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ON UNIQUENESS RESULTS FOR DIRICHLET PROBLEMS

OF ELLIPTIC SYSTEMS WITHOUT

DEGIORGI-NASH-MOSER REGULARITY

PASCAL AUSCHER AND MORITZ EGERT

Abstract. We study uniqueness of Dirichlet problems of second order divergence-form elliptic sys-
tems with transversally independent coefficients on the upper half-space in absence of regularity of
solutions. To this end, we develop a substitute for the fundamental solution used to invert elliptic
operators on the whole space by means of a representation via abstract single layer potentials. We
also show that such layer potentials are uniquely determined.

1. Introduction

Consider the elliptic system of m equations in n + 1 dimensions, n ≥ 1, given by

(1.1) −
n∑

i,j=0

m∑

β=1

∂i
(
Aα,β

i,j (x)∂juβ(t, x)
)

= 0, α = 1, . . . , m, t > 0, x ∈ R
n,

where ∂0 := ∂
∂t and ∂i := ∂

∂xi
if i = 1, . . . , n with measurable coefficients A depending not on

the variable t transversal to the boundary. Ellipticity will be described below but when m = 1,
the uniformly elliptic equations will be included in our considerations. For short, we shall write
Lu = − div A∇u = 0 instead of (1.1).

Given f ∈ Lp(Rn;Cm), following [Da], the Lp Dirichlet problem on the upper half-space can be
posed in the sense that one asks for a weak solution u with a certain non-tangential maximal function
controlled in Lp and which converges to the boundary data f almost everywhere in a non-tangential
sense. When f ∈ Ẇ 1,p(Rn;Cm), following [KP], the Dirichlet problem with data f , also known as the
regularity problem, can be posed by asking a maximal non-tangential control on ∇u and convergence
of u to f at the boundary as before. Existence and uniqueness to these problems are usually obtained
by different arguments. For an overview on the topic the reader can refer to [Ke].

Our first goal is to prove duality results of the following type under minimal assumptions: existence
in one of the boundary value problems for (L∗, p′) implies uniqueness in the other problem for (L, p)
in some range of p, which depends on L, where p′ is the conjugate exponent to p. We shall also
consider the case p ≤ 1 for the regularity problem, in which case the adjoint Dirichlet problem must
be posed with data in BMO or in a Hölder space.

Akin uniqueness results, requiring a “dual” information, appear in [KP, AAAHK, HMaMo], to
cite just the most relevant to our situation. Arguments are culminations of many earlier results on
Laplace’s equation and real symmetric equations in Lipschitz domains ([Da,DaK,JK,V]). In those
works, t-independence of the coefficients is not always assumed, but when restricted to this hypothesis,
they also use the so-called DeGiorgi-Nash-Moser regularity properties of solutions (DGNM) in a
strong way to bring into play either harmonic measure techniques for real equations or representations
and estimates with fundamental solutions for complex equations enjoying (DGNM). It seems that
[HMaMo] contains the most advanced results in this direction up to now.
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2 PASCAL AUSCHER AND MORITZ EGERT

Here we want to dispense with the assumption (DGNM) and, of course, harmonic measure is not
available. Aiming at a similar direction, [AM] establishes existence-uniqueness relations between

the Lp regularity problem and a dual Lp′
Dirichlet problem which for 1 < p < ∞ is posed with

a different, less classical interior control, namely the square function. Uniqueness in this situation,
however, does not suffice to conclude for uniqueness of the Dirichlet problem when posed with a
non-tangential maximal control. On the contrary, when p ≤ 1, the results in [AM] do apply and for
clarity we shall put them into context in the final section.

Our general strategy is to develop a substitute for the fundamental solution used to invert the
elliptic operator L on R

1+n. This has interest on its own right. Surprisingly, not using the funda-
mental solutions and its kernel estimates will make the arguments for uniqueness conceptually and
technically simpler. It also allows us to reach minimal assumptions, even when assuming further
(DGNM). Let us explain in formal terms the substitute idea.

In the case of transversally independent coefficients, the fundamental solution Γ(t, x, s, y) of L,
constructed in [HK] under (DGNM) and more recently without this assumption in [Ba], has time
translation invariance, that is, it depends on t − s. Its restriction to fixed times (t, 0), t 6= 0, is called
the single layer potential St(x, y) at time t. Formally writing

(L−1f)(t, x) =

∫∫

R1+n
Γ(t, x, s, y)f(s, y) ds dy =

∫∫

R1+n
St−s(x, y)f(s, y) dy ds,

allows one to recover the fundamental solution by a convolution in time with St(x, y). A difficulty is
to give a meaning to the last term as a converging integral in order to obtain further estimates on
L−1f . However, one can interpret this formula at the level of operators by writing

(1.2) (L−1f)(t, x) =

∫

R

(St−sf(s, ·))(x) ds,

provided the operator St with kernel St(x, y) has the expected boundedness properties. Indeed, [R]
shows the remarkable fact that St is bounded from L2(Rn;Cm) into Ẇ 1,2(Rn;Cm) whether or not
(DGNM) holds and that, when (DGNM) is assumed, its kernel agrees with (or can be used to define)
Γ(t, x, 0, y).

This suggests that knowledge on the operator St alone is sufficient to recover L−1. This is what
we shall prove and use, thereby giving a precise meaning to the representation (1.2). We shall also
prove that knowledge of L−1 alone uniquely determines the operator St, which we decide to call the
single layer operator (associated with L).

Having (1.2) at hand, more operator bounds of St can be plugged in this formula to give further
estimates on L−1f . Under (DGNM), [HMiMo] proves some bounds by Calderón-Zygmund theory.
But, following [R], we may also compute St (recall it is unique) using the connection between L
and a first order Dirac operator DB proposed in [AAMc]. Thus, the operator bounds proved in
[AS] become available. Such bounds, comprising the ones of [HMiMo], hold for a range of spaces
determined by the coincidence of abstract Hardy spaces associated with DB and the corresponding
concrete Hardy spaces associated with D. At the heart of this treatment lies the H∞ functional
calculus of DB proved in [AKMc] by a remarkable elaboration on the solution of the Kato problem
for elliptic systems.

The organisation of the article is as follows. First, we present our main results and the strategy
to prove uniqueness (Section 2). We next present proofs of our main results in the showcase p = 2
because the arguments there do not require any use of the single layer operators and still contain
the main ideas (Section 3). Then, we state in what sense (1.2) holds (Section 4) and move to p 6= 2
(Section 5). In Section 6 we discuss the regularity problem with Hardy-Sobolev data versus the
Dirichlet problem with BMO or Hölder continuous data. We prove (1.2) in various different ways
(Section 7). Some technical lemmas are presented in the final Section 8.

2. Setup, results and strategy of proofs

2.1. Notation and general assumptions. We shall use the following notation for spaces. We
denote C∞

0 (Rd) the space of compactly supported smooth complex-valued functions on R
d. For

1 < p < ∞, the inhomogeneous Sobolev space on R
d consists of those f ∈ Lp(Rd;C) for which
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∇f is p-integrable. It contains C∞
0 (Rd) as a dense subspace. The homogeneous Sobolev space

Ẇ 1,p(Rd) consists of all distributions on R
d for which ∇f is in Lp(Rd;Cd). It is a Banach space

when moding out the constants and it can be realised as the closure of W 1,p(Rd) modulo constants

for the semi-norm ‖∇f‖p. Its dual Ẇ −1,p′
(Rd) is identified to the space of distributions div F with

F ∈ Lp′
(Rd;Cd). The space of continuous complex-valued functions on R that vanish at ±∞ is

denoted C0(R) and C0([0, ∞)) denotes the space of continuous functions on [0, ∞) that vanish at
+∞. All these spaces have E-valued extension (denoted Lp(Rd; E) and so on) when E is a complex
Banach space. Occasionally, we use the subscript loc to indicate that certain conditions hold only
on compact subsets.

We denote points in R
1+n = R × R

n by (t, x) etc. We set R
1+n
+ := (0, ∞) × R

n. For short, we
write Lu = − div A∇u = 0 to mean (1.1), where we assume that the matrix

(2.1) A(x) = (Aα,β
i,j (x))α,β=1,...,m

i,j=0,...,n ∈ L∞(Rn; L(Cm(1+n))),

is bounded and measurable, independent of t (transversal independence), and satisfies the following

strict accretivity condition on the subspace H of L2(Rn;Cm(1+n)) defined by (fα
i )i=1,...,n being curl

free in R
n for all α: For some λ > 0 and all f ∈ H,

(2.2)

∫

Rn
Re(A(x)f(x) · f(x)) dx ≥ λ

n∑

i=0

m∑

α=1

∫

Rn
|fα

i (x)|2 dx.

In particular situations, we may weaken this condition to the well-known G̊arding inequality, see
Remark 2.11 below. The system (1.1) is considered in the sense of distributions with weak solutions

in W 1,2
loc (R1+n

+ ;Cm).
As weak solutions to elliptic systems might not be regular, we use the Whitney average variants of

the usual non-tangential maximal functions. But when we get back to systems where solutions have
meaningful pointwise values, these variants turn out to be equivalent to the usual pointwise control.
Consider, for 0 < q < ∞, the q-adapted non-tangential maximal function

(2.3) Ñ∗,qF (x) := sup
t>0

(
−

∫
−

∫

(c−1

0
t,c0t)×B(x,c1t)

|F (s, y)|q ds dy

)1/q

, x ∈ R
n,

for some fixed parameters c0 > 1, c1 > 0. We use B(x, r) for the Euclidean ball centred at x

with radius r and materialise averages by dashed integrals. When q = 2, we simply write Ñ∗. For
fixed p > 0 and q > 0, a covering argument reveals that changing the parameters yields equivalent
‖Ñ∗,qF‖p norms. In the following, we shall use

(2.4) W (t, x) := (t/2, 2t) × B(x, t)

for simplicity.

2.2. Main results and consequences. For 1 < p < ∞, the Lp Dirichlet problem with non-
tangential maximal control can be formulated as follows: given f ∈ Lp(Rn;Cm), uniquely solve

(D)L
p





Lu = 0 on R
1+n
+ ,

Ñ∗u ∈ Lp(Rn),

limt→0 −
∫

−
∫

W (t,x) |u(s, y) − f(x)| ds dy = 0 for a.e. x ∈ R
n.

The Lp regularity problem consists in solving uniquely (modulo constants), given f ∈ Ẇ 1,p(Rn;Cm),

(R)L
p





Lu = 0 on R
1+n
+ ,

Ñ∗(∇u) ∈ Lp(Rn)

limt→0 −
∫

−
∫

W (t,x) |u(s, y) − f(x)| ds dy = 0 for a.e. x ∈ R
n.

We have fixed the parameters for W (t, x) but from Lebesgue’s differentiation theorem applied to f
and a covering argument we can again see that the convergence of Whitney averages of |u − f | is
independent of their particular choice.
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To formulate our main results we implicitly use a certain perturbed first order operator DB
associated with L and the associated abstract Hardy spaces Hp

DB defined and studied in [AS]. At this
stage, the reader need not be aware of their definitions as we are only going to use the consequences
drawn in [AS].

We call HL the set of those p ∈ ( n
n+1 , ∞) such that we have coincidence Hp

DB = Hp
D of abstract

and concrete Hardy spaces. (It corresponds to IL in [AS]). This is an open interval containing 2 and
there is a corresponding interval HL∗.

Theorem 2.1. Let 1 < p < ∞ with p′ ∈ HL∗. Existence for (R)L∗

p′ implies uniqueness for (D)L
p .

Theorem 2.2. Let 1 < p < ∞ with p ∈ HL. Existence for (D)L∗

p′ implies uniqueness for (R)L
p

(modulo constants).

The interval HL equals (1 − ε′(L), 2 + ε(L)) in case of (DGNM) for L∗ for example (with 0 <
ε(L) ≤ ∞) and even some conditions weaker than (DGNM) suffice, see Section 13 in [AS] for details.
We note that [HMaMo] uses a similar exponent 2 + ε but we do not know whether it agrees with our
2 + ε(L). More specifically, we have the following corollaries, compare with Proposition 8.19(i)&(ii)
in [HMaMo].

Corollary 2.3. Assume (DGNM) for L and (2 + ε(L∗))′ < p < ∞. Existence for (R)L∗

p′ implies

uniqueness for (D)L
p .

Corollary 2.4. Assume (DGNM) for L∗ and 1 < p < 2 + ε(L). Existence for (D)L∗

p′ implies

uniqueness for (R)L
p (modulo constants).

Well-posedness of a boundary value problem is the conjunction of both existence of a solution for
all data and uniqueness. A stronger notion, appearing implicitly in many earlier works, is that of
compatible well-posedness: It means well-posedness and that the unique solution agrees with the
energy solution obtained from the Lax-Milgram lemma, whenever the boundary data is admissible
for energy solutions. Theorem 2.1 then has the following interesting consequence we shall discuss in
detail in Section 5.3. We define the square function SF of a measurable function F by

(2.5) SF (x) :=

(∫∫

Γa(x)
|F (t, y)|2

dt dy

tn+1

)1/2

, x ∈ R
n,

where a > 0 is a fixed number called aperture of the cone Γa(x) := {(t, y) : t > 0, |x − y| < at}.

Corollary 2.5. Let 1 < p < ∞ with p′ ∈ HL∗. Assume (R)L∗

p′ is well-posed (resp. compatible well-

posed) modulo constants. Then so is (D)L
p . Moreover, given f ∈ Lp(Rn;Cm), the weak solution u

with data f has further regularity u ∈ C0([0, ∞); Lp(Rn;Cm)), satisfies the square function estimate
‖S(t∇u)‖p < ∞ and there is comparability

(2.6) ‖Ñ∗(u)‖p ∼ ‖S(t∇u)‖p ∼ sup
t≥0

‖u(t, ·)‖p ∼ ‖f‖p.

In addition, the non-tangential convergence improves to L2 averages, that is, for a.e. x ∈ R
n,

(2.7) lim
t→0

−

∫
−

∫

W (t,x)
|u(s, y) − f(x)|2 ds dy = 0.

2.3. Comparison to earlier results. We comment here on the formulations of the problems and
statements in relation to existing literature.

Remark 2.6 (On convergence at the boundary for the Dirichlet problem). There is no trace theorem

for the space of measurable functions u with ‖Ñ∗u‖p < ∞. Hence, existence of boundary values is
part of the Dirichlet problem and does not follow from the interior control. If we look for non-
tangential approach almost everywhere, this the weakest possible condition. But we may also choose
a different convergence to the boundary data, such as strong Lp convergence u(t, ·) → f as t → 0 on

compact subsets of Rn as considered in [HMaMo] under (DGNM). In that case, Ñ∗u can be replaced
by the usual pointwise supremum on cones denoted by N∗u. As ‖u(t, ·)‖p ≤ ‖N∗u‖p for all p and
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t > 0, the Lp convergence on compact sets, is also natural. We shall see that a minor modification
of our arguments will cover this formulation of the Dirichlet problem and even a weaker form of Lp

loc

convergence. Note carefully that ‖Ñ∗u‖p < ∞ does not imply Lp boundedness for solutions when
p > 2 (see below).

Remark 2.7 (On the formulation of the Dirichlet problem). We use Ñ∗ = Ñ∗,2 in the Dirichlet

problem. For complex equations, it makes a difference to consider Ñ∗ or Ñ∗,q with q = p, see [Ma], as
solutions may not be locally p-integrable. The choice q = 2 is most natural to overcome this difficulty
and we could even use Ñ∗,1 by invoking reverse Hölder estimates.

Remark 2.8 (On convergence at the boundary for the regularity problem). For the regularity

problem, there is a trace theorem for the space of L2
loc functions satisfying ‖Ñ∗(∇u)‖p < ∞, as is

implicit in [KP]. The Whitney averages converge almost everywhere in approaching the boundary,

the limit belongs to the homogeneous Sobolev space Ẇ 1,p(Rn) and Cesàro means −
∫ 2t

t u ds converge
in the sense of distributions modulo constants to the same limit, see Lemma 8.3 . Hence, the
boundary condition in the regularity problem is implied by the interior control. Actually, Theorem
1.1 of [AM] shows that all solutions in this class for the range of p in the statement enjoy convergence
∇xu(t, ·) → ∇xu(0, ·) strongly in Lp as t → 0. So, this could be taken as definition for the convergence
to the boundary data as well.

Remark 2.9 (On comparability of S and Ñ∗). For p as in Corollary 2.5, Theorems 1.6 and The-
orem 1.9 in [AM] show that (compatible) well-posedness for (R)L∗

p′ is equivalent to (compatible)

well-posedness for a variant (D̃)L
p of the Dirichlet problem with the non-tangential maximal function

being replaced by the square function S(t∇u) in the Lp-control. Owing to Corollary 1.4 in [AM], we

have ‖Ñ∗(u)‖p . ‖S(t∇u)‖p a priori for any weak solution in this range of p and u(t, ·) converges to
its boundary data strongly in Lp. Thus, Corollary 2.5 can rephrased as saying that the (compatible)

well-posedness of (D̃)L
p implies that of (D)L

p .
It would be interesting to prove the converse, at least for the range of p above. For equations,

that is m = 1, with real valued t-independent coefficients, the real variable argument in [HKMP1]

shows ‖Ñ∗(u)‖p ∼ ‖S(t∇u)‖p for any weak solution. Hence, both Dirichlet problems are a priori the

same and the converse holds. Using the equivalence between (D̃)L
p and (R)L∗

p′ mentioned above, this
also provides a direct way for deducing the main result on well-posedness of the regularity problem
(R)L∗

p′ in [HKMP2] for real coefficients from [HKMP1]. For equations with complex coefficients and
systems though, akin conclusion remain unknown.

Remark 2.10 (On representation by layer potentials). Another aspect of the theory is whether u
in Corollary 2.5 can be represented as u = Dt(D0+)−1f , where Dt is the double layer operator, also
defined abstractly and proved to be bounded on L2 in [R] and on Lp in this range of p in [AS].
There is no reason to believe that D0+ is invertible under the assumptions in Corollary 2.5. Even
well-posedness of the regularity problem on both half-spaces is not enough to conclude this: however,
it gives the different representation u = St(S0)−1f using the single layer operator. As of today, the
only available method to prove invertibility is via the so-called Rellich estimates. This was done
first in [V] when p ≥ 2 for the Laplace’s equation in Lipschitz domains and has been extended to
a larger class of equations (perturbations of real symmetric coefficients) in [AAAHK] by developing
the layer potential approach and using the Rellich estimates of [JK] for invertibility. Note that the
Rellich estimates give access to solvability of Neumann problems as well, which is strong additional
information.

Remark 2.11 (On the ellipticity condition). Given u ∈ Ẇ 1,2(R1+n), we can take f(x) = ∇u(t, x)
for each t ∈ R in (2.2) and integrate in t to obtain G̊arding’s inequality

∫∫

R1+n
Re(A(x)∇u(t, x) · ∇u(t, x)) dx dt ≥ λ

∫∫

R1+n
|∇u(t, x)|2 dx dt.(2.8)

We shall observe that our proofs of Theorem 2.1 and 2.2 in the case p = 2 — and even p nearby
— only require (2.8). In particular, this gives access to uniqueness of boundary value problems
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for Lamé-type systems [MMMM], which typically satisfy G̊arding’s inequality but not the strict
accretivity condition (2.2).

2.4. Strategy to the proofs. The formal strategy is the same for both theorems and is adopted
from earlier references, in particular [AAAHK, HMaMo]. Let u be a solution of Lu = 0 on R

1+n
+

with zero boundary condition. We take G ∈ C∞
0 (R1+n;Cm) with support contained in some region

[a, b] × B(0, c) contained in R
1+n
+ . We want to show that 〈u, G〉 = 0. We then pick a second function

θ supported in R
1+n
+ , real-valued, Lipschitz continuous and equal to 1 on the support of G. Finally,

we let H be a weak solution of L∗H = G on R
1+n. As uθ is a test function for this equation, we have

〈u, G〉 = 〈uθ, G〉 = 〈A∇(uθ), ∇H〉.

Next,

〈A∇(uθ), ∇H〉 = 〈Au∇θ, ∇H〉 + 〈Aθ∇u, ∇H〉

= 〈Au∇θ, ∇H〉 − 〈A∇u, H∇θ〉 + 〈A∇u, ∇(θH)〉,

and the last term vanishes because θH is a test function for Lu = 0. All brackets here can be expressed
by L2 complex inner products and in accordance with our shorthand notation − div A∇u = 0 for

(1.1) we abbreviated Au∇θ = Aα,β
i,j uβ∂jθ and H∇θ = Hα∂iθ, where sums are taken over repeated

indices.
Now the existence hypothesis comes into play. We let h := H(0, ·) (provided it makes sense) and

let H1 be a solution to the adjoint problem L∗H1 = 0 on R
1+n
+ with boundary condition h. We may

apply the same decomposition to 〈A∇(uθ), ∇H1〉 and remark that this term vanishes since uθ is a
test function for L∗H1 = 0. Hence, we obtain

(2.9) 〈u, G〉 = 〈Au∇θ, ∇(H − H1)〉 − 〈A∇u, (H − H1)∇θ〉.

We remark that u and H − H1 both vanish at the boundary. In fact, the reason to use H1 is to help
convergence near the boundary. The symmetry in u and H − H1 also indicates why the results can
go both ways.

The goal is then to show that these two terms tend to 0 if we let θ → 1 everywhere on R
1+n
+ . The

heart of the matter is to prove estimates on H and h, using our assumption, instead of relying on
estimates for the fundamental solutions to represent H in [AAAHK, HMaMo] under (DGNM). For
us, the assumption implies boundedness properties of single layer operators for a certain range of
spaces and we shall use this as a black box, once having shown the representation (1.2).

Some particular choice of θ will facilitate the proofs. We are going to pick θ as follows. We fix
χ ∈ C∞

0 (Rn) to be 1 on B(0, 1) and with support in B(0, 2). We let η be the continuous, piecewise
linear function, which is 0 on [0, 2/3] and 1 on [3/2, ∞) and linear in between. We pick M > 2c,
0 < ε < a/4 and 2b < R < ∞ to finally set

θ(t, x) := χ(x/M)η(t/ε)(1 − η(t/R)).

2.5. Standard estimates on weak solutions. Here are some standard properties on weak solu-
tions to Lu = 0 in a domain Ω ⊂ R

1+n we shall freely use throughout. The reader can refer to [Gi] for
the elliptic equations or the the recent article [Ba] for systems. With regard to these references, we
remark that reverse Hölder’s inequalities share the general feature that Lebesgue exponents on both
sides can be lowered as one pleases, see Theorem 2 in [IN] or Theorem B.1 in [BCF] for a particularly
simple proof.

Caccioppoli’s inequality: −

∫
−

∫

W (t,x)
|∇u|2 .

1

t2
−

∫
−

∫

W̃ (t,x)
|u|2.

Reverse Hölder inequality on ∇u:

(
−

∫
−

∫

W (t,x)
|∇u|2

)1/2

. −

∫
−

∫

W̃ (t,x)
|∇u|.

Reverse Hölder inequality on u:

(
−

∫
−

∫

W (t,x)
|u|2

)1/2

. −

∫
−

∫

W̃ (t,x)
|u|.
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Here W̃ (t, x) is another Whitney region, with strictly larger parameters than W (t, x) and we assume
that the former is compactly included in Ω. The implied constants depend only on ellipticity of A,

Whitney parameters and the distance of W̃ (t, x) to ∂Ω. The reverse Hölder inequalities can also
come with Lp-averages for some p > 2 on the left but we shall not need such improvements.

3. The case p = 2

To illustrate the simplicity of our argument, we present here the proofs of our main results in
the showcase p = 2. For the purpose of this section only, it will be sufficient to assume the weaker
ellipticity condition (2.8).

3.1. Estimate for L−1. First, L : Ẇ 1,2(R1+n;Cm) → Ẇ −1,2(R1+n;Cm) is invertible as a conse-
quence of the Lax-Milgram lemma and (2.8). This is how we understand L−1. The adjoint of L is
associated with the matrix A∗.

Lemma 3.1. Let G ∈ C∞
0 (R1+n;Cm)∩Ẇ −1,2(R1+n;Cm) and let H ∈ Ẇ 1,2(R1+n;Cm) solve LH = G

in R
1+n. Then

(i) For all integers k ≥ 1, ∂k
t H exists in W 1,2(R1+n;Cm) and L(∂k

t H) = ∂k
t G.

(ii) For all integers k ≥ 1, ∂k
t H ∈ C0(R; W 1,2(Rn;Cm)) with t ∈ R the distinguished variable.

Proof. Remark that for n ≥ 2 we have C∞
0 (R1+n;Cm) ⊂ Ẇ −1,2(R1+n;Cm) by Sobolev embed-

dings. For n = 1, the necessary and sufficient condition on G is
∫∫

R1+n G = 0. The solution

H ∈ Ẇ 1,2(Rn;Cm) is defined by requiring for all ϕ ∈ Ẇ 1,2(R1+n;Cm) that

(3.1) 〈A∇H, ∇ϕ〉 = 〈G, ϕ〉,

where the second bracket is the (complex) duality between Ẇ −1,2(R1+n;Cm) and Ẇ 1,2(R1+n;Cm).
As A is t-independent, and since ∂k

t G ∈ Ẇ −1,2(R1+n;Cm) for all k ≥ 1, the method of difference
quotients and induction on k allows us to differentiate (3.1) and to obtain ∂k

t H ∈ Ẇ 1,2(R1+n;Cm)
with

〈A∇∂k
t H, ∇ϕ〉 = 〈∂k

t G, ϕ〉,

for all ϕ ∈ Ẇ 1,2(R1+n;Cm). This means L(∂k
t H) = ∂k

t G. Moreover, ∇(∂k
t H) ∈ L2(R1+n,Cm(1+n))

for all integers k ≥ 0, showing in particular ∂k+1
t H ∈ L2(R1+n;Cm) for all k ≥ 0. This completes the

proof of (i).
For (ii), we use the vector-valued embedding W 1,2(R; L2(Rn;Cm)) ⊂ C0(R; L2(Rn;Cm)). Since

∂k
t H, ∂k+1

t H are in L2(R1+n;Cm), which we identify with L2(R; L2(Rn;Cm)) via Fubini’s theorem,

we obtain ∂k
t H ∈ C0(R; L2(Rn;Cm)). Similarly we have ∇x∂k

t H, ∇x∂k+1
t H ∈ L2(R1+n;Cmn) and

hence ∇x∂k
t H ∈ C0(R; L2(Rn;Cmn)) as well. The conclusion follows. �

Lemma 3.2. Let G̃ ∈ C∞
0 (R1+n;Cm) ∩ Ẇ −1,2(R1+n;Cm) and H̃ := L−1(G̃). Set G = ∂tG̃ and

H = ∂tH̃. Then G ∈ C∞
0 (R1+n;Cm) ∩ Ẇ −1,2(R1+n;Cm) and H ∈ W 1,2(R1+n;Cm) solves LH = G

in R
1+n with estimates

‖Ñ∗,1H‖2 + ‖Ñ∗,1(∇H)‖2 < ∞.

Remark 3.3. With a little more work the reader may check ‖Ñ∗H‖2 < ∞ and ‖Ñ∗(∇H)‖2 < ∞.
We do not need this improvement.

Proof. As a derivative of an L2(R1+n;Cm)-function, ∂tG̃ is in Ẇ −1,2(R1+n;Cm). Observe that by
Lemma 3.1 we have

H = ∂tH̃ = L−1(∂tG̃) = L−1(G) ∈ W 1,2(Rn;Cm).

In particular, H is square-integrable. Let a, b ∈ R such that supp G ⊂ [a, b] × R
n. We may assume

for simplicity b ≥ 2.



8 PASCAL AUSCHER AND MORITZ EGERT

To establish ‖Ñ∗,1H‖2 < ∞, we split the supremum defining Ñ∗,1H in two parts according to
t < 4b and 4b ≤ t. In the first case we note that h := H(0, ·) is defined in W 1,2(Rn;Cm) due to
Lemma 3.1 to give

−

∫
−

∫

W (t,x)
|H(s, y)| ds dy ≤ −

∫
−

∫

W (t,x)
|H(s, y) − h(y)| ds dy + −

∫
−

∫

W (t,x)
|h(y)| ds dy.

Since s 7→ H(s, ·) is smooth with values in L2(Rn;Cm) again by Lemma 3.1, and as t < 4b, we can
write

−

∫
−

∫

W (t,x)
|H(s, y)| ds dy ≤ −

∫

B(x,t)

∫ 8b

0
|∂sH(s, y)| ds dy + −

∫

B(x,t)
|h(y)| ds dy

≤ M(F )(x) + M(h)(x),

(3.2)

where M is the Hardy-Littlewood maximal operator on R
n and F (x) :=

∫ 8b
0 |∂sH(s, x)| ds. We know

that h ∈ L2(Rn;Cm), and also F ∈ L2(Rn) since ∂sH ∈ L2(R1+n;Cm) and
∫

Rn
|F (x)|2 dx ≤ 8b

∫

Rn

∫ 8b

0
|∂sH(s, x)|2 ds dx.

Taking the supremum over t < 4b in (3.2), we obtain the L2 bound from the maximal theorem.
Assume now that t ≥ 4b. Then for T ≥ 2t,

−

∫
−

∫

W (t,x)
|H(s, y)| ds dy ≤ −

∫

B(x,t)

∫ T

2b
|∂sH(s, y)| ds dy + −

∫

B(x,t)
|H(T, y)| dy.

Applying Lemma 3.1(ii) to ∂tH̃ = H, we see that the second term tends to 0 as T → ∞. Thus,

sup
t≥4b

−

∫
−

∫

W (t,x)
|H(s, y)| ds dy ≤ M(F1)(x),(3.3)

with F1(x) :=
∫∞

2b |∂sH(s, x)| ds. Now,
∫

Rn
|F1(x)|2 dx ≤

1

2b

∫

Rn

∫ ∞

2b
s2|∂sH(s, x)|2 ds dx

and in the domain of integration, H is a weak solution to LH = 0. Thus, covering this region by
Whitney cubes for R

1+n
+ , that is, cubes having sidelength half their distance to the boundary, we

may apply Caccioppoli’s inequality on each cube and sum up, using bounded overlap, to get
∫

Rn

∫ ∞

2b
s2|∂sH(s, x)|2 ds dx .

∫

Rn

∫ ∞

b
|H(s, x)|2 ds dx < ∞.

Going back to (3.3), the claim follows again from the maximal theorem.

We next turn to establishing ‖Ñ∗,1(∇H)‖2 < ∞. The control for the t-derivative ∂tH is the same

upon replacing H by ∂tH and G̃ by ∂tG̃ in the argument above, which satisfy the same hypotheses.
Let us turn to ∇yH. Again we split the supremum in the two parts t < 4b and 4b ≤ t. As for the
first one, we argue as in (3.2), using that s 7→ ∇yH(s, ·) is smooth with values in L2(Rn;Cmn) by
Lemma 3.1, to give

−

∫
−

∫

W (t,x)
|∇yH(s, y)| ds dy ≤ M(F̃ )(x) + M(∇h)(x),(3.4)

where F̃ (x) :=
∫ 8b

0 |∂s∇xH(s, x)| ds. We know that ∇h ∈ L2(Rn;Cmn), and also F̃ ∈ L2(Rn) since
by Lemma 3.1,

∫

Rn
|F̃ (x)|2 dx ≤ 8b

∫

Rn

∫ 8b

0
|∂s∇xH(s, x)|2 ds dx < ∞.

Taking the supremum over t < 4b in (3.4), we obtain again an L2 bound from the maximal theorem.
If t ≥ 4b, we argue as in (3.3) to find

sup
t≥4b

−

∫
−

∫

W (t,x)
|∇yH(s, y)| ds dy ≤ M(F̃1)(x),(3.5)
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with F̃1(x) :=
∫∞

2b |∂s∇xH(s, x)| ds. Next, we can use the same covering argument as before to bring
into play Caccioppoli’s inequality and deduce

∫

Rn
|F̃1(x)|2 dx ≤

1

2b

∫

Rn

∫ ∞

2b
s2|∂s∇xH(s, x)|2 ds dx .

∫

Rn

∫ ∞

b
|∂sH(s, x)|2 ds dx.

Lemma 3.1 guarantees that the rightmost term is finite and a final application of the maximal theorem
yields the L2 bound in (3.5). �

3.2. Proof of Theorem 2.1 when p = 2. We assume Lu = 0 on R
1+n
+ , the control Ñ∗u ∈ L2(Rn)

and convergence

lim
t→0

−

∫
−

∫

W (t,x)
|u(s, y)| ds dy = 0(3.6)

for almost every x ∈ R
n. We have to show u = 0 almost everywhere. To this end, we apply the

strategy presented in Section 2.
For a reason that will appear later in the proof, we pick G of the form G = ∂tG̃ with G̃ ∈

C∞
0 (R1+n;Cm) ∩ Ẇ −1,2(R1+n;Cm). Assume, we had already proved 〈u, G〉 = 0. This means

〈∂tu, G̃〉 = 0. When n ≥ 2, Sobolev embeddings show that G̃ can be any test function and so
this implies u(t, x) = f(x). When n = 1, we can take any test function with zero average and obtain
u(t, x) = ct + f(x) with c constant. The equations hold a.e. and we have f ∈ L2

loc(R
1+n
+ ) since

u ∈ L2
loc(R

1+n
+ ). Due to the limit of Whitney averages at t = 0, we obtain f = 0 a.e. in both cases by

Lebesgue’s differentiation theorem. When n ≥ 2, we are done. When n = 1, this yields u(t, x) = ct,
hence −

∫
−
∫

W (t,x) |u(s, y)|2 ds dy = 5
4c2t2. As the supremum in t > 0 is finite a.e., we must have c = 0.

To show 〈u, G〉 = 0, we have to make sense of H1 and control both terms on the right-hand side

of (2.9). We let H̃ := (L∗)−1(G̃) and have H = ∂tH̃ due to Lemma 3.1(i). As ∇h ∈ L2(Rn;Cmn) by
Lemma 3.1(ii), existence in the regularity problem for L∗ yields a solution H1 to L∗H1 = 0 in R

1+n
+

with Ñ∗(∇H1) ∈ L2(Rn) and boundary trace h. Due to the explicit form of θ, we easily obtain for
the first integral in (2.9),

|〈Au∇θ, ∇(H − H1)〉| . IM + Jε + JR,

with

IM :=
1

M

∫

|x|≥M

∫ 3R/2

2ε/3
|u||∇(H − H1)| ds dy

and

Jα :=

∫

Rn
−

∫ 3α/2

2α/3
|u||∇(H − H1)| ds dy.

First, IM tends to 0 as M → ∞. Indeed, let Ω := [2ε
3 , 3R

2 ] × {|x| ≥ M}. By Lemma 8.2,

IM .
1

M
‖Ñ∗u‖2‖Ñ∗(1Ω|∇(H − H1)|)‖2.

As H − H1 is a solution to L∗(H − H1) = 0 on a neighbourhood of Ω, we can use reverse Hölder
inequalities and a change of Whitney parameters to obtain

‖Ñ∗(1Ω|∇(H − H1)|)‖2 . ‖Ñ∗,1(∇(H − H1))‖2,

which is finite by Lemma 3.2 and the construction of H1.
Next, set w(ε, x) := (2ε

3 , 3ε
2 ) × B(x, ε

2), which is a Whitney region compactly contained in W (ε, x).
Using the averaging trick with balls of Rn having radii ε/2 and Tonelli’s theorem, we obtain

Jε ≤

∫

Rn

(
−

∫
−

∫

w(ε,x)
|u||∇(H − H1)|

)
dx

.

∫

Rn

(
−

∫
−

∫

w(ε,x)
|u|2

)1/2(
−

∫
−

∫

w(ε,x)
|∇(H − H1)|2

)1/2

dx

.

∫

Rn

(
−

∫
−

∫

W (ε,x)
|u|

)(
−

∫
−

∫

W (ε,x)
|∇(H − H1)|

)
dx,



10 PASCAL AUSCHER AND MORITZ EGERT

where we have used the reverse Hölder inequality for u and ∇(H −H1). Observe that the integrand is

controlled by Ñ∗u ·Ñ∗,1(∇(H −H1)), which as a product of two L2-functions is integrable. Moreover,
−
∫

−
∫

W (ε,x) |u| tends to 0 as ε → 0 by assumption. Thus, we conclude Jε → 0 as ε → 0 by dominated

convergence. Finally, we have similarly

JR .

∫

Rn

(
−

∫
−

∫

W (R,x)
|u|

)(
−

∫
−

∫

W (R,x)
|∇(H − H1)|

)
dx,

so that we get the same L1-control, while −
∫

−
∫

W (R,x) |u| → 0 as R → ∞ follows from Lemma 8.1 and

Ñ∗(u) ∈ L2(Rn).
Finally, we treat 〈A∇u, (H − H1)∇θ〉, which is the other term on the right-hand side of (2.9),

exactly as above upon replacing |u||∇(H −H1)| by |∇u||H −H1| = (s|∇u|)(|H −H1|/s). We observe
that Caccioppoli’s inequality and the reverse Hölder inequality reveal

(
−

∫
−

∫

w(t,x)
s2|∇u|2

)1/2

. −

∫
−

∫

W (t,x)
|u|.

Hence we can apply the same argument as before, using ‖Ñ∗,1((H − H1)/t)‖2 ∈ L2(Rn) from
Lemma 8.3 and H = H1 on the boundary (write H − H1 = H − h + h − H1), which is used for
the first time here.

Remark 3.4. With regard to Remark 2.6, we give the modification of the proof when instead of
the non-tangential convergence (3.6) we assume −

∫ 2t
t/2 |u(s, ·)| ds → 0 as t → 0 in L2

loc(R
n). The only

difference is in the treatment of the limit of Jε. To this end, pick any δ > 0 and choose r > 0 such
that

∫

cB(0,r)
Ñ∗(u)Ñ∗,1(∇(H − H1)) dx < δ.

Then for ε < 1 we obtain from Tonelli’s theorem

Jε . δ +

∫

B(0,r)

(
−

∫
−

∫

W (ε,x)
|u(s, y)| ds dy

)
Ñ∗,1(∇(H − H1))(x) dx

. δ +

∫

B(0,r+1)

(
−

∫ 2ε

ε/2
|u(s, y)| ds

)(
−

∫

B(y,ε)
Ñ∗,1(∇(H − H1))(x) dx

)
dy

≤ δ +

∥∥∥∥−

∫ 2ε

ε/2
|u(s, ·)| ds

∥∥∥∥
L2(B(0,r+1))

∥∥∥∥M(Ñ∗,1(∇(H − H1)))

∥∥∥∥
L2(Rn)

,

which in the limit superior ε → 0 is bounded by δ using the hypothesis and the maximal theorem. The
modifications for the integral involving (s|∇u|)(|H − H1|/s) are similar, incorporating Caccioppoli’s
inequality to get back to averages of u.

3.3. Proof of Theorem 2.2 when p = 2. We assume Lu = 0 on R
1+n
+ with Ñ∗(∇u) ∈ L2(Rn)

and convergence limt→0 −
∫
−
∫

W (t,x) |u(s, y)| ds dy = 0 for a.e. x ∈ R
n. We have to show u = 0 almost

everywhere. We first remark that by Lemma 8.3 we also have Ñ∗,1(u/t) ∈ L2(Rn).

As in the proof of Theorem 2.1, we pick G of the form G = ∂tG̃ with G̃ ∈ C∞
0 (R1+n;Cm) ∩

Ẇ −1,2(R1+n;Cm). We claim that it is again enough to show 〈u, G〉 = 0: Indeed, when n ≥ 2 we may

conclude as before and when n = 1, we reach the point where u(t, x) = ct a.e. but as Ñ∗(u/t) ∈ L2(Rn)
we must have c = 0.

To actually show 〈u, G〉 = 0, we have again to control both terms on the right hand side of (2.9). We

let H̃ := (L∗)−1(G̃), noting that by Lemma 3.1 we have H = (L∗)−1(G) = ∂tH̃. As h ∈ L2(Rn;Cm)
by Lemma 3.1(ii), existence for the Dirichlet problem yields a solution H1 to L∗H1 = 0 in R

1+n
+

with Ñ∗(H1) ∈ L2(Rn) and boundary trace h in the sense that −
∫
−
∫

W (ε,x) |H1(s, y) − h(x)| → 0 for a.e.

x ∈ R
n as ε → 0. We are now ready to estimate the integrals in (2.9). We still have

|〈Au∇θ, ∇(H − H1)〉| . IM + Jε + JR,
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with

IM =
1

M

∫

|x|≥M

∫ 3R/2

2ε/3

|u|

s
· |s∇(H − H1)| ds dy

and

Jα =

∫

Rn
−

∫ 3α/2

2α/3

|u|

s
· |s∇(H − H1)| ds dy.

First, IM tends to 0 as M → ∞. Indeed, let Ω := [2ε/3, 3R/2] × {|x| ≥ M}. By Lemma 8.2,

IM .
1

M
‖Ñ∗(u/s)‖2‖Ñ∗(1Ω|s∇(H − H1)|)‖2.

As Lu = 0 and s ∼ t on Whitney regions W (t, x), we have ‖Ñ∗(u/s)‖2 . ‖Ñ∗,1(u/s)‖2 < ∞ by reverse
Hölder estimates and change of parameters (which will be implicit in all of the following steps). Also
L∗(H − H1) = 0 holds on a neighbourhood of Ω. Thus, we can use Caccioppoli inequalities to

obtain ‖Ñ∗(1Ωs|∇(H − H1)|)‖2 . ‖Ñ∗(1
Ω̃

(H − H1))‖2, where Ω̃ is a slightly bigger region, still at

some large distance to the support of G̃, so that we may use reverse Hölder inequalities to conclude
‖Ñ∗(1

Ω̃
(H −H1))‖2 . ‖Ñ∗,1H‖2 +‖Ñ∗H1‖2. The latter are finite by Lemma 3.2 and the construction

of H1.
Next, using the averaging trick with balls of radii ε/2 and the Whitney regions w(ε, x) := (2ε

3 , 3ε
2 )×

B(x, ε
2 ) and w̃(ε, x) = (4ε

7 , 7ε
4 ) × B(x, 2ε

3 ), both being compactly contained in W (ε, x), we obtain

Jε .

∫

Rn

(
−

∫
−

∫

w(ε,x)

|u|

s
· |s∇(H − H1)|

)
dx

.

∫

Rn

(
−

∫
−

∫

w(ε,x)

|u|2

s2

)1/2(
−

∫
−

∫

w(ε,x)
|s∇(H − H1)|2

)1/2

dx

.

∫

Rn

(
−

∫
−

∫

W (ε,x)

|u|

s

)(
−

∫
−

∫

w̃(ε,x)
|H − H1|2

)
dx

.

∫

Rn

(
−

∫
−

∫

W (ε,x)

|u|

s

)(
−

∫
−

∫

W (ε,x)
|H − H1|

)
dx,

where we have used the reverse Hölder inequality for u and H − H1, and Caccioppoli inequalities for
H − H1, observing that L∗(H − H1) = 0 holds on a neighbourhood of the domain of integration. We

note that the integrand is controlled by Ñ∗(u/s)Ñ∗,1(H −H1), which is integrable by assumption on u
and Lemma 8.3 plus Lemma 3.2 for H and the construction of H1. As for the pointwise convergence,
we use H − H1 and write

−

∫
−

∫

W (ε,x)
|H − H1| ≤ −

∫
−

∫

W (ε,x)
|H(s, y) − h(x)| ds dy + −

∫
−

∫

W (ε,x)
|H1(s, y) − h(x)| ds dy.

Letting ε → 0, the first term goes to 0 by Lemma 3.2 combined with Lemma 8.3. By construction
of H1, so does the second one. Thus, Jε → 0 as ε → 0 by dominated convergence. Finally, we have
similarly,

JR .

∫

Rn

(
−

∫
−

∫

W (R,x)

|u|

s

)(
−

∫
−

∫

W (R,x)
|H − H1|

)
dx,

so that we get the same L1-control and to obtain convergence to 0 we can use −
∫

−
∫

W (R,x) |H − H1| → 0

as R → ∞, which follows from Lemma 8.1 since Ñ∗,1(H − H1) ∈ L2(Rn).
Finally, we can treat 〈A∇u, (H −H1)∇θ〉, which is the second term on the right-hand side of (2.9),

as above upon replacing (|u|/s)(s|∇(H − H1)|) by |∇u||H − H1|. The arguments for convergences
when ε → 0 and R → ∞ are similar and we leave details to the reader.
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4. Representation by single layer operators

In order not to disrupt the flow of the proofs of uniqueness, we only summarize here the needed
results for the single layer operators of [R], which we denote by SL

t , postponing proofs until Section 7.
Throughout, we use the notation fs : x 7→ f(s, x). We begin with the result summarizing their
boundedness properties.

Lemma 4.1. Let 1 < p < ∞. Let k ≥ 0 be an integer. Set R∗ = R \ {0}.

(i) If p ∈ HL, we have the following mapping properties (of extensions by density of)

(t∂t)
kSL

t : Lp(Rn;Cm) → Ẇ 1,p(Rn;Cm), t ∈ R
∗

and

(t∂t)
k∂tS

L
t : Lp(Rn;Cm) → Lp(Rn;Cm), t ∈ R

∗.

Moreover, the operator norms are uniform with respect to t, and as functions of t, these
operators are strongly continuous on R

∗, have strong limits at 0± and vanish strongly at
infinity. Moreover, the limits at 0± are the same except for ∂tS

L
t on Lp.

(ii) If p′ ∈ HL∗, we have the following mapping properties (of extensions by density of)

(t∂t)
kSL

t : Ẇ −1,p(Rn;Cm) → Lp(Rn;Cm), t ∈ R
∗.

Moreover, the operator norms are uniform with respect to t, and as functions of t, these
operators are strongly continuous on R

∗, have strongly continuous extensions at 0 and vanish
strongly at infinity.

Remark 4.2. Recall that the intervals HL, HL∗ were defined in Section 2.2. They are open intervals
and contain 2, so HL ∩ (HL∗)′, where I ′ = {p′; p ∈ I}, is an open interval around 2 and for p in this
interval both sets of estimates hold.

Remark 4.3. In the first case, it follows from the stated properties that (t∂t)
k∇xSL

t are Lp bounded
uniformly in t 6= 0. The same is true for the conormal derivatives (t∂t)

k∂νA
SL

t and these operators

are not continuous at 0 when k = 0 (jump relations). In the second case, these operators are Ẇ −1,p

bounded uniformly in t.

Remark 4.4. More mapping properties on fractional Sobolev and Besov spaces can be drawn by
interpolating these two sets of inequalities. We do not need those here. Remark that for 1 < p < ∞,
the condition p′ ∈ HL∗ is equivalent to requiring the identification of certain negative order Sobolev
spaces Ẇ −1,p

DB = Ẇ −1,p
D as Ẇ −1,p

D is a natural space for (∂νA
u|t=0, ∇xf) if u is a solution to Lu = 0

with Dirichlet data f ∈ Lp. The reader can refer to [AA] for more on this issue.

Next, we state the representation formula by the above single layer operators for L−1. The proof
will only use the properties stated above for p = 2.

Proposition 4.5 (Representation by single layer operators). Assume f ∈ C∞
0 (R1+n;Cm). If n = 1, 2

assume furthermore that f = divx F for some F ∈ C∞
0 (R1+n;Cmn). Then

(L−1f)(t, x) = p.v.

∫

R

SL
t−sfs(x) ds, in Ẇ 1,2(R1+n;Cm),(4.1)

where

p.v.

∫

R

SL
t−sfs(x) ds := lim

ε→0,R→∞

∫

ε<|t−s|<R
SL

t−sfs(x) ds,

and

L−1(∂tf)(t, x) = (∂tL
−1f)(t, x) = p.v.

∫

R

∂tS
L
t−sfs(x) ds

= p.v.

∫

R

SL
t−s(∂sfs)(x) ds, in L2(R1+n;Cm).

(4.2)
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Furthermore, with W 1,2(Rn;Cm)-convergence uniformly for t ∈ R, we have norm convergent (Bochner)
integrals in W 1,2(Rn;Cm),

(4.3) (L−1(∂tf))t = (∂tL
−1f)t =

∫

R

∂tS
L
t−sfs ds =

∫

R

SL
t−s(∂sfs) ds.

Remark 4.6. It is classical that ft(x) = divx Ft(x) is equivalent to
∫
Rn ft(x) dx = 0. We note

that the replacement of f by ∂tf , which has all the other properties required for f , yields a better
convergence of the principal value towards L−1(∂tf). Also for fixed t, the integrals in (4.3) have good
behaviour: It is only to identify the limit in L2(R1+n;Cm) that we have to take principal values.

We also provide a result implying that the operators SL
t are the unique bounded operators

L2(Rn;Cm) → Ẇ 1,2(Rn;Cm) depending strongly continuous on t ∈ R, for which the representa-
tion (4.1) holds true.

Proposition 4.7. Let f ∈ C∞
0 (Rn;Cm) with

∫
Rn f = 0 if n = 1, 2. Let χε(s) = 1

ε χ(s
ε) with

ε > 0 and χ ∈ C∞
0 (R) satisfying

∫
R

χ(s) ds = 1. Set fε(s, x) := χε(s)g(x). Then L−1fε belongs to

C0(R; Ẇ 1,2(Rn;Cm)) and for all t ∈ R, (L−1fε)t converges in Ẇ 1,2(Rn;Cm) to SL
t f .

5. The case p 6= 2

Let us mention that the case when p−2 is small could be treated similar to the case p = 2 without
the representation by layer potentials and assuming only G̊arding’s inequality (2.8). This would
use a basic extension of Lemma 3.1 and Lemma 3.2, taking into account that L : Ẇ 1,p(R1+n) →

Ẇ −1,p(R1+n) remains invertible fur such p due to S̆nĕıberg’s lemma [Sn]. But this does not apply
when p gets “far” from 2.

Henceforth, we assume (2.2) and begin with a lemma analogous to Lemma 3.2 in our range of p.

Lemma 5.1. Let G̃ ∈ C∞
0 (R1+n;Cm) be such that G̃ = divx G♯ for some G♯ ∈ C∞

0 (R1+n; Cnm). Set

H̃ := (L∗)−1(G̃), G := ∂tG̃ and H := ∂tH̃. Let 1 < p < ∞.

(i) If p ∈ HL, then ∂k
t H ∈ C0(R; Lp′

(Rn;Cm)) for all integers k ≥ 0 and ‖Ñ∗,1H‖p′ < ∞.

(ii) If p′ ∈ HL∗, then ∂k
t H ∈ C0(R; W 1,p′

(Rn;Cm)) for all integers k ≥ 0 and ‖Ñ∗,1H‖p′ < ∞ as

well as ‖Ñ∗,1(∇H)‖p′ < ∞.

In both statements, the distinguished variable in the regularity estimates is t ∈ R.

Proof. Let a, b ∈ R such that supp G̃ ⊂ [a, b] × R
n. We may assume b ≥ 2 for simplicity. Note that

we have the assumptions of Proposition 4.5 for G̃, G and so the representations apply.
We look at (i) first. By (4.3) we have

Ht = ∂tH̃t =

∫

R

SL∗

t−s∂sG̃s ds =

∫

R

SL∗

t−sGs ds(5.1)

with Gs = divx(∂sG♯
s) ∈ Ẇ −1,p′

(Rn;Cm) by assumption. Due to Lemma 4.1(ii) — but replacing (p, L)

by (p′, L∗) therein — we can bound the norm of SL∗

t as a bounded operator from Ẇ −1,p′
(Rn;Cm) to

Lp′
(Rn;Cm) uniformly in t ∈ R \ {0}. From Minkowski’s inequality and the fact that G is smooth

with compact support, we can infer

‖Ht‖p′ .

∫

R

‖SL∗

t−sGs‖p′ ds .

∫ b

a
‖Gs‖Ẇ −1,p′ ds < ∞

uniformly for all t ∈ R. Owing to Lemma 3.1, an analogous formula applies to ∂k
t H with ∂k

s G in
the integral for k an integer and so we also have supt∈R ‖∂k

t Ht‖p′ < ∞. Continuity of t 7→ ∂k
t Ht

and the limits at ±∞ both in Lp′
(Rn;Cm) follow by applying the dominated convergence theorem

to (5.1): Indeed, for s ∈ R fixed, Lemma 4.1(ii) shows that t 7→ SL∗

t−s∂k
s Gs is continuous on R \ {s}

and bounded with values in Lp′
(Rn;Cm).

Finally, we prove to the maximal estimate ‖Ñ∗,1H‖p′ < ∞. Proceeding as when p = 2 in the proof

of Lemma 3.2 — and with the same notation — it suffices to show that F (x) =
∫ 8b

0 |∂tH(t, x)| dt and
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F1(x) =
∫∞

2b |∂tH(t, x)| dt belong to Lp′
(Rn). First,

∫

Rn
|F (x)|p

′
dx ≤ (8b)p′/p

∫

Rn

∫ 8b

0
|∂sH(s, x)|p

′
ds dx ≤ (8b)p′

sup
t∈R

‖∂tHt‖
p′

p′ < ∞.

For F1 we do differently. By Minkowski inequality

‖F1‖p′ ≤

∫ ∞

2b
‖∂tHt‖p′ dt

and we can use integration by parts twice along with Gs = ∂sG̃s to obtain from the representation
(4.2),

∂tHt =

∫ b

a
SL∗

t−s∂sGs ds =

∫ b

a
∂2

s SL∗

t−sG̃s ds.

Note that because of t − b > b we stay away from t − s = 0 and can use the decay of the single layer.
More precisely, the norm of ∂2

s SL∗

t−s : Ẇ −1,p′
→ Lp′

is bounded by |t − s|−2 due to Lemma 4.1 and we

obtain ‖∂tHt‖p′ . t−2, which in turn warrants ‖F1‖p′ < ∞. This completes the proof of (i).

We turn to (ii). Using (4.1) and (4.3) , we have ∇x∂k
t H(t, x) = p.v.

∫
R

∇xSL∗

t−s∂k
s G(s, x) ds in

L2(R1+n;Cmn) and for fixed t the integrals are bona fide Bochner integrals in L2(Rn;Cnm). Again
by (4.3), we have ∂t∂

k
t Ht =

∫
R

∂tS
L∗

t−s∂k
s Gs ds with the same meaning. From here, the proof of

t-regularity is entirely analogous to (i), relying instead on Lemma 4.1(i) but with (p′, L∗) replacing

(p, L) as our assumption is p′ ∈ HL∗. In particular, we obtain ‖Ñ∗,1H‖p′ < ∞ by the same argument.

As for the non-tangential maximal estimate ‖Ñ∗,1(∇H)‖p′ < ∞, we follow again the proof for the

p = 2 case. We also have to estimate F̃ (x) =
∫ 8b

0 |∂t∇xH(t, x)| dt and F̃1(x) =
∫∞

2b |∂t∇xH(t, x)| dt

in Lp′
(Rn). First,
∫

Rn
|F̃ (x)|p

′
dx ≤ (8b)p′/p

∫

Rn

∫ 8b

0
|∂t∇xH(t, x)|p

′
dt dx ≤ (8b)p′

sup
t∈R

‖∇x(∂tH)‖p′

p′ < ∞.

Next,

‖F̃1‖p′ ≤

∫ ∞

2b
‖∂t∇xHt‖p′ dt.

For t in this range we have t − s > b in the integral that represents ∂t∇xHt and integrating by parts
twice, we obtain

∂t∇xHt =

∫ b

a
∇xSL∗

t−s∂sGs ds =

∫ b

a
∂2

s ∇xSL∗

t−sG̃s ds.

Since the Lp′
-operator norm of ∂2

s ∇xSL∗

t−s is controlled by |t−s|−2, see Lemma 4.1, we have ‖∂t∇xHt‖p′ .

t−2, which warrants ‖F̃1‖p′ < ∞. �

Remark 5.2. We have not tried to get optimal hypotheses on G for obtaining the desired estimates.
In (ii) we did not use G̃ = divx G♯. For (i), it can also be lifted provided we have C∞

0 (Rn) ⊂

Ẇ −1,p′
(Rn), which holds for p′ > n

n−1 by Sobolev embeddings. It is simpler and enough for us,
however, to make this assumption throughout.

5.1. Proof of Theorem 2.1 when p 6= 2. We assume p′ ∈ HL∗. We consider a weak solution to
Lu = 0 on R

1+n
+ such that Ñ∗u ∈ Lp(Rn) and

lim
t→0

−

∫
−

∫

W (t,x)
|u(s, y)| ds dy = 0

for a.e. x ∈ R
n. Our task is to show u = 0 almost everywhere.

This time, we pick G of the form G = ∂tG̃ with G̃ ∈ C∞
0 (R1+n;Cm) and G̃ = divx G♯. Assume,

we had managed to prove 〈u, G〉 = 0, that is, 〈∂tu, G̃〉 = 0. Then 〈∇x∂tu, G♯〉 = 0, where G♯ is an
arbitrary test function in R

1+n
+ . Hence, ∂tu ∈ L2

loc(R
1+n
+ ;Cm) is independent of x and we obtain

u(t, x) = g(t) + f(x) with f ∈ L1
loc(R

n;Cm) and g : (0, ∞) → C
m continuous. Let

v(t, x) := −

∫
−

∫

W (t,x)
u(s, y) ds dy = −

∫ 2t

t/2
g(s) ds + −

∫

B(x,t)
f(y) dy.
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We know v(t, x) → 0 as t → 0 for a.e. x ∈ R
n. Applying Lebesgue’s differentiation theorem to f ,

it follows that −
∫ 2t

t/2 g(s) ds has a limit when t → 0. Call it α ∈ C
m. Then α + f(x) = 0 almost

everywhere, which in turn implies that u is independent of x. But due to Ñ∗u ∈ Lp(Rn) we must

have Ñ∗u = 0. This yields u = 0 as desired.
Next, the proof of 〈u, G〉 = 0 is line by line the same as the one for p = 2 in Section 3.2.

Indeed, thanks to Lemma 5.1, h := H(0, ·) ∈ Ẇ 1,p′
(Rn;Cm), where H := (L∗)−1G. Thus, existence

for (R)L∗

p′ yields a solution to L∗H1 = 0 in R
1+n
+ with Ñ∗(∇H1) ∈ Lp′

(Rn) and boundary trace

h. The non-tangential estimates needed to run the argument are Ñ∗u ∈ Lp(Rn) by assumption,

Ñ∗,1(∇(H−H1)) ∈ Lp′
(Rn) by Lemma 5.1(ii) and construction of H1, and Ñ∗,1((H−H1)/t) ∈ Lp′

(Rn)
by Lemma 8.3.

Remark 5.3. We can modify the proof of convergence to 0 of Jε as in Remark 3.4 if we only assume
−
∫ 2t

t/2 |u(s, ·)| ds → 0 in Lp
loc(R

n) as t → 0.

5.2. Proof of Theorem 2.2 when p 6= 2. Let p ∈ HL. We assume that Lu = 0 on R
1+n
+ , that

Ñ∗(∇u) ∈ Lp(Rn) and that

lim
t→0

−

∫
−

∫

W (t,x)
|u(s, y)| ds dy = 0

for a.e. x ∈ R
n. We have to show u = 0 almost everywhere. To this end, we pick G as in the previous

proof. The same argument then shows that it suffices to check 〈u, G〉 = 0, noting that we can use

Ñ∗,1(u/t) ∈ Lp(Rn) from Lemma 8.3 to deduce u = 0 once it has been seen to depend on t only.
Next, the argument to show 〈u, G〉 = 0 is identical to the one for p = 2 presented in Section 3.3:

Existence for (D)L∗

p′ yields a solution to L∗H1 = 0 in R
1+n
+ with Ñ∗(H1) ∈ Lp′

(Rn) and boundary

trace h := H(0, ·) ∈ Lp′
(Rn;Cm), where H := (L∗)−1G. The required non-tangential estimates

are Ñ∗,1(u/t) ∈ Lp(Rn) as seen above as well as Ñ∗,1(H − H1) ∈ Lp′
(Rn) by Lemma 5.1(i) and

construction of H1.

5.3. Proof of Corollary 2.5. Assume 1 < p < ∞ with p′ ∈ HL∗. Theorem 1.6 of [AM] shows

that well-posedness of (R)L∗

p′ is equivalent to well-posedness of a modified Dirichlet problem (D̃)L
p .

Combining (1) and (2) of Theorem 1.9 in [AM], we have that the compatible well-posedness of (R)L∗

p′

is equivalent to the compatible well-posedness of this modified Dirichlet problem (D̃)L
p ,

(D̃)L
p





Lu = 0 on R
1+n
+ ,

S(t∇u) ∈ Lp(Rn)

limt→0 u(t, ·) = f in Lp(Rn;Cm).

The following was shown in [AM], Corollary 1.4: Any solution to Lu = 0 in R
1+n
+ such that S(t∇u) ∈

Lp(Rn) for p in this range, is, up to a constant, in C0([0, ∞); Lp(Rn;Cm)), yielding the existence of
u(0, ·) and so the limit makes sense. Moreover, there are estimates

sup
t≥0

‖u(t, ·)‖p . ‖S(t∇u)‖p

and

‖Ñ∗(u)‖p . ‖S(t∇u)‖p,

as well as an almost everywhere limit

lim
t→0

−

∫
−

∫

W (t,x)
|u(s, y) − u(0, x)|2 ds dy = 0.

(In fact, a weaker form is stated in [AM] but this stronger form holds and is a consequence of [AS],
Theorem 9.9.)

Thus, given f ∈ Lp(Rn;Cm), the unique solution (the constant is eliminated) of (D̃)L
p with data

f satisfies ‖S(t∇u)‖p . ‖f‖p. Remark then that ‖f‖p = ‖u(0, ·)‖p ≤ supt≥0 ‖u(t, ·)‖p and also
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‖u(0, ·)‖p . ‖Ñ∗u‖p from Fatou’s Lemma. In particular, u is a solution to (D)L
p and (2.6), (2.7) hold.

Uniqueness of (D)L
p on the other hand follows from Theorem 2.1.

6. Regularity with Hardy Sobolev data vs Dirichlet with BMO or Hölder

continuous data.

This section is mostly contained in [AM] but we feel it is informative to review it in light of
what we just proved. When n

n+1 < p ≤ 1, the regularity problem becomes the following: given

f ∈ Ḣ1,p(Rn;Cm), solve uniquely (modulo constants),

(R)L
p





Lu = 0 on R
1+n
+ ,

Ñ∗(∇u) ∈ Lp(Rn)

limt→0 −
∫

−
∫

W (t,x) |u(s, y) − f(x)| ds dy = 0 for a.e. x ∈ R
n.

Here, Ḣ1,p(Rn;Cm) is the Hardy-Sobolev space of order 1 above the real Hardy space Hp. The

dual problem is the following Dirichlet problem: given f ∈ Λ̇α(Rn;Cm), 0 ≤ α < 1, solve uniquely
(modulo constants)

(D)L∗

α





L∗u = 0 on R
1+n
+ ,

Cα(∇u) ∈ L∞(Rn)

limt→0 u(t, ·) = f in D′(Rn;Cm)/Cm,

limt→∞ u(t, ·) = 0 in D′(Rn;Cm)/Cm,

where

CαF (x) := sup

(
1

r2α|B(y, r)|

∫∫

Ty,r

|F (t, z)|2
dtdz

t

)1/2

,

taken over all open balls B(y, r) containing x, with Ty,r = (0, r) × B(y, r). Here, Λ̇α(Rn;Cm)
designates BMO(Rn;Cm) for α = 0 and for α > 0 it designates the homogeneous Hölder space of
exponent α. Note the condition at infinity that does not follow from the interior control in general.
As the interior condition is on the gradient, the problem is posed modulo constants.

The situation of interest is when the interval of Hardy spaces coincidence contains exponents below
p = 1, as is the case under (DGNM).

Theorem 6.1. Let n
n+1 < p ≤ 1 with p ∈ HL and let α = n(1

p − 1).

(i) Existence for (R)L
p implies uniqueness for (D)L∗

α .

(ii) Existence for (D)L∗

α implies uniqueness for (R)L
p .

(iii) (Compatible) well-posedness for (R)L
p implies (compatible) well-posedness for (D)L∗

α .

Proof. For item (iii), the implication concerning well-posedness is in Theorem 1.6 in [AM]; concerning
compatible well-posedness, the implication is contained in Theorem 1.9(1) in [AM]. For (i) and (ii)
we recall that Theorems 1.1, 1.3 and 1.7 of [AM] yield the following properties.

(A) For any weak solution u to Lu = 0 on R
1+n
+ with Ñ∗(∇u) ∈ Lp(Rn), the conormal derivative

∂νA
u|t=0 exists in Hp(Rn;Cm), u|t=0 exists in Ḣ1,p(Rn;Cm), and u is constant if and only if

u|t=0 = 0 and ∂νA
u|t=0 = 0 in the respective spaces.

(B) For any weak solution w to L∗w = 0 on R
1+n
+ with Cα(∇w) ∈ L∞(Rn) and w(t, ·) converging

to 0 in D′(Rn;Cm) modulo constants as t → ∞, w|t=0 exists in Λ̇α(Rn;Cm) and ∂νA∗ w|t=0

exists in Λ̇α−1(Rn;Cm), and w is constant if and only if w|t=0 = 0 and ∂νA∗ w|t=0 = 0 in

the respective spaces. Here, a distribution is in Λ̇α−1(Rn;Cm) if it is the divergence of an

element in Λ̇α(Rn;Cmn).
(C) With u and w as above, there is a Green’s formula

〈∂νA
u|t=0, w|t=0〉 = 〈u|t=0, ∂νA∗ w|t=0〉.

Here, the first pairing is the 〈Hp(Rn;Cm), Λ̇α(Rn;Cm)〉 sesquilinear duality while the second

one is the 〈Ḣ1,p(Rn;Cm), Λ̇α−1(Rn;Cm)〉 sesquilinear duality.
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With this at hand the arguments are very simple. For (i), assume that w is given with w|t=0 = 0.
Let ϕ ∈ C∞

0 (Rn;Cm) and solve (R)L
p with u|t=0 = ϕ (modulo constants). It follows from (C) that

〈ϕ, ∂νA∗ w|t=0〉 = 0. This means that also ∂νA∗ w|t=0 = 0 as a distribution, hence w is constant using

(B). For (ii), assume that u is given with u|t=0 = 0. Let ϕ ∈ C∞
0 (Rn;Cm) and solve (D)L∗

α with
w|t=0 = ϕ (modulo constants). By (C) we have 〈∂νA

u|t=0, ϕ〉 = 0. This means ∂νA
u|t=0 = 0 as a

distribution, hence u is constant using (A). �

7. Proof of the layer potential representation

Now, we come to justify (1.2) of the introduction in proving Proposition 4.5. For this we set for
0 < ε < R < ∞,

(Γε,Rf)t =

∫

ε<|t−s|<R
SL

t−sfs ds, t ∈ R.

We give the main properties of these approximants and then show how they converge to L−1. The
proofs depend only on the case p = 2 of Lemma 4.1.

Lemma 7.1. Assume f ∈ C∞
0 (R1+n;Cm). If n = 1, 2 assume furthermore that f = divx F coordi-

natewise for some F ∈ C∞
0 (Rn; Cmn). Then for fixed 0 < ε < R < ∞, Γε,Rf ∈ W 1,2(R1+n;Cm) and

t 7→ (Γε,Rf)t ∈ C∞(R; W 1,2(Rn;Cm)) with all derivatives bounded.

Proof. Sobolev embeddings yield f ∈ W −1,2(R1+n;Cm), except when n = 1, where the condition∫∫
R1+n f = 0 is also required. This is the case under our assumption. Thus u = L−1f is well-defined

in Ẇ 1,2(R1+n;Cm). Also, t 7→ ft is in C∞
0 (R; L2(Rn;Cm) ∩ Ẇ −1,2(Rn;Cm)), using again that for

n = 1, 2 we have
∫
Rn ft = 0 for all t ∈ R by assumption. Lemma 4.1 yields that t 7→ SL

t is uniformly
bounded and in particular belongs to L1

loc(R; L(X, Y )), where

(X, Y ) = (Ẇ −1,2(Rn;Cm), L2(Rn;Cm)) or (X, Y ) = (L2(Rn;Cm), Ẇ 1,2(Rn;Cm)).

By (operator-valued) convolution t 7→ (Γε,Rf)t is in L∞(R; W 1,2(Rn;Cm)) ∩ L2(R; W 1,2(Rn;Cm)).
In particular, Γε,Rf ∈ L2(R1+n;Cm) and ∇xΓε,Rf ∈ L2(R1+n;Cnm). We next compute ∂tΓε,Rf by

differentiating the integral and integrating by parts. Setting wt,ε := SL
ε ft−ε − SL

−εft+ε, we obtain

(∂tΓε,Rf)t =

∫

ε<|t−s|<R
∂tS

L
t−sfs ds + wt,ε − wt,R

= −

∫

ε<|t−s|<R
∂sSL

t−sfs ds + wt,ε − wt,R

=

∫

ε<|t−s|<R
SL

t−s∂sfs ds

= Γε,R(∂sf)t.

(7.1)

Since ∂sf has the same properties as f , we can apply the above to Γε,R(∂sf) and conclude that ∂tΓε,Rf
is in L∞(R; W 1,2(Rn;Cm))∩L2(R; W 1,2(Rn;Cm)). Altogether, we have seen Γε,Rf ∈ W 1,2(R1+n;Cm)
and that t 7→ (Γε,Rf)t is bounded and Lipschitz continuous into W 1,2(Rn;Cm). Iterating t-derivatives
from ∂t(Γε,Rf) = Γε,R(∂sf) and using Lemma 4.1 yields the claim. �

The following lemma will be useful in the proof of convergence.

Lemma 7.2. Let X, Y be Banach spaces, T : [0, ∞) → L(X, Y ) uniformly bounded and strongly
continuous and let f ∈ C0(R; X). Then for any s0 ∈ [0, ∞] there is convergence in Y of

lim
s→s0

Tsft+s = Ts0
ft+s0

,

uniformly in t ∈ R. If in addition f ∈ Lp(R; X) for some p ∈ [1, ∞), then convergence also holds in
Lp(R, dt; Y ).

Proof. We set f(±∞) := 0, so that f becomes (uniformly) continuous on R ∪ {±∞}, viewed as a
compact topological space. Since T is uniformly bounded,

‖Tsft+s − Ts0
ft+s0

‖Y . ‖ft+s − ft+s0
‖Y + ‖(Ts − Ts0

)ft+s0
‖Y .(7.2)
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In the limit s → s0 the first term on the right tends to 0 uniformly in t ∈ R since f is uniformly
continuous. For the second term we first note that K := {ft+s0

: t ∈ R ∪ {±∞}} is the continuous
image of a compact set, hence compact in X. Hence, the strong convergence Ts − Ts0

→ 0 as s → s0

improves to uniform strong convergence on K. Therefore we also get convergence to 0 uniformly in
t ∈ R for the second term above and the proof of the first claim is complete.

Now suppose in addition f ∈ Lp(R; X). Taking (7.2) to the p-th power and integrating in t gives
∫

R

‖Tsft+s − Ts0
ft+s0

‖p
Y dt

.

∫

(−R,R)
‖ft+s − ft+s0

‖p
X dt +

∫

R\(−R,R)
‖ft+s − ft+s0

‖p
X dt +

∫

R

‖(Ts − Ts0
)ft+s0

‖p
Y dt,

where R > 0 is a degree of freedom. Given ε > 0, we can first choose R large enough to guarantee
that for all s ∈ (s0 − 1, s0 + 1) the middle term is bounded by ε. Then the first integral vanishes in
the limit s → s0 by uniform continuity of f and the third one vanishes by dominated convergence
taking into account boundedness and strong continuity of T . �

In order to proceed, we eventually have to give the abstract definition of the single layer SL
t . All of

the following material and further background can be found in [AS] and we report here only on the

essentials required to follow the line of reasoning. We identify C
(1+n)m with C

m ×C
nm and represent

vectors as F =

[
F⊥

F‖

]
accordingly.

Following the calculation on p.68 of [AA1], there are a constant coefficient first order differential

operator D acting on C
(1+n)m-valued functions, a bounded multiplication operator B = B(x) on

L2(Rn;C(1+n)m) and purely algebraic way of rewriting the elliptic system Lu = f as

∂tF + DBF =

[
Lu
0

]
, where F = ∇Au :=

[
(A∇u)⊥

∇xu

]
.

Here, u ∈ W1,2
loc(R1+n;Cm) and the autonomous first order equation for its conormal gradient F =

∇Au is understood in the sense of distributions. The multiplication operator B is designed in such
a way that

B

[
(AF )⊥

F‖

]
=

[
F⊥

(AF )‖

]
, F ∈ C

(1+n)m.(7.3)

The operator DB has a H∞-functional calculus on H = R(D), the closure of the range of D in

L2(Rn;C(1+n)m), allowing to define a bounded operator ϕ(DB) on H for any bounded and holomor-
phic function ϕ on a suitably large double sector around the real axis. Recall that H has been defined
in connection with the ellipticity condition (2.2) and that it contains L2(Rn;Cm)×{0}. With χ± the
indicator functions of C±, functional calculus provides a means of defining e∓tDBχ±(DB) for t > 0
as a bounded operator on H. These are the bounded holomorphic C0-semigroups generated by ∓DB
on χ±(DB)H.

From [AS], p.100-101 with correction of an unfortunate typo in (82) and (84), we then have

(7.4) SL
t f :=





−

(
D−1e−tDBχ+(DB)

[
f

0

])

⊥

if t > 0,

(
D−1e−tDBχ−(DB)

[
f

0

])

⊥

if t < 0,

and

(7.5) ∇ASL
t f =





+e−tDBχ+(DB)

[
f

0

]
if t > 0,

−e−tDBχ−(DB)

[
f

0

]
if t < 0.

Here, D−1 is the closed extension of D−1 : R(D) → D(D), the domain of D, to R(D) = H.
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Proof of Proposition 4.5. We begin with (4.1). As f ∈ Ẇ −1,2(R1+n), we can define u := L−1f
in Ẇ 1,2(R1+n). Defining the conormal gradient F := ∇Au, we have Ft ∈ H for every t > 0 by

construction and F ∈ L2(R1+n;C(1+n)m). We have seen above that in the distributional sense

pdtF + DBF =

[
f
0

]
but as both F and f are smooth functions of t valued in L2(R1+n;C(1+n)m), see

Lemma 3.1, this first order equation also holds in the strong sense. Replacing

[
f
0

]
by this differential

equation in (7.5) and integrating by parts, we obtain for all t ∈ R, 0 < ε < R < ∞,
∫

ε<|t−s|<R
∇ASL

t−sfs ds = e−εDBχ+(DB)Ft−ε + eεDBχ−(DB)Ft+ε

− e−RDBχ+(DB)Ft−R − eRDBχ+(DB)Ft+R.

Limits in ε, R for the terms on the right all fall under the scope of Lemma 7.2 applied with X = Y =
H ⊂ L2(Rn;C(1+n)m). Thus,

lim
ε→0,R→∞

∫

ε<|t−s|<R
∇ASL

t−sfs ds = χ+(DB)Ft + χ−(DB)Ft = Ft,(7.6)

in L2(Rn;C(1+n)m) uniformly in t ∈ R and in L2(R; L2(Rn;C(1+n)m)) ≃ L2(R1+n;C(1+n)m). Taking
the ‖-component, we obtain in particular convergence of ∇xΓε,Rf to F‖ = ∇xu = ∇xL−1f in
L2(R1+n;Cnm). As for convergence of ∂tΓε,Rf , we keep (7.3) in mind, multiply the previous equation

by the bounded operator B on L2(Rn;C(1+n)m) and take the ⊥-component, to give

lim
ε→0,R→∞

∫

ε<|t−s|<R
(B∇ASL

t−sfs)⊥ ds = lim
ε→0,R→∞

∫

ε<|t−s|<R
∂tS

L
t−sfs ds = (BFt)⊥ = ∂tu,

in L2(Rn;Cm) uniformly in t ∈ R and in L2(R1+n;Cm). Now, let us have a look at (7.1). We have
seen that the integral in the first line enjoys the desired convergence. The convergence of wt,ε − wt,R

will once again be a direct application of Lemma 7.2. Indeed, SL
t viewed as a bounded operator

(L2 ∩ Ẇ −1,2)(Rn;Cm) → W 1,2(Rn;Cm)) is uniformly bounded and strongly continuous with respect
to t ∈ R from Lemma 4.1 and t 7→ ft valued in (L2 ∩ Ẇ −1,2)(Rn;Cm) is continuous with compact
support. Thus,

lim
ε→0,R→∞

wt,ε − wt,R = (SL
0 ft − SL

0 ft) − 0 = 0(7.7)

even in W 1,2(Rn;Cm) uniformly in t ∈ R and in L2(R; W 1,2(Rn;Cm)). In particular, all four lines in
(7.1) share convergence in L2(R1+n;Cm) to the limit ∂tu = ∂tL

−1ft. By looking just at ∂tΓε,Rf , we
complete the proof of (4.1).

However, the other lines of (7.1) – together with the equality L−1(∂tf) = ∂tL
−1f in L2(R1+n;Cm)

noted in Lemma 3.1 – also give all the limits stated in (4.2) and those stated in (4.3) in the sense
of L2(Rn;Cm)-convergence, uniformly in t ∈ R. The missing uniform L2(Rn;Cm)-convergence for∫
R

∇xSL
t−s(∂sfs) ds follows from (7.6) with f replaced by ∂sf and that of

∫
R

∇x∂tS
L
t−sfs ds is a

consequence of (7.1) since we have uniform W 1,2(Rn;Cm)-convergence of the error terms in (7.7).
Finally, the integrals in (4.3) are norm convergent in W 1,2(Rn;Cm) for fixed t since for all integers

k ≥ 0, Lemma 4.1 guarantees that ∂k
s Ss : (L2 ∩ Ẇ −1,2)(Rn;Cm) → W 1,2(Rn;Cm) is uniformly

bounded in s ∈ R and by assumption s 7→ ∂k
s fs is continuous with compact support valued in

(L2 ∩ Ẇ −1,2)(Rn;Cm). �

Next, we shall explain how the properties stated in Lemma 4.1 follow from [AS].

Proof of Lemma 4.1. This is Theorem 12.6, items (1), (3) and (5), of [AS], the case p = 2 being
mostly from [R], except for the global strong continuity and the limits at ±∞. Only the strong limits
at 0± are explained there. But continuity at other points is even easier with the arguments there,
using the boundedness properties of the DB-semigroups in Corollary 8.3 in [AS]. This being said,
the limits at ±∞ come similarly from the fact that a holomorphic C0-semigroup converges strongly
to 0 at ∞ on the closure of the range of its generator. �
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We conclude with the

Proof of Proposition 4.7. For any ε > 0, we have that fε belongs to Ẇ −1,2(Rn+1;Cm), hence L−1fε

exists in Ẇ 1,2(Rn+1;Cm) and Lemma 3.1 shows that in fact it belongs to C0(R; Ẇ 1,2(Rn;Cm)). It
remains to prove the convergence. By (4.1), we have

∇x(L−1fε)(t, x) = p.v.

∫

R

∇xSL
t−sf(x) χε(s) ds, in L2(Rn+1;Cmn).

Boundedness and strong continuity of SL
t yield that the integral on the right converges in norm and

the equality holds in C0(R; L2(Rn;Cmn)) for fixed ε > 0. Now we fix t ∈ R. Changing variables

∇x(L−1fε)(t, x) =

∫

R

∇xSL
s f(x) χε(t − s) ds

and using the continuity of s 7→ ∇xSL
s f valued in L2(Rn;Cnm), the integral converges to ∇xSL

t f in
L2(Rn;Cmn) as ε tends to 0. We are done. �

8. Generic technical lemmas

For the convenience of the reader, here are some technical lemmas involving non-tangential maxi-
mal functions used throughout the paper.

Lemma 8.1. Let 0 < q, p < ∞. Let F : R1+n
+ → R be a measurable function with ‖Ñ∗,qF‖p < ∞.

Then for all x ∈ R
n,

lim
t→∞

−

∫
−

∫

W (t,x)
|F (s, y)|q ds dy = 0.

Proof. Let G be the q-adapted non-tangential function of F with parameters c0 = 2, c1 = 2. Thus
‖G‖p ∼ ‖Ñ∗,qF‖p < ∞. Next, for all z ∈ B(x, t),

(
−

∫
−

∫

W (t,x)
|F (s, y)|q ds dy

)p/q

≤ 2np/qG(z)p,

hence (
−

∫
−

∫

W (t,x)
|F (s, y)|q ds dy

)p/q

. −

∫

B(x,t)
G(z)p dz . t−n‖G‖p

p.

The conclusion follows. �

Lemma 8.2. Let 1 < p < ∞. Let F, H : R1+n
+ → R be measurable functions with ‖Ñ∗F‖p < ∞ and

‖Ñ∗H‖p′ < ∞. Then for any fixed 0 < ε < R < ∞,
∫∫

(ε,R)×Rn
|FH| dx dt . ‖Ñ∗F‖p‖Ñ∗H‖p′

and

lim
M→∞

∫∫

(ε,R)×{|x|>M}
|FH| dx dt = 0.

Proof. By covering the interval (ε, R) with a finite number of intervals of the form (c−1
0 a, c0a), we

may reduce to a single such interval. In that case, the averaging trick in the x variable and Hölder’s
inequality show that
∫ c0a

c0
−1a

∫

Rn
|FH| dx dt =

∫

Rn
a(c0 − c−1

0 )

(
−

∫
−

∫

W (a,y)
|FH| dx dt

)
dy ≤ a(c0 − c−1

0 )‖Ñ∗F‖p‖Ñ∗H‖p′ < ∞.

The limit follows by dominated convergence. �

Lemma 8.3. Let 1 ≤ q < ∞, 1 < p < ∞ and let H ∈ W 1,q
loc (R1+n

+ ) be such that ‖Ñ∗,q(∇H)‖p < ∞.
Then there exists a measurable function h : Rn → R such that for a.e. x ∈ R

n,

lim
t→0

−

∫
−

∫

W (t,x)
|H(s, y) − h(x)| ds dy = 0
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as well as

lim
t→0

−

∫ 2t

t/2
H(s, ·) ds = h

in L1
loc(R

n). Moreover, h ∈ Ẇ 1,p(Rn) with ‖∇xh‖p . ‖Ñ∗,q(∇H)‖p and
∥∥∥∥Ñ∗,1

(
H − h

t

)∥∥∥∥
p

. ‖Ñ∗,q(∇H)‖p.

Proof. It is enough to assume q = 1 throughout as Ñ∗,1(∇H) ≤ Ñ∗,q(∇H). This is then essentially
in [KP], pp. 461-462, up to minor modifications of the proof (working directly with averages) and
is a simple consequence of Poincaré inequalities and change of parameters c0, c1. Details of this
modification are written out for example in Section 6.6 of [AA]. �
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systems. Mémoires de la Soc. Math. de France (2016), vol. 144.
[AKMc] Axelsson, A., Keith, S., and McIntosh, A. Quadratic estimates and functional calculi of perturbed

Dirac operators. Invent. Math. 163 (2006), no. 3, 455–497.
[Ba] Barton, A. Gradient estimates and the fundamental solution for higher-order elliptic systems with rough

coefficients. Manuscripta Math. 151 (2016), no. 3, 375–418.
[BCF] Bernicot, F., Coulhon, T., and Frey, D. Gaussian heat kernel bounds through elliptic Moser iteration.

J. Math. Pures Appl. (9) 106 (2016), no. 6, 995–1037.
[Da] Dahlberg, B. Estimates of harmonic measure. Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288.
[DaK] Dahlberg, B., and Kenig, C. Hardy spaces and the Neumann problem in L

p for Laplace’s equation in
Lipschitz domains. Ann. Math. (2) 125 (1987), no. 3, 437–465 .

[Gi] Giaquinta, M. Direct methods for regularity in the calculus of variations, vol. 109 of Res. Notes in Math.
Pitman, Boston, MA, 1984.

[HKMP1] Hofmann, S., Kenig, C., Mayboroda, S., and Pipher, J. Square function/Non-tangential maximal
estimates and the Dirichlet problem for non-symmetric elliptic operators. J. Amer. Math. Soc. 28 (2015),
no. 2, 483–529.

[HKMP2] Hofmann, S., Kenig, C., Mayboroda, S., and Pipher, J. The Regularity problem for second order
elliptic operators with complex-valued bounded measurable coefficients. Math. Ann. 361 (2015), no. 3-4,
863–907.

[HK] Hofmann, S., and Kim, S. The Green function estimates for strongly elliptic systems of second order.
Manuscripta Math. 124 (2007), no. 2, 139–172.

[HMaMo] Hofmann, S., Mayboroda, S., and Mourgoglou, M. Layer potentials and boundary value problems
for elliptic equations with complex L

∞ coefficients satisfying the small Carleson measure norm condition.
Adv. Math. 270 (2015), 480–564.

[HMiMo] Hofmann, S., Mitrea, M., and Morris, A. The method of layer potentials in L
p and endpoint spaces

for elliptic operators with L
∞ coefficients. Proc. Lond. Math. Soc. (3) 111 (2015), no. 3, 681–716.

[IN] Iwaniec, T., and Nolder, C. Hardy-Littlewood inequality for quasiregular mappings in certain domains
in R

n. Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 267–282.
[JK] Jerison, D., and Kenig, C. The Dirichlet problem in nonsmooth domains. Ann. of Math. (2) 113 (1981),

no. 2, 367–382.
[Ke] Kenig, C. Harmonic analysis techniques for second order elliptic boundary value problems, vol. 83 of CBMS

Regional Conference Series in Mathematics. American Mathematical Society, Providence, RI, 1994.
[KP] Kenig, C., and Pipher, J. The Neumann problem for elliptic equations with nonsmooth coefficients.

Invent. Math. 113 (1993), no. 3, 447–509.

https://arxiv.org/abs/1607.03852
https://arxiv.org/abs/1404.2687


22 PASCAL AUSCHER AND MORITZ EGERT

[MMMM] Martell, J.M., Mitrea, D., Mitrea, I., and Mitrea, M. On the L
p-Poisson semigroup associated

with elliptic systems. https://arxiv.org/pdf/1409.2614.pdf, September 2014.
[Ma] Mayboroda, S. The connections between Dirichlet, Regularity and Neumann problems for second order

elliptic operators with complex bounded measurable coefficients. Adv. Math. 225 (2010), no. 4, 1786–1819.
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