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EXPLICIT EXPRESSION FOR THE STATIONARY DISTRIBUTION OF
REFLECTED BROWNIAN MOTION IN A WEDGE

S. FRANCESCHI AND K. RASCHEL

Abstract. For Brownian motion in a (two-dimensional) wedge with negative drift and oblique
reflection on the axes, we derive an explicit formula for the Laplace transform of its stationary
distribution (when it exists), in terms of Cauchy integrals and generalized Chebyshev polyno-
mials. To that purpose we solve a Carleman-type boundary value problem on a hyperbola,
satisfied by the Laplace transforms of the boundary stationary distribution.

Figure 1. An example of path of reflected Brownian motion in the quadrant

1. Introduction and main results

Since its introduction in the eighties by Harrison, Reiman, Varadhan and Williams [31, 32, 54,
55, 56], reflected Brownian motion in the quarter plane has received a lot of attention from the
probabilistic community. However, and surprisingly, finding a general explicit expression of the
stationary distribution has been left as an open problem. The present paper solves this problem
in a complete and unified way.

Reflected Brownian motion in two-dimensional cones. The semimartingale reflected Brow-
nian motion with drift in the quarter plane R2

+ := [0,∞)2 (or equivalently in arbitrary convex
wedges, by performing a simple linear transformation, cf. Appendix A) can be written as

Z(t) = Z0 +B(t) + µ · t+R · L(t), ∀t > 0, (1)

where
• Z0 is any initial point in the quadrant,

Key words and phrases. Reflected Brownian motion in a wedge; Stationary distribution; Laplace transform;
Carleman-type boundary value problem; Boundary value problem with shift; Conformal mapping.
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Figure 2. Drift µ and reflection vectors R1 and R2

• B is a Brownian motion with covariance Σ =

(
σ11 σ12
σ12 σ22

)
starting from the origin,

• µ =

(
µ1

µ2

)
denotes the interior drift,

• R = (R1, R2) =

(
r11 r12
r21 r22

)
is the reflection matrix,

• L =

(
L1

L2

)
is the local time.

For i ∈ {1, 2}, the local time Li(t) is a continuous non-decreasing process starting from 0 (i.e.,
Li(0) = 0), increasing only at time t such that Zi(t) = 0, viz.,

∫ t
0 1{Zi(s)6=0}dL

i(s) = 0, for all
t > 0. The columns R1 and R2 represent the directions in which the Brownian motion is pushed
when the axes are reached, see Figure 2.

The reflected Brownian motion (Z(t))t>0 associated with (Σ, µ,R) is well defined [54, 56],
and is a fundamental stochastic process. This process has been extensively explored, and its
multidimensional version (a semimartingale reflected Brownian motion in the positive orthant
Rd+, as well as in convex polyhedrons) as well. It has been studied in depth, with focuses
on its definition and semimartingale properties [54, 55, 16, 57], its recurrence or transience
[55, 13, 35, 9, 7, 6, 15], the possible particular (e.g., product) form of its stationary distribution
[34, 19, 46], its Lyapunov functions [23], its links with other stochastic processes [41, 22, 42], its
use to approximate large queuing networks [26, 2, 33, 38, 37], the asymptotics of its stationary
distribution [30, 17, 28, 48], numerical methods to compute the stationary distribution [13, 14],
links with complex analysis [26, 2, 8, 29], comparison and coupling techniques [50, 49], etc.

The main contribution of the present paper is to find an exact expression for the stationary
distribution (via its Laplace transforms, to be introduced in (3) and (4)), thanks to the theory
of boundary value problems (BVPs), see our Theorem 1. This is one of the first attempts to
apply boundary value techniques to diffusions in the quadrant, after [27] (under the symmetry
conditions µ1 = µ2, σ11 = σ22, and symmetric reflection vectors in (1)), [26] (which concerns very
specific cases of the covariance matrix, essentially the identity), [2] (on diffusions with a special
behavior on the boundary), [29] (orthogonal reflections, solved by Tutte’s invariant approach
[53, 3]); see also the introduction of [17], where the authors allude to the possibility of such an
approach.

Laplace transforms and functional equation. The reflected Brownian motion defined in
(1) exists if and only if

{r11 > 0, r22 > 0, detR > 0} or {r11 > 0, r22 > 0, r12 > 0, r21 > 0}.
This condition is equivalent for R to be completely-S, which actually is a necessary and sufficient
condition to the existence of reflected Brownian motion in arbitrary dimension, see [52, 47].



EXPLICIT STATIONARY DISTRIBUTION OF REFLECTED BROWNIAN MOTION IN A WEDGE 3

As for the stationary distribution, it exists if and only if

r11 > 0, r22 > 0, r11r22 − r12r21 > 0, r22µ1 − r12µ2 < 0, r11µ2 − r21µ1 < 0, (2)

see [30], and in that case it is absolutely continuous w.r.t. the Lebesgue measure [13, 14, 33], with
density denoted by π(x) = π(x1, x2). Assumption (2) implies in particular that R is invertible
and R−1µ < 0, which turns out to be a necessary condition for the existence of the stationary
distribution in any dimension, see [33]. From now, we will assume that (2) is satisfied. Let the
Laplace transform of π be defined by

ϕ(θ) = Eπ[exp (θ · Z)] =

∫∫
R2

+

exp (θ · x)π(x)dx. (3)

Furthermore we define two finite boundary measures ν1 and ν2 such that, for A ⊂ R+,

ν1(A) = Eπ
[ ∫ 1

0
1{Z(t)∈{0}×A}dL

1(t)

]
, ν2(A) = Eπ

[ ∫ 1

0
1{Z(t)∈A×{0}}dL

2(t)

]
.

The νi have their supports on the axes and may be viewed as boundary invariant measures. They
are continuous w.r.t. the Lebesgue measure, see [34]. We define their Laplace transform by

ϕ1(θ2) =

∫
R+

exp(θ2x2)ν1(x2)dx2, ϕ2(θ1) =

∫
R+

exp(θ1x1)ν2(x1)dx1. (4)

The following functional equation relates the Laplace transforms:

− γ(θ)ϕ(θ) = γ1(θ)ϕ1(θ2) + γ2(θ)ϕ2(θ1), (5)

where we have noted
γ(θ) = 1

2(θ · Σθ) + θ · µ = 1
2(σ11θ

2
1 + 2σ12θ1θ2 + σ22θ

2
2) + µ1θ1 + µ2θ2,

γ1(θ) = R1 · θ = r11θ1 + r21θ2,

γ2(θ) = R2 · θ = r12θ1 + r22θ2.

(6)

The Laplace transforms (3) and (4) (resp. Equation (5)) exist (resp. holds) at least for values of
θ = (θ1, θ2) with < θ1 6 0 and < θ2 6 0. To prove the functional equation (5), the main idea is
to use an identity called basic adjoint relationship (BAR); see [29, Section 2.1] and [17, 26] for
details.

Kernel and associated quantities. In this paragraph we introduce necessary notation to state
our main results. By definition, the kernel of (5) is the second degree polynomial γ. With this
terminology, (5) is sometimes referred to as a kernel equation. The equality γ(θ1, θ2) = 0 with
θ1, θ2 ∈ C defines algebraic functions Θ±1 (θ2) and Θ±2 (θ1) by

γ(Θ±1 (θ2), θ2) = γ(θ1,Θ
±
2 (θ1)) = 0.

Solving these equations readily yields
Θ±1 (θ2) =

−(σ12θ2 + µ1)±
√
θ2

2(σ2
12 − σ11σ22) + 2θ2(µ1σ12 − µ2σ11) + µ2

1

σ11
,

Θ±2 (θ1) =
−(σ12θ1 + µ2)±

√
θ2

1(σ2
12 − σ11σ22) + 2θ1(µ2σ12 − µ1σ22) + µ2

2

σ22
.

(7)

The polynomials under the square roots in (7) have two zeros (called branch points), real and of
opposite signs. They are denoted by θ±2 and θ±1 , respectively:

θ±2 =
(µ1σ12 − µ2σ11)±

√
(µ1σ12 − µ2σ11)2 + µ2

1 det Σ

det Σ
,

θ±1 =
(µ2σ12 − µ1σ22)±

√
(µ2σ12 − µ1σ22)2 + µ2

2 det Σ

det Σ
.

(8)
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Our next important definition is the curve

R = {θ2 ∈ C : γ(θ1, θ2) = 0 and θ1 ∈ (−∞, θ−1 )}.

As it will be seen in Lemma 5 (see also Figure 5), R is a hyperbola. We denote by

R− = {θ2 ∈ R : = θ2 6 0} (9)

the negative imaginary part of R oriented from the vertex to infinity.
We further define the function

w(θ2) = Tπ
β

(
−2θ2 − (θ+

2 + θ−2 )

θ+
2 − θ

−
2

)
, (10)

where β = arccos− σ12√
σ11σ22

and for a > 0, Ta is the so-called generalized Chebyshev polynomial

Ta(x) = cos(a arccosx) =
1

2

{(
x+

√
x2 − 1

)a
+
(
x−

√
x2 − 1

)a}
. (11)

The function w plays a special role regarding the curveR, as for θ2 ∈ R it satisfies w(θ2) = w(θ2),
see Lemma 9. (Here and throughout, θ2 denotes the complex conjugate number of θ2.)

Finally, let G be the function whose expression is

G(θ2) =
γ1

γ2
(Θ−1 (θ2), θ2)

γ2

γ1
(Θ−1 (θ2), θ2). (12)

Main results. In addition to (2), which guarantees existence and uniqueness of the stationary
distribution, we shall assume that both coordinates of the drift are negative:

µ1 < 0, µ2 < 0. (13)

This hypothesis (also done in [27, 26, 28]) is only technical, and allows us to reduce the number
of cases to handle. In Section 3.6 we comment on the case of a drift µ with one non-negative
coordinate (having two non-negative coordinates is obviously incompatible with (2)). Our main
result can be stated as follows.

Theorem 1. Under the assumptions (2) and (13), the Laplace transform ϕ1 in (4) is equal to

ϕ1(θ2) =

ν1(R+)

(
w(0)− w(p)

w(θ2)− w(p)

)−χ
exp

{
1

2iπ

∫
R−

logG(θ)

[
w′(θ)

w(θ)− w(θ2)
− w′(θ)

w(θ)− w(0)

]
dθ

}
, (14)

where
• w, G and R− are defined in (10), (12) and (9), respectively,

• ν1(R+) =
r12µ2 − r22µ1

detR
,

• the index χ is given by χ =

{
0 if γ1(θ−1 ,Θ

±
2 (θ−1 )) 6 0,

−1 if γ1(θ−1 ,Θ
±
2 (θ−1 )) > 0,

• p =
2r11(µ1r21 − µ2r11)

r2
11σ22 − 2r11r21σ12 + r2

21σ11
,

• to define the function logG(θ) on R−, we use the determination of the logarithm taking
a value in i · (−π, π] at the vertex of R− and varying continuously over the curve R−.

The function ϕ2(θ1) equals ϕ1(θ1) in (14) after the change of parameters

σ11 ↔ σ22, µ1 ↔ µ2, r11 ↔ r22, r12 ↔ r21.

The functional equation (5) finally gives an explicit formula for the bivariate Laplace transform ϕ.

Let us now give some comments around Theorem 1.
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• Theorem 1 completely generalizes the results of [27] (with symmetry conditions), [26]
(with the identity covariance matrix Σ) and [29] (orthogonal reflections on the axes). It
offers the first explicit expression of the Laplace transforms, covering all the range of
parameters (Σ, µ,R) satisfying to (2) and (13), thereby solving an old open problem.
• We obtain three corollaries of Theorem 1, each of those corresponds to an already known
result: we first compute the asymptotics of the boundary densities (Section 4.1, initially
obtained in [18]); second we derive the product form expression of the density in the
famous skew-symmetric case (Section 5.2, result originally proved in [34]); finally we
compute the expression of the Laplace transforms in the case of orthogonal reflections
(Section 5.4, see [29] for the first derivation).
• It is worth remarking that the expression (14) is intrinsically non-continuous in terms
of the parameters: the index χ can indeed take two different values (namely, 0 and 1).
For this reason, (14) actually contains two different formulas. See Remarks 7 and 18 for
further related comments.
• The paper [28] obtains the exact asymptotics of the stationary distribution along any
direction in the quarter plane, see [28, Theorems 22–28]. Constants in these asymptotics
involve the functions ϕ1 and ϕ2 in (4), and can thus be made explicit with Theorem 1.
• It is also interesting to dissect (14) and to notice that certain quantities in that formula
depend only on the behavior of the process in the interior of the quadrant (w and R−),
while the remaining ones mix properties of the interior and boundary of the quarter plane
(ν1(R+), p, χ and G).
• The statement of Theorem 1 (namely, an expression of the Laplace transform as a Cauchy
integral), as well as the techniques we shall employ to prove it (viz., reduction to BVPs
with shift), are reminiscent of the results and methods used for discrete random walks
in the quarter plane, see [25] for a modern reference, and [44, 24, 39] for historical
breakthroughs.
• Altogether, Theorem 1 illustrates that the analytic approach consisting in solving quarter
plane problems via BVPs is better suited for diffusions than for discrete random walks.
We can actually treat any wedge, covariance matrix, drift vector and reflection vectors
(see Corollary 2 below), whereas in the discrete case, hypotheses should be done on the
boundedness of the jumps (only small steps are considered in [25, 39, 5, 3]) and on the
cone (typically, half and quarter planes only).

Theorem 1 further leads to an explicit expression for the Laplace transform of the stationary
distribution of reflected Brownian motion in an arbitrary convex wedge, as stated in the following
corollary, whose proof is postponed to Appendix A.

Corollary 2. Let Z̃ be a reflected Brownian motion in a wedge of angle β ∈ (0, π), of covariance
matrix Σ̃, drift µ̃ and reflection matrix R̃ = (R̃1, R̃2), corresponding to the angles of reflection
δ and ε on Figure 10. Assume it is recurrent and note π̃ the stationary distribution and ϕ̃ its
Laplace transform. Let

T1 =

( 1
sinβ cotβ

0 1

)
, T−1

1 =

(
sinβ −cosβ

0 1

)
.

Then
ϕ̃(θ̃) = ϕ(T>1 θ̃),

where ϕ is the Laplace transform (14) of Theorem 1 associated to (Σ, µ,R), with

Σ = T1Σ̃T>1 , µ = T−1
1 µ̃ and R = T−1

1 R̃.

Structure of the paper.
• Section 2: analytic preliminaries, continuation of the Laplace transforms and definition
of an important hyperbola
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• Section 3: statement and proof that the Laplace transforms satisfy BVP of Carleman-type
on branches of hyperbolas, transformation of the Carleman BVP with shift into a (more
classical) Riemann BVP, study of the conformal mapping allowing this transformation,
resolution of the BVP
• Section 4: asymptotics of the stationary distribution, links with Dai and Miyazawa’s [18]
asymptotic results
• Section 5: simplifications of the integral expression of Theorem 1 for models satisfying
the skew-symmetric condition, for orthogonal reflections (leading to a new proof of the
results of [29]), links with Dieker and Moriarty’s results [19]
• Appendix A: equivalence between Brownian motion in the quarter plane and Brownian
motion in convex wedges

Acknowledgements. We thank Irina Kurkova and Yuri Suhov for interesting discussions. We
acknowledge support from the “projet MADACA” (2014–2016), funded by the Région Centre-Val
de Loire (France).

2. Methodology and analytic preliminaries

2.1. Methodology and positioning of our work regarding [27, 26, 2, 17]. Schematically,
our argument for the proof of Theorem 1 is composed of the following steps:

(1) presentation of the functional equation, analytic preliminaries, meromorphic continuation
of the Laplace transforms (Section 2);

(2) statement of a Carleman BVP with shift satisfied by the Laplace transforms (Section 3.1);
(3) introduction of a conformal mapping, allowing to transform the latter BVP into a more

classical Riemann BVP (Section 3.2), see Figure 6;
(4) statement of the Riemann BVP (Section 3.3);
(5) definition and study of the index (denoted by χ in Theorem 1), which turns out to have

a crucial role in solving the Riemann BVP (Section 3.4);
(6) resolution of the BVP (Section 3.5).

Except for the study of the index (item (5), which is specific to our problem at hand), the above
structuration of the proof dates back to (in chronological order) [24] (for the discrete setting,
which later led to the book [25]), [27], [26] and [2].

To begin the discussion, let us remind that the process in [2] is absorbed on the boundary and
then relaunched in the quadrant after an exponential time; it is therefore totally different from
ours. Let us also recall that the analytic study of reflected Brownian motion in the quadrant
was initiated in [27, 26], but both [27] and [26] did quite restrictive assumptions on the process
(symmetry conditions µ1 = µ2, σ11 = σ22, and symmetric reflection vectors in [27], identity
covariance matrix in [26]).

In this paper we follow the same steps (1)–(6) and use a synthetic approach of [24, 27, 26, 2], to
eventually go further than the existing literature and prove Theorem 1. Some technical details
of the present work are borrowed from [27, 26, 2] and more particularly from [2]. Although
being different, the stochastic process of [2] and ours share the property of satisfying a functional
equation with the same left-hand side (as in (5)). Accordingly, technical details will be very
similar as soon as they concern the kernel; this is the case of Section 2.

On the other hand, many points of our analysis profoundly differ from that of [2]: the resolution
of the BVP is different as the right-hand side of (5) is not comparable to that of [2]. Moreover
we make our main result as tractable as possible: see our Section 5, where we present many
techniques to simplify the analytic expression derived in Theorem 1. We further also propose
asymptotic considerations, in close relation to those of [17].

2.2. Real points of the kernel. The set of real points of the zero set of the kernel

{(θ1, θ2) ∈ R2 : γ(θ1, θ2) = 0}
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defines an ellipse, see Figure 3. Introduced in [17], this ellipse offers the possibility of presenting
many analytical quantities in a clear and compact way:

• the branch points θ−1 and θ+
1 (resp. θ−2 and θ+

2 ) in (8) are the leftmost and rightmost
(resp. bottommost and topmost) points on the ellipse;
• the drift µ is orthogonal to the tangent at the origin;
• the set of points where γ1(θ1, θ2) = 0 and γ2(θ1, θ2) = 0 are straight lines, orthogonal
to the reflection vectors R1 and R2. Their intersection points with the ellipse are easily
computed (notice that these intersection points appear in the statement of Theorem 1,
in particular in the index χ).

Figure 3. The ellipse and the two straight lines are the sets of real points (θ1, θ2)
which cancel γ, γ1 and γ2, respectively. Location of p (see (17)) and q (see (24))
according to the sign of γ1(θ−1 ,Θ

±
2 (θ−1 ))

2.3. Meromorphic continuation and poles of the Laplace transforms. In Section 3.1 we
shall state a boundary condition for ϕ1, on a curve lying outside its natural domain of definition
(namely, the half plane with negative real part). The statement hereafter (straightforward con-
sequence of the functional equation (5), see Proposition 17 for an extended version) proposes a
meromorphic continuation on a domain containing the latter curve.

Lemma 3. The Laplace transform ϕ1(θ2) can be extended meromorphically to the open and
simply connected set

{θ2 ∈ C : < θ2 6 0 or <Θ−1 (θ2) < 0}, (15)
by mean of the formula

ϕ1(θ2) =
γ2

γ1
(Θ−1 (θ2), θ2)ϕ2(Θ−1 (θ2)). (16)

Proof. The domain (15) is simply connected by [28, §2.4]. The formula (16), see [28, Lemma
6], is a direct consequence of the functional equation (5) evaluated at (Θ−1 (θ2), θ2), first on the
(non-empty) open domain

{θ2 ∈ C : < θ2 < 0 and <Θ−1 (θ2) < 0}. �



8 S. FRANCESCHI AND K. RASCHEL

Due to the continuation formula (16), the only possible pole of ϕ1 in the domain (15) will
come from a cancelation of the denominator γ1. More precisely, let p be the (unique, when it
exists) non-zero point such that

γ1(Θ−1 (p), p) = 0. (17)
It follows from (17) that p satisfies a second degree polynomial equation with real coefficients.
As one of the roots is 0 the other one must be p, which is then real and equals (when it exists)

p =
2r11(µ1r21 − µ2r11)

r2
11σ22 − 2r11r21σ12 + r2

21σ11
. (18)

Formula (17) means that p is the ordinate of the intersection point between the ellipse γ = 0 and
the line γ1 = 0, see Figure 3. The intersection point always exists but sometimes its abscissa is
associated to Θ−1 (when p exists, i.e., γ1(Θ±1 (θ+

2 ), θ+
2 ) > 0) and sometimes to Θ+

1 (when p doesn’t
exist, i.e., γ1(Θ±1 (θ+

2 ), θ+
2 ) < 0), the limit case being p = θ+

2 , see Figure 4.

Figure 4. The intersection point between the ellipse γ = 0 and the straight line
γ1 = 0. On the left side p exists. On the right side p doesn’t exist, although p̃,
defined by that γ1(Θ+

1 (p̃), p̃) = 0, exists

Let us finally remark that the pole that ϕ1 may have at p is necessarily simple, due to the
expression (6) of γ1.

Remark 4. The continuation formula (16) uses the branch Θ−1 in (7) and not Θ+
1 . The reason

is that Θ−1 is the small branch of the algebraic function Θ±1 , taking the value 0 at 0. Note, this is
peculiar to the case of a drift with negative coordinates (our hypothesis (13)). More details can
be found in the proof of Theorem 11 in [28].

2.4. An important hyperbola. For further use, we need to introduce the curve

R = {θ2 ∈ C : γ(θ1, θ2) = 0 and θ1 ∈ (−∞, θ−1 )} = Θ±2 ((−∞, θ−1 )). (19)

It is symmetrical w.r.t. the horizontal axis, see Figure 5. Indeed, the discriminant of Θ±2 (i.e.,
the polynomial under the square root in (7)) is positive on (θ−1 , θ

+
1 ) and negative on R \ [θ−1 , θ

+
1 ].

Accordingly, the branches Θ±2 take respectively real and complex conjugate values on the sets
above. Furthermore, R has a simple structure, as shown by the following elementary result:

Lemma 5 (Lemma 9 in [2]). The curve R in (19) is a branch of hyperbola, given by the equation

σ22(σ2
12 − σ11σ22)x2 + σ2

12σ22y
2 − 2σ22(σ11µ2 − σ12µ1)x = µ2(σ11µ2 − 2σ12µ1). (20)
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We denote the part of R with negative imaginary part by R−, see (9) and Figure 5. We
further denote by GR the open domain of C containing 0 and bounded by R, see again Figure 5.
The closure of GR is equal to GR ∪R and will be noted GR.

The domain in (15) strictly contains GR, see [28]. Thanks to Lemma 3, this implies that the
Laplace transform ϕ1(θ2) can be extended meromorphically to a domain containing GR. To see
the above inclusion we refer to [28], where the boundaries of the domain (15) (called ∆ ∪ {s0}
in [28]) is computed, see in particular [28, Figures 10 and 11]. The technique used in [28] is the
parametrization of the zero set of the kernel (6).

Figure 5. The curve R in (19) is symmetric w.r.t. the horizontal axis, and GR
is the domain in green. The curve R− is the half branch of R with negative
imaginary part. The points p and q are used to define the conformal mapping W ,
see (17) and (26). If the pole p is in GR then q = p (figure on the left), otherwise
q = 1

2Θ±2 (θ−1 ) (figure on the right), see (24)

3. A proof of Theorem 1 via reduction to BVPs

3.1. Carleman BVP. For θ2 ∈ R, define the function G as in (12):

G(θ2) =
γ1

γ2
(Θ−1 (θ2), θ2)

γ2

γ1
(Θ−1 (θ2), θ2).

Notice that G(θ2)G(θ2) = 1 and that for θ2 ∈ R one has Θ−1 (θ2) = Θ−1 (θ2). Let us also recall
that p is defined in (17).

Proposition 6 (Carleman BVP with shift). The function ϕ1 in (4)
(1) is meromorphic on GR,

• without pole on GR if γ1(θ−1 ,Θ
±
2 (θ−1 )) < 0,

• with a single pole on GR at p of order one if γ1(θ−1 ,Θ
±
2 (θ−1 )) > 0,

• without pole on GR and with a single pole of order one on the boundary R of GR, at
p = Θ±2 (θ−1 ), if γ1(θ−1 ,Θ

±
2 (θ−1 )) = 0,

(2) is continuous on GR \ {p} and bounded at infinity,
(3) satisfies the boundary condition

ϕ1(θ2) = G(θ2)ϕ1(θ2), ∀θ2 ∈ R. (21)

It is worth mentioning that the condition on the sign of γ1(θ−1 ,Θ
±
2 (θ−1 )) has a clear geometric

meaning: indeed, γ1(θ−1 ,Θ
±
2 (θ−1 )) is negative (resp. positive) if and only if the straight line
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corresponding to γ1 crosses the ellipse below (resp. above) the ordinate Θ±2 (θ−1 ); see Figure 3,
left (resp. right).

Remark 7. Item (1) of Proposition 6 shows that according to the values of the parameters,
various cases exist regarding the singularities of the Laplace transform in the domain GR. This is
the reason why there isn’t a unique expression for the Laplace transform in our main Theorem 1,
but two different expressions.

Proof of Proposition 6. First of all, it follows from Lemma 3 that ϕ1 is meromorphic in GR and
may have a pole of order one at p. Indeed, due to the continuation formula (16), the only
potential pole p of ϕ1 in GR should be a zero of γ1. It is then on the real line and characterized
by (17). Moreover, p defined by (17) is smaller than Θ±2 (θ−1 ) (i.e., p ∈ GR) if and only if the
geometric condition γ1(θ−1 ,Θ

±
2 (θ−1 )) > 0 is satisfied, see Figure 3. This demonstrates the first

item of Proposition 6.
The second item (in particular the fact that ϕ1 is bounded at infinity) comes from Lemma 3

together with the fact that (4) implies that ϕ1 (resp. ϕ2) is bounded on the set {θ2 ∈ C : < θ2 6 0}
(resp. {θ2 ∈ C : < θ1 6 0}).

To prove the boundary condition (21) (that we announced in [29, Proposition 7]), we consider
θ1 such that < θ1 < 0, and evaluate the functional equation (5) at (θ1,Θ

±
2 (θ1)). This implies

γ1

γ2
(θ1,Θ

±
2 (θ1))ϕ1(Θ±2 (θ1)) + ϕ2(θ1) = 0,

which in turn yields
γ1

γ2
(θ1,Θ

+
2 (θ1))ϕ1(Θ+

2 (θ1)) =
γ1

γ2
(θ1,Θ

−
2 (θ1))ϕ1(Θ−2 (θ1)). (22)

Restricting (22) to values of θ1 ∈ (−∞, θ−1 ), for which Θ+
2 (θ1) and Θ−2 (θ1) are complex conjugate

(see Section 2), we reach the conclusion that

ϕ1(θ2) =
γ1

γ2
(θ1, θ2)

γ2

γ1
(θ1, θ2)ϕ1(θ2),

which, by definition (12) of G, exactly coincides with the boundary condition (21). Although we
do not exclude a priori the denominators in (22) to vanish, note that this does not happen for
θ1 ∈ (−∞, θ1) since then the imaginary part of Θ±2 (θ1) is non-zero. �

The BVP established in Proposition 6 belongs to the class of homogeneous Carleman (or
Riemann-Carleman) BVPs with shift, see [43], the shift being here the complex conjugation.

In some cases, the function G in (21) can be factorized, leading to an interesting particular
case, that we comment below. As we shall see, the well-known skew-symmetric condition

2Σ = R · diag(R)−1 · diag(Σ) + diag(Σ) · diag(R)−1 ·R> (23)

(equivalent for the stationary distribution π(x1, x2) to have a product-form) gives a family of
examples where such a factorization holds. In (23) we have noted diag(A) the diagonal matrix
with the same diagonal coefficients as those of A.

Remark 8. If there exists a rational function F such that

G(θ2) =
F (θ2)

F (θ2)
,

one can transform the boundary condition (21) for ϕ1 with G 6= 1 into a boundary condition for
ϕ1 · F with G = 1, namely,

(ϕ1 · F )(θ2) = (ϕ1 · F )(θ2).

Then the associated BVP could be solved using Tutte’s invariants [3]. This is what has been done
in [29], for the particular case of orthogonal reflections (corresponding to F (θ2) = 1

θ2
).

We show in Section 5.2 that such a rational function F always exists in the skew-symmetric
case (23), and from this we derive a rational expression of the Laplace transform.
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The existence of a rational function F factorizing G as above is reminiscent of the notion of
decoupling function or telescoper, introduced in [3, 21].

However, a rational factorization term F as in Remark 8 does not exist in general, and it is still
an open problem to characterize the parameters (Σ, µ,R) for which F exists. As a consequence,
we cannot systematically use Tutte’s invariants technique: we are left with transforming the
BVP of Proposition 6 into a more classical one, using a certain conformal mapping having a very
convenient gluing property.

3.2. Conformal gluing. Our main result in this section is to prove that the functionW defined
by Equation (26) below satisfies the properties of Lemma 9, allowing to transform the Carleman
BVP with shift on the curve R of Proposition 6 into a classical BVP on the segment [0, 1].

Figure 6. Domains, curves and points related to the Carleman BVP with shift
on R (left) and the standard BVP on [0, 1] (right)

First we need to define q by

q =

{
p if γ1(θ−1 ,Θ

±
2 (θ−1 )) > 0, i.e., if ϕ1 admits p ∈ GR as a pole,

1
2Θ±2 (θ−1 ) otherwise.

(24)

Note, the choice 1
2Θ±2 (θ−1 ) is arbitrary: any point in GR would have been suitable. See Figures 3,

5 and 6.
The function W is built on the function w below (note, w is introduced in [29, Theorem 1];

under the symmetry conditions µ1 = µ2, σ11 = σ22, and symmetric reflection vectors in (1),
Foschini [27] also obtained an expression for the conformal mapping w, see [27, Figure 3]; see
finally [2, Equation (4.6)] for a related formulation of w):

w(θ2) = Tπ
β

(
−2θ2 − (θ+

2 + θ−2 )

θ+
2 − θ

−
2

)
,

which itself uses the branch points (8), the generalized Chebyshev polynomial (11) and the angle

β = arccos− σ12√
σ11σ22

. (25)

Then we define

W (θ2) =
w(θ2)− w(Θ±2 (θ−1 ))

w(θ2)− w(q)
=

w(θ2) + 1

w(θ2)− w(q)
. (26)

The last equality is due to the identity

Θ±2 (θ−1 ) =
θ+

2 + θ−2
2

− θ+
2 − θ

−
2

2
cosβ.
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We can see it by a direct computation or using a uniformization of the zero set of the kernel, see
[29, Section 5] for more details. Then we have w(Θ±2 (θ−1 )) = Tπ

β
(cosβ) = cosπ = −1.

Lemma 9. The function W in (26)
(i) is analytic in GR \ {q}, continuous in GR \ {q} and bounded at infinity,
(ii) is one-to-one from GR \ {q} onto C \ [0, 1],
(iii) satisfies W (θ2) = W (θ2) for all θ2 ∈ R.

Proof. It can be found in [29, Lemma 6] that w in (10)
(i’) is analytic in GR, continuous in GR and unbounded at infinity (Ta admits an analytic

continuation on C \ (θ+
2 ,∞), and even on C if a is a non-negative integer: in that case

Ta is the classical Chebyshev polynomial of the first kind),
(ii’) is one-to-one from GR onto C \ (−∞,−1],
(iii’) satisfies w(θ2) = w(θ2) for all θ2 ∈ R.

Here we want to define another conformal gluing function, which glues together the upper part
and the lower part of the hyperbola onto the segment [0, 1], and which sends the point q in (24)
at infinity, see Figure 6. For this reason we set W as in (26): by construction W (Θ±2 (θ−1 )) = 0,
W (∞) = 1 and W (q) =∞. The proof of Lemma 9 follows from the above-mentioned properties
(i’)–(iii’) of w together with the definition (26) of W . �

Remark 10. The algebraic nature of the mapping w in (10) (or equivalently W in (26)) is
directly related to the rationality of β

π . Precisely, as shown in [29, Proposition 13], the following
behaviors are possible:

• If β
π ∈ Q, then w is algebraic;

• If in addition π
β ∈ N (and only in this case), then w is a polynomial;

• If β
π /∈ Q, then w is non-algebraic.

3.3. Reduction to a standard BVP. Thanks to the gluing function W in (26), we are able
to reformulate the Carleman BVP as a standard BVP for an open contour. See Figure 6 for
a compact view of the two complex planes associated to the Carleman’s and Riemann’s BVPs.
Define ψ1 by

ψ1(t) = ϕ1 ◦W−1(t), ∀t ∈ C \ [0, 1] (27)
(note, ψ1 is meromorphic on C \ [0, 1]). Equivalently we have ϕ1(θ2) = ψ1 ◦W (θ2) for θ2 ∈ GR.
Obviously W−1 is not well defined on [0, 1]; however, it does admit upper and lower limits for
t ∈ [0, 1]:

(W−1)+(t) = lim
u→t
=u>0

W−1(u), (W−1)−(t) = lim
u→t
=u<0

W−1(u),

and similarly for ψ+
1 (t) and ψ−1 (t). Then for θ2 ∈ R and t = W (θ2) = W (θ2), we have

ϕ1(θ2) =

{
ψ+

1 (t) if = θ2 > 0,

ψ−1 (t) if = θ2 < 0,
ϕ1(θ2) =

{
ψ−1 (t) if = θ2 > 0,

ψ+
1 (t) if = θ2 < 0.

Define further
H(t) = G((W−1)−(t)), ∀t ∈ [0, 1]. (28)

Then Proposition 6 becomes:

Proposition 11 (Riemann BVP). The function ψ1 in (27)
(1) is analytic in C \ [0, 1], bounded at infinity if γ1(θ−1 ,Θ

±
2 (θ−1 )) 6 0 and admitting a simple

pole at infinity otherwise,
(2) is continuous on [0, 1] from below (with limits ψ−1 ) and above (with limits ψ+

1 ), bounded
at 0 and 1 (except if γ1(θ−1 ,Θ

±
2 (θ−1 )) = 0: in this case it has a pole of order one at 0),

(3) satisfies, with H defined in (28), the boundary condition

ψ+
1 (t) = H(t)ψ−1 (t), ∀t ∈ [0, 1]. (29)
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Proof. Items (1) and (2) directly follow from the corresponding items in Proposition 6. With the
above definitions, the boundary equation (21) becomes{

ψ−1 (t) = G(θ2)ψ+
1 (t) if = θ2 > 0,

ψ+
1 (t) = G(θ2)ψ−1 (t) if = θ2 < 0.

Since 1
G(θ2) = G(θ2) = H(t) if = θ2 > 0, and G(θ2) = H(t) if = θ2 < 0, the last item follows. �

3.4. Index of the BVP. The resolution of BVPs as in Proposition 11 heavily depends on the
index χ (see, e.g., [43, Section 5.2]), which is related to the variation of argument of H on [0, 1]:

∆ = [argH]10, δ = argH(0) ∈ (−π, π], χ =

⌊
δ + ∆

2π

⌋
. (30)

∆ quantifies the variation of argument ofH on [0, 1] and argH(1) = δ+∆. Since (W−1)−([0, 1]) =
R−, ∆ in (30) can be equivalently written [argG]R− (from the vertex to infinity).

Remark 12. It is important to notice that δ ∈ (−π, π] in (30) corresponds to an arbitrary
choice. Any other choice would eventually lead to the same Theorem 1 (though written slightly
differently).

First, we compute δ in (30).

Lemma 13. We have

δ =

{
0 if γ1(θ−1 ,Θ

±
2 (θ−1 )) 6= 0,

π if γ1(θ−1 ,Θ
±
2 (θ−1 )) = 0.

(31)

The angle δ + ∆ ∈ (−2π, 2π) and we have

tan
δ + ∆

2
=

detR · det Σ

σ12(r11r22 + r12r21)− σ22r11r12 − σ11r22r21
. (32)

Note that the denominator of (32) can be negative, zero or positive, depending on the param-
eters.

Proof of Lemma 13. First of all we show the formula (31). If first γ1(θ−1 ,Θ
±
2 (θ−1 )) 6= 0 then

H(0) = G(Θ±2 (θ−1 )) = 1, since Θ±2 (θ−1 ) ∈ R simplifies the quotient (12) and then δ = argH(0) =
0. In the other case γ1(θ−1 ,Θ

±
2 (θ−1 )) = 0, and we have

lim
t→0

H(t) = lim
θ2→Θ±2 (θ−1 )

θ2∈R−

θ2 −Θ±2 (θ−1 )

θ2 −Θ±2 (θ−1 )
= −1.

The last equality is due to the fact that the tangent to R at Θ±2 (θ−1 ) is vertical, see Figure 6.
Indeed if we write θ2 −Θ±2 (θ−1 ) = a+ ib when θ2 → Θ±2 (θ−1 ) with θ2 ∈ R−, the vertical tangent
gives a

b → 0 and then limt→0H(t) = lima
b
→0

a
b

+i
a
b
−i = −1. It implies that δ = π.

We are now going to show (32). We start by remarking that for θ2 ∈ R, G(θ2) = 1 if and
only if θ2 ∈ R. Accordingly, for t ∈ [0, 1], H(t) = 1 only at t = 0. Since |H| = 1 on [0, 1], then
necessarily δ + ∆ ∈ [−2π, 2π]. We now calculate

H(1) = lim
θ2→∞
θ2∈R−

G(θ2).

Thanks to Equation (7) we easily compute the following limit

lim
θ2→∞
θ2∈R−

Θ−1 (θ2)

θ2
=
−σ12 − i

√
det Σ

σ11
.
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Using this limit together with the definition of G (see (12))

G(θ2) =

(
r11

Θ−1 (θ2)
θ2

+ r21

)(
r12

Θ−1 (θ2)

θ2
+ r22

)
(
r12

Θ−1 (θ2)
θ2

+ r22

)(
r11

Θ−1 (θ2)

θ2
+ r21

) ,
we obtain that

H(1) =

(
r11(−σ12 − i

√
det Σ) + r21σ11

)(
r12(−σ12 + i

√
det Σ) + r22σ11

)(
r12(−σ12 − i

√
det Σ) + r22σ11

)(
r11(−σ12 + i

√
det Σ) + r21σ11

)
=
σ22r11r12 + σ11r22r21 − σ12(r11r22 + r12r21)− i detR det Σ

σ22r11r12 + σ11r22r21 − σ12(r11r22 + r12r21) + i detR det Σ
= exp(i(δ + ∆)).

Remembering that argH(1) = δ+∆ ∈ [−2π, 2π], it gives (32) and clearly, δ+∆ cannot be equal
to ±2π because detR · det Σ 6= 0. �

We now prove that

χ =

{
0 if γ1(θ−1 ,Θ

±
2 (θ−1 )) 6 0,

−1 if γ1(θ−1 ,Θ
±
2 (θ−1 )) > 0.

(33)

In particular, χ is an intrinsically non-continuous function of the parameters, see also Remark 7.
Recall that the function ψ1 has been defined in (27).

Lemma 14. The index χ can take only the values 0 and −1, and we have the dichotomy:
• χ = 0 ⇐⇒ γ1(θ−1 ,Θ

±
2 (θ−1 )) 6 0⇐⇒ ψ1 has no pole at infinity,

• χ = −1⇐⇒ γ1(θ−1 ,Θ
±
2 (θ−1 )) > 0⇐⇒ ψ1 has a simple pole at infinity.

Note that a simple pole at infinity means that ψ1(t)∼
∞
c · t for some non-zero constant c.

Proof. We have already seen in Proposition 6 that the sign of γ1(θ−1 ,Θ
±
2 (θ−1 )) determines whether

ϕ1 has a pole in GR or not, and thus if ψ1 has a pole at infinity by the correspondence of Figure 6.
This shows the two equivalences on the right in the statement of Lemma 14. We are thus left
with proving the first two equivalent conditions.

First, if γ1(θ−1 ,Θ
±
2 (θ−1 )) = 0, δ = π and we have seen that in this case H(t) 6= 1 for all t ∈ [0, 1].

By (30), we deduce that χ = 0.
If now γ1(θ−1 ,Θ

±
2 (θ−1 )) 6= 0 we notice that

χ =

⌊
∆

2π

⌋
= 0 or − 1.

Indeed, we have proved in Lemma 13 that ∆ ∈ (−2π, 2π). In particular, the sign of ∆ determines
χ: if sgn ∆ > 0 then χ = 0 and if sgn ∆ < 0, χ = −1. In the rest of the proof, we show that
sgn ∆ = − sgn γ1(θ−1 ,Θ

±
2 (θ−1 )). First, ∆ can be computed as

∆ = argH(1) = [argG]R− =

[
arg

γ1γ2

γ2γ1
(Θ−1 (θ2), θ2)

]
R−

.

Let θ2 = a−ib ∈ R− (we must have b > 0 and a > Θ±2 (θ−1 ) > 0, see Figure 5) and θ1 = Θ−1 (θ2) ∈
(−∞, θ−1 ]. Using the expression (6) of γ1 and γ2, we obtain

γ1γ2(θ1, θ2) = γ1(θ1, a)γ2(θ1, a) + r21r22b
2 + ibθ1 detR,

from where we deduce that

arg
γ1γ2

γ2γ1
(θ1, θ2) = 2 arctan

b · θ1 · detR

γ1(θ1, a)γ2(θ1, a) + r21r22b2
. (34)

We now look for the sign of (34) when θ2 → Θ±2 (θ−1 ), while remaining in R−. This is sufficient
to give the sign of ∆, because (34) does not change sign on R− due to the fact that G(θ2) = 1
on R− if and only if θ2 = Θ±2 (θ−1 ).
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When θ2 → Θ±2 (θ−1 ) we have b→ 0, a→ Θ±2 (θ−1 ) and θ1 → θ−1 . We thus have

sgn arg
γ1γ2

γ2γ1
(θ1, θ2) = sgn b · sgn θ1 · sgn detR · sgn γ2(θ−1 ,Θ

±
2 (θ−1 )) · sgn γ1(θ−1 ,Θ

±
2 (θ−1 ))

= (+1)(−1)(+1)(+1) sgn γ1(θ−1 ,Θ
±
2 (θ−1 ))

= − sgn γ1(θ−1 ,Θ
±
2 (θ−1 )),

because b > 0, θ1 < 0, detR > 0 by (2), and γ2(θ−1 ,Θ
±
2 (θ−1 )) > 0 (because r22 > 0 and r22µ1 −

r12µ2 < 0, see Figure 3 to visualize this geometric condition). Then sgn ∆ = sgn arg γ1γ2

γ2γ1
(θ1, θ2) =

− sgn γ1(θ−1 ,Θ
±
2 (θ−1 )), concluding the proof. �

3.5. Resolution of the BVP. We are now in position to conclude the proof of Theorem 1.
Reformulating Proposition 11, the function ψ1 in (27)

• is sectionally analytic in C \ [0, 1],
• is continuous on [0, 1] from below (with limits ψ−1 ) and above (with limits ψ+

1 ),
• is bounded at the vicinities of [0, 1] if γ1(θ−1 ,Θ

±
2 (θ−1 )) 6= 0,

• has a pole of order one at 0 and bounded at 1 if γ1(θ−1 ,Θ
±
2 (θ−1 )) = 0,

• is bounded at infinity if there is no pole before Θ±2 (θ−1 ) (then taking the value ϕ1(q)),
and with a pole of order one (see Lemma 3) at infinity if not (in short, it has a pole of
order −χ at infinity),
• satisfies ψ+

1 (t) = H(t)ψ−1 (t) for t ∈ [0, 1], with index χ given by (33), cf. also Lemma 14.

End of proof of Theorem 1. Our main reference for the resolution of the above so-called homo-
geneous BVP on an open contour is the book [45] of Muskhelishvili, see in particular [45, §79].

First of all, we prove that there exists a non-zero constant c such that

ψ1(t) = c(t− 1)−χ exp Γ(t), (35)

where Γ is the following function, sectionally analytic on C \ [0, 1]:

Γ(t) =
1

2iπ

∫ 1

0

logH(z)

z − t
dz. (36)

To make precise the definition (36), we define logH(z) by the facts that it should vary contin-
uously over [0, 1], and its initial value is such that logH(0) = iδ (i.e., 0 if H(0) = 1 and iπ if
H(0) = −1, see (31)).

At the vicinities 0 and 1, we have by [45, §29 and §79] that

exp Γ(t) = t−
δ

2πΩ0(t), exp Γ(t) = (t− 1)
δ+∆
2π Ω1(t),

for some function Ω0 (resp. Ω1) analytic in a neighborhood of 0 (resp. 1) and non-zero at 0 (resp.
1). Then we set

X(t) = t
δ
π (t− 1)−χ exp Γ(t). (37)

The function X in (37) is sectionally analytic in C \ [0, 1], and by construction of Γ and the
Sokhotski-Plemelj formulas, it satisfies the boundary condition (29) (see [45, §79] for more de-
tails). Furthermore it has a pole of order −χ+ δ

π at infinity and is bounded at 0 and 1: indeed, δπ
and −χ are both equal to 0 or 1, see Lemmas 13 and 14. Then we consider two cases separately.
• First case: γ1(θ−1 ,Θ

±
2 (θ−1 )) 6= 0. Then δ = 0, and the function X in (37) simplifies into

X(t) = (t− 1)−χ exp Γ(t).

It satisfies the exact same boundary condition as (29). Looking at the ratio ψ1

X , the boundary
condition (29) gives that on [0, 1],

ψ+
1

X+
=
ψ−1
X−

.

The above ratio is then analytic in the entire plane, even at the vicinities 0 and 1. The point 0 is
a regular point and 1 is a removable singularity. Indeed, 1 is an isolated singular point, at which
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ψ1

X might be infinite with degree less than unity (namely, −χ+ ∆
2π ). Moreover, the function ψ1

X
is bounded at infinity, because both X and ψ1 have a pole of the same order −χ. Thanks to
Liouville’s theorem, we deduce that ψ1

X is constant. In conclusion, the formula (35) holds in this
case.
• Second case: γ1(θ−1 ,Θ

±
2 (θ−1 )) = 0. Then δ = π, χ = 0 and X(t) = t exp Γ(t) in (37). Firstly,

we notice that the function tψ1 satisfies the boundary condition (29), is bounded at 0 and 1, and
has a pole of order one at infinity. Moreover, the function X has a pole of order 1 at infinity.
Considering then the ratio tψ1

X , the boundary condition (29) implies that on [0, 1],

tψ+
1

X+
=
tψ−1
X−

.

The above ratio function is thus analytic in the entire complex plane, including the vicinities 0
and 1. It is indeed bounded at 1, and has a removable singularity at 0: the point 0 is an isolated
singular point, at which tψ1

X might be infinite with degree less than 1
2 . Using again Liouville’s

theorem, we deduce that the function tψ1

X is a constant. Formula (35) therefore also holds.
We now deduce from (35) the formula (14) stated in Theorem 1. Going from the t-plane back

to the θ2-plane (see (27) and Figure 6), one has that for some constant c,

ϕ1(θ2) = ψ1(W (θ2)) = c(W (θ2)− 1)−χ exp

{
1

2iπ

∫
R−

logG(θ)
W ′(θ)

W (θ)−W (θ2)
dθ

}
. (38)

Using the equation (26) relating W and w, we easily obtain

W (θ2)− 1 =
w(q) + 1

w(θ2)− w(q)

as well as
W ′(θ)

W (θ)−W (θ2)
=

w′(θ)

w(θ)− w(θ2)
− w′(θ)

w(θ)− w(q)
.

Remembering that in the case χ = −1 one has q = p, see (24), we finally obtain that for some
constant c′,

ϕ1(θ2) = c′
(

1

w(θ2)− w(p)

)−χ
exp

{
1

2iπ

∫
R−

logG(θ)
w′(θ)

w(θ)− w(θ2)
dθ

}
.

By definition (4) of the Laplace transform we have ϕ1(0) = ν1(R+). To find the exact constant
c′ (and thereby our main result (14)), we simply evaluate the above formula at θ2 = 0 and use
Lemma 15 below. �

Lemma 15. One has
(
ϕ1(0)
ϕ2(0)

)
=

(
ν1(R+)
ν2(R+)

)
= −R−1µ.

Proof. Equation (4) evaluated at 0 gives ϕi(0) = νi(R+). We now evaluate (5) at θ2 = 0, divide
by θ1 and finally evaluate at θ1 = 0. This yields −µ1 = r11ϕ1(0) + r12ϕ2(0). In a similar way,
we obtain −µ2 = r21ϕ1(0) + r22ϕ2(0), thereby concluding the proof. �

Note that Lemma 15 gives, as announced in Theorem 1,

ν1(R+) =
r12µ2 − r22µ1

detR
, ν2(R+) =

r21µ1 − r11µ2

detR
,

which by (2) are positive: remind that this positivity condition is necessary for the existence of
the stationary distribution [33].

Clearly, the integral expression (14) of ϕ1 is meromorphic in the domain GR. In Section 4 we
shall see that it can be meromorphically continued on the much larger domain C \ [θ+

2 ,∞).
To conclude this part, let us make Remark 12 more precise. In the case γ1(θ−1 ,Θ

±
2 (θ−1 )) = 0

(i.e., H(0) = −1), we have chosen δ = π in (30). (Recall that choosing δ is tantamount to fixing
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a determination of the arg (or log) function.) Remarkably, any other choice of δ would have led
to the same explicit expression for ϕ1, though written differently. For instance, if we had taken
δ = −π instead, the index χ would have been −1 (instead of 0), and the two determinations of
the logarithm would differ by −2iπ. With our notation in the proof of Theorem 1, we would
have obtained for some constant c′′,

ψ1(t) = c′′
t− 1

t
exp Γ(t).

This actually corresponds to the formula of Theorem 1 associated with χ = −1.

3.6. Generalizations. Our main Theorem 1 is derived under the hypothesis (13) that the coor-
dinates (µ1, µ2) of the drift are negative. However, the conditions (2) (equivalent to the existence
of a stationary distribution) allow the drift to have one non-negative coordinate. In the next few
lines, we assume that µ1 > 0 or µ2 > 0, and we comment on the slight differences which would
have arisen in the analytic treatment of the functional equation (5).

In the case of a drift having one non-negative coordinate, the reflected Brownian motion in
the quadrant has a pathwise behavior which is quite different (it spends most of its time near
the axis towards which the drift is directed). However, from the point of view of our analysis,
the differences are only technical. For instance, the continuation formula (16) of Lemma 3 may
use the other branch Θ+

1 , as if µ1 > 0, the small branch (taking value 0 at 0) is Θ+
1 and not

Θ−1 anymore, see (7). As a result, the poles of ϕ1 may be located at places different from those
described in Proposition 6. Despite these few differences, there still exists a Cauchy-type integral
expression for the Laplace transform ϕ1, similar to the one stated in Theorem 1.

Let us also very briefly mention here the case of reflected Brownian motion in higher dimension
[31, 34, 7, 6, 15]. Compared to its two-dimensional analogue, much less is known. However, an
analogue of the functional equation (5) can still be stated (since the BAR exists in any dimension,
see [33, 14]). Clearly, our techniques (based on complex analysis) use the dimension 2, and in
our opinion, generalizing in higher dimension these BVP techniques is a difficult open problem.
In the discrete case too, the case of dimension 3 is less understood. One can mention [12] for
some ideas to state a BVP in dimension 3, as well as [4] for more combinatorial techniques.

4. Singularity analysis and asymptotics of the boundary distribution

The asymptotics (up to a constant) of the boundary measures has been obtained by Dai
and Miyazawa in [18], see also [17, 28] for the interior measure. In this section we show that
our expression (14) for the Laplace transform ϕ1 stated in Theorem 1 is perfectly suited for
singularity analysis, and accordingly to study the asymptotics (including the computation of the
constant) of the boundary stationary distributions ν1 and ν2. We shall first recall the result of
[18] and express it in terms of our notations. Then we will explain how, thanks to Theorem 1,
we could obtain a new proof of this result and make the constants explicit.

4.1. Asymptotic results.

Theorem 16 (Theorem 6.1 of [18]). The following asymptotics holds:

lim
x→∞

ν1(x)

xκe−τ2x
= b, (39)

where κ ∈ {−3
2 ,−

1
2 , 0, 1} and τ2 ∈ {p, p′, θ+

2 } are given in Table 1, and b is some positive constant.
See Figures 7 and 8 to visualize geometrically the different cases.

We now propose a series of three remarks on Theorem 16.
•We have already introduced p, see (17), and p′ is as follows: it is the (unique, when it exists)

non-zero point p′ = Θ+
2 (r), with r defined by γ2(r,Θ−2 (r)) = 0 and r 6 Θ±1 (θ+

2 ). It will be
convenient to adopt the following notation: we will write p > θ+

2 (resp. p′ > θ+
2 ) when p (resp.

p′) does not exist.
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• Theorem 6.1 of [18] deals with the asymptotics of ν1(x,∞), and not with that of ν1(x), as
stated in Theorem 16 below. However, the two statements are equivalent: when the asymptotics
of the density has the form bxκe−τ2x as in (39), the corresponding tail probability is given by the
exact same asymptotics (with another constant b), see [17, Lemma D.5].
• Before stating Table 1, which gives the values of κ and τ2 of Theorem 16, we briefly recall

Dai and Miyazawa’s notations: θ(2,max) is the (unique) point of the ellipse γ = 0 such that
θ

(2,max)
2 = θ+

2 , τ2 = sup{θ2 > 0 : ∃θ1 ∈ R, ϕ(θ1, θ2) < ∞} and θ(2,r) is the intersection point of
the straight line γ1 = 0 and the ellipse γ = 0. Notice that the definition of τ2 does not rely on
an analytic continuation of ϕ.

Cases Dai and Miyazawa’s categories κ τ2

p or p′ ∈ (0, θ+
2 )

1.a p < Θ±2 (θ−1 )

τ2 < θ
(2,max)
2

Categories I or II 0 p

1.b Θ±2 (θ−1 ) 6 p < p′ Category I 0 p

1.c Θ±2 (θ−1 ) 6 p′ < p Category III, τ2 6= θ
(2,r)
2 0 p′

1.d Θ±2 (θ−1 ) 6 p = p′ Category III, τ2 = θ
(2,r)
2 1 p

p and p′ > θ+
2

2.a p and p′ > θ+
2

τ2 = θ
(2,max)
2

Category I, θ(2,r) 6= θ(2,max) −3
2 θ+

2

2.b θ+
2 = p Category I, θ(2,r) = θ(2,max) −1

2 θ+
2

2.c θ+
2 = p′ Category II, θ(2,r) 6= θ(2,max) −1

2 θ+
2

2.d θ+
2 = p = p′ Category II, θ(2,r) = θ(2,max) 0 θ+

2

Table 1. Dai and Miyazawa’s categories expressed with our notations

Figure 7. Ellipses and curves in the cases 1.a, 1.b, 1.c and 1.d of Table 1

4.2. Sketch of the proof of Theorem 16. The idea is to study the singularities of ϕ1 and to
use transfer theorems (such as [20, Theorem 37.1]) relating the asymptotics of a function and the
singularities of its Laplace transform. In our case, the singularity closest to 0 will determine the
asymptotics. Our aim here is not to propose a complete proof of Theorem 16 (for this we refer
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Figure 8. Ellipses in the cases 2.a, 2.b, 2.c and 2.d of Table 1

to [18]), but rather to illustrate that Theorem 1 indeed implies Theorem 16, with the additional
feature of providing an exact expression for the constant b in (39). We give details for the case 1.a
of Table 1, and only sketch the difficulties that would arise in the remaining cases.

Proof of Theorem 16 and computation of b in case 1.a. In that case, the index χ equals −1 and
the formula (14) gives

ϕ1(θ2) = ν1(R+)

(
w(0)− w(p)

w(θ2)− w(p)

)
exp

{
1

2iπ

∫
R−

logG(θ)

[
w′(θ)

w(θ)− w(θ2)
− w′(θ)

w(θ)− w(0)

]
dθ

}
.

Recall that w is analytic, one-to-one on GR and further satisfies w(θ2) 6= w(θ), for all θ2 ∈ GR
and θ ∈ R−. As a first result, the integral part (thus also its exponential) is analytic in the
domain GR. A second consequence is that 1

w(θ2)−w(p) has a simple pole at p: ϕ1(θ2) = b+o(1)
θ2−p ,

with

b = ν1(R+)

(
w(0)− w(p)

w′(p)

)
exp

{
1

2iπ

∫
R−

logG(θ)

[
w′(θ)

w(θ)− w(p)
− w′(θ)

w(θ)− w(0)

]
dθ

}
.

Theorem 37.1 of [20] gives the announced asymptotics ν1(x) = e−px(b+ o(1)) as x→∞. �

In the other cases, the singularities are not in GR and we thus need to extend meromorphically
ϕ1 in a larger domain:

Proposition 17 (Theorem 11 of [28]). The Laplace transform ϕ1 can be meromorphically con-
tinued on the domain C \ [θ+

2 ,∞).

Proposition 17 has already been proved in [28], see Theorem 11 there. Note that the for-
mula (14) of Theorem 1 provides an alternative, direct, analytic proof, which can be sketched
as follows: the equation (14) is valid a priori only for θ2 in GR. However, considering a Hankel
contour similar to that of Figure 9, surrounding [θ+

2 ,∞), we could write ϕ1 as an integral over
the cut [θ+

2 ,∞). The study of the so-obtained formula would give the singularities p, p′ and θ+
2 as

in Table 1, and would lead to the precise asymptotics (we could even obtain the full asymptotic
development) and the computation of b.

Remark 18. We have already commented on the fact that within a single formula, Theorem 1 ac-
tually captures two different expressions, depending on the value of χ in (33). From an asymptotic
viewpoint, Section 4 shows that different cases exist as well, depending on various parameters.
It should be noted that these cases are all different, i.e., δ and χ do not govern the asymptotic
behavior of the boundary measures.

5. Algebraic nature and simplification of the Laplace transforms

Motivations. In this section we are interested in the following question: in which extent is it
possible to simplify the expressions of the Laplace transforms given in Theorem 1? For instance,
is this possible that these functions be algebraic or even rational?
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This is of paramount importance: first, simplified expressions would lead to an easier analysis,
in particular for asymptotic analysis or for taking inverse Laplace transforms; second, under-
standing the parameters (Σ, µ,R) for which the Laplace transforms are rational should reveal
intrinsic structure of the model. In the particular case of the identity covariance matrix Σ, some
attempts of simplifications may be found in [26, Chapter 4].

In the literature, this question has received much interest in the discrete setting. One can first
think at the famous Jackson’s networks [36] and their product form solutions. In a closer context,
Latouche and Miyazawa [40], Chen, Boucherie and Goseling [10], obtain geometric necessary and
sufficient conditions for the stationary distribution of random walks in the quarter plane to be
sums of geometric terms. Such criteria can be applied, e.g., to derive an approximation scheme
to error bounds for performance measures of random walks in the quarter plane [11].

In our context of reflected diffusions in the quadrant, analogues of these results are obtained by
Dieker and Moriarty [19]: a simple condition (involving the single angle (40)) for the stationary
density to be a sum of exponential terms is derived. We will discuss the links with our results in
Section 5.1. In the simplest case the sum of exponential terms consist of one single term: this
is the skew-symmetric condition (23) of [34]. In this case, a factorization such as in Remark 8
exists and applying an invariant method we are able to solve the skew-symmetric case, see our
Section 5.2, yielding new proofs to already known results.

Another main reason which can lead to simplified expressions comes from the rationality of
β
π , with β in (25). Before being more precise, let us mention that this reason is deeply different
than the first one: β only depends on the covariance matrix and is therefore independent of
the reflection matrix, while Dieker and Moriarty’s condition is also dependent on the reflection
angles, see (40). In the discrete setting, the rationality of βπ is rather interpreted as a condition
on the finiteness of a certain group of transformations, and this finiteness was shown to have
a decisive influence on the D-finiteness (a function is D-finite if it satisfies a linear differential
equation with polynomial coefficients on Q) of the generating functions, see [25, 5, 21]. For
reflected Brownian motion in the quadrant with orthogonal reflections, it is shown in [29] that
the Laplace transform is algebraic (note, any algebraic function is D-finite) if and only if the
group is finite. We present a structural result in Section 5.3.

Finally, we focus in Section 5.4 on the case of orthogonal reflections, and derive a new proof
of the main result of [29], as a consequence of Theorem 1.

5.1. Dieker and Moriarty’s criterion. For the sake of completeness, let us mention the fol-
lowing result:

Theorem 19 (Theorem 1 in [19]). The stationary density is a sum of exponentials if and only
if

ε+ δ − π
β

∈ −N = −{0, 1, 2, . . .}, (40)

with ε and δ in (0, π) and

tan ε =
sinβ

r21
r11

√
σ11
σ22

+ cosβ
, tan δ =

sinβ

r12
r22

√
σ22
σ11

+ cosβ
. (41)

Notice that this is not the exact statement of [19, Theorem 1], as in Dieker and Moriarty’s
paper, the Brownian motion is assumed to have an identity covariance matrix and evolves in
a wedge with an arbitrary opening angle, whereas we consider Brownian motion with arbitrary
covariance matrix but in the quarter plane. A simple linear transform, which is made explicit
in Appendix A, makes both statements equivalent. The expression (41) of the angles ε and δ
follows from this transformation.
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5.2. Skew-symmetric case. The skew-symmetric case holds when the matrix condition (23)
is satisfied [34]. In dimension two, (23) can be reduced to the single equation

2σ12 =
r21

r11
σ11 +

r12

r22
σ22. (42)

Using the identities in (49) we easily show that the above condition is equivalent to

ε+ δ = π,

which is the case where the quantity of Dieker and Moriarty’s criterion is equal to 0, see (40).
It is known, see [34], that condition (23) is satisfied if and only if the stationary distribution

has a product form, i.e., π(x1, x2) = π2(x1)π1(x2), where the πi’s are the marginal densities of
π. Furthermore it implies that the stationary distribution is exponential, meaning that

π(x1, x2) = α1α2e
−α1x1−α2x2 , with α = −2 · diag(Σ)−1 · diag(R) ·R−1 · µ. (43)

See for example [31, §10], [34] or [18] for more details on these results.
In fact, in the skew-symmetric case, a rational factorization such as in the Remark 8 exists.

It is then possible to find again, in another way, some already known results. Indeed if the
skew-symmetric condition holds, we shall prove below that for θ2 ∈ R,

G(θ2) =
F (θ2)

F (θ2)
, with F (θ2) = α2 − θ2. (44)

where by (43) α2 takes the value

α2 =
2r22(r21µ1 − r11µ2)

σ22 detR
. (45)

Using (42) and (18) it is easy to remark that α2 = p, which is the only possible pole of ϕ1 in
GR as we observe after Lemma 3. It follows from Proposition 6 that the function ϕ1(θ2)(α2−θ2)

• is bounded on GR and converges at infinity to ν1(0) (thanks to the initial value theorem
and Lemma 3),
• is continuous on GR,
• satisfies the boundary condition ϕ1(θ2)(α2 − θ2) = ϕ1(θ2)(α2 − θ2) for all θ2 ∈ R.

Then, using an invariant lemma (see Lemma 2 in [43, Section 10.2]), we conclude that for some
constant C,

ϕ1(θ2) =
C

α2 − θ2
.

Evaluating the above equation at 0 and using Lemma 15 gives C = σ11
2r11

α1α2. Inverting the
Laplace transform implies that the stationary distribution is exponential. Then using the func-
tional equation (5), we find that σ11σ22

4r11r22
α1α2ϕ(θ1, θ2) = ϕ1(θ2)ϕ2(θ1), which means that π has a

product form.

Proof of Equation (44). Let θ2 ∈ R and note θ1 = Θ−1 (θ2). Elementary computations give

γ1(θ1, θ2)γ2(θ1, θ2) = θ1

(
2r22

σ22
(r21µ1 − r11µ2)− θ2 detR

)
.

To find this, we just have to use the skew-symmetric condition (42) and to remark that for θ2 ∈ R
Vieta’s formulas give θ2θ2 = 1

σ22(σ11θ
2
1 + 2µ1θ1) and θ2 = −θ2 − 1

σ22
(2σ12θ1 + 2µ2). Then, using

the expression (45) of α2 we find G(θ2) = α2−θ2
α2−θ2

for θ2 ∈ R. �
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5.3. Structural form of the Laplace transforms. In the case β
π ∈ Q, and in this case only,

the functionW in (26) is algebraic (as the generalized Chebyshev polynomial (10) is, see Remark
10), yielding the following structural result:

Proposition 20. If βπ ∈ Q, the Laplace transform ϕ1 of Theorem 1 is the product of an algebraic
function by the exponential of a D-finite function.

Proof. This easily follows from the fact that the Cauchy integral of a D-finite function is D-finite,
see, e.g., [51]. �

However, it is not true in general that the exponential of a D-finite function is still D-finite.

5.4. Orthogonal reflections. Here we consider the case of orthogonal reflections, which is
equivalent for the reflection matrix R in (1) to be the identity matrix; see also Figure 2. By
developing the theory of Tutte’s invariants (introduced by Tutte in [53] for the enumeration of
properly colored triangulations, and used in [3] for the enumeration of quadrant walks) for the
Brownian motion, we proved in [29] the following result:

Theorem 21 (Theorem 1 in [29]). Let R be the identity matrix in (1). The Laplace transform
ϕ1 is equal to

ϕ1(θ2) =
−µ1w

′(0)

w(θ2)− w(0)
θ2. (46)

In this section we derive a new proof of this result, as a consequence of Theorem 1. More
generally, the proof below would work for any parameters (Σ, µ,R) such that G(θ2) = F (θ2)

F (θ2)
(cf.

Remark 8), yielding a rational expression of ϕ1(θ2) in terms of w(θ2) and θ2.

Proof. Let us first notice that the index χ = 0. Indeed, since G(θ2) = θ2
θ2
, we have argG(θ2) =

−2 arg θ2 > 0 for θ2 ∈ R, and thus ∆ > 0, see the proof of Lemma 14.
Starting from the formula (38), we have for some constant C

ϕ1(θ2) = C exp

{
1

2iπ

∫
R−

(log θ − log θ)
W ′(θ)

W (θ)−W (θ2)
dθ

}
= C exp

{
1

2iπ

∫
R

log θ
W ′(θ)

W (θ)−W (θ2)
dθ

}
.

To compute the above integral, we first integrate on the contour represented on Figure 9. The
residue theorem gives

1

2iπ

{∫
RR

+

∫
CR

+

∫
Cε

+

∫ iε

−R+iε
+

∫ −R−iε
−iε

}
log θ

W ′(θ)

W (θ)−W (θ2)
dθ = log θ2 − log q. (47)

It is easy to see that

lim
R→∞

1

2iπ

∫
RR

log θ
W ′(θ)

W (θ)−W (θ2)
dθ =

1

2iπ

∫
R

log θ
W ′(θ)

W (θ)−W (θ2)
dθ

and that in the limits when ε → 0 and R → ∞, the contributions on Cε and CR both converge
to 0, because W is analytic at 0 and ∞, respectively.
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Figure 9. Integration contour used in the proof of Theorem 21

Furthermore,

lim
ε→0

lim
R→∞

1

2iπ

{∫ iε

−R+iε
+

∫ −R−iε
−iε

}
log θ

W ′(θ)

W (θ)−W (θ2)
dθ

= lim
ε→0

1

2iπ

∫ 0

−∞
(log(t+ iε)− log(t− iε)) W ′(θ)

W (θ)−W (θ2)
dθ

=
1

2iπ

∫ 0

−∞
2iπ

W ′(θ)

W (θ)−W (θ2)
dθ

= log
W (0)−W (θ2)

W (∞)−W (θ2)

= log
w(θ2)− w(0)

w(q)− w(0)
.

Above we have used the dominated convergence and the fact that the principal determination of
the logarithm gives us limε→0(log(t+ iε)− log(t− iε)) = 2iπ. Letting R → ∞ and then ε → 0
in (47), we have, for some constants C and C ′,

ϕ1(θ2) = C exp

{
1

2iπ

∫
R

log θ
W ′(θ)

W (θ)−W (θ2)
dθ

}
= C ′

θ2

w(θ2)− w(0)
.

Since by Lemma 15 one has ϕ1(0) = −µ1, this eventually gives the right constant in (46). �

Appendix A. Equivalence between Brownian motion in wedges and Brownian
motion in the quarter plane

We use the notation of Section 1. Up to an isomorphism, studying Brownian motion in the
quarter plane with arbitrary covariance matrix Σ is equivalent to studying Brownian motion in
a cone of angle β = arccos− σ12√

σ11σ22
, with covariance identity. See for example [1, Equation (23)]

and [49, Lemma 3.23]. In this short section we relate the key parameters (angles of the reflection
vectors and drift) before and after the linear transformation.
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Let us define the linear transforms

T =

( 1
sinβ cotβ

0 1

)( 1√
σ11

0

0 1√
σ22

)
, T−1 =

(√
σ11 0
0

√
σ22

)(
sinβ −cosβ

0 1

)
. (48)

Figure 10. The linear transformation T in (48) from the quadrant to the wedge
of opening angle β

Obviously the reflected Brownian motion associated to (Σ, µ,R) becomes a Brownian motion
(with covariance identity) in a wedge of angle β and with parameters (Id, Tµ, TR). The new
angles of reflection are δ and ε (cf. Figure 10), such that

tan δ =
sinβ

a+ cosβ
, cos δ =

a+ cosβ√
a2 + 2a cosβ + 1

, sin δ =
sinβ√

a2 + 2a cosβ + 1
,

tan ε =
sinβ

b+ cosβ
, cos ε =

b+ cosβ√
b2 + 2b cosβ + 1

, sin ε =
sinβ√

b2 + 2b cosβ + 1
,

(49)

where a = r12
r22

√
σ22
σ11

and b = r21
r11

√
σ11
σ22

. The new drift is µ̃ = Tµ, where

µ̃1 =
µ1√
σ11

1

sinβ
+

µ2√
σ22

cotβ and µ̃2 =
µ2√
σ22

.

To conclude the appendix, we prove Corollary 2, which gives an explicit formula for the Laplace
transform of the stationary distribution of a reflected Brownian motion in a wedge.

Proof of Corollary 2. Let us arbitrarily choose σ11 = σ22 = 1 and σ12 = − cosβ. It implies that
the linear transform T in (48) is the same as T1 in the statement of Corollary 2. We consider
the process Z = T−1Z̃, which is a reflected Brownian motion in the quadrant of parameters
(Σ, µ,R), with

Σ = T−1Σ̃(T−1)>, µ = T−1µ̃ and R = T−1R̃.

Let Π (resp. Π̃) be the invariant measure of Z (resp. Z̃) and π (resp. π̃) its density. It is easy to
notice that

Π = Π̃ ◦ T and π = | detT |π̃ ◦ T.
Indeed, by a fundamental property of the invariant measure, for all x ∈ R2

+ and all measurable
set A in R2

+ we have the following limits

Px[Zt ∈ A] −→
t→∞

Π(A), Px[Zt ∈ A] = Px[TZt ∈ TA] = PTx[Z̃t ∈ TA] −→
t→∞

Π̃(TA).

It yields Π = Π̃ ◦ T . Furthermore by a simple change of variable we have

Π̃ ◦ T (A) =

∫
TA

π̃(x̃)dx̃ = | detT |
∫
A
π̃(Tx)dx,
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therefore | detT |π̃ ◦ T is the density of Π ◦ T and is then equal to π. Theorem 1 gives the value
of ϕ, the Laplace transform of π. Lastly, a simple change of variable x̃ = Tx in Equation (3)
leads to

ϕ̃(θ̃) =

∫∫
Cβ

exp(θ̃·x̃)π̃(x̃)dx̃ =

∫∫
T−1Cβ

exp(θ̃·Tx)π̃(Tx)| detT |dx =

∫∫
R2

+

exp(T>θ̃·x)π(x)dx = ϕ(T>θ̃),

where Cβ is the wedge of angle β where the process evolves. �
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