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Abstract

X-ray absorption spectroscopy (XAS) as a local structural tool for the study of the electro-
chemical processes in battery materials is highlighted. Due to its elemental specificity and 
high penetration of the X-rays in the 4–35 keV range, XAS is particularly suited for this, 
allowing the study of battery materials using specifically developed in situ electrochemi-
cal cells. This energy is required to dislodge one core electron from transition metal or 
p-group atoms, which are commonly used as redox centers in positive and negative elec-
trode materials. In such a simple picture, the ejected photoelectron is scattered by the sur-
rounding atoms, producing characteristic traces in the X-ray absorption spectrum. Both 
positive and negative electrode materials (intercalation, alloy and conversion electrodes) 
can be studied. The chapter starts with an introduction of the context around battery 
studies, followed by a short explanation of the photoelectric effect at the basis of the X-ray 
absorption phenomenon and to specific features of XAS. A selection of XAS experiments 
conducted in the field of batteries will be then outlined, also emphasizing the effects 
due to nanoscale dimension of the material studied. Finally, a perspectives section will 
summarize the specific role that this spectroscopy has played in the battery community.

Keywords: X-ray absorption spectroscopy, lithium batteries, energy materials, electrode 
materials

1. Introduction

One of the most challenging difficulties that our planet has to face in the next decades is the sustain-
able use of energy. In particular, the demand for advanced energy storage devices has increased 
significantly, motivated by a variety of different needs of our technologically driven, highly mobile, 
energy challenged society. For instance, batteries are the devices that can solve the problems inher-
ent to the intrinsic intermittency of renewable energy sources, since they can store the energy 
surplus produced in excess when the plant is operating and then feed it to the power grid when 
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there is a peak of consumption. Moreover, they are also targeted to fulfill the ever growing demand 
of energy for portable applications (mobile phones and computers, and nowadays cars and trucks). 
The excellent performance and the well-established technology of lithium-ion batteries (LIBs) put 
them in a crucial position for supporting this new energy revolution. Several post-LIB systems, 
such as lithium-sulfur batteries (LSBs), lithium-oxygen batteries (LOBs) or sodium-ion batteries 
(NIBs), have also been proposed in the last years, as sustainable performing alternatives to LIBs.

Differently from other well-established battery technologies, such as alkaline or lead-acid batter-
ies, LIBs (as well as the other post-LIB systems) are based on the famous “rocking chair” mecha-
nism [2], where the Li+ cations are exchanged alternatively between the positive and the negative 
electrode during the discharge and the charge process, as shown in Figure 1. In such a system, 
the two electrodes can be any sort of material that are able to undergo reversibly to a reduction/
oxidation process at a specific high or low potential (for the positive or negative electrode, respec-
tively) with the concomitant addition/elimination of Li+ cations. For this reason, many materials 
able to form lithiated phases have been proposed for playing the role of electrode materials.

Figure 1. Schematic representation of the discharge of a Li+-ion battery: a graphite-based negative electrode undergoes 
Li+ deintercalation, according to the following reaction:.

LixC ​⇆​ C + x Li+ + x e−

Li+ ions migrate toward the Li1-xCoO2 positive electrode forming the reduced LiCoO2:
Li1 − xCoO2 + x Li+ + x e− ​⇆​ LiCoO2

Typical electrolytes are based on a lithium salt (e.g. LiPF6) dissolved in a mixture of liquid carbonates (Ethylene carbon-
ate, propylene carbonate, etc.) Reproduction from Ref. [1].
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The very large number of possible host materials for Li+ have generated a great deal of 
works on potential LIBs electrode materials, from the micro to the nanosized range, which 
may accommodate lithium via different reaction mechanisms, including intercalation 
[3–5], alloying [6–8] and conversion [9] reactions. In addition to the reaction mechanisms 
at the electrodes, other features concerning the electrolytes and their interaction with the 
electrodes, including the formation of the solid-electrolyte interphase (SEI) [10], which is 
of primordial importance for the stability and the cycle life of the battery, have been thor-
oughly studied.

In such a picture, many characterization methods have been proposed and efficiently 
used, either simply ex situ, in situ or under even operando conditions for the characteriza-
tion of the starting materials and of their reaction mechanisms such as X-ray diffraction 
(XRD) [11], infrared [12], Raman [13], Mössbauer [14] and X-ray photoelectron spectros-
copy [15, 16].

X-ray absorption spectroscopy (XAS) can also be counted among the characterization tools 
used in the field of batteries. Indeed, it is one of the techniques of choice for retrieving struc-
tural and electronic information, especially when the materials or some of the species formed 
through the electrochemical reactions are not crystalline and cannot be studied by diffraction 
techniques. The main important characteristics of XAS are: (i) its element specificity, which 
allows the study of a particular element by concentrating on its K (or in some cases L) absorp-
tion edge; (ii) the possibility of tuning it to different sites (for instance Fe and P in LiFePO4), thus 
providing sources of complementary information on the same compound; (iii) the physico-
chemical information contained in the near-edge structure of the XAS signals, which can be 
used to reveal the formal oxidation state and the local symmetry of the probed atom; (iv) the 
possibility of doing operando measurements by collecting XAS spectra during electrochemical 
cycling using specifically developed in situ cells. In this case, the physico-chemical properties 
and the local structure of the studied element can be monitored at all moments during the 
charge and discharge processes.

To the best of our knowledge, the first use of XAS in the field of batteries dates back to the 
paper of Mc Breen et al. [17]. Several reviews have appeared more recently, resuming the prin-
cipal advances allowed by the application of XAS in this research field [18–21]. In this chapter, 
after a short presentation of the techniques and of the relative experimental methods, a selec-
tion of XAS experiments conducted in the field of batteries will highlight the potentiality of 
the technique in the in situ characterization of nanosized, nanostructured and badly organized 
materials. This knowledge is necessary to obtain a precise description of the electrochemical 
mechanisms governing battery’s chemistry.

2. X-ray absorption spectroscopy (XAS)

XAS, also known as X-ray absorption fine structure (abbreviated as XAFS) spectroscopy, is a 
powerful tool that provides information on a very local scale (4–5 Å) around a selected atomic 
species and is well suited for the characterization of not only crystals but also materials that 
possess little or no long-range translational order. It is based on the absorption: when a sample 
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is exposed to X-rays, it will absorb part of the incoming photon beams, which is mainly gener-
ated by the photoelectric effect for energy in the hard X-rays regimes (3–50 KeV). XAS is even 
selective for the atomic species and also allows us to tune the X-rays beam selectively to a spe-
cific atomic core (the absorption energy of next elements are sufficiently spaced), and therefore 
it probes the local structure around only the selected element that are contained within a mate-
rial. The element-specific characteristic of XAS, providing both chemical and structural infor-
mation at the same time, differentiates it from other techniques, such as the X-ray scattering.  
In  this respect, it serves as a unique tool for the investigation of battery materials during 
charge-discharge cycles.

XAS experiment measures the absorption coefficient μ as a function of energy E: as E increases, 
μ generally decreases (μ ~ E−3), that is matter becomes more transparent and X-rays more pen-
etrating, save for some discontinuities, where μ rapidly rises up. These exceptions correspond 
to particular energies, the so-called absorption edges E0, which are the characteristic of the 
material, where the amount of energy exactly matches the core electron binding energy. The 
edge energies vary with atomic number approximately as a function of Z2 and both K and L 
levels can be used in the hard X-ray regime (in addition, M edges can be used for heavy ele-
ments in the soft X-ray regime), which allows most elements to be probed by XAS with X-ray 
energies between 4 and 35 keV. Because the element of interest is chosen in the experiment, 
XAFS is element-specific.

XAS (or XAFS) is generally used to refer to the entire spectrum, which is constituted by the 
edge region called X-ray absorption near edge spectroscopy (XANES), which is limited at 
the first 80–100 eV above the edge, and a post-edge region extended X-ray absorption fine 
structure (EXAFS), which is extended up to 1000 eV above the absorption edge. The distinc-
tion between XANES and EXAFS remains arbitrary, but some important approximations in 
the theory allow us to interpret the extended spectra in a more quantitative way than is cur-
rently possible for the near-edge spectra. The XANES region, comprising the pre-edge and 
the absorption edge itself, is strongly sensitive to oxidation state and coordination chemis-
try of the absorbing atom of interest. The EXAFS region has been largely exploited to gain 
quantitative structural information such as first shell distance of the metal site and the coor-
dination number. EXAFS comprises periodic undulations in the absorption spectrum that 
decay in intensity as the incident energy increases well over (~1000 eV) the absorption edge. 
These undulations arise from the scattering of the emitted photoelectron with the surround-
ing atoms. A striking feature of XAFS is that this technique can be applied to all states of 
matter, and for both crystalline and amorphous materials, it has been used with great success 
in many research fields, such as liquids [22], catalysis [23–25], biology [26], inorganic metal 
complexes [27] and electrochemical interfaces [28]. Several excellent books are also available 
[29–32]. The website of the International XAFS society is reachable at http://www.ixasportal.
net/ixas/.

When discussing XAS, we are primarily concerned with the absorption coefficient μ, which 
gives the probability that X-rays will be absorbed according to Beer's Law:

	  ​μ ⋅ x = ln ​(​I​ 0​​​/​​I)​​	 (1)
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	  ​​(​ 
μ

 __ ρ ​)​ ⋅ ρ ⋅ x = ln ​(​I​ 0​​​/​​I)​​	 (2)

being I0 is the intensity of X-ray incident on a sample, x is the sample thickness and I is the inten-
sity transmitted through the sample, as shown in Figure 2. The measured quantity, μ (cm−1), 
is the linear X-ray absorption coefficient which is closely related to its inverse 1/µ called the 
absorption length (cm). The absorption length is defined as the linear distance of the mate-
rial over which the X-ray intensity results attenuated by a factor 1/e ~ 37%. This quantity is 
important in planning the experiment, as it sets the scale for choosing an appropriate sample 
thickness.

Normalization to the density of the material results quite convenient, as different states of 
matter may be analyzed: the mass absorption coefficient μm (cm2/g) is the linear absorption 
coefficient divided by the density of the absorber.

X-rays ionize and the absorbing atom turns to an excited ion after the electron liberation. 
Relaxation may occur in two different ways: (i) the core-hole may be filled by a higher-energy 
electron and the energy difference is released as a second photon, whose energy is smaller com-
pared to that of the primary absorption, for an inner transition occurs (the detection of which 
is at the basis of another x-ray analytical technique, X-ray Fluorescence Spectroscopy—XFS) or 
(ii) an Auger secondary electron may be freed, after having absorbed the second photon. The 
measurement of these electrons is made possible by Auger spectrometers. In the soft X-ray 
region (<2 keV), the Auger process is more likely to occur, unlike for higher energies where 
X-ray fluorescence dominates.

2.1. Extended X-ray absorption fine structure (EXAFS)

When X-ray is absorbed by a core-level electron, a photoelectron with wavevector k is cre-
ated and propagates away from the atom as a spherical wave as seen from the blue lines of 
Figure 3. The wavevector k is related to the excess of the energy ħω-E0 of the incoming X-ray 
beam by:

	  ​k = ​√ 
___________

 ​ 2m ___ ​ℏ​​ 2​ ​​(ℏω − ​E​ 0​​)​ ​​	 (3)

Figure 2. Sketch for the X-Ray absorption measurement in transmission mode.
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where E0 is the binding energy of the core-electron that is excited and E = ℏω is the energy of the 
absorbed x-ray photon. Thus, the excess of energy rules out the optical property of the photo-elec-
tron created by the photoabsorption process. In case of isolated atoms, the propagation is simply 
described by one wave going away from the atom and the absorption coefficient μ is described 
by a smooth function of energy, indicated in the lower panel of Figure 3. Its value depends on the 
sample density ρ, atomic number Z, atomic mass A and the X-ray energy E, roughly expressed as:

	  ​μ0 ≈ ​ 
ρ ​Z​​ 4​

 ____ A ​E​​ 3​ ​​	 (4)

The appendix 0 indicates the value for an isolated atom. It is remarkable here that due to 
its Z4 dependence, the absorption coefficients of different elements exhibit big discrepancies, 
(spanning several orders of magnitude) so a good contrast between different materials can be 
achieved for any sample thickness and concentrations by selecting the X-ray energy. This fact 
is at the origin of the X-rays imaging techniques based on contrast.

If other atoms are located in the vicinity of the absorber (the central atom), the photoelectron is 
scattered by the neighbors (yellow atoms) and so does every atom in the material. The incom-
ing and the scattered wave interferes either constructively or destructively as a function of the 
energy of the X-ray beam. Therefore, the observed absorption coefficient is expected to vary 
periodically as a function of the energy as depicted at the bottom right of Figure 3. In the latter 

Figure 3. Emission of a photo-electron for an isolated (left) and a coordinated (right) atomic species. In the latter the  
absorption coefficient measured at a central atom threshold shows a fine structure due to the presence of neighboring 
atoms. Reproduced from Ref. [18].
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case, the total absorption coefficient μ can be expressed as the isolated atomic absorption μ0, 
modulated by a correction factor χ(E), the oscillation, which is also defined as the EXAFS signal:

	  ​μ​(E)​ = ​μ​ 0​​​(E)​ ​[1 + χ​(E)​]​​	 (5)

This allows one to extract the oscillations from a raw experimental spectrum:

	  ​​χ = ​[​​​(​​μ​(E)​ − ​μ​ 0​​​(E)​​]​​​/​​ ​μ​ 0​​​(E)​​​	 (6)

For practical purpose, the denominator is often replaced by μ0(E0), which is the atomic absorp-
tion evaluated at the edge energy. χ(k) can be considered as the fractional change in absorp-
tion coefficient induced by the presence of neighboring atoms.

Within this simple description, the EXAFS can be represented by an oscillation, which of course 
can be described by terms of amplitude and phase. In a first approximation, the amplitude 
term depends on the nature and the number of near neighbors around the central atoms and 
the phase on the mutual distance photoabsorber scatterer. This leads to a simple expression for 
EXAFS in terms of different parameters affecting the fine structure:

 	  ​χ​(k)​ ∼ ​​∑​​​ 
j

​N​ j​​ ​F​ j​​​(k)​
 _ k ​r​ j​ 2​

  ​​ sin ​[2k ​R​ j​​ + δ​(k)​]​​	 (7)

where Nj represents the coordination number of identical atoms at approximately the same 
distance rj from the central atom. This group of atoms is called as a coordination shell and con-
tributes to one components of the EXAFS signal. The peculiar Fj(k) term is called the backscat-
tering amplitude and depends on the nature of the scatterer atom. Different atom types have 
different backscattering amplitude. A crucial issue is given by the inverse quadratic depen-
dence of the oscillation to the distance. This is due to the decay of the photoelectron as a func-
tion of time and distance and thus making the EXAFS a short-range structural probe. The first 
term of the phase 2kRj is due to the geometrical phase shift suffered by the photoelectron with 
wavevector k on its trajectory twice the distance rj between the photo absorber and the scat-
terer. In addition, as the electron is not moving in a constant potential, a phase shift δ(k) has 
to be added to this expression to account for the interaction of the electron with the varying 
potential of the absorbing and backscattering atom.

Several effects have to be taken into account to complete the description of real systems, and 
they all can be considered damping terms. They are (i) the structural and thermal disorder; 
(ii) the limited mean free path of the photoelectron; and (iii) the relaxation of all the other 
electrons in the absorbing atom in response to the hole in the core level. The first term is 
due to the fact that atoms in matter vibrate around their equilibrium position depending on 
temperature. This atomic motion reduces the EXAFS amplitude, and a term called the EXAFS 
Debye-Waller factor σ2 is introduced. In EXAFS, this term corresponds to the mean square 
average of the difference of the displacement of the backscatterer relative to the displacement 
of the absorber. The second term is due to inelastic scattering processes of the photoelectron 
with other electron and thus an additional damping factor is introduced, where Λ(k) is the 
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photoelectron mean free path (how far the electron travels before scattering inelastically). 
Finally, the amplitude reduction term ​​S​ 

0
​ 2​​ accounts for the shake-up/shake-off processes of 

the central atom. Those processes (multi-excitations) refer to the excitations of the remaining 
Z − 1 "passive" electrons of the excited atom. This is a scale factor, and it is usually in the 0.7–1 
range. By taking in consideration with these effects, the EXAFS equation becomes:

	  ​χ​(k)​ = ​​∑​​​ 
j

​N​ j​​ ​F​ j​​​(k)​
 _ k ​r​ j​ 2​

  ​​​e​​ −2​k​​ 2​​σ​​ 2​​ ​e​​ −2​R​ j​​​/​​Λ​(k)​​ ​S​ 0​ 2​ sin ​[2k ​R​ j​​ + δ​(k)​]​​	 (8)

This is valid for the plane wave approximation, K threshold, single scattering, single elec-
tron approximation and "sudden" approximation. A similar equation valid for the other 
edges (LIII, etc.) must be considered. The structural and non-structural parameters appear-
ing in the equation sum up to compose the EXAFS spectrum. To access these parameters 
in an experimental EXAFS spectrum, a data analysis has to be performed. This proce-
dure is time consuming and it should be considered the slow step of the overall XAFS 
methodology.

EXAFS data analysis is normally done by using code programs, which permit to calculate 
the theoretical EXAFS spectrum based on ab initio calculations, followed by a further step 
which compares the experimental signals to the theoretical ones (fitting procedures). A rather 
complete list of the available software can be found at: http://www.esrf.eu/Instrumentation/
software/data-analysis/Links/xafs. Typical widely used computer programs are GNXAS [33], 
FEFF [34, 35] and EXCURV [36]. EXCURV is a program, which simulates EXAFS spectra using 
rapid curved-wave theory. GNXAS package is based on multiple-scattering (MS) calculations 
and a fitting procedure of the raw experimental data, also allowing multiple edge fittings 
and a non-Gaussian distribution models for the atoms pair distribution. FEFF allows MS cal-
culations of both EXAFS and XANES spectra for atomic clusters. The code yields scattering 
amplitudes and phases used in many modern XAFS analysis codes. It is also linked to the 
IFEFFIT package [37, 38], a suite of interactive code for XAFS analysis, combining high-quality 
and well-tested XAFS analysis algorithms, tools for general data manipulation and graphical 
display of data.

Two more considerations should be made on EXAFS data analysis. The first is that XAS (and 
therefore the results obtained by an EXAFS analysis) is a bulk technique and thus all the 
atoms irradiated by the beam contribute to the overall XAS spectrum. The same is true in the 
case of a multicomponent system (for instance two phases in equilibrium of a polymorphic 
species). Each component or phase gives its contributions. An example to disclose the simple 
component of a species, such as in the case of gold nanoparticles and its precursors, appeared 
[39]. Alternatively, an efficient use of chemometry has been proposed for the analysis of XAS 
data in such cases [40]. This approach has interesting implication for the interpretation of 
spectra recorded during an operando acquisition and an example will be presented in the next 
section.

The second consideration concerns the EXAFS data analysis of nanoparticles and nanostruc-
tures [41, 42]. This issue has been addressed for metal nanoparticles first [43], evidencing that 
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by decreasing the size of the material there is a significant effect on the observed coordination 
number, due to the increased surface/bulk ratio. A specific example of this effect on a battery 
material will be presented in the case study section.

2.2. X-ray absorption near edge spectroscopy (XANES)

The XANES region is sensitive to the geometrical structure of the metal center but also probes 
its effective charge. It turns out that the position of the edge (which can be evaluated by the 
edge inflection point) is shifted to higher energies when the formal valence of the photo-
absorber increases. Below the absorption edge, the presence of pre-edge structures can be 
observed [44]. The occurrence of this peak in a metal (first raw transition metal) K-edge is due 
to 1s-3d electronic transition [45] that is electric-dipole forbidden but quadrupole allowed. Its 
intensity can be used as a probe for geometry, as the geometrical distortion of the metal core 
from centrosymmetric coordination favors the transition, while the energy position is relative 
to the metal core formal oxidation state. This fact is frequently used for investigating the charge 
associated to positive- and negative-electrode materials during reduction and oxidation reac-
tions in batteries.

If we now consider the form of the absorption edge, it can be seen that it reflects the empty 
density of states and it strongly depends on the coordination, while the forms of the absorption 
traces up to 60–80 eV are due to the multiple scattering resonances of the ejected photoelectron. 
Several computer codes can simulate the XANES spectrum, such as above-mentioned FEFF, 
MXAN [46], FDMNES [47] and CTM4XAS [48], which are useful for the analysis of metal 
L-edges.

3. Investigating a battery at work: ex situ and in situ (operando) studies

The simplest way to study the structural end electronic modification of a cathode or anode 
material is by ex situ XAS. XANES and EXAFS spectra at a selected K-edge are collected at 
a specific state of charge (or discharge) of the battery. In this case, the battery is stopped at 
the chosen state of charge (or discharge) and disassembled; the recovered material, protected 
from air in adapted sample holders, is transported to a synchrotron to perform the experiment 
in a suitable XAS beamline [32]. Basically, two geometries are used for this purpose, namely 
transmission and fluorescence. In transmission geometry, the sample is placed between I0 and 
I detectors and the absorption is measured according to the Beer’s law exponential decay, as 
mentioned before. The fluorescence detection is carried out by tilting the sample at 45 degrees 
and collecting the fluorescence X-rays by using a solid-state detector at the right angle with 
respect to I0.

Such ex situ XAS studies of electrode materials are now extensively completed by operando 
measurements, i.e., performed during a discharge or charge process. Such an approach 
allows one to avoid several drawbacks due to the sample transfer needed for the ex situ 
measurements. Alteration of air- or moisture-sensitive species is avoided, as well as the 
occurrence of relaxation reactions which might show up when the electrical circuit is open, 
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inducing a transformation of the unstable cycled material [49]. The effects of sampling devia-
tions are also eluded since the sample remains in the same position during the whole mea-
surement series. Finally, the whole study can be performed on a single test cell suppressing 
the effects of uncontrolled differences in a set of cells which are needed for a stepwise ex 
situ study of the electrochemical mechanism. To perform such an experiment, a special in 
situ electrochemical cell, obeying to the specific requirements of XAS, has to be used. This 
cell consists of an electrode containing the active material, a lithium foil, a separator, which 
is typically a polymeric membrane such as Celgard, and an electrolyte, usually based on 
organic carbonate solvents such as propylene carbonate (PC), dimethyl carbonate (DMC) 
and ethylene carbonate (EC).

Figure 4 displays two different types of in situ electrochemical cells. The first one (left) is a 
typical pouch cell which is characterized by a large dimension of the cathode. In this case, 
a film containing the active material is previously deposited on a square Al (or Cu) current 
collector of 4 cm2 and assembled in a glove box together with a Li (Na) counter-electrode, 
a separator and the electrolyte. The mass loading varies between 2 and 15 g/cm2 of active 
material, depending on the energy of the X-ray. Sometimes, a small tube (visible in the right 
part of the cell) can be used as a sink for the gas, which may be released during the electro-
chemical processes and which can be analyzed in line, if necessary. The figure on the right 
displays a typical stainless steel cell [50], which uses self-supported films or pellets of elec-
trode material of smaller dimension (1 cm diameter). The versatility of this second approach 
is testified by the successfully use of this cell in transmission and fluorescence geometry, as 
well as in other techniques including in situ XRD [51], Mössbauer [52] and Raman spectros-
copy [53] measurements.

Figure 4. Typical in situ electrochemical cells used for operando XAS studies of batteries: A pouch cell (left) and a stainless 
steel cell (right) mounted on different XAS beamlines.
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4. Case studies in battery materials

Given the large amount of physico-chemical information that it usually carries, already men-
tioned in the previous sections, XAS has been largely applied to the study of battery materials 
[18, 19]. A few particular case studies, specifying specific features of this technique in particu-
lar cases involving nanostructured species, are presented in the following paragraphs. It will 
be stressed, in particular, the importance of performing in situ studies compared to more 
simple, but also often less reliable, ex situ measurements.

4.1. Ex situ studies of lithium-excess manganese layered oxides

The relative abundance of manganese coupled with their variety of oxides structures, 
which provides generally a three-dimensional array of edge-shared MnO6 octahedra for 
the lithium insertion and release, has aroused the interest of developing positive-electrode 
materials based on manganese oxide. Due to the well-known poor cycling capability of the 
spinel structure LiMn2O4, where a cooperative Jahn-Teller distortion of the Mn3+ ion causes 
a cubic-to-tetragonal phase transition leading to a rapid degradation of the electrode, an 
intensive research has been focused on alternative materials. Solid solutions of layered 
cathode materials such as the combination of Li2MnO3 and LiMO2 (M = Mn, Co, Ni, etc.) 
have been proposed as promising candidates for cheaper, higher capacity and safer posi-
tive electrode for lithium batteries. However, the occurrence of an initial activation process 
during the first delithiation step (first charge) is always accompanied by a large irrevers-
ibility in terms of specific capacity. To gain a deeper understanding of the initial activa-
tion step and to study the following delithiation-lithiation process, an electronic and local 
structural characterization of the host material is required and the XAS is the technique of 
choice. A series of electrodes with different lithium concentration (state of charge, SOC) 
were studied in a series of lithium-rich, cobalt-poor Li[Li0.2Ni0.16Mn0.56Co0.08]O2 electrode 
material (NMC), as an examples of ex situ XAS investigation [54, 55]. Due to the strong 
sensitivity of the XAS to the metal site, spectra at the three different metal edges can be 
measured, allowing the study of the evolution of the physico-chemical properties and of 
the local structure of each metal site.

Figure 5 shows the voltage profile of the cell during charge-discharge operation. The num-
bered points in the curve indicates predetermined states of charge (SOC) at which cells were 
prepared for the XAS measurements. Figure 6 summarizes the XAS analysis conducted on 
the materials, where all the several portions of the X-ray absorption spectrum carry valuable 
information on the local and electronic structure: pre-edge, XANES and EXAFS. The pre-
edge analysis (the Mn K-edge is displayed in the figure, showing two components) allowed 
the authors to check the variation of the Mn local site, in terms of symmetry and charge. 
XANES traces can provide the identification of the electroactive sites at different SOC and 
the EXAFS analyses the local structural information of the selected metal site. This informa-
tion is complementary with respect to XRD which probes the long-range order in crystalline 
materials.
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Figure 6. XAS data analysis for the cathode material. The picture displays analysis of the pre-edge data obtained at the Mn 
K-edge (left panel) including the fitting of the observed peaks (at the bottom). These data provide both charge and symmetry 
information around the investigated metal. Data at the right panel refer to XANES behavior at the Ni K-edge (up) and the 
best-fit of the EXAFS data in terms of single contribution to the total EXAFS oscillation (right). At the bottom the fourier 
transform (FT) behavior of the corresponding EXAFS is displayed. Reproduced from ELETTRA Highlights 2014–15, page 12.

Figure 5. Voltage profile of two successive charge and discharge curves of Li-rich NCM at 20 mA/g. Representative 
points of 1–10 in the process of XAS measurements are indicated. Reference and counter electrode: Li. electrolyte: 1 
M LiPF6 in EC/DMC. Temperature: 20°C  ±  2°C. On the upper X axis the capacity detected in each step is reported. 
Reproduced from Ref. [54].
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The study here highlighted demonstrates that the manganese is not taking part of the initial 
electrochemical oxidation process, but a complete Ni2+/Ni4+ and a partial Co3+/Co4+ redox pro-
cesses occur during the first charge of the battery. The electrochemical performance of the 
material, considering the full and partial redox inactivity of Mn and Co, also reveals the partic-
ipation of oxygen in the overall electrochemical redox process. Analysis of EXAFS at the three 
metal edges has revealed that the first charge of the lithium-rich cathode can be described by 
two separate reactions occurring at the two components, Li2MnO3 and LiMO2: an activation 
of the Li2MnO3 component with a phase transition to an hexagonal layered structure and the 
oxidation/reduction of both Ni and Co which is not only demonstrated by pre-edge/XANES 
data but also corroborated by the first shell M-O distances behavior and their corresponding 
Debye-Waller factors.

4.2. Study of the conversion reaction in electrode materials: the case of NiSb2

A particularly interesting case for the application of operando XAS is that of electrode mate-
rials undergoing a so-called conversion reaction, which was reviewed a few years ago by 
Cabana et al. [9]. In a conversion reaction, lithium reacts with a binary compound containing 
a transition metal (M = Ti, Mn, Fe, Co, Ni, etc.) and a group p element (X = O, P, Sb, Sn, etc.), 
according to the following equation:

	​ ​M​ a​​ ​X​ b​​ + ​(b ∙ n)​Li ⇆ M + b ∙ ​Li​ n​​ X​	 (9)

Conversion reactions were first verified for transition metal oxides [56], but are rather com-
mon also for other chalcogenides, pnictogenides and carbon group semimetals. Conversion 
materials, i.e., materials reacting through the conversion reaction allow reversible capacities 
as high as 1500 mAh/g, exceeding that of graphite (372 mAh/g), the negative electrode mate-
rial commonly used in commercial Li-ion batteries. They have thus been considered as pos-
sible alternatives for the development of new high-energy storage devices. Recent studies 
have shown that, for conversion reactions, due to the formation of nanosized species, the 
composites obtained at the end of discharge are particularly unstable [49] and therefore the 
use of operando techniques for the study of reaction mechanisms is essential. Transition metal 
antimonides of general formula MaSbb form a family of conversion materials providing capac-
ities between 450 and 600 mAh/g and can easily stand up to about 20 cycles at stable capac-
ity before fading. The very large volume expansion (of about 300%) experienced during the 
reaction with lithium is probably at the origin of the rapid fading, causing the pulverization 
of the active material particles, with further degradation of the electronic wiring at high-rate 
and agglomeration of the active mass at low rate [57]. Several methods were used to improve 
the cycling life of antimonides such as nanostructuration of the electrodes [58], carbon coating 
and optimization of the formulation [59].

MaSbb compounds are expected to react with lithium by forming a matrix of Li3Sb in which 
nanoparticles of the transition metal M are embedded. Actual reaction mechanisms, however, 
can be more complex and often dependent on the specific compound. For instance, several 
conversion pnictogenides, such as FeSb2 [60] and MnSb [61], form intermediate lithiated inser-
tion phases before starting the veritable conversion reaction, while additional phases could 

X-Ray Absorption Spectroscopy Study of Battery Materials
http://dx.doi.org/10.5772/66868

63



also form throughout the whole electrochemical cycle. An example of a complicated reaction 
mechanism is that of NiSb2, which reacts reversibly with lithium to form nickel metal and 
Li3Sb providing a theoretical capacity of 532 mAh/g [62].

In this material, the possible formation of an intermediate ternary insertion solid solution was 
suggested by a slight shift of the XRD reflections during the first part of the discharge [62]. 
The complete amorphisation of the system during the conversion, however, made it impos-
sible to follow the reaction by XRD. In particular, the formation of Ni nanoparticles at the 
end of discharge, which are expected for typical conversion reactions, could not be verified. 
Operando Ni K-edge XAS was thus used to address this issue [63].

The EXAFS data collected during the first discharge are shown in Figure 7. The fourier trans-
form (FT) signal of pristine NiSb2 exhibits a main contribution with a dominant peak at about 
2.4 Å and a second smaller peak slightly below 2 Å, and a second contribution with a domi-
nant peak at 4.2 Å. During lithiation, the first contribution is gradually replaced by a peak 
pointing at about 2.2 Å, while the peak at 4.2 Å gradually disappears. The spectrum of the 
fully lithiated material was fitted using 12 Ni neighbors at 2.47(1) Å. This result agrees well 
with the Ni − Ni distance of 2.491 Å in the fcc lattice of Ni metal. Such a fit, however, gives 
an amplitude reduction factor S0

2  =  0.34, i.e., less than half of the usually observed value. 
Since S0

2 is directly correlated to the coordination number, such a low value indicates that the 
effective number of Ni neighbors is much smaller than 12, in line with the formation of Ni 
nanoparticles with a significant fraction of surface atoms. Such reduced coordination num-
bers are often observed for supported metal nanoparticles in heterogeneous catalysts with 
sizes below about 2 nm [64]. The nanosized nature of the Ni particles is also confirmed by the 
absence of the following coordination shells in the FT signal. The presence of Ni nanoparti-
cles at the end of lithiation and their following (partial) reaction during delithiation to reform 
a nanosized form of NiSb2, allowed the author to confirm that NiSb2 is a veritable conversion 
material.

Figure 7. Operando evolution of the Ni K-edge EXAFS spectra (left) and corresponding phase-uncorrected FT signals 
(right) during the first galvanostatic lithiation of NiSb2 vs. Li metal. Evolution with lithiation is shown on going from 
darker to brighter spectra (only selected spectra are shown for the sake of clearness). Reproduced from Ref. [63].
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At the end of this paper, the authors compared the operando spectra with those of ex situ sam-
ples cycled vs. Li about 5 days prior to the XAS measurement campaign, which turned out to 
be rather different in spite of the precautions taken in order to avoid the decomposition of the 
latter materials. This comparison underlines the importance of performing in situ measure-
ments to get a realistic view of the reaction mechanism of battery materials. In fact, especially 
in the case of conversion materials, such investigations can be very complex because the species 
formed in cycling electrodes are usually very reactive and/or unstable.

4.3. Study of Li-sulfur batteries by S K-edge XAS

One of the most interesting recent applications of XAS to electrochemical energy storage 
concerns the study of lithium-sulfur batteries (LSBs). Since the work of Jie et al. [65], many 
groups have developed first the use of XANES and more recently that of EXAFS for the study 
of such systems. In LSB, the positive electrode material is elemental sulfur, which can react 
with lithium to produce Li2S for a theoretical capacity of 1672 mAh/g at about 2.5 V [66]. The 
practical capacity of such systems is unfortunately much lower, never exceeding 1200 mAh/g. 
Moreover, LSB suffer from several other drawbacks: the main one is surely the diffusion of 
polysulfides (Li2Sn), produced during the first steps of the reduction of sulfur and highly 
soluble in the electrolyte, which cause the well-known “shuttle” phenomenon strongly limit-
ing the capacity [67]. Second, solid Li2S and elemental sulfur are both insulating and cannot 
be used as such in normal composite electrodes, fabricated as mixtures of sulfur and carbon 
powder on aluminum foil current collectors, since their continuous dissolution/precipitation 
during cycling gradually disconnects part of the active mass, making sulfur progressively 
electrochemically inactive [68, 69]. All these disadvantages cause rapid capacity fading and 
low columbic efficiency of LSB.

Several improvements have been suggested in the last years to tackle these drawbacks: one of 
them consisted in infiltrating molten sulfur into porous conductive carbon materials [70]. This 
approach, however, does not allow large sulfur loadings, nor does it prevent the diffusion of 
polysulfides outside the pores. Moreover, it requires large amounts of electrolyte to wet the large 
volume of porous carbon and to solubilize the polysulfides, which greatly reduces the volumetric 
energy density of LSB. Most recently, multifunctional positive electrodes, enhancing the sulfur 
loading and promoting the interaction of polysulfides with the electrode host to prevent their 
diffusion in the electrolyte have been successfully proposed and studied [71]. In all these studies, 
XAS has been largely used at different levels to investigate in detail the electrochemical mecha-
nism and the diffusion (or retention) of polysulfides as well as the possible different failure paths.

Sulfur K-edge XANES, for instance, can be used as a semiquantitative analytical tool for LSB 
[72–81]. Operando XANES spectra fitted by linear combinations of reference XANES spectra 
of pure sulfur, synthetic polysulfides and Li2S allowed following both the evolution of the 
sulfur species and of their relative ratio along the discharge and the charge process, as well 
as the variation of the concentration of sulfur in both the cathode and the electrolyte, in line 
with the diffusion of the polysulfides in the whole battery. More recently, it was also used for 
the detection of the formation of sulfur radical species [82–84], which were confirmed also by 
operando Raman spectroscopy [53].
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A particularly interesting approach was, however, the application of EXAFS to the study of 
the electrochemical mechanism [85]. Such study was possible only due to the use of a specific 
sulfur-free electrolyte salt, which usually hindered the EXAFS contribution of the sulfur spe-
cies evolving during cycling (cf. Figure 8). In this way, it was possible to clearly identify the 
type of polysulfides (long- or short-chain) formed in the electrode during the high-voltage 
and the low-voltage discharge plateaus and to confirm the formation of Li2S only from the 
beginning of the low-voltage plateau and to follow its concentration in the electrode.

Finally, XAS was very recently used for detecting the interaction of sulfur precursors with 
appropriately modified graphene oxide nanocomposites, leading to the immobilization of 
the sulfur species in the electrode, improving the overall cycling performance of the cell [86].

All these examples underlined the powerful properties of XAS for the operando study of elec-
trochemical mechanisms in batteries even at low energies (sulfur K-edge is at only 2.47 keV).

5. The chemometric approach to the interpretation of XAS data

Due to the increasing performance of many synchrotron beamlines specialized in in situ XAS 
studies, extremely large dataset containing many tens or hundreds of spectra associates to a 
single experiment are currently collected. This huge amount of data is calling for a suitable 
strategy for their treatment in reasonable time. For instance, the study of the charge or the dis-
charge process of a battery produces something like 100–300 spectra, depending on the experi-
mental conditions (data acquisition protocol and battery discharge rate). In similar cases, the 

Figure 8. Variation of the average S coordination number during the first discharge. The average coordination of the 
most important polysulfides is reported for comparison. The vertical line represents the end of the high-voltage plateau. 
From Ref. [85].
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use of chemometrics may be applied [87]. Specifically, the application of multivariate curve 
resolution (MCR) to large datasets of in situ XAS experiments (where the samples undergo 
continuous evolution during the reaction path) allows one to interpret their modification in 
terms of sums of pure spectra with variable concentration profiles, without needing any pre-
existing model or a priori information about the system. To our knowledge, the first application 
of MRC to a XAS study of battery materials concerns the investigation of the evolution during 
charge of a positive electrode based on a Cu0.1V2O5 xerogel [40]. This study, which is performed 
using the alternate least square (ALS) algorithm, allowed obtaining relevant information on 
the cell charging dynamics. In particular, the data treatment evidenced for the first time the 
occurrence of three species during the battery charging, which were further identified with a 
common EXAFS analysis. This successful chemometric approach to XAS has further been used 
for other operando studies, mostly by the catalysis community [88]. MCR was also applied to 
analyze XAS data from Fischer-Tropsch reaction [89] and to infer about the speciation and the 
evolution of ruthenium in Co − Ru/SiO2 systems by looking at quick-XAS data [90].

6. Perspectives

With the increasing demand of energy resources for both portable and storage purposes, 
there has been an extensive and increasingly diversification of materials and technology for 
the electrochemical power sources in the last five years. Not only lithium-ion technology but 
also sodium or even trivalent ions, also in aqueous media, are currently studied to obtain 
a good balancing between cost, safety, abundance and electrochemical performances. This 
chapter has underlined the strength of the XAFS probe to understand the dynamic of the both 
anode and cathode materials during the battery functioning, at atomic level. We feel that this 
core-level spectroscopy can even meet the increasing demand of deep understanding of dif-
ferent technologies and of new materials for batteries. This extraordinary versatility is due to: 
(i) the extremely selective local structure probe of XAS for the atomic species in crystalline, 
amorphous solid and liquid electrolyte; (ii) the unprecedented quality and speed of for data 
recording in synchrotron beamlines dedicated to in situ studies, coupled with a suitable and 
unbiased data analysis such as the chemometric approach to XAFS data presented above; 
(iii) the new generations of software for EXAFS data analysis, which are capable of analyzing 
multiple scattering contributions with great efficiency and to perform simultaneous multiple 
edge fits; (iv) the development of reliable spectrometers at synchrotron radiation light sources 
enabling high resolution recording, allowing the collection of complementary information 
with ancillary advanced techniques such as resonant inelastic X-ray scattering (RIXS) [91]. 

Moreover, new advanced synchrotron-based techniques are expected to be at the forefront of 
battery research in the future; among them, there will surely be X-ray transmission micros-
copy, which allows the simultaneous imaging and spatially resolved XAS study of electrode 
materials in batteries [92].

Finally, a personal consideration: in XAS, data analysis is usually considered as the bottleneck 
of the whole spectroscopic study. This holds true regardless of the simplicity or the difficulty 
of the oscillatory portion of the spectrum to be analyzed. Indeed, as long as a suitable struc-
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tural model has not been established, an oscillation can be interpreted in several different 
ways. It is then recommended to newcomers not only to learn how to conduct XAS experi-
ments, but also to perform appropriate data analyses by seeking the advice and collaboration 
of experts who are willing to share their knowledge and their experience.
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