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OBJECTIVES
We present a new convex formulation for the pro-
blem of recovering lines in degraded images. Follo-
wing the recent paradigm of super-resolution, we
formulate a dedicated atomic norm penalty and
solve this optimization problem by a primal–dual
algorithm. Then, a spectral estimation method re-
covers the line parameters, with subpixel accuracy.

ATOMIC NORM FRAMEWORK

Let z ∈ CN be a vector such as z =
∑K
k=1 cka(ωk)

with ck ∈ C and atoms a(ω) ∈ CN continuously in-
dexed in a dictionary A by a parameter ω in a com-
pact set Ω. The atomic norm, which enforces spar-
sity with respect this set A, is defined as

‖z‖A = inf
c′k,ω

′
k

{∑
k

|c′k| : z =
∑
k

c′ka(ω′k)

}
.

Consider the dictionary

A = {a(f, φ) ∈ C|I|, f ∈ [0, 1], φ ∈ [0, 2π)},

in which the atoms are the vectors of components
[a(f, φ)]i = ej(2πfi+φ), i ∈ I , and simply [a(f)]i =
ej2πfi, i ∈ I , if φ = 0. The atomic norm writes:

‖z‖A = inf
c′k>0,f ′k,φ

′
k

{∑
k

c′k : z =
∑
k

c′ka(f ′k, φ
′
k)

}
.

Theorem 1 [Caratheodory]. Let z = (zn)N−1n=−N+1 be
a vector with Hermitian symmetry z−n = z∗n. z is
a positive combination of K 6 N + 1 atoms a(fk)
if and only if TN (z+) < 0 and of rank K, where
z+ = (z0, . . . , zN−1) and TN is the Toeplitz operator

TN (z+) =


z0 z∗1 · · · z∗N−1
z1 z0 · · · z∗N−2
...

...
. . .

...
zN−1 zN−2 · · · z0

 .

Moreover, this decomposition is unique, if K 6 N .

Proposition 1. The atomic norm ‖z‖A can be cha-
racterized by this semidefinite program SDP(z) [2]:

‖z‖A = min
q∈CN

{
q0 : T′N (z, q) =

(
TN (q) z
z∗ q0

)
< 0

}
.

• l]n2
= x̂][:, n2] =

∑K
k=1 cka(fn2,k)

• t]m = x̂][m, :] =
∑K
k=1 cka(fm,k, φm,k)T with

amplitude ck =
αk

cos θk
, phase φm,k = −2πηkm

W
,

frequency fn2,k =
tan θk n2 − ηk

W
, fm,k =

tan θkm

W
.

• ‖l]n2
‖A =

∑K
k=1 ck = x̂][0, n2] by Theorem 1.

• ‖t]m‖A = SDP(t]m) 6
∑K
k=1 ck by Proposition 1.

MODEL OF NOISY BLURRED LINES

A sum of K perfect lines of infinite length, with
angle θk ∈ (−π/2, π/2], amplitude αk > 0, and off-
set ηk ∈ R, is defined as the distribution

x](t1, t2) =
K∑
k=1

αkδ
(
cos θk (t1 − ηk) + sin θk t2

)
.

t2

t1
θ

η

t2

t1

n2
n1

The image observed b] of size W ×H is obtained by
the convolution of x] with a blur function φ, follo-
wing by a sampling with unit step ∆: b][n1, n2] =
(x] ∗ φ)(n1, n2). The point spread function φ is se-
parable, that is x] ∗ φ can be obtained by a first ho-
rizontal convolution u] = x] ∗ ϕ1, where ϕ1 is W -
periodic and bandlimited, that is its Fourier coeffi-
cients ĝ[m] are zero for |m| ≥ (W − 1)/1 = M + 1,
so û][m,n2] = ĝ[m]x̂][m,n2]; and then a second ver-
tical convolution with ϕ2, such as the discrete fil-
ter h[n] = (ϕ2 ∗ sinc)[n] has compact support, gives
b̂][m, :] = û][m, :]∗h = ĝ[m]x̂[m, :]∗h, hence Ax̂] = b̂]

x̂][m,n2] =
K∑
k=1

αk
cos θk

ej2π(tan θk n2−ηk)m/W .

SUPER-RESOLUTION AND REGULARIZATION OF LINES
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(Observation operator)
H = MF−11 A

A : blur operator
F1 : horiz. Fourier operator
M : inpainting operator

x̃ ∈ arg min
x̂,q∈X×Q

1

2
‖Hx̂− y‖2F ,

∀n2,m
x̂[0, n2] = x̂[0, 0] 6 c,

q[m, 0] 6 c,

T′HS (x̂[m, :], q[m, :]) < 0,

TM+1(x̂[:, n2]) < 0,

The problem can be rewritten in this way:

X̃ = arg min
X∈H

{
F (X) +G(X) +

N−1∑
i=0

Hi(Li(X))

}

with F (X) = 1
2‖Hx̂ − y‖2F , X = (x̂, q), ∇F a β–

Lipschitz gradient, a proximable indicator G = ιB
where B are the two first boundary constraints, and
N = M + 1 + HS linear composite terms, where
Hi = ιC with C the cone of semidefinite positive ma-
trices, and Li ∈ {L(1)

m , L
(2)
n2 }, defined by L

(1)
m (X) =

T′HS (x̂[m, :], q[m, :]) and L(2)
n2 (X) = TM+1(x̂[:, n2]).

L denotes the concatenation of the Li operators.

Let τ > 0 and σ > 0 such that 1
τ − σ‖L‖

2 > β
2 .

Algorithm: Primal–dual splitting method [Condat]

Input: The blurred and noisy data image y
Output: x̃ solution of the optimization problem

1: Initialize all primal and dual variables to zero
2: for n = 1 to Number of iterations do
3: Xn+1 = proxτG(Xn−τ∇F (Xn)−τ

∑
i L
∗
i ξi,n),

4: for i = 0 to N − 1 do
5: ξi,n+1 = proxσH∗i (ξi,n + σLi(2Xn+1 −Xn)),
6: end for
7: end for

SPECTRAL ESTIMATION BY A PRONY-LIKE METHOD

Let be dk ∈ C, fk ∈ [−1/2, 1/2), ζk = ej2πfk and

zi =
K∑
k=1

dk
(
ej2πfk

)i
, ∀i = 0, . . . , |I| − 1,

The annihilating polynomial filter is defined by:
H(ζ) =

∏K
l=1(ζ − ζl) =

∑K
l=0 hlζ

K−l with h0 = 1,

K∑
l=0

hlzr−l =
K∑
k=1

dkζ
r−K
k

(
K∑
l=0

hlζ
K−l
k

)
︸ ︷︷ ︸

H(ζk)=0

= 0.

PK(z)h =

 zK · · · z0
...

. . .
...

z|I|−1 · · · z|I|−K−1


h0

...
hK

 =

0
...
0


¶ From PK(z), compute h by a SVD. Form H

whose roots give access to the frequencies fk.
· Since z = Ud with U = (a(f1), · · · , a(fK)),

find amplitudes by LS: d = (UHU)−1UHz.

Procedure for retrieving the line parameters

¶ For each column x̃[m, :] compute {f̃m,k}k by ¶

· For each column x̃[m, :] compute {d̃m,k}k by ·

¸ {fm,k}m = { tan θkmW }m lin. regression→ {θ̃k}
¹ α̃m,k = |d̃m,k| cos(θ̃k) and {αk}k = E[{α̃m,k}m]

º d̃m,k/|d̃m,k| = (e−j2π
ηk
W )m → {ηk}k by ¶

This procedure enables to estimate the line parame-
ters from the solution x̃ of the optimization problem:
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