J0, 10K,
and a neutral degree q ∈ J2, 10K for NKq-landscapes, respectively p ∈ [0.60, 0.93] for

NKq NKp

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 0.6 0.7 0.8 0.9
q p

av
g

fit
ne

ss

0
1
2
3
4
5
6
7
8
9
10

K

Fig. 1. Scatter plot of mufit (average fitness value) as a function of p and q for all instances.

NKp-landscapes. The range of the parameters q and p have been chosen in order to
obtain a similar range of neutral degrees on NKq- and NKp-landscapes. A total of 800
instances are considered, with one instance generated at random for each parameter
combination. Half of the instances correspond to NKq-landscapes, while the other half
are NKp-landscapes. The parameters have been generated from a design of experiments
based on a latin hypercube sampling.

Formally, a fitness landscape is defined by a triplet (X,N , f), such that X is a
set of admissible solutions (the search space), N : X → 2X is a neighborhood re-
lation between solutions, and f : X → IR is a black-box fitness function, here as-
sumed to be maximized. A simple sampling technique for examining features from the
landscape is to perform a random walk over the landscape. More specifically, an infi-
nite random walk is an ordered sequence 〈x0, x1, . . .〉 of solutions such that x0 ∈ X ,
and xt is a neighboring solution selected uniformly at random from N (xt−1). In the
same spirit than for the heterogeneous scenario mentioned in [6], a first feature that
we might consider is the average fitness value of a random walk, which can be ap-
proximated by means of a finite random walk 〈x0, x1, . . . , x`〉 of length ` as follows:
f̄ = 1

`

∑`
t=1 f(xt). The average fitness value encountered along a random walk can

actually be used to differentiate a given set of instances. This is exactly what we report
in Fig. 1 for the NKq|p-landscapes, where ` is set to 1 000. We can observe that NKq-
landscapes clearly differ from NKp-landscapes, as the range of average fitness values is
substantially different. While the instances generated with different q−values appear to
be rather uniform in terms of average fitness value (independently of K), the average
fitness value is in contrast decreasing linearly as a function of p. This provides a first
hint on the differences that we might encounter in the landscape of different instances.

In order to go further in the analysis, the autocorrelation [14] between the fitness val-
ues of consecutive solutions in a random walk can be used to characterize an important
feature of an instance, namely its ruggedness. We consider the following approximation
to estimate the so-called autocorrelation coefficient r̂(k):

r̂(k) =

∑`−k
t=1 (f(xt)− f̄) · (f(xt+k)− f̄)∑`

t=1(f(xt)− f̄)2

NKq

0.95

0.96

0.97

0.98

0.99

1.00

0 1 2 3 4 5 6 7 8 9 10
K

r1
 fi

tn
es

s

2
3
4
5
6
7
8
9
10

q

NKp

0.95

0.96

0.97

0.98

0.99

1.00

0 1 2 3 4 5 6 7 8 9 10
K

0.6

0.7

0.8

0.9

p

Fig. 2. Scatter plot of rho1fit (first autocorrelation coefficient) as a function of K for all instances.

We use the first autocorrelation coefficient r(1) to characterize ruggedness: the larger
r(1), the smoother the landscape [14]. We report in Fig. 2 this coefficient as a function
of K. As expected, we can observe that the first autocorrelation coefficient tends to
decrease with the degree of non-linearity. This means that the larger K, the more likely
to fall into a local optimum. Notice that this tendency is the same for both NKq- and
NKp-landscapes.

At last, we shall examine a feature capturing the degree of neutrality, which explic-
itly relates to parameters p and q in NKq|p-landscapes. Given a solution x, we denote a
neighboring solution x′ ∈ N (x) as a neutral neighbor if it has the same fitness value:
f(x′) = f(x) [15]. The neutral degree of a solution is then defined as the number of its
neutral neighbors. Consequently, different statistics can be used to quantify the neutral
degree of a given instance, following different sampling strategies that induce different
computational costs. Since we shall fairly include the cost of computing such features
later when addressing the effectiveness of an algorithm configuration method, we con-
sider a new estimator that solely looks at consecutive solutions along a random walk.
More specifically, let NN = {(xi, xi+1) | f(xi) = f(xi+1), i ∈ {0, . . . , `− 1}} be
the set of pairs of solutions with the same fitness value in the random walk. We con-
sider the following low-cost feature to render neutrality: rateeq = |NN |

` , which is the
proportion of pairs of neutral neighbors along the random walk. In Fig. 3, we report the
neutral degree of the considered instances as a function of the different parametersK, q
and p. The neutral degree decreases (resp. increases) with q (resp. p), which is with no
surprise given the definition of these two parameters in NKq|p-landscapes. However, a
notable observation is that the neutral degree is relatively higher for NKp-landscapes (up
to 0.8) compared against NKq-landscapes (up to 0.6), which is yet another interesting
information about the heterogeneity of these instances. Interestingly, we clearly see that
the neutral degree is not only dependent on parameters q or p, but also on the degree of
non-linearity K, as previously pointed out in [18]. Actually, the higher the value of K,
the lower the neutral degree. We also remark that for instances with a high level of non-
linearityK, the difference in the range of neutrality between NKp- and NKq-landscapes
decreases significantly, and the neutral degree appears to be roughly the same.

NKq NKp

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

2 4 6 8 10 0.6 0.7 0.8 0.9
q p

ne
ut

ra
l r

at
e

K
0

1

2

3

4

5

6

7

8

9

10

Fig. 3. Scatter plot of rateeq (neutral degree) as a function of p and q for all instances.

To conclude this section, let us emphasis that, although NKq|p-landscapes belong to
the same problem family, they are seemingly different as they expose different degrees
of ruggedness and neutrality. This is likely to be the case in practice for other prob-
lem classes, where one can expect different instances to have different properties, and
hence to expose different degrees of difficulty. In this respect, a reasonable hypothesis
is that the optimal setting of the considered optimization algorithm depends on instance
properties. This is precisely what we address in the remainder of this paper.

3 Feature-based Algorithm Configuration

In this section, we describe a feature-based algorithm configuration methodology, and
provide an empirical evidence of its benefits when tuning a standard memetic algorithm.

3.1 Feature-Aware Iterated Racing

For completeness, we first start recalling the main steps of conventional iterated rac-
ing as performed in irace [6]. Our interest in this approach stems from its successful
application in tuning different optimization techniques for a rather wide range of opti-
mization problems [6]. The input of irace is a set of parameters θ = {x1, . . . , xn}
from the algorithm to be configured, and a set of training instances I = {I1, . . . , Ik}.
The output is typically a set of elite configurations θ∗ = {θ1, . . . , θr} that allow the
target algorithm to perform at its best with respect to some performance metric. Notice
that irace is actually a stochastic search process performing in the parameter space,
and hence no guarantee is actually provided on the optimal performance of the output
configuration. That said, irace consists in three main steps that are repeated sequen-
tially as follows, until a termination condition is met. First, some configurations are
sampled according to a particular probability distribution. The best configurations are
then selected using a racing procedure [6]. More specifically, the sampled configura-
tions are evaluated for a number of steps by executing the algorithm with the parameter
setting mapping to those configurations. At each step of the race, one instance from I is

considered. The configurations that were found to perform statistically worse than oth-
ers are then discarded, and the race continues with the surviving configurations. Finally,
the distribution from where the configurations are sampled from is updated in order to
bias the search towards the most promising configurations found in previous iterations.
As will be detailed later, we use a standard termination criterion which is a user-defined
computational budget, in terms of a number of algorithm execution. The performance
metric is simply the quality of the best solution found during an algorithm execution.

At this stage, it is important to remark that irace is intended to be a general-
purpose tuning approach. In particular, no assumption is made from the set of input
training instances I. Following the same motivations from the no-free lunch theorem,
the idea developed in this paper is precisely that there cannot exist a unique optimal
configuration for a whole set of instances. Consequently, irace can only output a
configuration representing a good compromise with respect to the characteristics of all
training instances. This is to contrast with an ideal case where one wants the output
configuration to perform in an accurate manner to an unseen production instance, inde-
pendently of its intrinsic properties. In this paper, we hence argue that a methodology
where some knowledge about the landscape is considered as a helpful information from
which the algorithm configuration can valuably benefit, can be of special interest. To
provide an empirical evidence of the soundness of the previous claim, we propose a
rather simple, yet efficient, procedure as described in the next paragraph.

We consider that an instance is characterized by the value of some landscape fea-
ture. We hypothesis that instances having similar feature values are likely to expose a
similar difficulty for the target optimization algorithm, and that it can then be config-
ured similarly for those instances. Let us denote by feat(I) the value of feature feat
for instance I . Since we might have numerical, discrete, or even categorial features, we
assume for now that we are able to classify an instance I into a unique class according
to its feature value feat(I). Let us assume as well that we have s such classes, where
s is a pre-defined parameter. We then proceed as follows: (i) we partition the training
set into s groups according to the feature values, i.e. I = I1 ∪ I2 ∪ . . . ∪ Is, where
Ii contains instances from the same class; and (ii) we run irace independently, using
every partition Ii separately as an input training set. Since irace is then executed s
times on the s training sets, we obtain as output s elites configurations: θ∗1∪θ∗2∪. . .∪θ∗s ,
where θ∗j maps to instances of class j ∈ {1, . . . , s}. Since these output configurations
are hence explicitly related to the feature class, it becomes straightforward to decide
which elite configuration to choose when experiencing a new unseen production in-
stance. More specifically, given a new unseen test instance, we first compute its feature
class j, and we simply consider the elite configuration θ∗j , computed by irace before-
hand, in order to effectively set the parameters of the optimization algorithm for this
unseen instance. Designing insightful problem features is to be understood as a chal-
lenging issue in practice, and it is worth noticing that the general-purpose landscape
features for black-box combinatorial optimization that we consider in this paper do not
require any expert domain knowledge. The proposed methodology is to be viewed as
a first step towards the design of more sophisticated approaches, as will be discussed
in more details in the conclusions. Our main goal is in fact to study at which extent a
landscape-aware automatic algorithm configuration methodology could be beneficial.

Table 1. Parameter space for tuning the Memetic Algorithm (MA) for NKq|p-landscapes.

parameter domain type

population size {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1 024, 2 048} ordinal
crossover operator {unif, 1−point, 2−point} categorical
crossover rate {0.00, 0.05, 0.1, . . . , 0.95, 1.00} ordinal
mutation rate c/N , s.t. c ∈ {0.0, 0.5, 1.0, . . . , 9.5, 10.0} ordinal

Up to now, we did not address the cost of computing the feature values, nor the com-
putational effort devoted to the tuning task. This is an important issue when evaluating
the proposed methodology. For fairness, we split the available budget B equally over
the s runs of irace, i.e. each run j ∈ {1, . . . , s} of iracewith Ij uses as termination
condition a maximum number of algorithm runs which is set to B/s. Additionally, we
consider to subtract the cost of computing the feature from the computational effort de-
voted to execute the algorithm on a given instance, both at the training phase of irace,
but more importantly at the test or production phase, when computing the class of a new
unseen instance. This is to be specified in more details in our experimental setup.

3.2 Memetic Algorithm and Parameter Space

As a case study, and in order to highlight the relevance of the previously-described
methodology, we consider the configuration of the main components of a memetic al-
gorithm (MA) similar to [19] as one alternative to solve the class of NKq|p-landscapes.
The MA evolves a population of candidate solutions represented as binary strings. Start-
ing from a randomly-generated population P of size µ, the MA proceed in consecutive
iterations. At each iteration, two solutions from the current population are selected us-
ing a binary tournament selection, and a new offspring is created by means of crossover
followed by mutation. The crossover is applied with a fixed probability rc. The muta-
tion consists in flipping each bit with a probability rm. We then use a local search to
enhance the so-obtained offspring. Specifically, a first-improvement hill-climbing al-
gorithm is implemented. Solutions at hamming distance 1 are examined in a random
order, and the the first improving neighbor is selected until a local optimum is found.
After a set of µ offspring solutions are created in this manner, a generational replace-
ment is performed. The newly-generated solutions becomes the current population and
the best individual from the old population replaces the worst solution if it is better than
the best newly generated offspring. The algorithm terminates after a fixed number of
fitness function evaluations.

The parameter space for the automatic design of the MA is given in Table 1. We
consider to tune the population size, which is known to be a critical issue in evolutionary
computation. We hence choose a set of values ranging from very small (1) to very
large (2 048). For crossover, we consider three well-established binary string operators,
namely one-point crossover, two-point crossover, and uniform crossover. The possible
values for the crossover rate (rc) ranges from 0 (no crossover) to 1 (crossover always
performed). The possible values for the mutation rate (rm) are set as a function of N
(the bit-string size), and controls the number of bits that are flipped in average. Although
some of these parameters could have been specified as real or integer parameters, we
decided to discretize them in order to reduce the size of the parameter space in irace.

3.3 Experimental Setup

We use the irace R-package [6], that provides the reference implementation of it-
erated racing. As training instances, we consider the same set of 800 instances as de-
scribed previously in Section 2. We consider two types of features: (i) the benchmark
parameters from NKq|p-landscapes: N, K, p or q, and the type of neutrality, where the
first three are numerical and the last one is categorial (i.e. quantized or probabilistic),
and (ii) the general-purpose features as discussed in Section 2, namely the average fit-
ness mufit, the first autocorrelation coefficient rho1fit, and the neutral rate rateeq, all
computed based on a random walk of budget ` = 1 000. In order to partition the training
set, we consider a one-dimensional simple strategy that takes each feature separately,
and then splits the instances into a fixed number of clusters with equal range of that fea-
ture values (see Table 2). This simple partitioning strategy is to be viewed as a first step
towards more sophisticated clustering strategies involving more than one feature at a
time, that is left for future research. Except for the feature involving the type of instance
(and where the number of clusters is two), we choose to partition the training instances
into four clusters. Notice also that since neutrality can be controlled independently by
parameter p or q, we combine these parameters to constitute one feature denoted p|q,
for which we also have four groups: two from NKq- and two from NKp-landscapes. For
the test phase, we independently generate a test set of 200 instances, following the same
experimental design discussed in Section 2. These additional instances are used to test
the accuracy of the output configurations and are not available for irace during the
training phase. As one can appreciate in Table 2, the instances from the training set and
the test set are actually well balanced over the different clusters.

Following [6], we use irace with a tuning budget of 20 000 algorithm runs, where
each run of the MA performs 100 000 calls to the fitness function. As previously men-
tioned, when the proposed feature-based methodology is experimented, we split the
budget equally over the different clusters. Since we need to perform a random walk
beforehand to compute the features mufit, rho1fit, rateeq, we subtract 1 000 fitness
function calls from the overall MA budget, both during the training and the test phases,
in order to tune the MA in production-like conditions. Notice that, although K, p and q
are typically not available for the algorithm, we still include them in our experiments
for the sake of illustrating the gain one can expect from the proposed methodology.

3.4 Experimental Results

In Table 2, we report the best configuration (the first one in the elite set) found when
running irace with the whole set of training instances, which is considered as a base-
line approach (first row in the Table). We thereby report the best configurations found
when combining irace with the proposed feature-based methodology. The most no-
table observation at this stage of the analysis is that a uniform crossover is always
preferred, except for the second group of instances partitioned with respect to rho1fit,
together with a relatively high crossover rate (except for the third group of instances
partitioned by K). However, the best-found population size varies substantially when
comparing the output of the baseline irace and the proposed methodology. We can
also remark that, when adopting a feature-based tuning methodology, the mutation rate
is higher compared against the baseline setting. Although it is difficult to correlate these

Table 2. First elite configuration found by irace for each feature cluster. The first row corresponds
to the configuration found when considering the whole training set.

problem # inst. pop. crossover cross. mut.
feature cluster feature range (training , test) size operator rate rate

* — (800 , 200) 32 uniform 0.95 5.5

N

#0: N ∈ [501 , 877) (200 , 50) 16 uniform 0.95 6.5
#1: N ∈ [877 , 1 253) (200 , 51) 32 uniform 1.00 6.5
#2: N ∈ [1 253 , 1 627) (200 , 49) 64 uniform 0.75 6.5
#3: N ∈ [1 627 , 2 000] (200 , 50) 64 uniform 1.00 8.5

K

#0: K ∈ [0 , 3) (218 , 54) 256 uniform 1.00 7.5
#1: K ∈ [3 , 6) (218 , 55) 64 uniform 0.95 7.0
#2: K ∈ [6 , 9) (219 , 54) 32 uniform 0.30 7.0
#3: K ∈ [9 , 10] (145 , 37) 16 uniform 1.00 6.0

type #0: type = NKq (400 , 100) 32 uniform 0.75 7.0
#1: type = NKp (400 , 100) 64 uniform 0.85 7.5

p | q

#0: param ∈ [0.600 , 0.765) (200 , 50) 64 uniform 1.00 8.0
#1: param ∈ [0.765 , 0.930] (200 , 50) 32 uniform 0.95 7.0
#2: param ∈ [2.000 , 6.000] (222 , 55) 32 uniform 0.80 6.5
#3: param ∈ [7.000 , 10.000] (178 , 45) 64 uniform 0.95 7.0

avg fitness

#0: mufit ∈ [0.031 , 0.117) (200 , 49) 64 uniform 0.95 7.5
#1: mufit ∈ [0.117 , 0.486) (200 , 51) 64 uniform 0.75 8.0
#2: mufit ∈ [0.486 , 0.501) (200 , 59) 32 uniform 0.90 6.5
#3: mufit ∈ [0.501 , 0.519] (200 , 41) 32 uniform 0.85 7.5

r1 fitness

#0: rho1fit ∈ [0.955 , 0.985) (200 , 50) 32 uniform 0.95 6.5
#1: rho1fit ∈ [0.985 , 0.989) (200 , 60) 32 1−point 0.90 7.5
#2: rho1fit ∈ [0.989 , 0.993) (200 , 46) 64 uniform 1.00 7.5
#3: rho1fit ∈ [0.993 , 0.998] (200 , 44) 32 uniform 0.95 7.5

neutral rate

#0: rateeq ∈ [0.000 , 0.044) (205 , 55) 16 uniform 0.80 7.0
#1: rateeq ∈ [0.044 , 0.085) (197 , 48) 64 uniform 0.90 6.5
#2: rateeq ∈ [0.085 , 0.193) (198 , 47) 16 uniform 1.00 6.5
#3: rateeq ∈ [0.193 , 0.841] (200 , 50) 128 uniform 0.95 7.5

observations with the considered NKq|p-landscapes, we can clearly see that irace is
able to seemingly find different configurations, depending on how the input training test
is partitioned. We attribute this to the fact that instances belonging to the same group
are expected to expose less heterogeneity for the configuration procedure.

To go further into the analysis, we evaluate, for each individual feature, how the
feature-based methodology performs against the configuration obtained when mixing
all the instances as in baseline irace. To do so, we examine the performance of the
MA when experimented on 200 independently-generated testing instances. We execute
the MA with every configuration for 30 runs on each test instance, while subtracting
the cost of computing the features to the budget allocated to MA whenever necessary.
In Fig. 4, we report the number of test instances where the configuration found by
feature-based irace allows the MA to perform significantly better (resp. worst, and
insignificantly different) than when configured using the output of baseline irace. For
the pairwise comparison of configurations on the same instance, we use a Wilcoxon
signed rank statistical test with a p-value of 0.05 and a Bonferroni correction. Overall,
the proposed methodology appears to effectively enhance the baseline one, since the
number of instances on which the feature-based configuration provides better results
is significantly higher than the baseline configuration, independently of the considered
feature. This is confirmed by the basic statistics reported in Fig. 5, comparing baseline

0

50

100

150

200

N K type p | q avg fitness r1 fitness neutral rate

nu
m

be
r

of
 te

st
 in

st
an

ce
s

landscape−aware configuration is better tied baseline configuration is better

Fig. 4. Number of test instances where the landscape-aware configuration with respect to each
feature is significantly better, tied or worse than the baseline configuration.

irace against irace using the feature-based partitioning. More precisely, on the left
subfigure, we show the number of instances where the corresponding configuration is
not statistically outperformed by any other. In the right subfigure, we report the num-
ber of times a given MA configuration is statistically outperformed by another. For a
given configuration, a dot corresponds to the average rank over all test instances, where
a value of 0 means that a specific configuration was actually never outperformed by
any other on any test instance. Interestingly, baseline irace appears to identify the
configuration with the largest rank. We can also see that the feature-based configuration
methodology performs at its best when using K, which suggests that the non-linearity
and the ruggedness of the instances is one of the most important feature one has to take
into account when configuring the MA. The problem size N and the average fitness
value avg fitness are also among the most insightful features when searching for a
good configuration of the MA. Notice also that feature rho1fit, which is intended to
approximate the ruggedness of an instance, does not allow irace to perform as well
as with K, although it still has a better overall ranking compared to baseline irace.
This suggests that alternative features that could approximate the ruggedness of a given
instance more accurately would be worth investigating in the future.

The previous statistics aggregate the instances over the whole test set. In Fig. 6,
we report a more detailed description on the relative behavior of feature-based irace.

0

50

100

150

200

mixed N K type
p | q

avg fitn
ess

r1 fitn
ess

neutral ra
te

nu
m

be
r

of
 te

st
 in

st
an

ce
s

w
he

re

th
e

co
nf

ig
. i

s
am

on
g

th
e

be
st

●

●

●

●

●

●

●

●

0.0

0.3

0.6

0.9

mixed N K type
p | q

avg fitn
ess

r1 fitn
ess

neutral ra
te

ra
nk

 o
f t

he
 a

lg
or

ith
m

 c
on

fig
ur

at
io

n

Fig. 5. Number of test instances (out of 200) where the baseline configuration (mixing all training
instances) and each feature-based configuration (partitioning training instances) is not statistically
outperformed by any other (left), and rank of each configuration over all test instances (right).

N K type p | q

avg fitness r1 fitness neutral rate

landscape−aware
config. is better

tied

baseline config.
is better

landscape−aware
config. is better

tied

baseline config.
is better

500 1000 1500 20000.0 2.5 5.0 7.5 10.00.00 0.25 0.50 0.75 1.00 2.5 5.0 7.5 10.0

0.1 0.2 0.3 0.4 0.5 0.96 0.97 0.98 0.99 0.0 0.2 0.4 0.6 0.8
feature value

instance
partition

0

1

2

3

Fig. 6. Detailed distribution of test instances where the landscape-aware configuration with re-
spect to each feature is significantly better, tied or worse than the baseline configuration, as a
function of the feature value.

Specifically, the x-axis of each subfigure refers to the corresponding feature values
from all test instances. Then, for each instance, the y-axis indicates whether configur-
ing the MA with baseline irace provides statistically better (resp. worst, tied) perfor-
mance than the proposed methodology. This allows us to investigate in more details the
distribution of instances where we are able to improve or to worsen the performance
of baseline irace by feature values. We clearly see that, overall, the feature-based
methodology allows to enhance irace, independently of the feature values, and then
independently of the characteristics of the considered instance. This is of high impor-
tance, since we can then claim that a landscape-aware automatic algorithm configura-
tion effectively allows to improve parameter accuracy for a relatively large spectrum of
heterogeneous instances.

At last, we report in Fig. 7 the results of cross-validating the performance of the
different configurations that irace is able to obtain for each partition, with respect to
a particular feature. Specifically, the x-axis refers to the group of test instances obtained
by partitioning, i.e. four groups except for type. Then, for each group of test instances,
we compare all other configurations that irace is able to find when considering ei-
ther the whole set of training instances or a specific subgroup of training instances. The
number of test instances where the corresponding configuration is not statistically out-
performed by any other is reported in the y-axis. One should expect that, when running
the algorithm configuration obtained specifically for the group of training instances to
which the test instance belongs to, the performance is at its best relatively to other
configurations. This is precisely what Fig. 7 is aiming to elicit. In fact, we are able to
appreciate that the best-found algorithm configuration for a given group of instances is
actually the best one, with some exceptions that we can likely attribute to the random-
ness of the algorithm configuration process itself.

N K type p | q

avg fitness r1 fitness neutral rate

0

10

20

30

40

50

0

20

40

0

25

50

75

0

10

20

30

40

0

10

20

30

40

50

0

20

40

0

20

40

0 1 2 3 0 1 2 3 0 1 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3
partition that the instance belongs to

nu
m

be
r

of
 te

st
 in

st
an

ce
s

w
he

re
 th

e
co

rr
es

po
nd

in
g

co
nf

ig
ur

at
io

n
is

 a
m

on
g

th
e

be
st

 o
ne

s

partition that
the algorithm is
configured for

mixed

0

1

2

3

Fig. 7. Number of test instances where each landscape-aware configuration is not outperformed
by any other, as a function of the feature group.

4 Conclusions
We provided a first step towards a more systematic investigation of the design of land-
scape-aware enhanced automatic algorithm configuration methods, which is to be un-
derstood as a a baseline for future improvements. By using the well-established iterated
racing procedure to tune a standard memetic algorithm for the benchmark family of
NK-landscapes, our empirical findings show that partitioning instances with respect to
feature values enables to obtain more robust algorithm configurations when facing a het-
erogeneous set of instances. Besides, the proposed approach opens several new research
questions. Firstly, the simple partitioning procedure that we adopted in this paper can
be extended in different ways. Considering a multi-dimensional approach, where train-
ing instances are clustered by using multiple landscape features simultaneously, is of
special interest in order to capture the similarities and differences of instances from dif-
ferent inter-dependent and orthogonal perspectives. Additionally, the number of groups
was fixed empirically in our study, such as the global budget allowed for the whole
tuning process. We believe that a more systematic investigation on the granularity of
the partitioning procedure and its relation with the available budget will lead to new in-
sightful results on the accuracy of landscape-aware algorithm configuration. Notice that
the granularity of the partitioning actually opens nice opportunities for distributing the
flow of the tuning procedure over different parallel cooperating entities, thus improving
the quality and runtime of offline algorithm configuration, which is actually known to
be time consuming. Secondly, the methodology adopted in this work does not change
the way the tuning process is conducted, but simply considers the tuning procedure as a
black-box mechanism. Nevertheless, we believe that the same idea of using landscape

analysis to characterize instances can be seemingly used inside the tuning procedure
itself, thus ending-up with new algorithm configuration methods. With respect to iter-
ated racing, one particularly promising idea consists in carefully choosing the instances
where some configuration should race at every iteration based on the features values
of the instances experimented in previous iterations. At last, it would be interesting
to benchmark and extend our work with other scenarios, such as different algorithms,
different problems, different domains, or different tuners, and to compare our method-
ology with approaches from [10–12]. A particularly challenging issue is to highlight
which general-purpose features can allow to provide the highest insights, and then the
most accurate configurations.

Acknowledgments. We are grateful to M. López-Ibáñez for fruitful suggestions on the paper.

References
1. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring

metaheuristics. In: Genetic and Evolutionary Computation Conference. (2002) 11–18
2. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer (2009)
3. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation. Springer (2006)
4. Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental de-

signs and local search. Oper. Res. 54(1) (2006) 99–114
5. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic algorithm

configuration framework. J. Artif. Int. Res. 36(1) (2009) 267–306
6. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L., Birattari, M., Stützle, T.: The irace pack-

age: Iterated racing for automatic algorithm configuration. Oper Res Pers 3 (2016) 43–58
7. Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms.

Evolutionary Computation 12(3) (2004) 303–325
8. Richter, H., Engelbrecht, A., eds.: Recent Advances in the Theory and Application of Fitness

Landscapes. Emergence, Complexity and Computation. Springer (2014)
9. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial optimization

problems. Comput Oper Res 39(5) (2012) 875–889
10. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms for

portfolio-based selection. In: Conference on Artificial Intelligence. (2010) 210–216
11. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general

algorithm configuration. In: Learning and Intelligent OptimizatioN. (2011) 507—523
12. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC – instance-specific algorithm

configuration. In: European Conference on Artificial Intelligence. (2010) 751–756
13. Kauffman, S.A.: The Origins of Order. Oxford University Press (1993)
14. Weinberger, E.D.: Correlated and uncorrelatated fitness landscapes and how to tell the dif-

ference. Biol Cybern 63(5) (1990) 325–336
15. Verel, S., Collard, P., Clergue, M.: Scuba search : when selection meets innovation. In:

Congress on Evolutionary Computation. (2004) 924–931
16. Marmion, M.É., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: On the neutrality of

flowshop scheduling fitness landscapes. In: Learning and Intelligent OptimizatioN. (2011)
238–252

17. Newman, M., Engelhardt, R.: Effect of neutral selection on the evolution of molecular
species. Proc. R. Soc. London B. 256 (1998) 1333–1338

18. Barnett, L.: Ruggedness and neutrality - the nkp family of fitness landscapes. In: Interna-
tional Conference on Artificial Life. (1998) 18–27

19. Pelikan, M.: Analysis of estimation of distribution algorithms and genetic algorithms on NK
landscapes. In: Genetic and Evolutionary Computation Conference. (2008) 1033–1040

