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Robust control of varying weak hyperspectral target
detection with sparse non-negative representation

Raphael Bacher, Celine Meillier, Florent Chatelain and Olivier Michel

Abstract—In this study, a multiple-comparison approach is
developed for detecting faint hyperspectral sources. The detection
method relies on a sparse and non-negative representation on a
highly coherent dictionary to track a spatially varying source.
A robust control of the detection errors is ensured by learning
the test statistic distributions on the data. The resulting control
is based on the false discovery rate, to take into account the
large number of pixels to be tested. This method is applied to
data recently recorded by the three-dimensional spectrograph
Multi-Unit Spectrograph Explorer.

I. INTRODUCTION

W ITH the constant development of new imaging devices,
the exploration of massive multi-modalities datasets

has become an important field of study, with many challenges
to face. In particular, the present study is motivated by the need
to detect faint emission line features in massive hyperspectral
data produced by the recent three-dimensional (3D) spectro-
graph Multi-Unit Spectrograph Explorer (MUSE) instrument
[1]. The targeted emission lines are markers of spatially
extended structures (or ’halos’, surrounding galaxies) that can
exhibit spectral variability (spectral shifts). Furthermore, the
presence of a large number of nuisance sources with high
dynamics in the background makes the estimation of the
background statistics particularly challenging. Searching faint
signals in massive datasets requires the removal of possibly
strong contributions of unwanted objects. Typically, for track-
ing faint signatures in hyperspectral data with high background
dynamics, the spectra baseline must be estimated and removed.
Finally, the size of the data to be explored calls for error
controls of mis-detections with a global significance, such
as the false discovery rate (FDR)[2], to allow unsupervised
detection of the targets.

To summarize, the present study addresses a quite general
detection problem whose main features are:
• highly variable, partially known, weak target signatures;
• background difficult to model;
• possible presence of strong contributions from unwanted

sources that have to be removed;
• necessity for robust global mis-detections control.
Many methods have been developed in recent years to

detect targets in hyperspectral data [3], all requiring knowledge
of the background and/or the target signature. Among these
studies, spectral anomaly detectors can be used when the
searched signal is unknown, but rely on a parametric statistical
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modeling of the background signature [4] Spectral matching
detectors, such as adaptive matched filters [5] or adaptive
cosine estimators [6], exploit prior knowledge of both the tar-
get signature and the background characterization. A common
feature of these approaches is the lack of global control of false
alarm rate. Furthermore, these detectors were developed in a
remote-sensing framework [7] at rather high signal-to-noise
ratio (SNR) and can barely be adapted to the new challenges
(low SNR, absence of ground-truth...) raised by new massive
hyperspectral data such as those provided by new instruments
in astronomy. An alternate class of methods relies on sparse
representation [8] based on a trained dictionary. These are
in fact mostly reconstruction methods, exploited for detection
purposes. Up to our knowledge these methods do not allow
to calibrate the type I error (false alarm) control of the test.
Another pitfall is that in general no training set are available
in the astronomical context. Finally, recent approaches [9],
[10] try to tackle a problem having the same features as ours.
However, the Generalized Likelihood Ratio based solutions
proposed in these studies do not allow reliable control of
detection error. This control is crucial for massive datasets
in general, and for the present MUSE dataflow in particular,
and is the core of this study.

Rare events or sparse signals detection problems have
received much attention in the recent statistical literature.
Multiple-comparison procedures, such as higher criticism or
Bonferroni-type methods, have been proposed and shown to
have asymptotic optimal detection properties under sparsity
regimes [11], [12], [13], [14]. Such methods do not require
specification of the signals/events to be detected. Higher
criticism procedures can be viewed as adaptive to the un-
known sparsity level and power of the signals to be detected.
These multiple-comparison procedures can be applied on the
dictionary-based representations of the signals. Overcomplete
and/or coherent dictionaries are prone to provide sparse repre-
sentation matched to the application at hand, and were shown
to greatly improve the detection power[11]. Again no global
error control is performed by these methods.

The purpose of the present paper is thus threefold:

• derive a detection algorithm that benefits from the detec-
tion power of the sparse representation based approaches;

• propose a method that requires very weak assumptions
on the background or target statistical properties;

• operate a test procedure that allow a control of the global
false alarm rate (FDR).

The proposed method is built upon a spectral matching
approach over a highly coherent dictionary of target spectra,
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to take the variability into account. It elaborates on the max-
test study presented in [13] for the detection of rare events.
As such, it is built on a sparse representation whose purpose
is to allow the formulation of a detection test, that do not
need any signal reconstruction. To insure a calibration of
the test procedure (FDR wise) that is robust to background
misspecification, a new simple procedure is proposed, that
mainly requires symmetry of the noise distribution. Note that
exploiting this symmetry of the noise versus the positivity of
sources in astronomical context was also developed in [15]
but without providing a global control of the errors nor the
formalization of a varying target matched over a dictionary of
spectral shapes.

The paper is organized as follows. Section II defines the core
of the proposed detection approach. The application-oriented
design of the dictionary, the data preprocessing step, and the
results on the real MUSE data are described in section III.
Some conclusions and perspectives are drawn up in section
IV.

Notations
In the following, a ’pixel’ refers indifferently to a position

in the MUSE spatial grid and to the associated spectrum. A
pixel or its associated spectrum vector is represented by bold
letters e.g. x, and bold capital letters refer to matrices.

II. DETECTION METHOD

A. Testing problem
We address now the detection of a signal x, from noisy

data y ∈ Rl. Let H0 and H1 be the hypotheses denoting,
respectively, the absence or presence of the source contribution
x. The testing problem is:{

H0 : y = ε,
H1 : y = x+ ε,

(1)

where ε ∈ Rl is a noise vector, centered and independent of
x, for which the distribution is not known.

When x is not fully specified, a classical approach for (1)
consists of modeling x as a sparse superposition of reference
signals taken from a massively overcomplete dictionary D,
see for instance [16], or [17] for classification tasks. The
reference signals, or atoms, correspond to the column vector
dj ∈ Rl, for 1 ≤ j ≤ m, of D ∈ Rl×m, where m is the total
number of references. These atoms are usually scaled to be
`2-normalized: ||dj ||2 = 1 for 1 ≤ j ≤ m.

Moreover, in the present context, the signal of interest x
is generally assumed to be non-negative. Thus, to enforce a
non-negative decomposition, the atoms dj , for 1 ≤ j ≤ m
are assumed to be non-negative. It should be noted that,
unlike most of the sparse representation techniques in the
literature, we do not seek to build an optimal dictionary
for reconstruction/estimation but for the design of a good
detection test. The dictionary construction, based on physical
priors and specific to the application at hand, will be addressed
in section III-C1 in the framework of MUSE application1.

1Note that in this application the non-negativity constraints can be relaxed.
The target x and the atoms dj can have negative or positive contributions,
as long as their dot product xTdj are non-negative for 1 ≤ j ≤ m.

Under the non-negativity and sparsity assumptions, the target
signal can be expressed as

x ≈ ai1di1 + . . .+ aikdik ,

s.t. aij > 0, for 1 ≤ j ≤ k,
(2)

where k � m. Based on this representation, the detection
problem reduces to a multiple comparison procedure with one-
sided tests: {

H0 : a1 = a2 = . . . = am = 0,
H1 : at least one ai > 0,

(3)

B. Test statistic

We now search a test statistic adapted to the detection
problem (3) obtained by sparse representation. Let us first
consider the statistic for a single atom. Let S(y,d) be a
measure of similarity between the observed data y ∈ Rl and
a normalized reference vector d ∈ Rl. Popular examples of
similarity measures include the matched filter statistic

S(y,d) ≡
〈
d

||d||
,y

〉
= dTy, (4)

or the spectral angular distance (SAD)

S(y,d) ≡ 〈d,y〉
||d||||y||

=
dTy

||y||
, (5)

which is a classical distance in hyperspectral analysis [18].
For a given signal amplitude a = ||y|| > 0, such similarity
measures are maximized when y = ad.

Based now on the pairwise similarity measures S(y,dj)
between the observation y and the dictionary atoms dj , for
1 ≤ j ≤ m, a global test for the multiple (with regards
to the m atoms) testing problem introduced in (3) can be
derived from a Bonferroni-like correction. Accounting for (2),
this leads us to consider the following one-sided max-test
approach:

Tmax(y) ≡ max
1≤j≤m

S(y,dj)
H1

≷
H0

η, (6)

where η is a given threshold. The motivations for using this
max-test approach are two-fold. First, from a theoretical point
of view, with highly sparse signals, the max-test method is
asymptotically as efficient as the asymptotically optimal higher
criticism method, as demonstrated in [11], [13]. Secondly,
in finite sample settings such as the MUSE hyperspectral
datasets, max-test has been shown to be relatively efficient
[9], [19], and empirically more powerful than higher criticism
methods [20].

We now tackle the problem of applying the max-test defined
in (6) to a large number n of data realisations {yi}1≤i≤n. We
are again in a multiple-testing context, now with regards to
the number of samples n. This is in regards to this context
that we seek to control the detection errors. To fix the decision
threshold η while controlling the type I errors, i.e., the samples
under H0 that will be falsely detected as H1, the distribution
under the null hypothesis H0 of the max-test statistic Tmax(y)
must be known. In real applications such as the MUSE data,
due to the physical process and preprocessing steps (e.g.,
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interpolation, background subtraction), noise is spatially and
spectrally correlated with an unknown complex dependence
structure. Thus the distribution of Tmax(ε), where ε is the
noise vector introduced in (1), cannot be easily modeled
as a standard parametric distribution. However in a large
scale testing framework, it becomes possible to estimate this
distribution, as explained in the next section.

C. Learning the null distribution

Consider now the following assumptions:

A1. The noise vector ε is centered and symmetrically dis-
tributed: ε and −ε have the same distribution,

A2. The similarity measure S(y,d) used to construct the max-
test statistics is an odd function of the observations y, i.e.
S(y,d) = −S(−y,d) for any sample y and for any reference
vector d.

Assumption A1 on the noise is relatively weak and fairly
reasonable. This is, for instance, satisfied for any centered
elliptical distribution, such as multivariate Gaussian or stu-
dent distributions. Note also that assumption A2 is clearly
satisfied for the matched filter or the SAD statistics described
respectively in (4) and (5). A direct consequence of these
assumptions is the following key property:

Proposition II.1. Based on assumptions A1 and A2, the max-
test statistic Tmax(y) and the opposite of the min statistic
−Tmin(y), where Tmin(y) ≡ min

j
S(y,dj), are identically

distributed under the null hypothesis H0.

Proof. Under the null hypothesis y = ε. According to A1,
Tmax(ε) and Tmax(−ε) are identically distributed. Moreover,

Tmax(−ε) = max
j
S(−ε,dj) = −min

j
{−S(−ε,dj)} ,

= −min
j
S(ε,dj) = −Tmin(ε),

where the first equality on the second line is due to A2. Thus
Tmax(ε) and -Tmin(ε) have the same distribution.

In a large-scale testing framework (with regards to the
number of samples n), the max and min statistics Tmax(y)
and Tmin(y) are computed for a large number of observations
yi, for 1 ≤ i ≤ n. Let π0 ∈ (0, 1] be the true proportion of
observations yi distributed according to the null hypothesis,
while π1 = 1−π0 is the proportion of observations distributed
according to the alternative hypothesis for the testing problem
(1). Let F (t) = Pr (Tmax(y) ≤ t) be the cumulative distribu-
tion function of the max statistic Tmax(y). This distribution
function can be expressed as a two-groups model:

F (t) = π0F0(t) + π1F1(t),

where F0 and F1 denote the distribution functions under the
null and the alternative hypotheses, respectively. Under the
non-negativity assumption introduced in section II-B, Tmax(y)
should be stochastically larger under H1 than under H0, i.e.,
F0(t) > F1(t) for any t ∈ R. Let µ0 be the median of the

max test statistics under the null hypothesis2 (referred to as the
null median hereafter), i.e., F0(µ0) = 1

2 . We now introduce
the classical zero assumption, as termed by Efron a different
context [21, Chap. 6]. This assumes the existence of a noise-
only domain that allows to build a procedure for estimating
the null distribution (see Remark 2 hereinafter for a discussion
about this assumption).
A3 (Zero assumption for F1). F1(t) = 0 for the region t ≤ µ0

where the max statistics are most likely under H0.

From this assumption, we can now derive the following
expression:

F (t) = π0F0(t), for t ≤ µ0.

In a similar manner, the survival function G(t) =
Pr (−Tmin(y) > t) of the opposite min statistic −Tmin(y)
reads as

G(t) = π0G0(t) + π1G1(t),

where G0 and G1 are the survival functions of −Tmin(y) under
the null and alternative hypotheses, respectively. This comes
from the non-negativity assumption that −Tmin(y) should be
stochastically smaller under H1 than under H0, i.e., G0(t) >
G1(t). Note that µ0 is also the median of the null distribution
of −Tmin(y) as G0(µ0) = 1 − F0(µ0) = 1

2 according to the
proposition II.1. This allows us to introduce the following zero
assumption.
A4 (Zero assumption for G1). G1(t) = 0 for the region t ≥ µ0

where the opposite min statistics are most likely under H0.

Thus

G(t) = π0G0(t), for t ≥ µ0.

Since G0(t) = 1−F0(t) according to the proposition II.1, we
can finally derive the following expression:

π0F0(t) =

{
F (t), for t ≤ µ0,

π0 −G(t), for t > µ0.
(7)

The main interest of this expression is that it does not
depend on each group distribution function but only on the
distribution function of the two-groups model. In particular,
assumptions A3 and A4 do not require to fully specify
F1, which is unlikely to be known in practice. Expression
(7) is therefore robust to alternative miss-specifications. This
expression still depends on the theoretical null median µ0,
the proportion π0 of samples under H0, and the distribution
functions F (t) and G(t), which are not known. However, when
a large number of observations y1, . . . ,yn are available, these
quantities can be estimated from the empirical distributions of
the test statistics. Let

F (t) =
# {Tmax(yi) ≤ t}

n
, G(t) =

# {−Tmin(yi) > t}
n

,

be the empirical distribution function of Tmax and the empirical
survival function of −Tmin, respectively.

2For the sake of simplicity, the observations are assumed to obey absolutely
continuous distributions. Thus the test statistics T are also continuous, and
their median µ is defined as Pr(T ≤ µ) = Pr(T ≥ µ) = 1

2
. The extension

to discrete statistics is left to the reader.
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A5 (Weak dependence assumption). The empirical functions
F (t) and G(t) converge uniformly toward the theoretical
distribution functions F (t) and G(t), respectively:

sup
t
|F (t)− F (t)| −→ 0, sup

t
|G(t)−G(t)| −→ 0,

almost surely as the number n of observations grows to infinity.

Statement A5 is verified under weak dependence condi-
tions between the observed samples y1, . . . ,yn. In particular,
this holds for independent or short-range dependent samples
according to the Glivenko-Cantelli theorem. A direct conse-
quence is the pointwise convergence in probability of F (t)
and G(t) toward F (t) and G(t), respectively, for any t ∈ R.

Due to zero assumptions A3 and A4 and proposition II.1,
µ0 satisfies F (µ0) = G(µ0) = π0

2 . Therefore, based on
assumption A5, an estimator of the null median µ0 can be
searched as a solution of the following equation for µ:

F (µ) = G(µ). (8)

Lemma II.2 (Empirical null median estimator). Let
t(1) < t(2) < . . . < t(2n) be the ordered val-
ues of the statistics belonging to the sample t =
(Tmax(y1), . . . , Tmax(yn),−Tmin(y1), . . . ,−Tmin(yn)). Let µ̂0

be the sample median of t, which is defined as

µ̂0 =
t(n) + t(n+1)

2
. (9)

Then µ̂0 satisfies (8) and is a consistent estimator of the null
median µ0, under zero assumptions A3 and A4.

Proof. See appendix A1.

Based on the null median estimator given in lemma II.2, we
can now obtain the empirical null estimates of π0 and F0(t).
Let

s0 = {Tmax(yi) ≤ µ̂0} ,

be the sample set of the max-test statistics truncated on
(−∞, µ̂0], the elements of which are denoted as s0,i, for
1 ≤ i ≤ n0, and where n0 = |s0|. Similarly,

g0 = {−Tmin(yi) > µ̂0} ,

denotes the set of the opposite min statistics truncated on
(µ̂0,+∞), the elements of which are denoted as g0,i for
1 ≤ i ≤ n0 (according to lemma II.2, these two sets are
of equal size).

Proposition II.3 (Empirical estimators under H0). Under
assumptions A3 and A4,

π̂0 = min {2n0/n, 1} , (10)

is a consistent estimator of the null proportion π0, and

F̂0(t) =
# {s0,i ≤ t} + # {g0,i ≤ t}

2n0
(11)

is a pointwise consistent estimator of the null distribution
F0(t), for t ∈ R.

Proof. See appendix A2.

Remark 1: the dependence structure across a set of obser-
vations y1, . . . ,yn with yi ∈ Rl is not required to specify
the empirical estimators π̂0 and F̂0 given in proposition
II.3. These non-parametric estimates rely essentially on the
noise symmetry assumption A1, which is very weak. As a
consequence, these estimators are robust to miss-specifications
that are prone to occur with parametric assumptions.

Remark 2: Zero assumptions A3 and A4 provide an ideal-
ized mathematical framework for which the empirical estima-
tors are shown to be consistent. However, these assumptions
are unlikely to be satisfied in practice. As a consequence,
Eq. (7) is an approximation. Note, however, that the closer
π0 is to one, the more accurate the approximation is. This
is the case in many large-scale testing problems. where the
null proportion π0 is usually close to one. The approximation
gains also in accuracy the more F0(t) (resp. G0(t)) dominates
F1(t) (resp. G1(t)) for t ≤ µ0 (resp. for t ≥ µ0). Moreover,
if a few observations distributed according to the alternative
distribution belong to the regions where they are assumed to be
absent, then π̂0 tends to be biased upward, and F̂0(t) tends to
be slightly biased toward the alternative distribution F1(t). It
is of note that from a statistical testing perspective, this slight
bias goes in the good way. Indeed, a detection procedure based
on F̂0(t) (and possibly π̂0) then becomes more conservative as
p-values are slightly biased upward. This results in a small loss
of power but the control of type I errors is still (asymptotically)
guaranteed.

Figure 1 shows the empirical density functions associated
with the max-test statistics Tmax(yi) and the opposite min
statistics −Tmin(yi) for synthetic data with a testing frame-
work that mimics the MUSE one. We can see that the max
density has a heavier right tail than the opposite min one. This
is due to the contribution of theH1 samples, while the opposite
min density right tail is (approximately) distributed according
to the theoretical null density due to (approximation) A4. By
symmetry, the opposite min density has a heavier left tail than
the max density one.

To appreciate the accuracy of the empirical estimators given
in proposition II.3, the empirical null-density function that
is obtained from the right-truncated sample s0 and the left-
truncated sample g0 that are used to construct F̂0(t), is
depicted in Figure 2a. Here, the null proportion estimate is
larger than the theoretical value: π̂0 = 0.89 and π0 = 0.81.
Nevertheless, the empirical null-density function is very close
to the theoretical one. This is confirmed by the quantile-
quantile plot between F̂0 and the theoretical distribution F0

shown in Figure 2b. In particular, this remains true in the
distributions tails, where the accuracy of the quantile estimates
is crucial to the robustness of the test at low control levels.

D. Error control

In multiple testing (around n = 2500 tested pixels for a
50 × 50 patch in the MUSE context), the classical Type I
error control of each individual test might not be appropriate;
see e.g., [22], [23]. Indeed the number of wrongly rejected
null hypotheses can become relatively important (i.e., even
larger than the number of true detections) due to the high
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Fig. 1: Empirical density functions of the max-test statistics
Tmax(yi) (blue line with � markers) and of the opposites of
min statistics −Tmin(yi) (green line) for n = 2500 indepen-
dent samples y1, . . . ,yn ∈ Rl generated from the observation
model (1) with l = 30. Noise vector εi has i.i.d. entries that
follow a student distribution with ν = 5 degrees of freedom.
The proportion of null hypotheses is π0 = 0.81. Samples under
H1 are generated as yi = aid+ εi, where ai ∈ [0.1, 3] and d
has unit length. The min and max-test statistics are obtained
from a dictionary D with m = 15 positively correlated atoms,
including d, and using the SAD similarity measure.

number of tests. To address this kind of issue, a global error
control approach, namely the FDR, was introduced in [2]. The
FDR controls the expected proportion of true null hypotheses
wrongly rejected, which are referred to as the false discoveries,
among all of the rejected tests:

FDR = E

[
U

max (R, 1)

]
,

where R is the total number of tests where the null hypothesis
is rejected, while U is the number of false discoveries among
the R discoveries. A simple and widely used approach to con-
trol this FDR is the Benjamini and Hochberg (BH) procedure
that was also developed in [2]. Let pi be the p-value associated
with the ith test statistics. Let p(1) ≤ p(2) ≤ . . . ≤ p(n) now
be the ordered p-values, and H(1)

0 , . . . ,H(n)
0 denote the null

hypotheses for this ordering. For a preselected control level
0 ≤ q ≤ 1, the BHq procedure rejects H(1)

0 , . . . ,H(k̂)
0 where

k̂ = max

{
0 ≤ k ≤ n : p(k) ≤ q

k

n

}
,

with p(0) = 0 by convention. In our right-sided detection
framework, the ith empirical p-value, can be derived from
the empirical null distribution given in proposition II.3 as

pi = 1− F̂0 (Tmax(yi)) , for 1 ≤ i ≤ n. (12)

Then in the case of n independent tests, or under specific
positive dependences [24], the BHq procedure controls the
FDR at a level π0q ≤ q. Thus, if π0 is known, the BH

(a) Empirical density function of the sample set t0 = s0 ∪g0,
where s0 and g0 are the sample sets used to construct F̂0(t)
(blue curve) and theoretical density function of Tmax(y) under
H0 (green curve with � marker).

(b) QQ-plot of F̂0(t) against the theoretical distribution F0, •
marker, and y = x line (red dashed line).

Fig. 2: Comparisons between the empirical null distribution
estimator F̂0(t) and the theoretical distribution of Tmax(y)
under H0. Data are generated using the same setting as in
Figure 1. The theoretical distribution function was estimated
using 105 Monte-Carlo runs.

procedure can be applied at the nominal level q
π0

to improve
its power while controlling FDR at level q. Building on this
idea, Storey [25] proposed the following modified estimator of
the null proportion π0:

π̂∗0(ζ) = min

{
1 + #{pi > ζ}

(1− ζ)n
, 1

}
, for ζ ∈ [0, 1),

where ζ has to arbitrarily fixed (usually at 1
2 ). Storey showed

that under the weak dependence assumption A5, the BHq′
procedure at nominal level q′ = q/π̂∗0(ζ) asymptotically
controls the FDR at level q. We show in the following that the
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same strategy can be applied with the empirical null-estimator
π̂0.

Proposition II.4 (Storey π0 estimator). The empirical null
estimator π̂0 defined in (10) and the Storey estimator π̂∗0(ζ)
derived from the empirical p-values defined in (12) are equal
for any ζ = k

2n0
with k ∈ {n0, . . . , 2n0 − 1}, and are

asymptotically equivalent for any ζ ∈ [ 12 , 1).

Proof. See appendix B.

This equivalence is not surprising since, like the proposed
empirical null estimators, Storey estimator is based on a zero
assumption (i.e., the p-value density function under H1 is zero
on (ζ, 1]).

This leads us to consider the following multiple testing
procedure described in Alg. 1.

Algorithm 1 FDR-based detection procedure
Input: nominal FDR level q

1) compute the empirical null estimators π̂0 and F̂0 as
defined in proposition II.3;

2) compute the empirical p-values according to (12);
3) apply the BH procedure at a nominal control level q/π̂0.

Note that it has been shown in [22] that for matched filter
statistics, with a non-negative template and under Gaussian
assumptions, the test statistics obey a positive regression
dependence on a subset (PRDS) condition. Therefore, the BH
procedure ensures exact FDR control in finite sample settings.
Here the problem is more complex. The test statistics are
derived from extreme values that can be correlated. Then
PRDS is difficult to ensure theoretically, even under Gaussian
assumptions on the noise. However, under weak dependence
assumption A5, an Oracle procedure similar to Alg. 1, but
where the p-values are computed from the theoretical null
distribution F0, can be proven to control asymptotically the
FDR at level q [25]. As discussed in the previous subsection,
the p-value empirical estimates tend to be slightly biased in
a conservative way. Moreover, if the null distribution can be
estimated on a larger sample than the sample to be tested, the
variance of these estimates can be reduced. This supports the
asymptotic control of the proposed procedure.

E. Validation
Figure 3 shows the FDR obtained with Alg. 1, on 3D

(spatial + spectral) simulated data that are subjected to weak
dependence (spatial kernel convolution), for different levels of
nominal control q and different signal-to-noise ratio (SNR).
The SNR is defined here as 10 log A

nlσ2 , where n is the number
of pixels (i.e., the number of tests to perform), l is the number
of spectral bands (i.e., the dimension of the observations yi),
σ2 is the marginal variance of the noise, and A = ||x||2 is the
energy of the 3D contribution of the signals to be detected.
The experimental set-up is similar to Figure 1, except that a
spatial convolution kernel of size 3 by 3 was applied to create
local spatial correlations. The empirical null estimators defined
on section II-C were computed from extended cubes of 200
by 200 pixels by 30 wavelengths.

This figure emphasizes that control of the FDR is correctly
achieved for the different SNR levels. As expected, due to
the zero assumption approximations, Alg. 1 is a little more
conservative than the Oracle one (based on the true F0 and
π0) at low SNR, where the alternative distribution is closer to
the null one.

Fig. 3: Empirical FDR (averaged from 1000 Monte-Carlo runs)
versus the SNR under weak dependence, for different levels of
FDR control q = 0.02, 0.05, 0.1, 0.2 (in cyan, red, green, and
blue, respectively). Dashed horizontal lines, nominal control
levels q; � curves, FDR for Alg. 1 empirical procedure; ?
curves, FDR for Oracle procedure based on the true (computed
from 105 Monte-Carlo runs) F0 and π0. Data are generated as
3D cubes of n = 51× 51 pixels by l = 30 wavelengths.

Table I shows the advantage of assuring a global control
with a detection threshold that adapts to the data. It compares
this global control with a pixel-wise control based on the
probability of false alarm (PFA). Controlling with a η (e.g.
5%) PFA threshold results in detecting all pixels with p-values
smaller than η. Such a PFA control then ensures that in average
a fraction η of all the tested pixels will be wrongly detected
(but says nothing of the proportion of these wrong detections
among the detected set).

When confronted to noise-only data, a control procedure
with PFA at level 5% detects 144 spurious pixels, that is
the size of a possible source. To insure that no source is
falsely detected, we may turn to a more conservative level, e.g.
0.1%; this results in poor source detection power (around 55%)
whereas a 5% level led to very good power (82%) at the price
of a large number of false alarms (false discovery proportion
' 43%). On the same dataset, a FDR control at 20% does not
lead here to any false detection in the absence of source while
maintaining a high detection power (72%) in presence of a
source, thus adapting to the data. Table I shows that the false
discovery proportion is around 18% for a nominal FDR control
of 20%. Note that by applying our procedure we can estimate
the FDR level that matches a given detection threshold. For
instance a threshold on the p-values associated with a 5% PFA
level yields a FDR estimate around 44% on data tested here.
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TABLE I: Comparison between FDR and PFA control on data
with and without target. Data was built from noise-only regions
in MUSE real data and a synthetic source was added. Number
of tests is 2500 (50 by 50 pixels) and source size is 185 pixels.
Results were averaged on 5 different regions.

PFA 0.05 PFA 0.001 FDR 0.2
Noise-only

False Detections (pixels) 144 2 0
True Detections (pixels) 0 0 0

Source + noise area
False Detections (pixels) 117 2 30
True Detections (pixels) 153 106 133

False discovery proportion (%) 43.3 1.8 18.4

Table I shows that the false discovery proportion is indeed
around 44% for a threshold corresponding to a 5% PFA.

In the next paragraph the ability of the proposed method to
control error rate is compared with a generalized likelihood
ratio (GLR) approach (inspired by [9] and [10]). Noise is sup-
posed centered Gaussian ε ∼ N (0,Σ) where the covariance
matrix Σ ∈ Rl×l is assumed to be diagonal. We have the
following detection test :{

H0 : y = ε,
H1 : y = Da+ ε, with ||a||0 = 1,a ≥ 0

where ||.||0 is the `0-pseudo-norm (number of non-zero com-
ponents) and a ≥ 0 is the non-negativity constraint on the
coefficients. The GLR test with 1-sparsity constraint yields
the following test statistic([9])

TGLR(y) =
max
a

p(y|Da,H1)

p(y|H0)
s.t. ||a||0 = 1,a ≥ 0,

where p(y|Da,H1) denotes the probability density function
of y under H1 and p(y|H0) denotes the probability density
function of y under H0. Using the Gaussian assumption it
comes that

TGLR(y) =
dT
ĵ
Σ̂
−1
y√

dT
ĵ
Σ̂
−1
dĵ

where ĵ is the index of the non-zero component of the optimal
â for the GLR statistics, and Σ̂ is estimated from the residuals.
There is no closed-form expression of the distribution of this
statistic since it consists in taking the max of a correlated
Gaussian vector. Thus we calibrated this statistic under H0

(normal centered noise) by Monte-Carlo.
Figures 4 and 5 illustrate the main advantage of the

proposed method : the control is ensured when the noise
distribution is symmetrical without further assumptions. The
GLR approach has to be calibrated under H0 distribution so
any deviation from the theoretical H0 results in a loss of
control, as illustrated by figure 5 where the noise is drawn
from a Student distribution. It can be seen that BH procedure
based on the theoritical H0 GLR statistics do not correctly
control FDR. In a first time the effective FDR strongly exceeds
the given control level (allowing GLR to be “more powerful”
at a given nominal control level). In a second time it becomes
too conservative. This comportment can be explained by the
Gaussian fit of the Student distribution of noise: tails are

underestimated (hence the excess in FDR) whereas the bulk is
overestimated (hence the loss in power in the second part).
It should be noted that a classical ROC curve of the two
methods would show very similar performance (same power
for an effective error budget) between the two approaches
but would hide the inaccuracy of error control of the GLR
approach. Moreover figure 4 shows that when GLR is at its
best (adequate model), the proposed method does stays really
close in term of power despite its versatility.
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Fig. 4: True FDR (left) and power (right) versus nominal
FDR control level, between GLR and proposed method, on
synthesized data with Gaussian noise. The GLR was calibrated
by 104 Monte-Carlo runs on normal noise. Σ was estimated on
the data. Results were averaged on 200 runs of simulated data
cubes with π0 = 0.97. GLR is in blue, proposed method in
green, y = x in dashed red. Matched filter similarity measure
(4) was used for the proposed method.
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Fig. 5: True FDR (left) and power (right) versus nominal
FDR control level, between GLR and proposed method, on
synthesized data with Student noise (4 degrees of freedom).
The GLR was calibrated by 104 Monte-Carlo runs on normal
noise. Σ was estimated on the data. Results were averaged on
200 runs of simulated data cubes with π0 = 0.97. GLR is in
blue, proposed method in green, y = x in dashed red. Matched
filter similarity measure (4) was used for the proposed method.
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III. APPLICATION TO THE MUSE DATA

It is believed that young galaxies are often surrounded by
halos of hydrogen gas, known as the circum galactic medium.
The emissions from these halos can be several orders of
magnitude fainter than those from the galaxies. Furthermore,
the emission spectrum of the halos are composed of narrow
lines, notably with the Lyman-α line. The MUSE [1] was
developed to detect such emissions. It is a 3D spectrograph
that can image and analyze a field of 1 arcmin2 by producing
a hyperspectral data cube of 300 by 300 pixels by 3600
wavelengths. Its spectral range covers the visible and near-
infrared domain, from 450 nm to 930 nm.

Since the MUSE first light in January 2014, several studies
[9], [26] have already been conducted on the MUSE data. The
aim has been to detect faint young galaxies, which are also
characterized by the presence of a powerful Lyman-α emission
line in their emission spectrum. Both methods mostly assume
spatially and spectrally punctual sources. As a consequence,
they efficiently find the core of galaxies, but are not (yet)
adapted to detect the faint extended halos.

The purpose here is to explore the vicinity of these already
detected galaxies, and track the Lyman-α emission line as far
away from the galaxy as possible.

A. The MUSE data

The proposed detection method is applied to the MUSE
observations of the sky region known as Hubble Deep Field
South (HDFS), as it was previously observed by the Hubble
space telescope. The MUSE produces huge amounts of data
that have to be processed by a data reduction system before
they can be used for scientific analysis. In particular, a resam-
pling process creates local correlations in all directions (spatial
and spectral) between voxels that cannot be easily modelled
due to the data dimensions. The data reduction system applied
to the data used here is detailed in [27]. The output is a 300 by
300 pixels by 3600 wavelengths data cube that is associated
with a variance cube of the same dimensions. This latter is
estimated by propagating the error estimated at the captor level
at each stage of the processing.

A catalog of astronomical objects in HDFS was built in
[27]. About 90 of these objects are remote galaxies known
as Lyman α emitters that are likely to have a halo. For each
of these sources, a spatial-spectral neighborhood is defined,
which is centered spatially on the galaxy center and spectrally
on the emission line peak, and a subcube of 50 by 50 pixels by
30 wavelengths is extracted. This cube extraction is performed
for the two following reasons. Spectrally: the signal of interest
(hydrogen Lyman α emission line) is concentrated in a few
wavelengths around the emission peak. Outside of this domain,
galaxy spectra (used to built reference spectrum) can contain
other features that are not present in the targeted hydrogen
surrounding halo. Spatially: as the targeted halo is expected to
stay close to the galaxy, exploring empty (only noise) remote
regions would only result in a loss in power (in our global
control procedure).

B. Pre-processing workflow

To deal with the MUSE data, several pre-processing steps
are needed. First, the spectral continuum is robustly estimated
and removed in each pixel using [28]. Then coarse reduction
of the data is carried out using the variance cube provided with
the data, followed by robust centering and finer reduction, slice
by slice [20]. After the reduction by the variance cube, we can
make the following assumption of stationarity of the noise.
A6 (Stationary noise). The noise is stationary on each
wavelength-slice of the cube.

Spatial matched filter preprocessing:
For ground-based astronomical instruments such as MUSE,
the spatial system impulse response (FSF) is mainly due
to atmospheric turbulence. This FSF is measured for each
observation (see [29]), and is independent of the instrumental
noise. As such, we can make the following assumption:
A7. The noise in the observation model (1) is not filtered by
the FSF.

Based on A7, the following strategy was chosen to improve
the SNR: a spatial convolution with the FSF (which is modeled
as a symmetrical function) is applied to each image of the
wavelength axis of the data cube. It is not strictly speaking
a spatial matched filter to the searched halo. Indeed, the halo
extension and its intensity profile are not known. However,
this greatly improves the SNR. The price to be paid is that
the theoretical spatial extension of the halo is enlarged by this
operation. In practice, the halo has a larger extension than the
FSF, with an intensity profile that, as does the FSF, decreases
quickly toward zero on its support. Therefore, this effect can
be neglected in the detection results.

C. Detection

In the application on hand, we have the following assump-
tions:

1) The galaxy spatial center is already known, as well as
the spectral position of the emission line in the galaxy
spectrum (with e.g., the method developed in [26]);

2) The emission line in the halo spectra has a shape
similar to the emission line in the galaxy spectrum, the
continuum of which has been subtracted, but can present
a shift along the spectral wavelengths;

3) Samples (pixels) are weakly dependent.
The second hypothesis is only partially true: in reality the

redshift is not a simple spectral shift, but the composition of a
shift and a dilatation. However, at the spectral resolution, the
deformation can be neglected. The third assumption is justified
because dependences between pixels are mainly due to inter-
polations during the resampling step, and these dependences
have short-range effects. Moreover, in the pre-processing
workflow, only the convolution by the FSF creates significant
spatial dependences, once again with a short-range effect due
to the finite support of the FSF. Thus, the weak dependence
assumption A5 is fulfilled. Assumptions required to apply the
proposed method are also fulfilled. MUSE data result from
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the summing of a high number of exposures thus the noise
tends to be Gaussian (and as such symmetrical) by application
of the central limit theorem. The following numerous pre-
processing steps (background subtraction, centering, variance
reduction,...) all keep the symmetrical property of the centered
noise thus ensuring that assumption A1 hold. Assumption A2
(odd similarity measure) is fulfilled by construction as we
choose the SAD measure. As pointed out in Remark 2 of II-C,
assumptions A3 and A4 can’t be strictly guaranteed. However,
outside of this ideal framework, the key point is that equation
(7) is a good enough approximation. Indeed, the targeted signal
is assumed to be distinct enough from the background noise
and well approximated by the dictionary (see section III-C1);
thus Tmax(y) will be significantly stochastically larger under
H1 than under H0 for detectable signals. Moreover the galaxy
and halo pixels are supposed to be in strong minority in the
spatially explored region, that is π0 is close to one, which
enforces these approximations. Finally, as stressed in Remark
2, the approximation errors in equation (7) can only lead to
a small loss in power and the control is still guaranteed (the
bias is conservative as shown in figure 3 for low SNR).

For a given galaxy, a spatial-spectral neighborhood is de-
fined, centered spatially on the galaxy center and spectrally
on the emission line peak. Based on these hypotheses, the
approach developed here consists of applying the following
steps.
• Estimate a reference emission line spectrum by averaging

the spectra of a few pixels at the center of the galaxy.
• Create a (highly) coherent family of shifted versions of

this reference target signature to build a dictionary.
• Test each pixel of the defined neighborhood using the

method developed in section II.
1) Dictionary: One of the main assumptions here is that

the target signature variability can mostly be modeled as a
spectral shift. Thus, the dictionary is built here by creating
shifted variants of one target signature, d∗. Assuming that d∗
comes from sampling of a continuous model f(·), we can
define as dδ∗, the shifted vector that is obtained by sampling
f(· − δ). The linearly spaced shifts (LSS) dictionary model
on an interval [−τ, τ ] is then defined for a given size m, as
the dictionary Dm composed of the atoms dk = dτk∗ , where
τk = −τ + 2τ

m−1k, for k = 0, . . . ,m− 1.
The key question is then the choice of the number m

of shifted versions, or in other words, the redundancy of
the dictionary. To allow a study of this parameter, we place
ourselves in a simplified context:
• the noise is supposed to be i.i.d. N (0, 1);
• the similarity measure is a spectral matched filter between

a dictionary atom and the tested spectrum, as in (4);
• the reference spectrum d∗ is a non-negative vector with

unit length, where its autocorrelation function Γ(u) =
〈d∗,du∗〉 is non-increasing in |u|, and has compact sup-
port such that ||du∗ || = ||d∗|| = 1, for u ∈ [−τ, τ ];

• the target signature x is built from a translation du0 of
the reference spectrum x = adu0 , where a > 0, and u is
a random shift that is uniformly distributed on [−τ, τ ].

A measure of the redundancy of a given normalized dictio-

nary D can be given by its coherence, which is defined as
µ = max

i 6=j
|〈di,dj〉|. For a LSS dictionary Dm, and under

the aforementioned assumptions, this coherence reduces to the
correlation between two consecutive atoms: µ = 〈dj ,dj+1〉,
for 1 ≤ j < m. As illustrated by figure 6, by design of the
dictionary, the larger the dictionary size m, the more correlated
the atoms are, and the more coherent the dictionary is.

Fig. 6: Example of dictionaries built from a reference d∗, with
varying number of atoms (with 3 atoms and 0.2 coherence and
with 5 atoms and 0.5 coherence). The reference d∗ ∈ Rl, with
l = 30, is sampled for j = 1, . . . , l from a Gaussian density
centered on the median band j = 15, with full width at half
maximum of 5 (σ ≈ 2.12) truncated on ±6 around the mode,
and `2-normalized. The maximal shift is τ = 8.

Let zm = (Dm)Ty ∈ Rm be the vector of the matched
filter statistics, the elements of which are defined as zmj for
1 ≤ j ≤ m. For a given decision threshold η, the PFA for the
max-test approach is expressed as

αm = Pr (max zm > η), under H0. (13)

Here the noise vector ε is N (0, Im) distributed under H0. If
the atoms are orthogonal (e.g., if they have disjoint support),
the vector zm is then normally distributed with zero mean
and covariance matrix Dm(Dm)T = Im. In this case, we
can compute exactly the PFA as

αm = 1− Pr (maxzm ≤ η) = 1− Pr (zm1 ≤ η)
m
,

= 1− Φ (η)
m
,

(14)

where Φ is the cumulative function of the normal distribution.
In practice, the dictionary is chosen to be highly coherent
(as we want to track close translated versions of a reference
spectrum). This requires another way to be found to estimate
or maximize this probability.

Proposition III.1. For any t ∈ R and m ≥ 2, let Mm+1(t)
be defined recursively, under H0, as

Mm+1(t) = Pr
(
zm+1
1 ≤ t | zm+1

2 ≤ t, zm+1
3 ≤ t

)
×Mm(t),

(15)

with M2(t) = Pr (z21 ≤ t, z22 ≤ t). Under the aforementioned
assumptions, an upper boundary of the PFA αm is given by
1−Mm(η).
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Proof. See Appendix C.

The interest of expression (15) is that the first factor
of the right hand side and the initial value M2(t) can be
evaluated numerically based on quadrature rules for trivariate
and bivariate normal distribution functions [30], without the
requirement for any Monte-Carlo approximation. Thus, this
upper boundary can be easily and accurately computed. When
the atoms are uncorrelated, this boundary is sharp and reduces
to (14). Moreover this allows appreciation of, for a given
threshold η, the increase in the PFA αm as a function of the
dictionary size m for highly correlated atoms. In a reciprocal
way, this allows the evaluation of the threshold ηm, which
ensures a false alarm rate that is lower than a given α for any
m ≥ 1.

We can now estimate roughly the potential detection gain
under H1 as a function of m, as follows: Under H1, we have
assumed that

y = adu∗ + ε

with a shift u ∼ U([−τ, τ ]). Then, if we assume that the
maximum is obtained for the closest atom, which is by
assumption the more correlated with du∗ , the expected max-test
statistic can be approximated by

E[max zm] ≈ aE[Γ(em)]

where Γ(·) is the autocorrelation function of d∗ and em ∼
U([0, τ/(m−1)]) is the shift between du∗ and the closest atom.

Using this expected max-test value under H1 and the upper
boundary on the false alarm given in proposition III.1, we can
see in Figure 8 that when the dictionary size m increases,
the max-test statistic can still increase under H1. However,
for fixed level control α, the test threshold (upper boundary)
ηm does not increase significantly above a certain size, e.g.,
m ≥ 10 in Figure 8. This is clearly explained by the stronger
correlations when adding new atomsConversely, if the atoms
are uncorrelated, we see that the threshold deduced from (14)
increases faster than the potential gain of the max-test statistic
under H1.

This is confirmed in Figure 7, which shows different empiri-
cal ROC curves for different sized m of the LSS dictionaries. It
can be seen empirically that the more coherent the dictionary,
the more powerful becomes the max test.

As a consequence, in the application, the dictionary will be
built to be as coherent as possible for the spectral resolution of
the MUSE instrument. The reference atom d∗ is estimated by
averaging the spectra of the 5 pixels at the spatial intensity
peak of the galaxy. The spectrum is limited to a l = 30
spectral band area centered on the spectral emission peak,
which ensures the presence of the whole emission line feature.
Based on astronomical priors, the spectral shift is limited to
the interval [−τ, τ ] with τ = 7 MUSE spectral bands (i.e.,
τ ≈ 9 Å). Shifting is done at the spectral resolution of the
instrument, to avoid any interpolations. The dictionary Dm is
finally built with the atoms corresponding to these m = 15
shifted versions of d∗.
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Fig. 7: Comparison of empirical ROC curves for several
dictionary sizes m under the LSS dictionary model.The results
were obtained on 50 Monte-Carlo runs of simulated MUSE-
like data under the aforementioned assumptions.
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Fig. 8: Test statistics threshold versus the number of dictionary
atoms m for a control level of α = 0.05. � marker curve,
threshold ηm for the LSS dictionary Dm as in Fig. 6; • marker
curve, threshold for a size m dictionary with uncorrelated
atoms; heavy blue curve, evolution of the test statistic potential
gain under H1 for an intensity a = 2.7.

2) Similarity measure: To test whether a given spectrum
belongs to the extended source, the similarity measure used in
this application is the SAD, as defined in (5). Of note, other
metrics were explored to build the test statistic, such as the
matched filter one (4) and the spectral information divergence
defined in [31]. Spectral information divergence is built upon
the symmetrical Kullback-Leibler divergence, and it compares
the spectra as distribution densities. As it demands positive
signals for its computation, it cannot be used directly for
our problem, as the MUSE data can be negative due to high
symmetrical noise levels. The matched filter approach can be
used on the MUSE data, and it gives good results. However
SAD appears to be more robust to some systematics of the
MUSE data cubes, such as the edges where there is higher
variability, and it is preferred here.
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D. Results on real data

The results on several subcubes of n = 50 × 50 pixels
by l = 30 wavelengths centered around interesting objects of
the HDFS catalog are shown in Figure 9 for the detection
procedure described in Alg. 1. For each of the n = 50×50 =
2500 spectra, the max-test statistics (6) are obtained from the
SAD similarity measure, and with a highly coherent dictionary
constructed as described in the last paragraph of section
III-C1. The empirical null estimators are computed on larger
subcubes (centered around the subcube to be tested) that are
composed of 200 by 200 spectra. For each object, the first
row shows the narrow band image around the emission line
(the data subcube is totalled along the l = 30 spectral bands
centered on the emission line peak). The second column of
the first row shows the same narrow-band image, but after
the different preprocessing steps (which include continuum
subtraction and FSF convolution). The last column shows the
reference spectrum d∗, built from the pixels at the center of the
studied object. On the second row, the first column shows the
maps of the empirical p-values (12) obtained for the n = 2500
spectra. The maps of the q-values are depicted on the second
column. Q-values were introduced in [32] and can be seen as
the FDR counterpart of the p-values. For each test statistic, it
is defined as the minimal FDR that allows this test statistic to
be a discovery. In our detection framework, this is the minimal
FDR control level q ∈ [0, 1] in Alg. 1, such that a given
spectrum is detected as part of the halo. The interest in this
global measure of significance is clear here, as it allows us to
present more contrasted significance maps than the classical p-
value maps. The third column shows the binary detection map
provided by Alg. 1 for a nominal FDR control level q = 0.2.
The contours of the detection region for different values of q
are also superimposed. From these maps, it can be seen that
several of these objects show clear asymmetry, and that they
extend beyond the simple support of a punctual source (the
black circles show the support of an estimated FSF). Studies
are currently being conducted by astronomers at the Centre
de Recherche Astrophysique de Lyon to analyze these results
and to apply the method to other sky fields.

IV. CONCLUSIONS

In this paper, a new method is proposed to answer a
detection problem of a weak target signature that is partially
known, but with a possible large variability within an unknown
background that is difficult to model. To answer to this
problem, an unsupervised detector was proposed, based on
a maximum test approach, as studied in [13]. This detector
takes explicitly the possible target variability into account
by using a highly coherent dictionary. It does not need any
knowledge of the background, but a simple noise symmetry
assumption, and the non-negativity of the sparse representation
of the targeted signal. This allows to estimate the test statistic
distribution and to implement a simple detection procedure
robust to model/background miss-specification. Moreover, the
error control was developed based on a false discovery rate ap-
proach, and a global measure of the significance was obtained.
Such a control with detection threshold that adapts to the data

(a) Object 43

(b) Object 92

(c) Object 139

Fig. 9: Results on several objects of the HDFS. Each subfigure
corresponds to an object with the numbering to the catalog
defined in [27]. For each subfigure: on the first row, from
left to right: narrow-band image, narrow-band image after
preprocessing (continuum subtraction and FSF convolution),
and reference spectrum atom. On the second row, from left to
right: p-value map resulting from the test, q-value map, and
detection contours for several FDR levels q (0.05 in red, 0.1
in black, 0.2 in green, and 0.4 in cyan) superimposed on the
binary detection map for a FDR level q = 0.2 (blue pixels,
halo detections). The circles in black in the first two columns
show the extent of the FSF. Results are analyzed in III-D.
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is not yet widely used in the signal processing community
whereas it is highly pertinent for processing massive datasets.
This whole new process was tested on real MUSE data.
The promising obtained results are presently analyzed by
astronomers. Future extensions of this original method will
account for the existence of spatial structure of the target while
controlling the FDR. The MUSE data used in this paper is now
publicly available at http://muse-vlt.eu/science/hdfs-v1-0/, and
the Python code of the proposed method is available on
demand.
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APPENDIX

Appendix A: Proof for the empirical null estimators

Appendix A1: Proof of lemma II.2: Let
g = (Tmax(y1), . . . , Tmax(yn)) be the set composed of
the n max statistics, the elements of which are denoted as gi
for 1 ≤ i ≤ n Similarly s = (−Tmin(y1), . . . ,−Tmin(yn))
is the set composed of the n opposite min statistics, the
elements of which are denoted as si for 1 ≤ i ≤ n.

We first show that µ̂0 verifies (8), i.e., that #{gi ≤
µ̂0} = #{si > µ̂0}. For absolutely continuous distributions,
Pr(t(n) = t(n+1)) = 0. Thus from (9), we get that #{ti ≤
µ̂0} = n with probability one. The sample set t is the union of
g and s: if m0 = #{gi ≤ µ̂0}, then #{si ≤ µ̂0} = n−m0.
As a consequence, #{si > µ̂0} = n − (n − m0) = m0 =
#{gi ≤ µ̂0}, which shows that µ̂0 verifies (8).

We show now that µ̂0 converges in probability toward
µ0. As µ̂0 satisfies (8), and F (t) (resp. G(t)) converges in
probability to F (t) (resp. G(t)) for any t ∈ R, µ̂0 converges
in probability to the solution of

F (t) = G(t).

if this equation admits a unique solution. Assuming that the
median of F0 is uniquely defined, it follows that for t > µ0

F (t) = π0F0(t) + π1F1(t) ≥ π0F0(t) > π0F0(µ0) = π0/2,

Moreover, for t > µ0

G(t) = π0G0(t) < π0G0(µ0) = π0/2 < F (t),

where the first equality is due to zero assumption A4. As
a consequence, there is no solution of (µ0,+∞). Similarly,
according to zero assumption A3, that for t < µ0, F (t) <
G(t). Therefore the unique solution is for t = µ0, where
F (µ0) = π0F0(µ0) = π0/2 = π0G0(µ0) = G(µ0), which
concludes the proof. �

Appendix A2: Proof of proposition II.3: We first show
that the π0 estimator given in (10) is consistent. From lemma
II.2, µ̂0 converges in probability toward µ0: µ̂0

P−→ µ0.
The triangular inequality ensures that |F (µ̂0) − F (µ0)| ≤
|F (µ̂0)−F (µ̂0)|+|F (µ̂0)−F (µ0)|. The first term of the right-
hand side is dominated by supt |F (t)−F (t)|,, which converges
in probability toward 0, according to assumption A5. The
second term also converges in probability toward 0, according
to the continuous mapping theorem. Thus F (µ̂0)

P−→ F (µ0).
According to (7), F (µ0) = π0F0(µ0) = π0

2 . As 2F (µ̂0) =
2n0

n , this shows that

π̃0 ≡ 2
n0
n

P−→ π0 ∈ (0, 1].

Thus π̂0 = min {π̃0, 1} also converges in probability to π0.
We show now the consistency of (11) for t ∈ R. From (7)

and assumption A5, it follows now that F (t)
P−→ π0F0(t)

for all t ≤ µ0. Then, according to the Slutsky theorem,
F (t)/π̃0

P−→ F0(t). As F̂0(t) = F (t)/π̃0 for all t ≤ µ0,
this shows the consistency for t ≤ µ0. The demonstration
for t > µ0 can be done in a similar manner, by noting that
F̂0(t) = 1−G(t)/π̃0 for t > µ0. �

Appendix B: Proof of proposition II.4
Let Tmax(y(1)) ≤ Tmax(y(2)) ≤ · · · ≤ Tmax(y(n)) be the

ordered max-test statistics, while p(1) ≤ p(2) ≤ · · · ≤ p(n) are
the ordered p-values (while pi notes the p-value associated
with pixel i). From (12), it follows that,

p(i) = 1− F̂0

(
Tmax(y(j))

)
for 1 ≤ i ≤ n

where j = n − i + 1. For j ≤ n0, Tmax(y(j)) ≤ µ0 thus

#
{
s0,i ≤ Tmax(y(j))

}
= j and #

{
g0,i ≤ Tmax(y(j))

}
= 0.

So, 2n0F̂0

(
Tmax(y(j))

)
= j for j ≤ n0, that is 2n0p(i) =

2n0 − n + i − 1 for i ≥ n − n0 + 1. For k ≥ n0, let ik =
n− 2n0 + 1 + k. Then ik ≥ n− n0 + 1 so 2n0p(ik) = 2n0 −
n+ ik− 1 = k. Thus #{2n0pi > k} = n− ik = 2n0−k− 1.
If ζ = k/2n0, then #{pi > ζ} = #{2n0pi > k}. Thus
1+#{pi>ζ}

(1−ζ)n = 2n0−k
(1−k/2n0)n

= 2n0

n , which shows that π̂∗0(ζ) =
π̂0.

In the general case where ζ ∈ [ 12 , 1), then ζ and kζ/2n0,
where kζ = b2n0ζc ∈ {n0, . . . , 2n0 − 1}, are asymptot-
ically equivalent when n0 grows to infinity. Thus, π̂∗0(ζ)
and π̂∗0(kζ/2n0) = π̂0 are asymptotically equivalent. This
concludes the proof. �

Appendix C: Proof of proposition III.1
Under H0, for a threshold t we have:

Pr
(
max zm+1 ≤ t

)
= Pr

(
zm+1
1 ≤ t, ..., zm+1

m+1 ≤ t
)

= Pr
(
zm+1
1 ≤ t | zm+1

2 ≤ t, ..., zm+1
m+1 ≤ t

)
× Pr

(
zm+1
2 ≤ t, ..., zm+1

m+1 ≤ t
)

As Dm ≥ 0 and y ∼ N (0, Im) under H0, zm is positively
associated in the sense of [33]. Thus,

Pr (zm+1
1 ≤ t | zm+1

2 ≤ t, ..., zm+1
m+1 ≤ t) ≥

Pr (zm+1
1 ≤ t | zm+1

2 ≤ t, zm+1
3 ≤ t)

(16)
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Using the numerical procedures given in [30], we can accu-
rately compute the right-hand side term of (16). Note that this
term gives a relatively sharp lower boundary, because zm+1

2

and zm+1
3 are the more correlated variables with zm+1

1 among
the zm+1

j for j ≥ 2.
Moreover, by construction, the shifts between the atoms in

Dm+1 are smaller than those for the atoms in Dm. With the
autocorrelation function assumed to be non-increasing with the
absolute shifts, it follows that the size m Gaussian random
vector

(
zm+1
2 , ..., zm+1

m+1

)
has larger correlations than the size

m Gaussian random vector (zm1 , ..., z
m
m). By assumption, these

two vectors are centered with unit marginal variances under
H0. Thus the Slepian lemma [34] yields that:

Pr
(
zm+1
2 ≤ t, ..., zm+1

m+1 ≤ t
)
≥ Pr (zm1 ≤ t, ..., zmm ≤ t). (17)

By combining (16) and (17), we can then minimise
Pr (maxzm ≤ t) by a function Mm(t) that is defined recur-
sively as:

Mm+1(t) = Pr
(
zm+1
1 ≤ t | zm+1

2 ≤ t, zm+1
3 ≤ t

)
×Mm(t),

where M2(t) = Pr (z21 ≤ t, z22 ≤ t). This gives the upper
boundary for the PFA of proposition III.1. Numerical compu-
tations emphasize that Mm(t) increases with t. Then it is pos-
sible to (numerically) inverse Mm(η) to get ηm for a control
level α: ηm = M−1m (1− α) verifies Pr(max zm > ηm) ≤ α.
�
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