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Abstract

Dealing with freely-floating bodies in the framework of non-linear potential flow
theory may require solving Laplace’s equation for the time derivative of the velocity
potential. At present, there are two competing formulations for the body boundary
condition. The first one was derived by Cointe [Cointe(1989)] in 2D. It was later
extended to 3D by van Daalen [van Daalen(1993)]. The second formulation was
derived by Tanizawa [Tanizawa(1995)] in 2D. It was extended to 3D by Berkvens
[Berkvens(1998)]. In this paper, a proof is given that the Cointe-Van Daalen’s
and the Tanizawa-Berkvens’ formulations are equivalent. It leads to a simplified
version of Cointe-Van Daalen’s formulation. The formulation is validated against
the analytical solution for a moving sphere in an unbounded water domain.

1 INTRODUCTION

The first breakthrough for the simulation of nonlinear waves in time domain came
from the Mixed Euler Lagrande (MEL) method, introduced by Longuet-Higgins and
Cokelet [Longuet-Higgins and Cokelet(1976)]. Empowered by this approach, many nu-
merical wave tanks (NWT) were developed, to simulate nonlinear wave propagation
[Xü, H Yue(1992)], plunging waves [Dommermuth and Yue(1987), Zhang et al.(1996)Zhang, Yue, and Taniza
overturning waves [Grilli et al.(2000)Grilli, Guyenne, and Dias] in 2D or 3D. Simula-
tions of wave diffraction on bodies with fixed or prescribed motions were also possible
[Ferrant(1998), Kashiwagi(1996)]. The accurate evaluation of the time derivative of the
velocity potential on the body, giving the hydrodynamic pressure, could be done with a
finite difference scheme in this particular cases. However this scheme leads to numerical
instabilities when considering freely moving bodies [Cointe(1989), Koo and Kim(2004)]
with explicit time-stepping schemes. Moreover, since the hydrodynamic pressure was
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needed to solve the body motion equations, a method solving the mechanical and hydro-
dynamic problems simultaneously was required.

Four methods were proposed along the years in order to cope with this difficulty. The
modal decomposition was first developed by Vinje and Brevig [Vinje and Brevig(1981)]
and further implemented by Cointe [Cointe and Geyer(1990)]. A second method is the it-
erative method, used by Sen [Sen(1993)] and Cao [Cao et al.(1994)Cao, Beck, and Schultz],
and based on a predictor-corrector loop to converge on the body accelerations. The in-
direct method was introduced by Wu and Eatock-Taylor [Wu and Eatock Taylor(1996)]
and used by Kashiwagi [Kashiwagi(1996)]. It is the only method that does not require
solving the Laplace equation for the time derivative of the velocity potential. However
it solves directly the body motions without calculating the hydrodynamic force on the
body. The last method was introduced simultaneously by Tanizawa [Tanizawa(1995)]
and Van Daalen [van Daalen(1993)] and is called the Implicit Boundary method. Fur-
ther details on these methods can be found in the previously mentioned references, but
also in several reviews [Tanizawa(2000), Koo and Kim(2004), Guerber(2011)]. Except
for the indirect one, the three other methods require solving the Laplace equation for the
time derivative of the velocity potential, the main difficulty lying in its body boundary
condition.

Two expressions were given for this body boundary condition. One was proposed
by Cointe [Cointe and Geyer(1990)], first in 2D and later extended by Van Daalen
[van Daalen(1993)] in 3D. The second was given by Tanizawa [Tanizawa(1995)] in 2D,
and Berkvens [Berkvens(1998)] in 3D. Even if both expressions are implemented in sev-
eral numerical flow solvers, their equivalence has not been proven yet. This paper will
thus be dedicated to prove that these expression are equivalent. The four expressions
were moreover developed using different notations and reference systems, that are not
always explicited in the references. We thus provide here with a common ground for the
comparison of those expressions.

The developments of both expressions are first provided, in 2D and 3D. The equiva-
lence is then demonstrated, leading to a new unified expression, simplifying Cointe-van
Daalen ones by suppressing second order derivatives with already known variables, and
thus ensuring a more accurate estimation of the Body Boundary condition. A simple
analytical case of a sphere in prescribed motion in an unbounded water domain is finally
applied to ensure that the body condition is correct.

2 THEORY

2.1 Potential flow theory

Assuming a fluid to be incompressible and inviscid with irrotational flow, its flow velocity
derives from a velocity potential φ which satisfies the Laplace Eq.[Newman(1977)]:

∇2φ(x, y, z, t) = 0 (1)

in the fluid domain, D. The boundary of the fluid domain is ∂D = Γ = Γfs∪Γb∪Γw∪Γd,
see Fig 1.
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Figure 1: Domain definition : boundaries and reference frames

In the general case, without forward speed, it can be shown [Wehausen and Laitone(1960)]
that the velocity potential is the solution of the following boundary value problem:







































































∇2φ = 0 in the fluid domain D

∂φ

∂t
= −gη −

1

2
∇φ · ∇φ on the free surface, Γfs

∂η

∂t
=
∂φ

∂z
−∇φ · ∇η on the free surface, Γfs

∂φ

∂n
= Vb · n on the body, Γb

∂φ

∂n
= 0 on the seabed, Γd

φ −→ 0 on boundaries far from the body, Γw

(2)

The free surface elevation is denoted by the single-valued variable η. g is the gravitational
constant, Vb the body velocity and n the normal vector pointing outsides from the fluid.

Using Green’s Second Identity, it can be shown that the resolution of the 3D Laplace
equation in the fluid domain can be reduced to a Boundary Value Problem (BVP) for
the velocity potential. For any point x ∈ D,

α(x)φ(x) =

∫

Γ

[

∂φ

∂n
(xl)G(x,xl)− φ(xl)

∂G

∂n
(x,xl)

]

dΓ (3)

where α(x) =
∫∫

Γ

∂G(x,xl)

∂n
dΓ is the solid angle from which the closed surface Γ is seen

from point x ∈ ∂Γ and G(x,xl) is a Green function.
Solving the velocity potential BVP gives access to its normal derivative on the free-

surface and the velocity potential on the body. While the first is used to compute the
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free-surface equations, solved in a Lagrangian way to get the propagation of waves on
the free-surface, the latter is used to calculate the pressure force on the body. The body
motions can then be computed, according to the equations of motion.

2.2 Equations of motion

The position, velocity and acceleration, (x, ẋ, ẍ), of a point on the body can be expressed
in the global reference frame using those of the center of gravity, (xb, ẋb, ẍb), and its local
coordinates, r.







x = xb + r

ẋ = ẋb + θ̇ ∧ r

ẍ = ẍb + θ̈ ∧ r+ θ̇ ∧ θ̇ ∧ r

(4)

where (ẋb, ẍb) are the velocity and acceleration of the body center of gravity, and θ is
the body rotational vector. In the inertial reference frame following the body motions, r
is constant.

The body motion equations in translation are obtained according to Newton’s law:

M · ẍb = FH +M · g +
∑

Fext (5)

where M is the mass matrix, ẍb is the acceleration in translation of the center of gravity
of the body in the global reference frame, FH and Fext are respectively the hydrodynamic
and external forces. The latter represents any forces applied on the body by external
systems, ranging from Power Take-Off (PTO) for energy converters, mooring, to viscous
forces which can not be modeled with the potential flow theory.

2.3 Hydrodynamic Force

The hydrodynamic force and moment are obtained by integrating the pressure on the
wet body surface (normal vector pointing outsides from the fluid).

FH = −

∫∫

Γb

p(x)n(x)dΓ (6)

The pressure on the body is given by Bernoulli equation, with the free surface pressure
being equal to the atmospheric pressure:

p = −ρ

(

∂φ

∂t
+

1

2
∇φ · ∇φ+ gz

)

(7)

The velocity potential is known on the body, as the solution of the BVP. Its spatial
derivatives can be computed numerically using local approximation of the potential, or
any particular discretization method. The time derivative of the velocity potential is
however a priori not known on the body and needs to be determined.
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2.4 Velocity Potential Time Derivative

For a body undergoing prescribed motion, the equations of motion, and thus the hydro-
dynamic loads, do not need to be computed during the simulation. Since the velocity
potential is known on the body at each time-step, a finite difference scheme can be used
in post-processing.

However, for a body undergoing free motion, the finite difference scheme used with an
explicit time-stepping formulation, can lead to instabilities [Cointe(1989), Koo and Kim(2004)].
Solving a BVP written for the time derivative of the velocity potential is an alternate
solution.

△φ = 0 =⇒ △
∂φ

∂t
= 0, in D (8)

This BVP is similar to the one for the velocity potential. The boundary conditions
are mixed: Neumann for the material boundaries (body, seabed and numerical walls)
and Dirichlet for the free-surface. The free-surface boundary condition is given by the
dynamic free-surface condition, which can be written in its most general form as

∂φ

∂t
= gη +

1

2
∇φ · ∇φ, on z = η(x, y, t) (9)

The boundary condition on the seabed, Γd, and outer boundaries, Γw can simply be
written as

∂2φ

∂n∂t
= 0 (10)

since these boundaries are fixed in time.
The main difficulty lies in the treatment of the body boundary condition, associated

to the time evolving body. This is detailed in the next section.

3 EXPRESSIONS FOR THE BODY BOUNDARY CON-

DITION

Two expressions have been given, by Cointe [Cointe and Geyer(1990)] and Tanizawa
[Tanizawa(1995)] for this particular boundary condition. In order to demonstrate the
equivalence of both expressions, their development are recalled first, in 2D and 3D. The
proof of their equivalence is then shown, leading to a new unified expression.

The main difference between the two expressions is located in the acceleration used
to express the body boundary condition. Cointe used the acceleration of the point
considered on the body, denoted ẍ, while Tanizawa used the acceleration of a fluid
particle sliding on the body boundary, denoted a. It is however possible to express one
as a function of the other, knowing the body velocity and the velocity potential on the
body.
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3.1 Cointe expression

Cointe [Cointe(1989)] expressed the body boundary condition for the time derivative of
the velocity potential in terms of the time derivative of the body condition for the velocity
potential. For a given point x of the body, with acceleration ẍ, Cointe gave the following
2D expression for the body condition:

∂2φ

∂n∂t
= (ẍ·n)−θ̇

(

∂φ

∂s
− (ẋ · s)

)

−(ẋ·s)

(

∂2φ

∂n∂s
+

1

R

∂φ

∂s

)

+(ẋ·n)

(

∂2φ

∂s2
−

1

R

∂φ

∂n

)

(11)

where θ̇ is the rotational velocity in the global coordinate system, s is the local tangent
vector, n is the normal vector at this point and k = 1

R
is the local curvature on the body.

It is to be noted that Cointe used an indirect local basis (s,n) with a normal vector
pointing inside the body (see Fig. 2a).

Van Daalen [van Daalen(1993)] then extended this expression to 3D:

∂2φ

∂n∂t
= (ẍ · n) + (θ̇ · s2)

(

(ẋ · s1)−
∂φ

∂s1

)

− (θ̇ · s1)

(

(ẋ · s2)−
∂φ

∂s2

)

− (ẋ · s1)

(

1

R1

∂φ

∂s1
+

∂2φ

∂s1∂n

)

− (ẋ · s2)

(

1

R2

∂φ

∂s2
+

∂2φ

∂s2∂n

)

+ (ẋ · n)

(

∂2φ

∂s2
1

+
∂2φ

∂s2
2

− (
1

R1

+
1

R2

)
∂φ

∂n

)

(12)

where (s1, s2) are the two local tangent vectors and k1 =
1

R1

, k2 =
1

R2

are the local

curvatures associated to (s1, s2). Van Daalen used a direct local basis, with a normal
vector pointing also inside the body(see Fig. 2b).

3.1.1 2D Expression

For a body with a direct local curvilinear system (O, s, n) defined from the tangential
and normal vectors (s,n), the curves s = constant are straight lines corresponding to the
normal vectors. The curves n = constant are homothetic contours of the body surface,
with n = n0 corresponding to the body surface. The normal vector is now chosen pointing
outside the body, see Fig. 3.

In Cartesian coordinates, the position of a point is written as r = x.ex+ y.ey. In the
curvilinear system, the local vectors are defined as:

n =
1

hn

∂r

∂n
and s =

1

hs

∂r

∂s
(13)

The scale factors are defined as:

hn = |n| and hs = |s| (14)
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(a) 2D Cointe basis (b) 3D van Daalen basis

Figure 2: bases used by Cointe and van Daalen

Figure 3: Local curvilinear system

According to the definition of the curvilinear system (s, n), the normal scale vector vari-
ations can be expressed, for all space variables (s, n) and time variable t, as:

hn = 1 ,
∂hn

∂s
= 0 ,

∂hn

∂n
= 0 and

∂hn

∂t
= 0 (15)

The tangent vector s is also a unit vector on the contour (n = n0) for all s. However,
its variation along n is non-zero, and can be expressed in terms of the local curvature
radius R:

hs = 1 ,
∂hs

∂n
=
hs

R
and

∂hs

∂s
= 0 (16)

In curvilinear coordinates, the derivative of any unit vector hi along the local parameter
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wj is defined as:
∂hi

∂wj

=
1

hi

∂hj

∂wi

hj − δij
∑

k,k 6=i

1

hk

∂hi

∂wk

hk (17)

In our case, the local derivatives of the unit vectors are then:







































∂s

∂s
=

1

hs

∂hs

∂s
s−

1

hn

∂hs

∂n
n = −

∂hs

∂n
n

∂s

∂n
=

1

hs

∂hn

∂s
n = 0

∂n

∂s
=

1

hn

∂hs

∂n
s =

∂hs

∂n
s

∂n

∂n
=

1

hn

∂hn

∂n
n−

1

hs

∂hn

∂s
s = 0

(18)

In curvilinear coordinates, the derivative operators can be expressed as:











∇φ =
1

hi

∂φ

∂wi

hi =
1

hs

∂φ

∂s
.s+

∂φ

∂n
.n

△φ = ∇ · (∇φ) =
1

h2s

∂2φ

∂s2
+

1

hs

∂hs

∂n

∂φ

∂n
+
∂2φ

∂n2
= 0

(19)

The time derivative of the velocity potential, when following the body motion, is defined

by
δφ

δt
. This derivative is a material derivative associated to the velocity of the body

point, ẋ. It can thus be expressed as

δφ

δt
=
∂φ

∂t
+ ẋ · ∇φ =

∂φ

∂t
+ (ẋ · s)

1

hs

∂φ

∂s
+ (ẋ · n)

∂φ

∂n
(20)

The local unit vectors follow the body motions; their material time derivatives can thus
be written as:

δs

δt
= θ̇n and

δn

δt
= −θ̇s (21)

and their partial time derivatives are then:











∂s

∂t
=

δs

∂t
− (ẋ · s)

1

hs

∂s

∂s
− (ẋ · n)

∂s

∂n
= θ̇.n+ (ẋ · s)

1

hs

∂hs

∂n
.n

∂n

∂t
=

δn

∂t
− (ẋ · s)

1

hs

∂n

∂s
− (ẋ · n)

∂n

∂n
= −θ̇.s− (ẋ · s)

1

hs

∂hs

∂n
.s

(22)

The acceleration of a point x of the body can be written, using the material derivative,
as:

ẍ =
δẋ

δt
=

δ

δt
((ẋ · s)s+ (ẋ · n)n)

=

(

δ

δt
(ẋ · s)− θ̇(ẋ · n)

)

s+

(

δ

δt
(ẋ · n) + θ̇(ẋ · s)

)

n (23)
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from which it follows that:

ẍ · n =
δ

δt
(ẋ · n) + θ̇(ẋ · s) (24)

The body boundary condition gives ẋ · n = ∇φ · n. Using this, Eq.(24) becomes:

ẍ · n =
δ

δt
(∇φ · n) + θ̇(ẋ · s) =

δ

δt
(∇φ) · n+∇φ ·

δn

δt
+ θ̇(ẋ · s)

=
∂2φ

∂n∂t
+ ((ẋ · ∇)∇φ) · n+ θ̇

(

(ẋ · s)−
1

hs

∂φ

∂s

)

(25)

Using the derivations established in Eq.(19) to express the local derivatives in curvilinear
coordinates, the advection term can be expressed as:

(ẋ · ∇)∇φ =
(ẋ · s)

hs

∂

∂s

(

1

hs

∂φ

∂s
s+

1

hn

∂φ

∂n
n

)

+ (ẋ · n)
1

hn

∂

∂n

(

1

hs

∂φ

∂s
s+

1

hn

∂φ

∂n
n

)

(26)

Those of Eq.(18) yields

((ẋ · ∇)∇φ) · n =
(ẋ · s)

hs

(

−
1

hs

∂hs

∂n

∂φ

∂s
+

1

hn

∂2φ

∂s∂n

)

+ (ẋ · n)
1

h2n

∂2φ

∂n2

=
(ẋ · s)

hs

(

−
1

hs

∂hs

∂n

∂φ

∂s
+

1

hn

∂2φ

∂s∂n

)

− (ẋ · n)

(

1

h2s

∂2φ

∂s2
+

1

hs

∂hs

∂n

∂φ

∂n

)

The Laplace equation has been used to get rid of the second normal derivative of the
potential.

1

h2n

∂2φ

∂n2
= −

1

h2s

∂2φ

∂s2
−

1

hs

∂hs

∂n

∂φ

∂n
(27)

Eq.(25) then becomes:

ẍ · n =
∂2φ

∂n∂t
+ θ̇

(

(ẋ · s)−
1

hs

∂φ

∂s

)

+
(ẋ · s)

hs

(

−
1

hs

∂hs

∂n

∂φ

∂s
+

1

hn

∂2φ

∂s∂n

)

−(ẋ · n)

(

1

h2s

∂2φ

∂s2
+

1

hs

∂hs

∂n

∂φ

∂n

)

leading to:

∂2φ

∂n∂t
= ẍ · n+ θ̇

(

1

hs

∂φ

∂s
− (ẋ · s)

)

+ (ẋ · s)

(

1

h2s

∂hs

∂n

∂φ

∂s
−

1

hshn

∂2φ

∂s∂n

)

+(ẋ · n)

(

1

h2s

∂2φ

∂s2
+

1

hs

∂hs

∂n

∂φ

∂n

)

(28)

Replacing the scale factors hs = 1 = hn and their variation
1

hs

∂hs

∂n
=

1

R
by their

respective values, the above equation becomes:

∂2φ

∂n∂t
= ẍ ·n+ θ̇

(

∂φ

∂s
− (ẋ · s)

)

+(ẋ ·s)

(

1

R

∂φ

∂s
−

∂2φ

∂s∂n

)

+(ẋ ·n)

(

∂2φ

∂s2
+

1

R

∂φ

∂n

)

(29)
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Figure 4: 3D curvilinear basis

To compare this with the Cointe expression for an indirect local basis, let’s consider an
opposite tangential vector (s′ = −s)

∂

∂s′
= −

∂

∂s
, ẋ · s′ = −ẋ · s and ẍ · s′ = −ẍ · s (30)

and, since the normal vector is pointing in an opposite direction, we also have to con-
sider an opposite curvature radius: R′ = −R. The Cointe expression, Eq.(11), is then
recovered:

∂2φ

∂n∂t
= ẍ · n− θ̇

(

∂φ

∂s′
− (ẋ · s′)

)

− (ẋ · s′)

(

∂2φ

∂s′∂n
+

1

R′

∂φ

∂s′

)

+ (ẋ · n)

(

∂2φ

∂s′2
−

1

R′

∂φ

∂n

)

(31)

3.1.2 3D Expression

A similar 3D direct curvilinear basis is introduced, with a normal vector pointing outside
the body, see Fig. 4. The unit vector derivatives can be written in a general form as:

∂hi

∂wj
=

1

hi

∂hj

∂wi
hj − δij

∑

k 6=i

1

hk

∂hi

∂wk

hk (32)
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leading in our case to:


















































































































































































∂s1

∂s1
= −

1

hs2

∂hs1
∂s2

s2 −
1

hn

∂hs1
∂n

n

∂s1

∂s2
=

1

hs1

∂hs2
∂s1

s2

∂s1

∂n
=

1

hs1

∂hn

∂s1
n

∂s2

∂s1
=

1

hs2

∂hs1
∂s2

s1

∂s2

∂s2
= −

1

hs1

∂hs2
∂s1

s1 −
1

hn

∂hs2
∂n

n

∂s2

∂n
=

1

hs2

∂hn

∂s2
n

∂n

∂s1
=

1

hn

∂hs1
∂n

s1

∂n

∂s2
=

1

hn

∂hs2
∂n

s2

∂n

∂n
= −

1

hs1

∂hn

∂s1
s1 −

1

hs2

∂hn

∂s2
s2

where the scale factor hk is defined by:

h2k =

3
∑

m=1

∂xm

∂sk

2

Thus, for any x strictly on the body surface, x = x(s1, s2), which means that hn is
constant on the body surface, i.e.:











∂hn

∂s1
= 0

∂hn

∂s2
= 0

(33)

The tangential scale factors hs1 and hs2 are also constant on the body surface, however
their normal derivative is given by the local curvature:











γ1 =
1

R1

=
1

hs1

∂hs1
∂n

γ2 =
1

R2

=
1

hs2

∂hs2
∂n

(34)
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The derivative operators can then be written as:














∇φ =
1

hs1

∂φ

∂s1
s1 +

1

hs2

∂φ

∂s2
s2 +

1

hn

∂φ

∂n
n

△φ =
1

h2s1

∂2φ

∂s2
1

+
1

h2s2

∂2φ

∂s2
2

+
1

h2n

∂2φ

∂n2
+

1

h2n

(

1

hs1

∂hs1
∂n

+
1

hs2

∂hs2
∂n

)

∂φ

∂n

(35)

and the time derivatives are:


































δs1

δt
= θ̇ ∧ s1 = (θ̇ · n)s2 − (θ̇ · s2)n

δs2

δt
= θ̇ ∧ s2 = (θ̇ · s1)n− (θ̇ · n)s1

δn

δt
= θ̇ ∧ n = (θ̇ · s2)s1 − (θ̇ · s1)s2

δ

δt
=

∂

∂t
+ (ẋ · ∇)

(36)

The acceleration of a point on the body surface is written using the material derivative,
in the same way as for the 2D expression.:

ẍ =
δẋ

δt
=

δ

δt
((ẋ · s1)s1 + (ẋ · s2)s2 + (ẋ · n)n)

=
δ

δt
(ẋ · s1)s1 + (ẋ · s1)

(

(θ̇ · n)s2 − (θ̇ · s2)n
)

+
δ

δt
(ẋ · s2)s2 + (ẋ · s2)

(

(θ̇ · s1)n− (θ̇ · n)s1

)

+
δ

δt
(ẋ · n)n+ (ẋ · n)

(

(θ̇ · s2)s1 − (θ̇ · s1)s2

)

(37)

It follows that, using the body boundary condition:

ẍ · n =
δ

δt
(ẋ · n) + (ẋ · s2)(θ̇ · s1)− (ẋ · s1)(θ̇ · s2)

=
δ

δt
(∇φ · n) + (ẋ · s2)(θ̇ · s1)− (ẋ · s1)(θ̇ · s2)

=
δ∇φ

δt
· n+∇φ

δn

δt
+ (ẋ · s2)(θ̇ · s1)− (ẋ · s1)(θ̇ · s2)

=
∂2φ

∂n∂t
· n+ ((ẋ · ∇)∇φ) · n+

(

(ẋ · s2)−
1

hs2

∂φ

∂s2

)

(θ̇ · s1)

−

(

(ẋ · s1)−
1

hs1

∂φ

∂s1

)

(θ̇ · s2) (38)

The advection term can be written, using the body condition, as:

(ẋ · ∇)∇φ = (ẋ · s1)
1

hs1

∂

∂s1

(

1

hs1

∂φ

∂s1
s1 +

1

hs2

∂φ

∂s2
s2 +

1

hn

∂φ

∂n
n

)

+(ẋ · s2)
1

hs2

∂

∂s2

(

1

hs1

∂φ

∂s1
s1 +

1

hs2

∂φ

∂s2
s2 +

1

hn

∂φ

∂n
n

)

+(ẋ · n)
1

hn

∂

∂n

(

1

hs1

∂φ

∂s1
s1 +

1

hs2

∂φ

∂s2
s2 +

1

hn

∂φ

∂n
n

)

(39)
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and thus:

((ẋ · ∇)∇φ) · n = (ẋ · s1)
1

hs1

1

hn

(

∂2φ

∂s1∂n
−

1

hs1

∂hs1
∂n

∂φ

∂s1

)

+(ẋ · s2)
1

hs2

1

hn

(

∂2φ

∂s2∂n
−

1

hs2

∂hs2
∂n

∂φ

∂s2

)

+(ẋ · n)
1

h2n

∂2φ

∂n2
(40)

The Laplace equation gives an expression for the second-order normal derivative of the
velocity potential

1

h2n

∂2φ

∂n2
= −

1

h2s1

∂2φ

∂s2
1

−
1

h2s2

∂2φ

∂s2
2

−
1

h2n

(

1

hs1

∂hs1
∂n

+
1

hs2

∂hs2
∂n

)

∂φ

∂n
(41)

Using this in Eq.(38) then yields:

ẍ · n =
∂2φ

∂n∂t
+

(

(ẋ · s2)−
1

hs2

∂φ

∂s2

)

(θ̇ · s1)−

(

(ẋ · s1)−
1

hs1

∂φ

∂s1

)

(θ̇ · s2)

+(ẋ · s1)
1

hs1

1

hn

(

∂2φ

∂s1∂n
−

1

hs1

∂hs1
∂n

∂φ

∂s1

)

+(ẋ · s2)
1

hs2

1

hn

(

∂2φ

∂s2∂n
−

1

hs2

∂hs2
∂n

∂φ

∂s2

)

+(ẋ · n)
1

h2n

(

−
1

h2s1

∂2φ

∂s2
1

−
1

h2s2

∂2φ

∂s2
2

−
1

h2n

(

1

hs1

∂hs1
∂n

+
1

hs2

∂hs2
∂n

)

∂φ

∂n

)

Finally, using the scale factors and their derivatives, we obtain:

∂2φ

∂n∂t
= ẍ · n + (θ̇ · s1)

(

∂φ

∂s2
− (ẋ · s2)

)

− (θ̇ · s2)

(

∂φ

∂s1
− (ẋ · s1)

)

+ (ẋ · s1)

(

1

R1

∂φ

∂s1
−

∂2φ

∂s1∂n

)

+ (ẋ · s2)

(

1

R2

∂φ

∂s2
−

∂2φ

∂s2∂n

)

+ (ẋ · n)

(

∂2φ

∂s2
1

+
∂2φ

∂s2
2

+

(

1

R1

+
1

R2

)

∂φ

∂n

)

(42)

In order to get the van Daalen expression, Eq.(12), we only need to consider opposite

signs in front of
1

R1

and
1

R2

, since the normal vectors are opposite in [van Daalen(1993)].

3.2 Tanizawa expression

Tanizawa derived a different 2D expression for the body boundary condition, based on
the acceleration of a fluid particle sliding on the body surface. The material derivative
associated to that fluid particle motion is:

D

Dt
=

∂

∂t
+∇φ · ∇ (43)
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(a) 2D Tanizawa basis (b) 3D Berkvens basis

Figure 5: bases used by Tanizawa and Berkvens

The acceleration of the fluid particle can be written as:

a =
Dv

Dt
=
D∇φ

Dt
=
∂∇φ

∂t
+ (∇φ · ∇)∇φ = ∇

∂φ

∂t
+ (∇φ · ∇)∇φ (44)

Its normal component is then:

∂2φ

∂n∂t
= a · n− (∇φ · ∇)∇φ · n (45)

The second term on the right hand side of the previous equation was developed by
Tanizawa [Tanizawa(1995)] in 2D, as follows:

(∇φ · ∇)∇φ · n = −
1

R

(

(

∂φ

∂s

)2

+

(

∂φ

∂n

)2
)

+
∂φ

∂s

∂2φ

∂s∂n
−
∂φ

∂n

∂2φ

∂s2
(46)

Tanizawa used a 2D direct basis, with a normal vector defined pointing outside the body
(see Fig. 5a).

It was later extended to 3D by Berkvens [Berkvens(1998), Tanizawa(2000)], with a
similar basis, direct and normal pointing outside the body (see Fig. 5b):

(∇φ · ∇)∇φ · n = −

(

1

R1

+
1

R2

)(

∂φ

∂n

)2

−
1

R1

(

∂φ

∂s1

)2

−
1

R2

(

∂φ

∂s2

)2

−

(

∂2φ

∂s2
1

+
∂2φ

∂s2
2

)

∂φ

∂n
+
∂φ

∂s1

∂2φ

∂s1∂n
+
∂φ

∂s2

∂2φ

∂s2∂n
(47)
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3.2.1 2D Expression

Using the 2D curvilinear basis previously introduced, Fig. 3, it is possible to write the
velocity potential gradient as:

∇φ =
1

hs

∂φ

∂s
s+

1

hn

∂φ

∂n
n (48)

leading to:

(∇φ · ∇) (∇φ) =
1

hs

∂φ

∂s

1

hs

∂

∂s

(

1

hs

∂φ

∂s
s+

1

hn

∂φ

∂n
n

)

+
1

hn

∂φ

∂n

1

hn

∂

∂n

(

1

hs

∂φ

∂s
s+

1

hn

∂φ

∂n
n

)

=
1

h2s

∂φ

∂s

[

1

hs

∂2φ

∂s2
s−

1

hs

∂φ

∂s

1

hn

∂hs

∂n
n+

1

hn

∂2φ

∂s∂n
n+

1

hn

∂φ

∂n

1

hn

∂hs

∂n
s

]

+
1

h2n

∂φ

∂n

[

1

hs

∂2φ

∂n∂s
s+

1

hn

∂2φ

∂n2
n

]

(49)

Using Laplace equation to remove the second order normal derivative, the normal com-
ponent is then:

(∇φ · ∇) (∇φ) · n = −
1

h3s

1

hn

∂hs

∂n

(

∂φ

∂s

)2

+
1

h2s

1

hn

∂φ

∂s

∂2φ

∂s∂n
+

1

h3n

∂φ

∂n

∂2φ

∂n2

= −
1

h3s

1

hn

∂hs

∂n

(

∂φ

∂s

)2

+
1

h2s

1

hn

∂φ

∂s

∂2φ

∂s∂n

−
1

hn

∂φ

∂n

(

1

h2s

∂2φ

∂s2
+

1

hs

∂hs

∂n

∂φ

∂n

)

= −
1

hshn

∂hs

∂n

(

1

h2s

(

∂φ

∂s

)2

+

(

∂φ

∂n

)2
)

+
1

h2s

1

hn

∂φ

∂s

∂2φ

∂s∂n

−
1

h2s

1

hn

∂φ

∂n

∂2φ

∂s2
(50)

Using the scale factors hs = hn = 1 and their derivatives
1

hs

∂hs

∂n
=

1

R
, the previous

equation yields the Tanizawa expression, Eq.(46):

(∇φ · ∇) (∇φ) · n = −
1

R

(

(

∂φ

∂s

)2

+

(

∂φ

∂n

)2
)

+
∂φ

∂s

∂2φ

∂s∂n
−
∂φ

∂n

∂2φ

∂s2
(51)

.

3.2.2 3D expression

The 3D curvilinear basis previously introduced, Fig. 4, is also used to describe the
velocity potential gradient:

∇φ =
1

hs1

∂φ

∂s1
s1 +

1

hs2

∂φ

∂s2
s2 +

1

hn

∂φ

∂n
n (52)
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yielding:

(∇φ · ∇)∇φ =
1

hs2
1

∂φ

∂s1

∂

∂s1

(

1

hs1

∂φ

∂s1
s1 +

1

hs2

∂φ

∂s2
s2 +

1

hn

∂φ

∂n
n

)

+
1

hs2
2

∂φ

∂s2

∂

∂s2

(

1

hs1

∂φ

∂s1
s1 +

1

hs2

∂φ

∂s2
s2 +

1

hn

∂φ

∂n
n

)

+
1

h2n

∂φ

∂n

∂

∂n

(

1

hs1

∂φ

∂s1
s1 +

1

hs2

∂φ

∂s2
s2 +

1

hn

∂φ

∂n
n

)

(53)

The normal component is then:

((∇φ · ∇)∇φ) · n =
1

hs2
1

1

hn

∂φ

∂s1

(

∂2φ

∂s1∂n
−

1

hs1

∂hs1
∂n

∂φ

∂s1

)

+
1

hs2
2

1

hn

∂φ

∂s2

(

∂2φ

∂s2∂n
−

1

hs2

∂hs1
∂n

∂φ

∂s1

)

+
1

h3n

∂φ

∂n

∂2φ

∂n2
(54)

The second-order normal derivative of the velocity potential is given by the Laplace
equation. Using the scale factors and their derivatives, we obtain Berkvens’ expression,
Eq.(47):

((∇φ · ∇)∇φ) · n =
∂φ

∂s1

(

∂2φ

∂s1∂n
−

1

R1

∂φ

∂s1

)

+
∂φ

∂s2

(

∂2φ

∂s2∂n
−

1

R2

∂φ

∂s2

)

+
∂φ

∂n

(

−
∂2φ

∂s2
1

−
∂2φ

∂s2
2

−

(

1

R1

+
1

R2

)

∂φ

∂n

)

= −

(

1

R1

+
1

R2

)(

∂φ

∂n

)2

−
1

R1

(

∂φ

∂s1

)2

−
1

R2

(

∂φ

∂s2

)2

−
∂φ

∂n

(

∂2φ

∂s2
1

+
∂2φ

∂s2
2

)

+
∂φ

∂s1

∂2φ

∂s1∂n
+
∂φ

∂s2

∂2φ

∂s2∂n
(55)

3.3 Equivalence of the expressions

Both expressions are implemented in different potential flow solvers, to simulate non-
linear body motions, and were subject of validations. Cointe expression was implemented
by Cointe [Cointe(1989)], Guerber [Guerber et al.(2012)Guerber, Benoit, Grilli, and Buvat]
and van Daalen [van Daalen(1993)], while Tanizawa expression was implemented by
Tanizawa [Tanizawa(1995)], Berkvens [Berkvens(1998)] and Koo [Koo and Kim(2004)].
However the theoretical equivalence of these expression has not been shown yet.

3.3.1 2D Expressions

In order to demonstrate the equivalence between the Cointe and Tanizawa expressions,
it is necessary to express the acceleration of the fluid particle sliding on the body surface

16



in terms of the acceleration of the related point on the body. The coordinates of these
two points are x in the global coordinate system and r in the local one related to the
body. The position, velocity and acceleration vectors of the point on the body surface
can be written as:







x = xb + r

ẋ = ẋb + θ̇ ∧ r

ẍ = ẍb + θ̈ ∧ r+ θ̇ ∧ θ̇ ∧ r

(56)

where (xb, ẋb, ẍb) are the position, velocity and acceleration of the center of gravity of
the body, x = Xex + Y ey and θ = θez.

The local coordinates of the point on the body surface, r, are constant in time since
the local coordinate system follows the body motion, which means ṙ = 0. This is however
not the case for the fluid particle, of velocity v and acceleration a:







x = xb + r

v = ẋb + θ̇ ∧ r+ ṙ = ẋ+ ṙ

a = ẍb + θ̈ ∧ r+ θ̇ ∧ θ̇ ∧ r+ 2θ̇ ∧ ṙ+ r̈ = ẍ+ 2θ̇ ∧ ṙ+ r̈

(57)

The time derivative of the local coordinates of the fluid particle can then be written,
making use of the free slip condition on the body, as:

ṙ = v − ẋ = ∇φ− ẋ =

(

∂φ

∂s
− (ẋ · s)

)

s (58)

Tanizawa gave an expression for r̈ · n based on the derivative in the Frenet-Serret frame
[Tanizawa(1995)]:

r̈ · n = −k|ṙ|2 = −
1

R

(

∂φ

∂s
− (ẋ · s)

)2

(59)

The fluid particle is indeed sliding on the body surface, following a parametric curve, as
illustrated in Fig. 6.

Figure 6: Illustration of the Frenet-Serret frame

The position of the particle is given by r(s, t) = (x(s, t), y(s, t)). The tangent and
normal vectors are defined, for any point x(s, t) on the parametric curve, as:

T =
∂x(s, t)

∂s
=

(

∂X

∂s
,
∂Y

∂s

)

and N = −R
∂T

∂s
(60)

where R is the local curvature radius.
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The particle’s velocity on the curve can then be written, using the scalar velocity

v =
∂s

∂t
, as:

ṙ(s, t) =

(

∂X

∂s
.
∂s

∂t
,
∂Y

∂s
.
∂s

∂t

)

= vT = |ṙ(s, t)|T (61)

Similarly, the acceleration is:

r̈(s, t) =
∂|ṙ(s, t)|

∂t
T+ |ṙ(s, t)|

∂T

∂t
=
∂|ṙ(s, t)|

∂t
T+ |ṙ(s, t)|

∂T

∂s

∂s

∂t
(62)

r̈(s, t) =
∂|ṙ(s, t)|

∂t
T−

|ṙ(s, t)|2

R
N (63)

Finally, the normal component of acceleration is:

r̈(s, t) · n = −
1

R
|ṙ|2 = −

1

R

(

∂φ

∂s
− (ẋ · s)

)2

(64)

It is then possible to relate the normal acceleration of a fluid particle on the boundary
a · n to the one associated to the body ẍ · n:

a · n = ẍ · n+ 2θ̇

(

∂φ

∂s
− (ẋ · s)

)

−
1

R

(

∂φ

∂s
− (ẋ · s)

)2

(65)

Introducing this relation into the Tanizawa expression, Eq.(46), the normal derivative
of the time derivative of the velocity potential can be written as:

∂2φ

∂n∂t
= a · n− (∇φ · ∇)∇φ · n

= ẍ · n+ 2θ̇

(

∂φ

∂s
− (ẋ · s)

)

−
1

R

(

∂φ

∂s
− (ẋ · s)

)2

+
1

R

(

(

∂φ

∂s

)2

+

(

∂φ

∂n

)2
)

−
∂φ

∂s

∂2φ

∂s∂n
+
∂φ

∂n

∂2φ

∂s2

= ẍ · n+ 2θ̇

(

∂φ

∂s
− (ẋ · s)

)

−
1

R
(ẋ · s)2 +

2

R
(ẋ · s)

∂φ

∂s
−
∂φ

∂s

∂2φ

∂s∂n

+
∂φ

∂n

(

∂2φ

∂s2
+

1

R

∂φ

∂n

)

= ẍ · n+ θ̇

(

∂φ

∂s
− (ẋ · s)

)

− (ẋ · s)

(

∂2φ

∂s∂n
−

1

R

∂φ

∂s

)

+ (ẋ · n)

(

∂2φ

∂s2
+

1

R

∂φ

∂n

)

+θ̇

(

∂φ

∂s
− (ẋ · s)

)

−
1

R
(ẋ · s)2 +

1

R
(ẋ · s)

∂φ

∂s
−
∂φ

∂s

∂2φ

∂s∂n
+ (ẋ · s)

∂2φ

∂s∂n

= ẍ · n+ θ̇

(

∂φ

∂s
− (ẋ · s)

)

+ (ẋ · s)

(

1

R

∂φ

∂s
−

∂2φ

∂s∂n

)

+ (ẋ · n)

(

∂2φ

∂s2
+

1

R

∂φ

∂n

)

+

(

θ̇ −
∂2φ

∂s∂n
+

1

R
(ẋ · s)

)(

∂φ

∂s
− (ẋ · s)

)

(66)
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The tangential derivative of the normal derivative of the velocity potential can be
written, using the body condition, as:

∂2φ

∂s∂n
=

∂

∂s

(

∂φ

∂n

)

=
∂

∂s
(ẋ · n)

=
∂ẋ

∂s
· n+ ẋ ·

∂n

∂s

=
∂(ẋb + θ̇ez ∧ r)

∂s
· n+

1

R
(ẋ · s)

= (θ̇ez ∧
∂r

∂s
) · n+

1

R
(ẋ · s)

= θ̇(ez ∧ s) · n+
1

R
(ẋ · s)

leading to:

θ̇ −
∂2φ

∂s∂n
+

1

R
(ẋ · s) = 0 (67)

Introducing this relation to Eq.(66) yields the Cointe expression, Eq.(29).

3.3.2 3D Expressions

The fluid particle acceleration can be written, in 3D, using the related body point accel-
eration, in the same manner as in 2D, as

a · n = ẍ · n+ (2θ̇ ∧ ṙ) · n+ r̈ · n (68)

where:

(θ̇ ∧ ṙ) · n = (θ̇ · s1)

(

∂φ

∂s2
− ẋ · s2

)

− (θ̇ · s2)

(

∂φ

∂s1
− ẋ · s1

)

(69)

and:

r̈ · n = −
1

R1

(

∂φ

∂s1
− ẋ · s1

)2

−
1

R2

(

∂φ

∂s2
− ẋ · s2

)2

(70)

Introducing the previous equations into Berkvens’ expression, Eq.(47), the normal
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component of the time derivative of the velocity potential can be written as:

∂2φ

∂n∂t
= a · n− ((∇φ · ∇)∇φ) · n

= ẍ · n+ 2(θ̇ · s1)

(

∂φ

∂s2
− ẋ · s2

)

− 2(θ̇ · s2)

(

∂φ

∂s1
− ẋ · s1

)

−
1

R1

(

∂φ

∂s1
− ẋ · s1

)2

−
1

R2

(

∂φ

∂s2
− ẋ · s2

)2

+

(

1

R1

+
1

R2

)(

∂φ

∂n

)2

+
1

R1

(

∂φ

∂s1

)2

+
1

R1

(

∂φ

∂s2

)2

+
∂φ

∂n

(

∂2φ

∂s2
1

+
∂2φ

∂s2
2

)

−
∂φ

∂s1

∂2φ

∂s1∂n
−
∂φ

∂s2

∂2φ

∂s2∂n

= ẍ · n+ 2(θ̇ · s1)

(

∂φ

∂s2
− ẋ · s2

)

− 2(θ̇ · s2)

(

∂φ

∂s1
− ẋ · s1

)

−
1

R1

(ẋ · s1)
2 +

2

R1

(ẋ · s1)
∂φ

∂s1
−

1

R2

(ẋ · s2)
2 +

2

R2

(ẋ · s2)
∂φ

∂s2

+(ẋ · n)

(

∂2φ

∂s2
1

+
∂2φ

∂s2
2

+

(

1

R1

+
1

R2

)

∂φ

∂n

)

−
∂φ

∂s1

∂2φ

∂s1∂n
−
∂φ

∂s2

∂2φ

∂s2∂n
(71)

leading to:

∂2φ

∂n∂t
= ẍ · n+ (θ̇ · s1)

(

∂φ

∂s2
− (ẋ · s2)

)

− (θ̇ · s2)

(

∂φ

∂s1
− (ẋ · s1)

)

+ (ẋ · s1)

(

1

R1

∂φ

∂s1
−

∂2φ

∂s1∂n

)

+ (ẋ · s2)

(

1

R2

∂φ

∂s2
−

∂2φ

∂s2∂n

)

+(ẋ · n)

(

∂2φ

∂s2
1

+
∂2φ

∂s2
2

+

(

1

R1

+
1

R2

)

∂φ

∂n

)

−

(

∂φ

∂s1
− (ẋ · s1)

)[

∂2φ

∂s1∂n
−

1

R1

(ẋ · s1) + (θ̇ · s2)

]

−

(

∂φ

∂s2
− (ẋ · s2)

)[

∂2φ

∂s2∂n
−

1

R2

(ẋ · s2)− (θ̇ · s1)

]

(72)

The tangential derivatives of the normal velocities can be written in the same manner as
in 2D:















∂2φ

∂s1∂n
−

1

R1

(ẋ · s1) + (θ̇ · s2) = 0

∂2φ

∂s2∂n
−

1

R2

(ẋ · s2)− (θ̇ · s1) = 0

(73)

Using these relations in Eq.(72) leads to the van Daalen expression, Eq.(42).

3.4 Unified expression

A unified expression is proposed below for a direct local basis with a normal vector
pointing outside the body. From a numerical perspective, this simplifies the use of Cointe
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Figure 7: Spherical coordinates

expression. Indeed, Cointe expression requires the evaluation of the local derivatives of
the normal velocity ∂2φ

∂s∂n
. They must be approximated numerically, which is a source

of inaccuracy. By using Eq.(67) and Eq.(73), the tangential derivatives of the normal
velocity are replaced with known variables that can be evaluated without any further
approximation. The proposed unified expression reads in 2D:

∂2φ

∂n∂t
= ẍ · n+ θ̇

(

∂φ

∂s
− 2(ẋ · s)

)

+
(ẋ · s)

R

(

∂φ

∂s
− (ẋ · s)

)

+(ẋ · n)

(

∂2φ

∂s2
+

1

R

∂φ

∂n

)

(74)

and in 3D

∂2φ

∂n∂t
= ẍ · n+ (θ̇ · s1)

(

∂φ

∂s2
− 2(ẋ · s2)

)

− (θ̇ · s2)

(

∂φ

∂s1
− 2(ẋ · s1)

)

+
(ẋ · s1)

R1

(

∂φ

∂s1
− (ẋ · s1)

)

+
(ẋ · s2)

R2

(

∂φ

∂s2
− (ẋ · s2)

)

+ (ẋ · n)

(

∂2φ

∂s2
1

+
∂2φ

∂s2
2

+

(

1

R1

+
1

R2

)

∂φ

∂n

)

(75)

4 APPLICATION TO A SIMPLE CASE

4.1 Analytical solution for a sphere in prescribed motions in an un-

bounded fluid domain

We consider a sphere in an unbounded fluid domain, of radius a, in spherical coordinates
(r,Θ, ψ), as defined in Fig. 7







x = r sin(Θ) cos(ψ)
y = r sin(Θ) sin(ψ)
z = r cos(Θ)

(76)
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The sphere velocity is forced to V = Uez = Ausin(ωt)ez.
The local curvilinear coordinates can be defined on the sphere as:







s1 = rΘ
s2 = rψ

n = r

⇔















Θ =
s1

r
ψ =

s2

r
r = n

(77)

The following identity can then be obtained:
{

U cos(Θ) = V · n
U sin(Θ) = −V · s1

(78)

An analytical solution for the velocity potential in the sphere reference system has
been given by Lamb [Lamb(1993)] for this particular case:

φ(r,Θ, ψ) = −
1

2
U
a3

r3
cos(Θ) (79)

On the sphere, the velocity potential can be written, for r = a:

φ(r = a,Θ) = −
1

2
Ua cos(Θ) = −

1

2
aV · n (80)

The local derivatives, expressed using the local curvilinear coordinates, are:



























∂φ

∂s1
=

∂φ

∂r�
�
�∂r

∂s1
+
∂φ

∂Θ

∂Θ

∂s1
+
�
�
�∂φ

∂ψ

∂ψ

∂s1
=

1

2
U
a3

r3
sin(Θ)

∂φ

∂s2
=

∂φ

∂r�
�
�∂r

∂s2
+
∂φ

∂Θ�
�
�∂Θ

∂s2
+
�
�
�∂φ

∂ψ

∂ψ

∂s2
= 0

∂φ

∂n
=

∂φ

∂r
= U

a3

r3
cos(Θ)

(81)

which yields on the sphere:


























∂φ

∂s1
=

1

2
U sin(Θ) = −

1

2
V · s1

∂φ

∂s2
= 0

∂φ

∂n
= V · n

(82)

The gradient can then be expressed as:

∇φ = U
a3

r3
cos(Θ)n+

1

2
U
a3

r3
sin(Θ)s1 =

a3

r3
(V · n)n−

1

2

a3

r3
(V · s1) s1 (83)

The velocity potential is expressed in the reference coordinates associated to the
motions of the sphere. The time derivative of the expression of the velocity potential is
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then a material derivative. The partial derivative of the velocity potential can thus be
written as:

∂φ

∂t
=
Dφ

Dt
−V · ∇φ = −

1

2

a3

r2
(A · n) +

1

2

a3

r3
(V · s1)

2 −
a3

r3
(V · n)2 (84)

where A = Auωcos(ωt)z is the body acceleration.
The partial time derivative of the velocity potential on the body is then:

∂φ

∂t
(r = a) = −

1

2
a (A · n)−

1

2
(V · s1)

2 − (V · n)2 (85)

It is possible to get the normal derivative of the time derivative of the velocity po-
tential, from the previous equations, as:

∂2φ

∂n∂t
=

∂2φ

∂r∂t
=
a3

r3
(A · n)−

3

2

a3

r4
(V · s1)

2 + 3
a3

r4
(V · n)2 (86)

which leads, on the body, to:

∂2φ

∂n∂t
(r = a) = (A · n)−

3

2a
(V · s1)

2 +
3

a
(V · n)2 (87)

4.2 Unified expression for this case

In this particular case, the unified expression for the body boundary condition Eq.(75)
yields:

∂2φ

∂n∂t
= (A · n) +

(V · s1)

a

(

∂φ

∂s1
− (V · s1)

)

+
(V · s2)

a

(

∂φ

∂s2
− (V · s2)

)

+(V · n)

(

∂2φ

∂s2
1

+
∂2φ

∂s2
2

+
2

a

∂φ

∂n

)

(88)

The Laplace equation for the velocity potential in curvilinear coordinates is:

△φ =
∂2φ

∂s2
1

+
∂2φ

∂s2
2

+
∂2φ

∂n2
+

2

a

∂φ

∂n
= 0 (89)

so the unified expression can be written as:

∂2φ

∂n∂t
= (A · n) +

(V · s1)

a

(

∂φ

∂s1
− (V · s1)

)

+
(V · s2)

a

(

∂φ

∂s2
− (V · s2)

)

− (V · n)
∂2φ

∂n2

(90)
This last second order derivative can be expressed in curvilinear coordinates:

∂2φ

∂n2
=
∂2φ

∂r2
= −3U

a3

r4
cos(Θ) (91)

which yields on the body

∂2φ

∂n2
(r = a) = −

3U

a
cos(Θ) = −

3

a
(V · n) (92)
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The unified expression can then be written as:

∂2φ

∂n∂t
= (A · n)−

3

2a
(V · s1)

2 +
3

a
(V · n)2 (93)

The unified expression gives the same result as the analytical one. It is then possible
to conclude on the validity of the unified expression in this simple case. The numerical
implementation of this unified expression in potential flow solvers can then be used to
simulate more complex cases : complex body geometries, rotational motions, etc.

5 CONCLUSION

The simulation of freely moving bodies in potential flow theory requires an accurate
evaluation of the hydrodynamic force. Its accuracy depends mainly on the correct calcu-
lation of the time derivative of the velocity potential on the body. While a finite difference
scheme can be used for bodies in prescribed motions, it is not accurate enough for freely
moving bodies [Cointe(1989), Koo and Kim(2004)] with explicit time-stepping schemes.
Several methods have been proposed to evaluate this time derivative, some requiring
solving a BVP for the time derivative of the velocity potential. While the free-surface
conditions can be obtained easily, the body condition requires a careful treatment. Two
sets of equations have been given (for 2D and 3D), first by Cointe [Cointe(1989)] (2D)
and van Daalen [van Daalen(1993)] (3D), using the acceleration of a point on the body
and the other ones by Tanizawa [Tanizawa(1995)] (2D) and Berkvens [Berkvens(1998)]
(3D), using the acceleration of a fluid particle sliding on the body. These expressions
were developed for different notations and bases, direct or indirect, some with a normal
vector pointing inside the body and others outside the body, not fully explicited in the
references.

The first objective of this study was to check each expression, by redeveloping them
using a direct curvilinear basis with a normal vector pointing outside the body. The
four expressions were obtained successfully, and the differences due to the basis origi-
nally used were explained. The equivalence of 2D and 3D expressions was proven, by
expressing the acceleration of a fluid particle sliding on the body using the acceleration
of its associated point on the body. The demonstration highlighted a particular identity
giving an expression of local derivatives of the normal velocity using known variables. A
unified expression could thus be given, simplifying Cointe and van Daalen expressions,
by using said identity. The main advantage of this unified expression over Cointe-van
Daalen ones lies in the fact that the local derivatives of the normal velocity does not
need to be computed, leading to an increased accuracy of this evaluation.

Finally, the unified expression was validated against an analytical case, consisting of
a submerged sphere in an unbounded fluid domain with prescribed motion. The body
condition was developed analytically and compared to the analytical developments of
the unified expression. The same results could be obtained in both cases, validating the
unified expression in this case.
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This new expression of the body condition can then be implemented in a potential flow
solver, in order to simulate free body motions, including bodies with more complex geom-
etry. Of particular interest to the authors are wave energy converters with large amplitude
motions [Letournel et al.(tted)Letournel, Chauvigné, Gelly, Babarit, Ducrozet, and Ferrant].
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