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1.  Introduction 

Recently, researchers have begun to give importance at the energy consumed by software. But, to 

solve this problem, they propose often a hardware study of different devices. For this, they used hardware 

devices like powermeter or printed circuit. The main advantage of this methodology is the fact that we 

can obtain accurate results because we measure the energy consumed by components. But, we are limited 

at the fact that we can’t measure the power consumed by VM (Virtual Machine) and the cost of this 

process itself can be expansive. Estimating power consumption of software has begun a popular research 

field. Several tools have been presented in academic literature, however, these tools have the capacity to 

estimate only specific component’s consumption.  

ICT (Information and Communications Technologies) constitutes 2% of such gas emissions, and it is 

projected an increase to 4% by 2020, if nothing is done [1]. In fact, recent trends such as cloud computing 

and internet of things even increase the number of devices, and consequently the software running on 

them. Hence, software became a fundamental actor of efficiency plans that aims at reducing greenhouse 

gas emission. 

In this paper, we propose a tool, called TEEC (Tool to Estimate Energy Consumption), in order to 

estimate the power consumption of a given software at runtime by taking into account CPU, memory and 

disk power consumptions. Using TEEC, we expect to be able to obtain software/applications having some 

functionality and consuming less power. 

2.  Components Modelization 

2.1  Related Work 

Similar to our recent study [2], there are several tools that are able to estimate the power consumption 

using a program: 

  Joulemeter [3] which provides components’ power usage for all processes. It also estimates 

power consumed by CPU for a given process. 

 Span [4] gives power information about running programs. With specific functions, 

developers can manually instrument source code. 
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 GREENSOFT [5] is a hybrid solution, which takes into account hardware devices and 

software part during the power estimation. 

For a power estimation to be accurate, it is required that all components need to be taken into account 

during the software runtime. This estimation will guide software developer to improve their code. 

Thus, we propose a detailed study of the components: CPU, memory and hard disk in order to provide 

an accurate modelization. Accordingly, we use mathematical formula for measuring energy consumption 

for each component. 

2.2  CPU 

For a long time the CPU was considered the largest energy consumer component [6] in a computer. 

That is the reason why in most of the works, the modelization has taken into account only the CPU to 

estimate the energy consumed by computer program. Several models and factors have been proposed for 

CPU power consumption, but in this study, we will consider the following equation (1): 

𝑃𝐶𝑃𝑈 =  𝑃𝐶𝑃𝑈,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 +  𝑃𝐶𝑃𝑈,𝑠𝑡𝑎𝑡𝑖𝑐 

 

(1) 

where 𝑃𝐶𝑃𝑈,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 represents dynamic power consumption, while 𝑃𝐶𝑃𝑈,𝑠𝑡𝑎𝑡𝑖𝑐 corresponds to static 

power consumption. Only the manufacturer can reduce the static power consumption because it depends 

on the architectural characteristics of each component. In our case, we want to reduce the energy 

consumed by software. Therefore, we only consider the dynamic power consumption to get more accurate 

results. The CPU, like many integrated circuit, is a set of gates. Hence, the main power consumption in 

CPU is due to capacitors charge and discharge during computations. We assume that in a switching cycle, 

there are low-to-high and high-to-low transitions. For N gates, the power need to be multiplied by N. 

Hence, we can define a parameter α < 1 as the average fraction of gates that commute at each cycle. To 

determine the power consumed by the program, we multiple by the percentage of the process id 𝑁𝑖𝑑. The 

equation of the power becomes (2): 

𝑃𝐶𝑃𝑈,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =  𝐶. 𝑓. 𝑉𝑑𝑑
2  

 

(2) 

where 𝐶 =  𝐶𝐿. 𝑁. 𝛼, 𝑉𝑑𝑑 is the voltage and f is the frequency. 

2.3  Memory 

According to [7], the power used on servers is increasing and two largest consumers of power are the 

processors and RAM chips. Especially because memory RAM size increase a lot this last decade. Several 

works have the objective to optimize systems to reduce DRAM power consumption [8, 9, and 10].  

In this work, we decide to study the DRAM in order to model its power consumption. Doing so, we 

use datasheet values from DRAM manufacturer to build the power consumption equation. Similar to 

CPU, we only interest in the dynamic power, since it is the only part for energy saving. Based on Micron 

[11], we assume that the dynamic power is composed of: Activate, Precharge, Read and Write power. 

Accordingly, total power consumption of DRAM can be give as (3): 

𝑃𝐷𝑅𝐴𝑀,𝑖𝑑 = (𝑃𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒 + 𝑃𝑃𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 + 𝑃𝑅𝑒𝑎𝑑 + 𝑃𝑊𝑟𝑖𝑡𝑒). 𝑀𝑖𝑑 (3) 
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where 𝑀𝑖𝑑 is the usage percent of the process id. 

2.4  Hard disk 

According to the International Data Corporation (IDC), storage capacity increases each year with a 

rate of 60% [12].  

There are several tools proposed to test the performance of a hard drive. The most known are 

CristalDiskMark and HD Tune [13]. However, these programs allow only measuring read/write speeds. 

They do not give information about power consumption. That is the reason why researchers tried to take 

into account power consumption due to hard disk during the runtime. Some of the tools that are built for 

this purpose are: DiskSim [14], Tempo [15] and SODA [16]. 

In an Hard Disk Drive, there are four power management states are supported: active, idle, standby 

and sleep. Hard disk is also composed of dynamic (4) and static power: 

𝑃𝐷𝑖𝑠𝑘,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =  𝑃𝐴𝑐𝑡𝑖𝑣𝑒 =  𝑃𝑅𝑒𝑎𝑑 + 𝑃𝑊𝑟𝑖𝑡𝑒 

 

(4) 

3. Experiments 

In order to realize our experiments, we develop a tool called TEEC. This tool has been developed in 

Java which is one of informatic language most used. We use Sigar library [17] to automatically obtain 

information about CPU, memory and disk. Besides, static manufacturer data are saved and used. So, we 

can provide an estimation of power consumption due to each component during runtime of software. 

We perform our test on a notebook ASUS N751JK-T7238H, running Windows 8. Different tests have 

been executed with unoptimized and optimized code source in order to see the impact on each 

component. 

Loops have an important effect on the performance of a program and provide efficient way for 

repeating a piece of code as many times as required. Java has three types of loop control structures which 

are: for, while and do-while. So, it is interesting to study some functions, as represented in Table 1, that 

are used during a development of a program in order to examine possible optimizations.  

Unoptimized Optimized 

Locality of reference 

for(int i=0;i<1000000;i++){ 

   int sum = 0; 

for(int x=0;x<50000;x+=100){ 

   sum += values[x]; }} 

for(int i=0;i<1000000;i++){ 

   int sum = 0; 

   for(int x=0;x<500;x++){ 

   sum += values[x]; }} 

Compare array to array list 

for(int i=0;i<1000000;i++){ 

   int sum = 0; 

for(int v=0;v<list.size();v++) 

for(int i=0;i<1000000;i++){ 

   int sum = 0; 

for(int v=0;v<array.length;v++) 
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   sum += list.get(v);}    sum += array[v];} 

Compare integer list loop 

for(Integer i:list) count++; int size=list.size(); 

for(int i=0;i<size;i++)    count++; 

Char array StringBuilder 

for(int i=0;i<1000000;i++){ 

StringBuilder builder=new 

StringBuilder(); 

   for(int v=0;v<1000;v++) 

  builder.append('?'); 

String result=builder.toString();} 

for(int i=0;i<1000000;i++){ 

char[] array=new char[1000]; 

   for(int v=0;v<1000;v++) 

  array[v] = '?'; 

String result=new String(array);} 

Binary search 

for(int i=0;i<10000000;i++){ 

   int index = -1; 

for(int j=0;j<values.length;j++)  

   if (values[j] == 80)  

   index = j; 

   break; }}} 

for(int i=0;i<10000000;i++)  

int index 

=Arrays.binarySearch(values,80); 

Table 1: Unoptimized and optimized functions 

3.1  Summary 

We develop two JAVA projects in order to regroup all the unoptimized and optimized functions 

previously described. We obtain the following power and energy related relationships (Figure 1 and 2).  

 

Figure 1: Unoptimized Power and Energy 
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Figure 2: Optimized Power and Energy 

Therefore, we observe, without surprise, that in general the power consumption of CPU dominate 

memory or disk consumption. If we analyze the results obtained each 50 ms, we can say that the power 

consumption of disk can be neglected for these cases, but in some cases power consumption of memory 

must be taken into account. Moreover, we can say that the power consumption of the unoptimized code is 

higher than the one of the optimized code and the total execution time of optimized code is less than the 

one of the unoptimized code. Consequently, it is of great interest to develop optimized parts of code in 

order to obtain green and efficient software. 

4.  Validation 

To validate our experiments, we use a powermeter ‘wattsup ?PRO’. We connect this device to the 

notebook via USB port. This device saves in his memory the power consumed by all process in runtime. 

So, we connect WattsUp to the notebook and then we wait until the power reach a stationary state. Then, 

we launch the unoptimized program, followed by the optimized program. We then transfer the results 

using the application WattsUpUSB and the results are depicted in Figure 3. 

Comparing to the results obtain with TEEC, even if we make a measurement in each second, we can 

say that in most of the case, optimized code test is faster and reveals less power than unoptimized code 

test. Each optimized and unoptimized curves present some increase of power as we observed with TEEC. 

 

Figure 3: Unoptimized and Optimized Power 

5.  Conclusion 

In addition to the CPU, a modelization of memory and hard disk has been made to describe the 

behavior of each component. Mathematical expressions have been established in order to calculate the 
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power consumption of each component. The tool we designed, named  TEEC, take into account CPU, 

memory and hard disk power consumption. 

The accuracy of TEEC has been tested over several optimized and unoptimized functions and 

validated against a real powermeter.  

We stated that power consumption of memory should not always be neglected in front of the CPU 

power consumption whereas power consumption of hard disk can be neglected. 

We observed that the optimizations of source code are required in order to contribute to the reduction 

of the greenhouse gas emissions. 

In a short term, we wish to extend the capability of TEEC by integrating others components power 

consumption (such as network interface cards, etc.). In a long term, we will use the output of TEEC to 

guide developers in order to build greener software in real time. 
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