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CONVEX SUPER-RESOLUTION DETECTION OF LINES IN IMAGES

We present a new convex formulation for the problem of recovering lines in degraded images. Following the recent paradigm of super-resolution, we formulate a dedicated atomic norm penalty and solve this optimization problem by a primal-dual algorithm. Then, a spectral estimation method recovers the line parameters, with subpixel accuracy.

ATOMIC NORM FRAMEWORK

Let z ∈ C N be a vector such as z = K k=1 c k a(ω k ) with c k ∈ C and atoms a(ω) ∈ C N continuously indexed in a dictionary A by a parameter ω in a compact set Ω. The atomic norm, which enforces sparsity with respect this set A, is defined as

z A = inf c k ,ω k k |c k | : z = k c k a(ω k ) .
Consider the dictionary

A = {a(f, φ) ∈ C |I| , f ∈ [0, 1], φ ∈ [0, 2π)},
in which the atoms are the vectors of components [a(f, φ)] i = e j(2πf i+φ) , i ∈ I, and simply [a(f )] i = e j2πf i , i ∈ I, if φ = 0. The atomic norm writes:

z A = inf c k >0,f k ,φ k k c k : z = k c k a(f k , φ k ) . Theorem 1 [Caratheodory]. Let z = (z n ) N -1 n=-N +1 be a vector with Hermitian symmetry z -n = z * n . z is a positive combination of K N + 1 atoms a(f k ) if and only if T N (z + )
0 and of rank K, where z + = (z 0 , . . . , z N -1 ) and T N is the Toeplitz operator

T N (z + ) =      z 0 z * 1 • • • z * N -1 z 1 z 0 • • • z * N -2 . . . . . . . . . . . . z N -1 z N -2 • • • z 0      .
Moreover, this decomposition is unique, if K N .

Proposition 1. The atomic norm z A can be characterized by this semidefinite program SDP(z) [START_REF] Bhaskar | Atomic norm denoising with applications to line spectral estimation[END_REF]:

z A = min q∈C N q 0 : T N (z, q) = T N (q) z z * q 0 0 . • l n 2 = x [:, n 2 ] = K k=1 c k a(f n 2 ,k ) • t m = x [m, :] = K k=1 c k a(f m,k , φ m,k ) T with amplitude c k = α k cos θ k , phase φ m,k = - 2πη k m W , frequency f n 2 ,k = tan θ k n 2 -η k W , f m,k = tan θ k m W . • l n 2 A = K k=1 c k = x [0, n 2 ] by Theorem 1. • t m A = SDP(t m ) K k=1 c k by Proposition 1.

MODEL OF NOISY BLURRED LINES

A sum of K perfect lines of infinite length, with angle θ k ∈ (-π/2, π/2], amplitude α k > 0, and offset η k ∈ R, is defined as the distribution

x (t 1 , t 2 ) = K k=1 α k δ cos θ k (t 1 -η k ) + sin θ k t 2 . t 2 t 1 θ η t 2 t 1 n 2 n 1
The image observed b of size W × H is obtained by the convolution of x with a blur function φ, following by a sampling with unit step ∆: b [n 1 , n 2 ] = (x * φ)(n 1 , n 2 ). The point spread function φ is separable, that is x * φ can be obtained by a first horizontal convolution u = x * ϕ 1 , where ϕ 1 is Wperiodic and bandlimited, that is its Fourier coefficients ĝ[m] are zero for |m| ≥ (W -1)/

1 = M + 1, so û [m, n 2 ] = ĝ[m]x [m, n 2 ]
; and then a second vertical convolution with ϕ 2 , such as the discrete filter h

[n] = (ϕ 2 * sinc)[n] has compact support, gives b [m, :] = û [m, :] * h = ĝ[m]x[m, :] * h, hence Ax = b x [m, n 2 ] = K k=1 α k cos θ k e j2π(tan θ k n 2 -η k )m/W .

SUPER-RESOLUTION AND REGULARIZATION OF LINES

F 1 +∆ F -1 1 + ε * φ +∆ M A D x b b + mask x Ax y (Observation operator) H = MF -1 1 A
A : blur operator F 1 : horiz. Fourier operator M : inpainting operator

x ∈ arg min ×Q 1 2 Hx -y 2 F ,            ∀n 2 , m x[0, n 2 ] = x[0, 0] c, q[m, 0] c, T H S (x[m, :], q[m, :]) 0, T M +1 (x[:, n 2 ]) 0,
The problem can be rewritten in this way:

X = arg min X∈H F (X) + G(X) + N -1 i=0 H i (L i (X))
with F (X) = 1 2 Hx -y 2 F , X = (x, q), ∇F a β-Lipschitz gradient, a proximable indicator G = ι B where B are the two first boundary constraints, and N = M + 1 + H S linear composite terms, where H i = ι C with C the cone of semidefinite positive matrices, and

L i ∈ {L (1) m , L (2) 
n 2 }, defined by L (1) m (X) = T H S (x[m, :], q[m, :]) and L (2) n 2 (X) = T M +1 (x[:, n 2 ]).
L denotes the concatenation of the L i operators.

Let τ > 0 and σ > 0 such that 1 τ -σ L 2 

X n+1 = prox τ G (X n -τ ∇F (X n )-τ i L * i ξ i,n ), 4:
for i = 0 to N -1 do 5:

ξ i,n+1 = prox σH * i (ξ i,n + σL i (2X n+1 -X n )), 6:
end for 7: end for

SPECTRAL ESTIMATION BY A PRONY-LIKE METHOD

Let be d k ∈ C, f k ∈ [-1/2, 1/2), ζ k = e j2πf k and z i = K k=1 d k e j2πf k i , ∀i = 0, . . . , |I| -1,
The annihilating polynomial filter is defined by: 

H(ζ) = K l=1 (ζ -ζ l ) = K l=0 h l ζ K-l with h 0 = 1, K l=0 h l z r-l = K k=1 d k ζ r-K k K l=0 h l ζ K-l k H(ζ k )=0 = 0. P K (z)h =    z K • • • z 0 . . . . . . . . . z |I|-1 • • • z |I|-K-1       h 0 . . . h K    =    0 . . . 0    From P K (z),

β 2 .

 2 Algorithm: Primal-dual splitting method [Condat] Input: The blurred and noisy data image y Output: x solution of the optimization problem 1: Initialize all primal and dual variables to zero 2: for n = 1 to Number of iterations do 3:

  compute h by a SVD. Form H whose roots give access to the frequenciesf k . Since z = Ud with U = (a(f 1 ), • • • , a(f K )), find amplitudes by LS: d = (U H U) -1 U H z.Procedure for retrieving the line parametersFor each column x[m, :] compute { fm,k } k by For each column x[m, :] compute { dm,k } k by {f m,k } m = { tan θ k m W } m lin. regression → { θk } αm,k = | dm,k | cos( θk ) and {α k } k = E[{α m,k } m ] dm,k /| dm,k | = (e -j2π η k W ) m → {η k } k byThis procedure enables to estimate the line parameters from the solution x of the optimization problem: