
HAL Id: hal-01496262
https://hal.science/hal-01496262v1

Submitted on 27 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TEEC: Improving power consumption estimation of
software

Hayri Acar, Gülfem I Alptekin, Jean-Patrick Gelas, Parisa Ghodous

To cite this version:
Hayri Acar, Gülfem I Alptekin, Jean-Patrick Gelas, Parisa Ghodous. TEEC: Improving power con-
sumption estimation of software. EnviroInfo 2016, Sep 2016, Berlin, Germany. pp.335-341 / ISBN
978-3-8440-4687-8. �hal-01496262�

https://hal.science/hal-01496262v1
https://hal.archives-ouvertes.fr

1

TEEC: Improving power consumption estimation of software

Hayri Acar
1
, Gülfem I. Alptekin

2
, Jean-Patrick Gelas

3
, Parisa Ghodous

4

1. Introduction

Recently, researchers have begun to give importance at the energy consumed by software. But, to

solve this problem, they propose often a hardware study of different devices. For this, they used hardware

devices like powermeter or printed circuit. The main advantage of this methodology is the fact that we

can obtain accurate results because we measure the energy consumed by components. But, we are limited

at the fact that we can’t measure the power consumed by VM (Virtual Machine) and the cost of this

process itself can be expansive. Estimating power consumption of software has begun a popular research

field. Several tools have been presented in academic literature, however, these tools have the capacity to

estimate only specific component’s consumption.

ICT (Information and Communications Technologies) constitutes 2% of such gas emissions, and it is

projected an increase to 4% by 2020, if nothing is done [1]. In fact, recent trends such as cloud computing

and internet of things even increase the number of devices, and consequently the software running on

them. Hence, software became a fundamental actor of efficiency plans that aims at reducing greenhouse

gas emission.

In this paper, we propose a tool, called TEEC (Tool to Estimate Energy Consumption), in order to

estimate the power consumption of a given software at runtime by taking into account CPU, memory and

disk power consumptions. Using TEEC, we expect to be able to obtain software/applications having some

functionality and consuming less power.

2. Components Modelization

2.1 Related Work

Similar to our recent study [2], there are several tools that are able to estimate the power consumption

using a program:

 Joulemeter [3] which provides components’ power usage for all processes. It also estimates

power consumed by CPU for a given process.

 Span [4] gives power information about running programs. With specific functions,

developers can manually instrument source code.

1 LIRIS, University of Lyon 1, Lyon France, hayri.acar@univ-lyon1.fr
2 Galatasaray University, Istanbul Turkey, gisiklar@gsu.edu.tr

3 ENS Lyon, LIP, UMR 5668, Lyon France, jean-patrick.gelas@univ-lyon1.fr

4 LIRIS, University of Lyon 1, Lyon France, parisa.ghodous@univ-lyon1.fr

2

 GREENSOFT [5] is a hybrid solution, which takes into account hardware devices and

software part during the power estimation.

For a power estimation to be accurate, it is required that all components need to be taken into account

during the software runtime. This estimation will guide software developer to improve their code.

Thus, we propose a detailed study of the components: CPU, memory and hard disk in order to provide

an accurate modelization. Accordingly, we use mathematical formula for measuring energy consumption

for each component.

2.2 CPU

For a long time the CPU was considered the largest energy consumer component [6] in a computer.

That is the reason why in most of the works, the modelization has taken into account only the CPU to

estimate the energy consumed by computer program. Several models and factors have been proposed for

CPU power consumption, but in this study, we will consider the following equation (1):

𝑃𝐶𝑃𝑈 = 𝑃𝐶𝑃𝑈,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝐶𝑃𝑈,𝑠𝑡𝑎𝑡𝑖𝑐

(1)

where 𝑃𝐶𝑃𝑈,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 represents dynamic power consumption, while 𝑃𝐶𝑃𝑈,𝑠𝑡𝑎𝑡𝑖𝑐 corresponds to static

power consumption. Only the manufacturer can reduce the static power consumption because it depends

on the architectural characteristics of each component. In our case, we want to reduce the energy

consumed by software. Therefore, we only consider the dynamic power consumption to get more accurate

results. The CPU, like many integrated circuit, is a set of gates. Hence, the main power consumption in

CPU is due to capacitors charge and discharge during computations. We assume that in a switching cycle,

there are low-to-high and high-to-low transitions. For N gates, the power need to be multiplied by N.

Hence, we can define a parameter α < 1 as the average fraction of gates that commute at each cycle. To

determine the power consumed by the program, we multiple by the percentage of the process id 𝑁𝑖𝑑. The

equation of the power becomes (2):

𝑃𝐶𝑃𝑈,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶. 𝑓. 𝑉𝑑𝑑
2

(2)

where 𝐶 = 𝐶𝐿. 𝑁. 𝛼, 𝑉𝑑𝑑 is the voltage and f is the frequency.

2.3 Memory

According to [7], the power used on servers is increasing and two largest consumers of power are the

processors and RAM chips. Especially because memory RAM size increase a lot this last decade. Several

works have the objective to optimize systems to reduce DRAM power consumption [8, 9, and 10].

In this work, we decide to study the DRAM in order to model its power consumption. Doing so, we

use datasheet values from DRAM manufacturer to build the power consumption equation. Similar to

CPU, we only interest in the dynamic power, since it is the only part for energy saving. Based on Micron

[11], we assume that the dynamic power is composed of: Activate, Precharge, Read and Write power.

Accordingly, total power consumption of DRAM can be give as (3):

𝑃𝐷𝑅𝐴𝑀,𝑖𝑑 = (𝑃𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒 + 𝑃𝑃𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 + 𝑃𝑅𝑒𝑎𝑑 + 𝑃𝑊𝑟𝑖𝑡𝑒). 𝑀𝑖𝑑 (3)

3

where 𝑀𝑖𝑑 is the usage percent of the process id.

2.4 Hard disk

According to the International Data Corporation (IDC), storage capacity increases each year with a

rate of 60% [12].

There are several tools proposed to test the performance of a hard drive. The most known are

CristalDiskMark and HD Tune [13]. However, these programs allow only measuring read/write speeds.

They do not give information about power consumption. That is the reason why researchers tried to take

into account power consumption due to hard disk during the runtime. Some of the tools that are built for

this purpose are: DiskSim [14], Tempo [15] and SODA [16].

In an Hard Disk Drive, there are four power management states are supported: active, idle, standby

and sleep. Hard disk is also composed of dynamic (4) and static power:

𝑃𝐷𝑖𝑠𝑘,𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑃𝐴𝑐𝑡𝑖𝑣𝑒 = 𝑃𝑅𝑒𝑎𝑑 + 𝑃𝑊𝑟𝑖𝑡𝑒

(4)

3. Experiments

In order to realize our experiments, we develop a tool called TEEC. This tool has been developed in

Java which is one of informatic language most used. We use Sigar library [17] to automatically obtain

information about CPU, memory and disk. Besides, static manufacturer data are saved and used. So, we

can provide an estimation of power consumption due to each component during runtime of software.

We perform our test on a notebook ASUS N751JK-T7238H, running Windows 8. Different tests have

been executed with unoptimized and optimized code source in order to see the impact on each

component.

Loops have an important effect on the performance of a program and provide efficient way for

repeating a piece of code as many times as required. Java has three types of loop control structures which

are: for, while and do-while. So, it is interesting to study some functions, as represented in Table 1, that

are used during a development of a program in order to examine possible optimizations.

Unoptimized Optimized

Locality of reference

for(int i=0;i<1000000;i++){

 int sum = 0;

for(int x=0;x<50000;x+=100){

 sum += values[x]; }}

for(int i=0;i<1000000;i++){

 int sum = 0;

 for(int x=0;x<500;x++){

 sum += values[x]; }}

Compare array to array list

for(int i=0;i<1000000;i++){

 int sum = 0;

for(int v=0;v<list.size();v++)

for(int i=0;i<1000000;i++){

 int sum = 0;

for(int v=0;v<array.length;v++)

4

 sum += list.get(v);} sum += array[v];}

Compare integer list loop

for(Integer i:list) count++; int size=list.size();

for(int i=0;i<size;i++) count++;

Char array StringBuilder

for(int i=0;i<1000000;i++){

StringBuilder builder=new

StringBuilder();

 for(int v=0;v<1000;v++)

 builder.append('?');

String result=builder.toString();}

for(int i=0;i<1000000;i++){

char[] array=new char[1000];

 for(int v=0;v<1000;v++)

 array[v] = '?';

String result=new String(array);}

Binary search

for(int i=0;i<10000000;i++){

 int index = -1;

for(int j=0;j<values.length;j++)

 if (values[j] == 80)

 index = j;

 break; }}}

for(int i=0;i<10000000;i++)

int index

=Arrays.binarySearch(values,80);

Table 1: Unoptimized and optimized functions

3.1 Summary

We develop two JAVA projects in order to regroup all the unoptimized and optimized functions

previously described. We obtain the following power and energy related relationships (Figure 1 and 2).

Figure 1: Unoptimized Power and Energy

5

Figure 2: Optimized Power and Energy

Therefore, we observe, without surprise, that in general the power consumption of CPU dominate

memory or disk consumption. If we analyze the results obtained each 50 ms, we can say that the power

consumption of disk can be neglected for these cases, but in some cases power consumption of memory

must be taken into account. Moreover, we can say that the power consumption of the unoptimized code is

higher than the one of the optimized code and the total execution time of optimized code is less than the

one of the unoptimized code. Consequently, it is of great interest to develop optimized parts of code in

order to obtain green and efficient software.

4. Validation

To validate our experiments, we use a powermeter ‘wattsup ?PRO’. We connect this device to the

notebook via USB port. This device saves in his memory the power consumed by all process in runtime.

So, we connect WattsUp to the notebook and then we wait until the power reach a stationary state. Then,

we launch the unoptimized program, followed by the optimized program. We then transfer the results

using the application WattsUpUSB and the results are depicted in Figure 3.

Comparing to the results obtain with TEEC, even if we make a measurement in each second, we can

say that in most of the case, optimized code test is faster and reveals less power than unoptimized code

test. Each optimized and unoptimized curves present some increase of power as we observed with TEEC.

Figure 3: Unoptimized and Optimized Power

5. Conclusion

In addition to the CPU, a modelization of memory and hard disk has been made to describe the

behavior of each component. Mathematical expressions have been established in order to calculate the

6

power consumption of each component. The tool we designed, named TEEC, take into account CPU,

memory and hard disk power consumption.

The accuracy of TEEC has been tested over several optimized and unoptimized functions and

validated against a real powermeter.

We stated that power consumption of memory should not always be neglected in front of the CPU

power consumption whereas power consumption of hard disk can be neglected.

We observed that the optimizations of source code are required in order to contribute to the reduction

of the greenhouse gas emissions.

In a short term, we wish to extend the capability of TEEC by integrating others components power

consumption (such as network interface cards, etc.). In a long term, we will use the output of TEEC to

guide developers in order to build greener software in real time.

References

[1] GreenTouch, ICT Industry Combats Climate Change. http://www.greentouch.org/?page=how-the-ict-industries-
can-help-the-world-combat-climate-change

[2] Acar, H., Alptekin, G.I., Gelas, J.-P. and Ghodous, P. 2015. Towards a Green and Sustainable Software. In
Proceedings of the 22nd ISPE International Conference on Concurrent Engineering (Delf, The Netherlands, July
20 – 22, 2015).

[3] Kansal, A., Zhao, F., Liu, J., Kothari, N. and Bhattacharya, A. 2010. Virtual Machine Power Metering and
Provisioning. In Proceedings of the 1st ACM Symposium on Cloud computing. (New York, USA, 2010).

[4] Wang, S., Chen, H. and Shi, W., 2011. SPAN: A software power analyzer for multicore computer systems.
Sustainable Computing: Informatics and Systems,Volume 1, Issue 1, March 2011, 23–34.

[5] Kern, E., Dick, M., Naumann, S., Guldner, A. and Johann, T. 2013. Green software and green software
engineering–definitions, measurements, and quality aspects. In Proceedings of the First International
Conference on Information and Communication Technologies for Sustainability (Zurich, Switzerland ,
February 14-16, 2013).

[6] Kim, M., Ju, Y., Chae, J., Park, M., 2014. A Simple Model for Estimating Power Consumption of a Multicore
Server System. International Journal of Multimedia and Ubiquitos Engineering.

[7] Minas, L., Ellison, B., 2009. The Problem of Power Consumption in Servers. Intel Press.

[8] Hur, I. and Lin, C., 2008. A comprehensive approach to DRAM power management. International
Symposium on High Performance Computer Architecture.

[9] Kang, U. et al., 2010. 8 Gb 3-D DDR3 DRAM Using Through-Silicon-Via Technology. Journal of
SolidState Circuits.

[10] Vogelsang, T., 2010. Understanding the energy consumption of dynamic random access memories.
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture.

[11] Micron, 2007. Calculating Memory System Power for DDR3.

[12] IDC serves up 10 storage predictions for 2008, 2007. http://www.cio.co.uk/news/index.cfm?articleid=2455

[13] HD Tune. 2015. http://www.hdtune.com/index.html

[14] Bucy, J., Schindler, J., Schlosser, S., Ganger, G. and Contributors. 2008. The DiskSim Simulation
EnvironmentVersion 4.0 Reference Manual. Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh,
PA 15213.

[15] Molaro, D., Payer, H., Le Moal, D. 2009. Tempo: Disk Drive Power Consumption Characterization and
Modeling. In Proceedings of the IEEE 13th International Symposium on Consumer Electronics.

[16] Sankar, S., Zhang, Y., Gurumurthi, S., Stan, M. 2008. Sensitivity Based Optimization of Disk Architecture. In
IEEE Transactions on Computers.

[17] Morgan, R. and MacEachern, D. 2010. https://support.hyperic.com/display/SIGAR/Home

http://www.hdtune.com/index.html

