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EXPLICIT EXPRESSION FOR THE STATIONARY DISTRIBUTION OF
REFLECTED BROWNIAN MOTION IN A WEDGE

S. FRANCESCHI AND K. RASCHEL

Abstract. For Brownian motion in a (two-dimensional) wedge with negative drift and oblique
reflection on the axes, we derive an explicit formula for the Laplace transform of its stationary
distribution (when it exists), in terms of Cauchy integrals and generalized Chebyshev polyno-
mials. To that purpose we solve a Carleman-type boundary value problem on a hyperbola,
satisfied by the Laplace transforms of the boundary stationary distribution.

1. Introduction and main results

Since its introduction in the eighties by Harrison, Reiman, Varadhan and Williams [24, 25, 37,
38, 39], reflected Brownian motion in the quarter plane has received a lot of attention from the
probabilistic community. However, and surprisingly, finding a general explicit expression of the
stationary distribution has been left as an open problem. The present paper solves this problem
in a complete and unified way.

Reflected Brownian motion in two-dimensional cones. The reflected Brownian motion
with drift in the quarter plane R2

+ (or equivalently in arbitrary convex wedges, by performing a
simple linear transformation, cf. Appendix A) can be written as

Z(t) = Z0 +B(t) + µ · t+R · L(t), ∀t > 0, (1)

where
• Z0 is any initial point in the quadrant,

• B is a Brownian motion with covariance Σ =

(
σ11 σ12
σ12 σ22

)
starting from the origin,

• µ =

(
µ1

µ2

)
denotes the interior drift,

• R = (R1, R2) =

(
r11 r12
r21 r22

)
is the reflection matrix,

• L =

(
L1

L2

)
is the local time.

For i ∈ {1, 2}, Li(t) is a continuous non-decreasing process, increasing only at time t such that
Zi(t) = 0, viz.,

∫ t
0 1{Zi(s)6=0}dL

i(s) = 0, for all t > 0. The columns R1 and R2 represent the
directions in which the Brownian motion is pushed when the axes are reached, see Figure 1.

The reflected Brownian motion (Z(t))t>0 associated with (Σ, µ,R) is well defined [37, 39], and
is a fondamental stochastic process. It has been studied in depth, with focuses on its definition
and semimartingale properties [37, 38, 40], its recurrence or transience [38, 9, 28], the possible
particular (e.g., product) form of its stationary distribution [27, 13], its Lyapunov functions [16],
its links with other stochastic processes [31, 15], its use to approximate large queuing networks
[19, 1, 26], the asymptotics of its stationary distribution [23, 11, 21], numerical methods to
compute the stationary distribution [9, 10], links with complex analysis [19, 1, 5, 22], etc.

Key words and phrases. Reflected Brownian motion in a wedge; Stationary distribution; Laplace transform;
Carleman-type boundary value problem; Boundary value problem with shift; Conformal mapping.
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Figure 1. Drift µ and reflection vectors R1 and R2

The main contribution of the present paper is to find an exact expression for the stationary
distribution (via its Laplace transforms, to be introduced in (3) and (4)), thanks to the theory
of boundary value problems (BVPs), see our Theorem 1. This is one of the first attempts to
apply boundary value techniques to diffusions in the quadrant, after [20] (under the symmetry
conditions µ1 = µ2, σ11 = σ22, and symmetric reflection vectors in (1)), [19] (which concerns very
specific cases of the covariance matrix, essentially the identity), [1] (on diffusions with special
behavior on the boundary), [22] (orthogonal reflections, solved by Tutte’s invariant approach
[36, 2]).

Main results. Under the assumption that

r11 > 0, r22 > 0, r11r22 − r12r21 > 0, r22µ1 − r12µ2 < 0, r11µ2 − r21µ1 < 0, (2)

the stationary distribution exists and is absolutely continuous w.r.t. the Lebesgue measure [27, 9],
with density denoted by π(x) = π(x1, x2). Let the Laplace transform of π be defined by

ϕ(θ) = Eπ[exp 〈θ|Z〉] =

∫∫
R2

+

exp 〈θ|x〉π(x)dx. (3)

The integral (3) converges (at least) for θ = (θ1, θ2) ∈ C2 such that < θ1 6 0 and < θ2 6 0.
Furthermore we define two finite boundary measures ν1 and ν2 such that, for A ⊂ R+,

ν1(A) = Eπ
[ ∫ 1

0
1{Z(t)∈{0}×A}dL

1(t)

]
, ν2(A) = Eπ

[ ∫ 1

0
1{Z(t)∈A×{0}}dL

2(t)

]
.

The νi have their supports on the axes and may be viewed as boundary invariant measures. They
are continuous w.r.t. the Lebesgue measure, see [27]. We define their Laplace transform by (a
priori for values of the argument with non-positive real parts)

ϕ1(θ2) =

∫
R+

exp(θ2x2)ν1(x2)dx2, ϕ2(θ1) =

∫
R+

exp(θ1x1)ν2(x1)dx1. (4)

There is a simple functional equation relating the Laplace transforms ϕ, ϕ1 and ϕ2, see (7) in
Section 2.

In addition to (2), which guarantees existence and uniqueness of the stationary distribution,
we shall assume that both coordinates of the drift are negative:

µ1 < 0, µ2 < 0. (5)

This hypothesis (also done in [20, 19, 21]) is only technical, and allows us to reduce the number
of cases to handle. In Section 3.6 we comment on the case of a drift µ with one non-negative
coordinate (having two non-negative coordinates is obviously incompatible with (2)).

Our main result can be stated as follows.
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Theorem 1. Under the assumptions (2) and (5), the Laplace transform ϕ1 is equal to

ϕ1(θ2) =

ν1(R+)

(
w(0)− w(p)

w(θ2)− w(p)

)−χ
exp

{
1

2iπ

∫
R−

logG(θ)

[
w′(θ)

w(θ)− w(θ2)
− w′(θ)

w(θ)− w(0)

]
dθ

}
, (6)

where
• ν1(R+) = r12µ2−r22µ1

detR , see Lemma 2,
• the function w, related to generalized Chebyshev polynomials, is defined in (22),
• the pole p is defined in (11),
• the index χ equals 0 or −1, according to the values of the parameters, see (31),
• the curve R−, a (half) branch of hyperbola oriented from the vertex to infinity, is defined
in (16), see also Figure 3,
• the function G, which only depends on the reflection matrix, is introduced in (17),
• to define the function logG(θ), we use the determination of the logarithm taking a value in

(−iπ, iπ] at the vertex of R− and varying continuously over the curve R−, see Section 3.5.

There is an analogous expression for ϕ2(θ1), and the functional equation (7) finally gives an
explicit formula for the bivariate Laplace transform ϕ. Let us now give some comments around
Theorem 1.

• Theorem 1 completely generalizes the results of [20] (with symmetry conditions), [19]
(with the identity covariance matrix Σ) and [22] (with orthogonal reflection on the axes).
It offers the first explicit expression of the Laplace transforms, covering all the range of
(non-degenerate) parameters (Σ, µ,R), thereby solving an old open problem.
• It is worth remarking that the expression (6) is intrinsically non-continuous in terms of
the parameters. Indeed, the index χ can take two different values (namely, 0 and 1).
For this reason, (6) actually contains two different formulas. In addition, in the subcase
χ = 0, the function G may take two different values (−1 and +1) at the vertex of R−.
See Remarks 2 and 6 for further related comments.
• The paper [21] obtains the exact asymptotics of the stationary distribution along any
direction in the quarter plane, see [21, Theorems 22–28]. Constants in these asymptotics
involve the functions ϕ1 and ϕ2 in (4), and can thus be made explicit with Theorem 1.
• The statement of Theorem 1 (namely, an expression of the Laplace transform as a Cauchy
integral), as well as the techniques we shall employ to prove it (viz., reduction to BVPs
with shift), are reminiscent of the results and methods used for discrete random walks
in the quarter plane, see [18] for a modern reference, and [33, 17] for historical break-
throughs.
• Altogether, Theorem 1 illustrates that the analytic approach consisting in solving quarter
plane problems via BVPs is better suited for diffusions than for discrete random walks.
We can actually treat any wedge, covariance matrix, drift vector and reflection vectors,
whereas in the discrete case, hypotheses should be done on the boundedness of the jumps
(only small steps are considered in [18, 4, 2]) and on the cone (typically, half and quarter
planes only).

Structure of the paper.
• Section 2: statement of the kernel functional equation, analytic preliminaries, continua-
tion of the Laplace transforms and definition of an important hyperbola
• Section 3: statement and proof that the Laplace transforms satisfy BVP of Carleman-type
on branches of hyperbolas, transformation of the Carleman BVP with shift into a (more
classical) Riemann BVP, study of the conformal mapping allowing this transformation,
resolution of the BVP
• Section 4: asymptotics of the stationary distribution, links with Dai and Miyazawa’s
asymptotic results
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• Section 5: simplifications of the integral expression of Theorem 1 for finite group models,
then for orthogonal reflections (leading to a new proof of the results of [22]), uniformiza-
tion of the kernel, definition of the group of the model
• Appendix A: equivalence between Brownian motion in the quarter plane and Brownian
motion in convex wedges

Acknowledgements. We thank Irina Kurkova for interesting discussions. We acknowledge
support from the “projet MADACA” (2014–2016), funded by the Région Centre-Val de Loire
(France).

2. A kernel functional equation and continuation of the Laplace transforms

2.1. Functional equation. The following functional equation relates the Laplace transforms:

− γ(θ)ϕ(θ) = γ1(θ)ϕ1(θ2) + γ2(θ)ϕ2(θ1), (7)

where we have noted
γ(θ) = 1

2〈θ|Σθ〉+ 〈θ|µ〉 = 1
2(σ11θ

2
1 + σ22θ

2
2 + 2σ12θ1θ2) + µ1θ1 + µ2θ2,

γ1(θ) = 〈R1|θ〉 = r11θ1 + r21θ2,

γ2(θ) = 〈R2|θ〉 = r12θ1 + r22θ2.

(8)

Equation (7) holds at least for values of θ = (θ1, θ2) with < θ1 6 0 and < θ2 6 0. To prove this
functional equation, the main idea is to use an identity called basic adjoint relationship (BAR);
see [22, Section 2.1] and [11, 19] for details.

The kernel of (7) is γ, a second degree polynomial in both variables θ1 and θ2. The equation
γ(θ1, θ2) = 0 defines (two-valued) algebraic functions Θ±1 (θ2) and Θ±2 (θ1), by

γ(Θ±1 (θ2), θ2) = γ(θ1,Θ
±
2 (θ1)) = 0.

Solving these equations readily yields
Θ±1 (θ2) =

−(σ12θ2 + µ1)±
√
θ2

2(σ2
12 − σ11σ22) + 2θ2(µ1σ12 − µ2σ11) + µ2

1

σ11
,

Θ±2 (θ1) =
−(σ12θ1 + µ2)±

√
θ2

1(σ2
12 − σ11σ22) + 2θ1(µ2σ12 − µ1σ22) + µ2

2

σ22
.

(9)

The polynomials under the square roots in (9) have two zeros (sometimes called branch points),
real and of opposite signs. They are denoted by θ±2 and θ±1 , respectively:

θ±2 =
(µ1σ12 − µ2σ11)±

√
(µ1σ12 − µ2σ11)2 + µ2

1 det Σ

det Σ
,

θ±1 =
(µ2σ12 − µ1σ22)±

√
(µ2σ12 − µ1σ22)2 + µ2

2 det Σ

det Σ
.

(10)

Lemma 2. One has
(
ϕ1(0)
ϕ2(0)

)
=

(
ν1(R+)
ν2(R+)

)
= −R−1µ.

Proof. Equation (4) evaluated at 0 gives ϕi(0) = νi(R+). We now evaluate (7) at θ2 = 0, divide
by θ1 and finally evaluate at θ1 = 0. This yields −µ1 = r11ϕ1(0) + r12ϕ2(0). In a similar way,
we obtain −µ2 = r21ϕ1(0) + r22ϕ2(0), thereby concluding the proof. �

Note that solving Lemma 2 gives, as announced in Theorem 1,

ν1(R+) =
r12µ2 − r22µ1

detR
, ν2(R+) =

r21µ1 − r11µ2

detR
,

which by (2) are positive.
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2.2. Continuation of the Laplace transforms. In Section 3.1 we shall state a boundary
condition for ϕ1, on a curve lying outside its natural domain of definition (namely, the half plane
with negative real part). The statement hereafter (straightforward consequence of the functional
equation (7), see Proposition 11 for an extended version) proposes a meromorphic continuation
on a domain containing the latter curve. Let p be the (unique, when it exists) non-zero point
such that (cf. Figure 2)

γ1(Θ−1 (p), p) = 0. (11)

Lemma 3. The Laplace transform ϕ1(θ2) can be extended meromorphically to the open and
simply connected set

{θ2 ∈ C : < θ2 6 0 or <Θ−1 (θ2) < 0}, (12)
by mean of the formula

ϕ1(θ2) =
γ2

γ1
(Θ−1 (θ2), θ2)ϕ2(Θ−1 (θ2)). (13)

Observe that the only possible pole of ϕ1 in the domain (12) is (simple and) at the point p
defined in (11).

Remark 1. The continuation formula (13) uses the branch Θ−1 in (9) and not Θ+
1 . The reason

is that Θ−1 is the small branch of the algebraic function Θ±1 , taking the value 0 at 0. Note, this
is peculiar to the case of a drift with negative coordinates (our hypothesis (5)). More details can
be found in the proof of Theorem 11 in [21].

Figure 2. Location of p (see (11)) and q (see (21)) according to the sign of
γ1(θ−1 ,Θ

±
2 (θ−1 )). The ellipse and the two straight lines are the sets of real points

(θ1, θ2) which cancel γ, γ1 and γ2, respectively

2.3. An important hyperbola. For further use, we need to introduce the curve

R = {θ2 ∈ C : γ(θ1, θ2) = 0 and θ1 ∈ (−∞, θ−1 )} = Θ±2 ((−∞, θ−1 )). (14)

It is symmetrical w.r.t. the real axis, see Figure 3. Indeed, the discriminant of Θ±2 (i.e., the
polynomial under the square root in (9)) is positive on (θ−1 , θ

+
1 ) and negative on R \ [θ−1 , θ

+
1 ].

Accordingly, the branches Θ±2 take respectively real and complex conjugate values on the sets
above. Furthermore, R has a simple structure, as shown by the following elementary result:
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Lemma 4 (Lemma 9 in [1]). The curve R in (14) is a branch of hyperbola, given by the equation

σ22(σ2
12 − σ11σ22)x2 + σ2

12σ22y
2 − 2σ22(σ11µ2 − σ12µ1)x = µ2(σ11µ2 − 2σ12µ1). (15)

We denote the negative imaginary part of R by

R− = {θ2 ∈ R : = θ2 6 0}, (16)

see Figure 3. We further denote by GR the open domain of C containing 0 and bounded by R,
see again Figure 3. The closure of GR is equal to GR ∪R and will be noted GR. Notice that the
domain in (12) strictly contains GR.

Figure 3. The curve R in (14) is symmetric w.r.t. the horizontal axis, and GR
is the domain in green. The curve R− is the half branch of R with negative
imaginary part. The points p and q are used to define the conformal mapping W ,
see (11) and (23). If the pole p is in GR then q = p (figure on the left), otherwise
q = 1

2Θ±2 (θ−1 ) (figure on the right), see (21)

3. A proof of Theorem 1 via reduction to BVPs

Our reasoning for the proof of Theorem 1 reads as follows: we first state (Section 3.1) a
Carleman BVP with shift, satisfied by the Laplace transforms; then (Section 3.2) we introduce a
conformal mapping, allowing to transform the latter BVP into a more classical one, a Riemann
BVP, see Figure 4; we state it in Section 3.3; in the way of solving the Riemann BVP, the index
(denoted χ in Theorem 1) turns out to have a crucial role, it is studied in Section 3.4; finally the
BVP is solved in Section 3.5.

3.1. Carleman BVP. For θ2 ∈ R, define

G(θ2) =
γ1

γ2
(Θ−1 (θ2), θ2)

γ2

γ1
(Θ−1 (θ2), θ2). (17)

Let us also recall that p is defined in (11).

Proposition 5 (Carleman BVP with shift). The function ϕ1 in (4)
(1) is meromorphic on GR,

• without pole on GR if γ1(θ−1 ,Θ
±
2 (θ−1 )) < 0,

• with a single pole on GR at p of order one if γ1(θ−1 ,Θ
±
2 (θ−1 )) > 0,

• without pole on GR and with a single pole of order one on the boundary R of GR, at
p = Θ±2 (θ−1 ), if γ1(θ−1 ,Θ

±
2 (θ−1 )) = 0,
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(2) is continuous on GR \ {p} and bounded at infinity,
(3) satisfies the boundary condition

ϕ1(θ2) = G(θ2)ϕ1(θ2), ∀θ2 ∈ R. (18)

It is worth mentioning that the condition on the sign of γ1(θ−1 ,Θ
±
2 (θ−1 )) has a clear geometric

meaning: indeed, γ1(θ−1 ,Θ
±
2 (θ−1 )) is negative (resp. positive) if and only if the straight line

corresponding to γ1 crosses the ellipse below (resp. above) the ordinate Θ±2 (θ−1 ); see Figure 2,
left (resp. right).

Remark 2. Item (1) of Proposition 5 shows that according to the values of the parameters,
various cases exist regarding the singularities of the Laplace transform in the domain GR. This is
the reason why there isn’t a unique expression for the Laplace transform in our main Theorem 1,
but two different expressions. These expressions depend in particular on the index χ in (31),
which is an intrinsically non-continuous function of the parameters.

Proof of Proposition 5. First of all, it follows from Lemma 3 that the function ϕ1 is meromorphic
in GR and may have a pole of order one at p. Indeed, due to the continuation formula (13), the
only potential pole p of ϕ1 in GR should be a zero of γ1. It is then on the real line and characterized
by (11). Moreover, p defined by (11) is smaller than Θ±2 (θ−1 ) (i.e., p ∈ GR) if and only if the
geometric condition γ1(θ−1 ,Θ

±
2 (θ−1 )) > 0 is satisfied, see Figure 2. This demonstrates the first

item of Proposition 5.
The second item (in particular the fact that ϕ1 is bounded at infinity) comes from Lemma 3

together with the fact that (4) implies that ϕ1 (resp. ϕ2) is bounded on the set {θ2 ∈ C : < θ2 6 0}
(resp. {θ2 ∈ C : < θ1 6 0}).

To prove the boundary condition (18) (that we announced in [22, Proposition 7]), we consider
θ1 such that < θ1 < 0, and evaluate the functional equation (7) at (θ1,Θ

±
2 (θ1)). This implies

γ1

γ2
(θ1,Θ

±
2 (θ1))ϕ1(Θ±2 (θ1)) + ϕ2(θ1) = 0,

which in turn yields
γ1

γ2
(θ1,Θ

+
2 (θ1))ϕ1(Θ+

2 (θ1)) =
γ1

γ2
(θ1,Θ

−
2 (θ1))ϕ1(Θ−2 (θ1)). (19)

Restricting (19) to values of θ1 ∈ (−∞, θ−1 ), for which Θ+
2 (θ1) and Θ−2 (θ1) are complex conjugate

(see Section 2), we reach the conclusion that

ϕ1(θ2) =
γ1

γ2
(θ1, θ2)

γ2

γ1
(θ1, θ2)ϕ1(θ2),

which, by definition (17) of G, exactly coincides with the boundary condition (18). �

The BVP established in Proposition 5 belongs to the class of homogeneous Carleman (or
Riemann-Carleman) BVPs with shift, see [32], the shift being here the complex conjugation.

In some cases, the function G in (18) can be factorized, leading to an interesting particular
case, that we comment below:

Remark 3. If there exists a rational function F such that

G(θ2) =
F (θ2)

F (θ2)
,

one can transform the boundary condition (18) for ϕ1 with G 6= 1 into a boundary condition for
ϕ · F with G = 1, namely,

(ϕ · F )(θ2) = (ϕ · F )(θ2).

Then the associated BVP could be solved using Tutte’s invariants [2]. This is what has been done
in [22], for the particular case of orthogonal reflections (corresponding to F (θ2) = 1

θ2
).

The existence of a rational function F factorizing G as above is reminiscent of the notion of
decoupling functions, introduced in [2].
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However, a rational factorization term F as in Remark 3 does not exist in general. More
precisely, in the case β

π ∈ Q, with

β = arccos− σ12√
σ11σ22

, (20)

we prove in Section 5.3 that the existence of F is equivalent for the quantity (46) (a norm) to
take the value 1, and then we compute a possible expression for F , see (48).

On the other hand, if βπ /∈ Q, it is still an open problem to characterize the parameters (Σ, µ,R)
for which F exists. (Notice that β is the angle of the wedge in which after linear transformation,
the covariance matrix of the Brownian motion B(t) in (1) is the identity, see Appendix A, in
particular Figure 9.)

As a consequence, we cannot systematically use Tutte’s invariants technique: we are left with
transforming the BVP of Proposition 5 into a more classical one, using a certain conformal
mapping having a very convenient gluing property.

3.2. Conformal gluing. Our main result in this section is to prove that the functionW defined
by (23) satisfies the properties of Lemma 6 below, allowing to transform the Carleman BVP with
shift on the curve R of Proposition 5 into a classical BVP on the segment [0, 1].

Figure 4. Domains, curves and points related to the Carleman BVP with shift
on R (left) and the standard BVP on [0, 1] (right)

First we need to define q by

q =

{
p if γ1(θ−1 ,Θ

±
2 (θ−1 )) > 0, i.e., if ϕ1 has the pole p in GR,

1
2Θ±2 (θ−1 ) otherwise. (21)

Note, the choice 1
2Θ±2 (θ−1 ) is arbitrary: any point in GR would have been suitable. See Figures 2

and 3.
The function W is built on the function w below (note, w is introduced in [22, Theorem 1];

under the symmetry conditions µ1 = µ2, σ11 = σ22, and symmetric reflection vectors in (1),
Foschini [20] also obtained an expression for the conformal mapping w, see [20, Figure 3]):

w(θ2) = Tπ
β

(
−2θ2 − (θ+

2 + θ−2 )

θ+
2 − θ

−
2

)
, (22)

which itself uses the branch points (10), the generalized Chebyshev polynomial (a > 0)

Ta(x) = cos(a arccos(x)) =
1

2

{(
x+

√
x2 − 1

)a
+
(
x−

√
x2 − 1

)a}
,
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and the angle β as in (20). Then we define

W (θ2) =
w(θ2)− w(Θ±2 (θ−1 ))

w(θ2)− w(q)
=

w(θ2) + 1

w(θ2)− w(q)
. (23)

Lemma 6. The function W in (23)
(i) is analytic in GR \ {q}, continuous in GR \ {q} and bounded at infinity,
(ii) is one-to-one from GR \ {q} onto C \ [0, 1],
(iii) satisfies W (θ2) = W (θ2) for all θ2 ∈ R.

Proof. It can be found in [22, Lemma 6] that w in (22)
(i’) is analytic in GR, continuous in GR and unbounded at infinity (Ta admits an analytic

continuation on C \ (−∞,−1), and even on C if a is a non-negative integer),
(ii’) is one-to-one from G onto C \ (−∞,−1],
(iii’) satisfies w(θ2) = w(θ2) for all θ2 ∈ R.

Here we want to define another conformal gluing function, which glues together the upper part
and the lower part of the hyperbola onto the segment [0, 1], and which sends the point q in (21)
at infinity, see Figure 4. For this reason we set W as in (23): by construction, W (Θ±2 (θ−1 )) = 0,
W (∞) = 1 and W (q) =∞. The proof of Lemma 6 follows from the above-mentioned properties
(i’)–(iii’) of w together with the definition (23) of W . �

Remark 4. The algebraic nature of the mapping w in (22) (or equivalently W in (23)) is directly
related to the rationality of βπ . Precisely, as shown in [22, Proposition 13], the following behaviors
are possible:

• If β
π ∈ Q, then w is algebraic;

• If in addition π
β ∈ N (and only in this case), then w is a polynomial;

• If β
π /∈ Q, then w is non-algebraic.

3.3. Reduction to a standard BVP. Thanks to the gluing function W in (23), we are able
to reformulate the Carleman BVP as a standard BVP for an open contour. See Figure 4 for a
compact view of the two complex planes associated to Carleman’s and Riemann’s BVPs. Define
ψ1 by

ψ1(t) = ϕ1 ◦W−1(t), ∀t ∈ C \ [0, 1] (24)
(note, ψ1 is meromorphic on C \ [0, 1]). Equivalently we have ϕ1(θ2) = ψ1 ◦W (θ2) for θ2 ∈ GR.
Obviously W−1 is not well defined on [0, 1]. However, it does admit upper and lower limits for
t ∈ [0, 1]:

(W−1)+(t) = lim
u→t
=u>0

W−1(u), (W−1)−(t) = lim
u→t
=u<0

W−1(u),

and similarly for ψ+
1 (t) and ψ−1 (t). Then for θ2 ∈ R and t = W (θ2) = W (θ2), we have

ϕ1(θ2) =

{
ψ+

1 (t) if = θ2 > 0,

ψ−1 (t) if = θ2 < 0,
ϕ1(θ2) =

{
ψ−1 (t) if = θ2 > 0,

ψ+
1 (t) if = θ2 < 0.

Define further
H(t) = G((W−1)−(t)), ∀t ∈ [0, 1]. (25)

Then Proposition 5 becomes:

Proposition 7 (Riemann BVP). The function ψ1 in (24)
(1) is analytic in C \ [0, 1], bounded at infinity if γ1(θ−1 ,Θ

±
2 (θ−1 )) 6 0 and admitting a simple

pole at infinity otherwise,
(2) is continuous on [0, 1] from below (with limits ψ−1 ) and above (with limits ψ+

1 ), bounded
at 0 and 1 (except if γ1(θ−1 ,Θ

±
2 (θ−1 )) = 0: in this case it has a pole of order one at 0),

(3) satisfies, with H defined in (25), the boundary condition

ψ+
1 (t) = H(t)ψ−1 (t), ∀t ∈ [0, 1]. (26)
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Proof. Items (1) and (2) directly follow from the corresponding items in Proposition 5. With the
above definitions, the boundary equation (18) becomes{

ψ−1 (t) = G(θ2)ψ+
1 (t) if = θ2 > 0,

ψ+
1 (t) = G(θ2)ψ−1 (t) if = θ2 < 0.

Since 1
G(θ2) = G(θ2) = H(t) if = θ2 > 0, and G(θ2) = H(t) if = θ2 < 0, the last item follows. �

3.4. Index of the BVP. The resolution of BVPs as in Proposition 7 heavily depends on the
index χ (see, e.g., [32, Section 5.2]), which is related to the variation of argument of H on [0, 1]:

∆ = [argH]10, δ = argH(0) ∈ (−π, π], χ =

⌊
δ + ∆

2π

⌋
. (27)

∆ quantifies the variation of argument ofH on [0, 1] and argH(1) = δ+∆. Since (W−1)−([0, 1]) =
R−, ∆ in (27) can be equivalently written [argG]R− (from the vertex to infinity).

Remark 5. It is important to notice that δ ∈ (−π, π] in (27) corresponds to an arbitrary choice.
Any other choice would eventually lead to the same Theorem 1 (though written slightly differently).

First, we compute δ in (27).

Lemma 8. We have

δ =

{
0 if γ1(θ−1 ,Θ

±
2 (θ−1 )) 6= 0,

π if γ1(θ−1 ,Θ
±
2 (θ−1 )) = 0.

(28)

The angle δ + ∆ ∈ (−2π, 2π) and we have

tan
δ + ∆

2
=

detR det Σ

σ12(r11r22 + r12r21)− σ22r11r12 − σ11r22r21
. (29)

Note that the denominator of (29) can be negative, zero or positive, depending on the param-
eters.

Proof of Lemma 8. If γ1(θ−1 ,Θ
±
2 (θ−1 )) 6= 0, H(0) = G(Θ±2 (θ−1 )) = 1 (since Θ±2 (θ−1 ) ∈ R simplifies

the quotient (17)) and then δ = 0. In the other case the limit of H at 0 is −1 and then δ = π.
We start by remarking that for θ2 ∈ R, G(θ2) = 1 if and only if θ2 ∈ R. Accordingly, for

t ∈ [0, 1], H(t) = 1 only at t = 0. Since |H| = 1 on [0, 1], then necessarily δ+ ∆ ∈ [−2π, 2π]. We
now calculate H(1) = lim θ2→∞

θ2∈R−
G(θ2). Using the value of the limit (see (9))

lim
θ2→∞
θ2∈R−

Θ−1 (θ2)

θ2
=
−σ12 − i

√
det Σ

σ11

in the definition (17) of G

G(θ2) =

(
r11

Θ−1 (θ2)
θ2

+ r21

)(
r12

Θ−1 (θ2)

θ2
+ r22

)
(
r12

Θ−1 (θ2)
θ2

+ r22

)(
r11

Θ−1 (θ2)

θ2
+ r21

) ,
we obtain that

H(1) =

(
r11(−σ12 − i

√
det Σ) + r21σ11

)(
r12(−σ12 + i

√
det Σ) + r22σ11

)(
r12(−σ12 − i

√
det Σ) + r22σ11

)(
r11(−σ12 + i

√
det Σ) + r21σ11

)
=
σ22r11r12 + σ11r22r21 − σ12(r11r22 + r12r21)− i detR det Σ

σ22r11r12 + σ11r22r21 − σ12(r11r22 + r12r21) + i detR det Σ
= exp(i(δ + ∆)).

It gives (29) and clearly, δ + ∆ cannot be equal to ±2π because detR det Σ 6= 0. �

We now compute χ in (27).

Lemma 9. The index χ can take only the values 0 and −1, and we have the dichotomy:
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• χ = 0 ⇐⇒ γ1(θ−1 ,Θ
±
2 (θ−1 )) 6 0⇐⇒ ψ1 has no pole at infinity,

• χ = −1⇐⇒ γ1(θ−1 ,Θ
±
2 (θ−1 )) > 0⇐⇒ ψ1 has a simple pole at infinity.

Note that a simple pole at infinity means that for some non-zero constant c, ψ1(t)∼
∞
ct.

Proof. We have already seen in Proposition 5 that the sign of γ1(θ−1 ,Θ
±
2 (θ−1 )) determines whether

ϕ1 has a pole in GR or not, and thus if ψ1 has a pole at infinity. This shows the two equivalences
on the right in the statement of Lemma 9. We are thus left with proving the first two equivalent
conditions.

First, if γ1(θ−1 ,Θ
±
2 (θ−1 )) = 0, δ = π and we have seen that in this case H(t) 6= 1 for all t ∈ [0, 1].

By (27), we deduce that χ = 0.
If now γ1(θ−1 ,Θ

±
2 (θ−1 )) 6= 0 we notice that

χ =

⌊
∆

2π

⌋
= 0 or − 1.

Indeed, we have proved in Lemma 8 that ∆ ∈ (−2π, 2π). In particular, the sign of ∆ determines
χ: if sgn ∆ > 0 then χ = 0 and if sgn ∆ < 0, χ = −1. In the rest of the proof, we show that
sgn ∆ = − sgn γ1(θ−1 ,Θ

±
2 (θ−1 )). First, ∆ can be computed as

∆ = argH(1) = [argG]R− =

[
arg

γ1γ2

γ2γ1
(Θ−1 (θ2), θ2)

]
R−

.

Let θ2 = a−ib ∈ R− (we must have b > 0 and a > Θ±2 (θ−1 ) > 0, see Figure 3) and θ1 = Θ−1 (θ2) ∈
(−∞, θ−1 ]. Using the expression (8) of γ1 and γ2, we obtain

γ1γ2(θ1, θ2) = γ1(θ1, a)γ2(θ1, a) + r21r22b
2 + ibθ1 detR,

from where we deduce that

arg
γ1γ2

γ2γ1
(θ1, θ2) = 2 arctan

bθ1 detR

γ1(θ1, a)γ2(θ1, a) + r21r22b2
. (30)

We now look for the sign of (30) when θ2 → Θ±2 (θ−1 ), while remaining in R−. This is sufficient
to give the sign of ∆, because (30) does not change sign on R− due to the fact that G(θ2) = 1
on R− if and only if θ2 = Θ±2 (θ−1 ).

When θ2 → Θ±2 (θ−1 ) we have b→ 0, a→ Θ±2 (θ−1 ) and θ1 → θ−1 . We thus have

sgn arg
γ1γ2

γ2γ1
(θ1, θ2) = sgn b · sgn θ1 · sgn detR · sgn γ2(θ−1 ,Θ

±
2 (θ−1 )) · sgn γ1(θ−1 ,Θ

±
2 (θ−1 ))

= (+1)(−1)(+1)(+1) sgn γ1(θ−1 ,Θ
±
2 (θ−1 ))

= − sgn γ1(θ−1 ,Θ
±
2 (θ−1 )),

because b > 0, θ1 < 0, detR > 0 by (2), and γ2(θ−1 ,Θ
±
2 (θ−1 )) > 0 (because r22 > 0 and r22µ1 −

r12µ2 < 0, see Figure 2 to visualize this geometric condition). Then sgn ∆ = sgn arg γ1γ2

γ2γ1
(θ1, θ2) =

− sgn γ1(θ−1 ,Θ
±
2 (θ−1 )), concluding the proof. �

3.5. Resolution of the BVP. Reformulating Proposition 7, the function ψ1 in (24)
• is sectionally analytic in C \ [0, 1],
• is continuous on [0, 1] from below (with limits ψ−1 ) and above (with limits ψ+

1 ),
• is bounded at the vicinities of [0, 1] if γ1(θ−1 ,Θ

±
2 (θ−1 )) 6= 0,

• has a pole of order one at 0 and bounded at 1 if γ1(θ−1 ,Θ
±
2 (θ−1 )) = 0,

• is bounded at infinity if there is no pole before Θ±2 (θ−1 ) (then taking the value ϕ1(q)),
and with a pole of order one (see Lemma 3) at infinity if not (in short, it has a pole of
order −χ at infinity),



12 S. FRANCESCHI AND K. RASCHEL

• satisfies ψ+
1 (t) = H(t)ψ−1 (t) for all t ∈ [0, 1], with index χ given by Lemma 9:

χ =

{
0 if γ1(θ−1 ,Θ

±
2 (θ−1 )) 6 0,

−1 if γ1(θ−1 ,Θ
±
2 (θ−1 )) > 0.

(31)

End of proof of Theorem 1. Our main reference for the resolution of the above so-called homo-
geneous BVP on an open contour is the book [34] of Muskhelishvili, see in particular [34, §79].

First of all, we prove that there exists a non-zero constant c such that

ψ1(t) = c(t− 1)−χ exp Γ(t), (32)

where Γ is the following function, sectionally analytic on C \ [0, 1]:

Γ(t) =
1

2iπ

∫ 1

0

logH(z)

z − t
dz. (33)

To make precise the definition (33), we define logH(z) by the facts that it should vary contin-
uously over [0, 1], and its initial value is such that logH(0) = iδ (i.e., 0 if H(0) = 1 and iπ if
H(0) = −1, see (28)).

At the vicinities 0 and 1, we have by [34, §29 and §79] that

exp Γ(t) = t−
δ

2πΩ0(t), exp Γ(t) = (t− 1)
δ+∆
2π Ω1(t),

for some function Ω0 (resp. Ω1) analytic in a neighborhood of 0 (resp. 1) and non-zero at 0 (resp.
1). Then we set

X(t) = t
δ
π (t− 1)−χ exp Γ(t). (34)

The function X in (34) is sectionally analytic in C \ [0, 1], and by construction of Γ and the
Sokhotski-Plemelj formulas, it satisfies the boundary condition (26) (see [34, §79] for more de-
tails). Furthermore it has a pole of order −χ+ δ

π at infinity and is bounded at 0 and 1: indeed,
δ
π and −χ are both equal to 0 or 1, see Lemmas 8 and 9. Then we consider two cases separately.
• First case: γ1(θ−1 ,Θ

±
2 (θ−1 )) 6= 0. Then δ = 0, and the function X in (34) simplifies into

X(t) = (t− 1)−χ exp Γ(t),

and satisfies the exact same boundary condition as (26). Looking at the ratio ψ1

X , the boundary
condition (26) gives that on [0, 1],

ψ+
1

X+
=
ψ−1
X−

.

The above ratio is then analytic in the entire plane, even at the vicinities 0 and 1. The point 0 is
a regular point and 1 is a removable singularity. Indeed, 1 is an isolated singular point, at which
ψ1

X might be infinite with degree less than unity (namely, −χ+ ∆
2π ). Moreover, the function ψ1

X
is bounded at infinity, because both X and ψ1 have a pole of the same order −χ. Thanks to
Liouville’s theorem, we deduce that ψ1

X is constant. In conclusion, the formula (32) holds in this
case.
• Second case: γ1(θ−1 ,Θ

±
2 (θ−1 )) = 0. Then δ = π, χ = 0 and X(t) = t exp Γ(t) in (34). Firstly,

we notice that the function tψ1 satisfies the boundary condition (26), is bounded at 0 and 1, and
has a pole of order one at infinity. Moreover, the function X has a pole of order 1 at infinity.
Considering then the ratio tψ1

X , the boundary condition (26) implies that on [0, 1],

tψ+
1

X+
=
tψ−1
X−

.

The above ratio function is thus analytic in the entire complex plane, including the vicinities 0
and 1. It is indeed bounded at 1, and has a removable singularity at 0: the point 0 is an isolated
singular point, at which tψ1

X might be infinite with degree less than 1
2 . Using again Liouville’s

theorem, we deduce that the function tψ1

X is a constant. Formula (32) therefore also holds.
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We now deduce from (32) the formula (6) stated in Theorem 1. Going from the t-plane back
to the θ2-plane (see (24)), one has that for some constant c,

ϕ1(θ2) = ψ1(W (θ2)) = c(W (θ2)− 1)−χ exp

{
1

2iπ

∫
R−

logG(θ)
W ′(θ)

W (θ)−W (θ2)
dθ

}
. (35)

Using the equation (23) relating W and w, we easily obtain

W (θ2)− 1 =
w(q) + 1

w(θ2)− w(q)

as well as
W ′(θ)

W (θ)−W (θ2)
=

w′(θ)

w(θ)− w(θ2)
− w′(θ)

w(θ)− w(q)
.

Remembering that in the case χ = −1 one has q = p, see (21), we finally obtain that for some
constant c′,

ϕ1(θ2) = c′
(

1

w(θ2)− w(p)

)−χ
exp

{
1

2iπ

∫
R−

logG(θ)
w′(θ)

w(θ)− w(θ2)
dθ

}
.

By definition (4) of the Laplace transform we have ϕ1(0) = ν1(R+). To find the exact constant
c′ (and thereby our main result (6)), we simply evaluate the above formula at θ2 = 0. �

Clearly, the integral expression (6) of ϕ1 is meromorphic in the domain GR. In Section 4 we
shall see that it can be meromorphically continued on the much larger domain C \ [θ+

2 ,∞).
To conclude this part, let us make Remark 5 more precise. In the case γ1(θ−1 ,Θ

±
2 (θ−1 )) = 0

(i.e., H(0) = −1), we have chosen δ = π in (27). (Recall that choosing δ is tantamount to fixing
a determination of the arg (or log) function.) Remarkably, any other choice of δ would have led
to the same explicit expression for ϕ1, though written differently. For instance, if we had taken
δ = −π instead, the index χ would have been −1 (instead of 0), and the two determinations of
the logarithm would differ by −2iπ. With our notation in the proof of Theorem 1, we would
have obtained for some constant c′′,

ψ1(t) = c′′
t− 1

t
exp Γ(t).

This actually corresponds to the formula of Theorem 1 associated with χ = −1.

3.6. Generalizations. Our main Theorem 1 is derived under the hypothesis (5) that the coor-
dinates (µ1, µ2) of the drift are negative. However, the conditions (2) (equivalent to the existence
of a stationary distribution) allow the drift to have one non-negative coordinate. In the next few
lines, we assume that µ1 > 0 or µ2 > 0, and we comment on the slight differences which would
have arisen in the analytic treatment of the functional equation (7).

In the case of a drift having one non-negative coordinate, the reflected Brownian motion in
the quadrant has a pathwise behavior which is quite different (it spends most of its time near
the axis towards which the drift is directed). However, from the point of view of our analysis,
the differences are only technical. For instance, the continuation formula (13) of Lemma 3 may
use the other branch Θ+

1 , as if µ1 > 0, the small branch (taking value 0 at 0) is Θ+
1 and not

Θ−1 anymore, see (9). As a result, the poles of ϕ1 may be located at places different from those
described in Proposition 5. Despite these few differences, there exists a Cauchy-type integral
expression for the Laplace transform ϕ1, similar to the one stated in Theorem 1.

Let us also very briefly mention here the case of reflected Brownian motion in higher dimension
[24, 27]. Compared to its two-dimensional analogue, much less is known. However, an analogue
of the functional equation (7) can still be stated (since the BAR exists in any dimension, see
[26, 10]). Clearly, our techniques (based on complex analysis) use the dimension 2, and in our
opinion, generalizing in higher dimension these BVP techniques is a difficult open problem. In
the discrete case too, the case of dimension 3 is less understood. One can mention [8] for some
ideas to state a BVP in dimension 3, as well as [3] for more combinatorial techniques.
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4. Singularity analysis and asymptotics of the boundary distribution

The asymptotics (up to a constant) of the boundary measures has been obtained by Dai and
Miyazawa in [12], see also [11, 21] for the interior measure. In this section we show that our
expression (6) for the Laplace transform ϕ1 stated in Theorem 1 is perfectly suited for singularity
analysis, and accordingly to study the asymptotics (including the computation of the constant)
of the boundary stationary distributions ν1 and ν2. We shall first recall the result of [12] and
express it in terms of our notations. Then we will explain how, thanks to Theorem 1, we could
obtain a new proof of this result and make the constants explicit.

4.1. Asymptotic results.

Theorem 10 (Theorem 6.1 of [12]). The following asymptotics holds:

lim
x→∞

ν1(x)

xκe−τ2x
= b, (36)

where κ ∈ {−3
2 ,−

1
2 , 0, 1} and τ2 ∈ {p, p′, θ+

2 } are given in Table 1, and b is some positive constant.
See Figures 5 and 6 to visualize geometrically the different cases.

We now propose a series of three remarks on Theorem 10.
•We have already introduced p, see (11), and p′ is as follows: it is the (unique, when it exists)

non-zero point p′ = Θ+
2 (r), with r defined by γ2(r,Θ−2 (r)) = 0 and r 6 Θ±1 (θ+

2 ). It will be
convenient to adopt the following notation: we will write p > θ+

2 (resp. p′ > θ+
2 ) when p (resp.

p′) does not exist.
• Theorem 6.1 of [12] deals with the asymptotics of ν1(x,∞), and not with that of ν1(x), as

stated in Theorem 10 below. However, the two statements are equivalent: when the asymptotics
of the density has the form xκe−τ2x, the corresponding tail probability is given by the exact same
asymptotics (with another constant b), see [11, Lemma D.5].
• Before stating Table 1, which gives the values of κ and τ2 of Theorem 10, we briefly recall

Dai and Miyazawa’s notations: θ(2,max) is the (unique) point of the ellipse γ = 0 such that
θ

(2,max)
2 = θ+

2 , τ2 = sup{θ2 > 0 : ϕ(θ1, θ2) < ∞} and θ(2,r) is the intersection point of the
straight line γ1 = 0 and the ellipse γ = 0. Notice that the definition of τ2 does not rely on an
analytic continuation of ϕ.

Cases Dai and Miyazawa’s categories κ τ2

p or p′ ∈ (0, θ+
2 )

1.a p < Θ±2 (θ−1 )

τ2 < θ
(2,max)
2

Categories I or II 0 p

1.b Θ±2 (θ−1 ) 6 p < p′ Category I 0 p

1.c Θ±2 (θ−1 ) 6 p′ < p Category III, τ2 6= θ
(2,r)
2 0 p′

1.d Θ±2 (θ−1 ) 6 p = p′ Category III, τ2 = θ
(2,r)
2 1 p

p and p > θ+
2

2.a p and p′ > θ+
2

τ2 = θ
(2,max)
2

Category I, θ(2,r) 6= θ(2,max) −3
2 θ+

2

2.b θ+
2 = p Category I, θ(2,r) = θ(2,max) −1

2 θ+
2

2.c θ+
2 = p′ Category II, θ(2,r) 6= θ(2,max) −1

2 θ+
2

2.d θ+
2 = p = p′ Category II, θ(2,r) = θ(2,max) 0 θ+

2

Table 1. Dai and Miyazawa’s categories expressed with our notations

4.2. Sketch of the proof of Theorem 10. The idea is to study the singularities of ϕ1 and to
use transfer theorems (such as [14, Theorem 37.1]) relating the asymptotics of a function and the
singularities of its Laplace transform. In our case, the singularity closest to 0 will determine the
asymptotics. Our aim here is not to propose a complete proof of Theorem 10 (for this we refer
to [12]), but rather to illustrate that Theorem 1 indeed implies Theorem 10, with the additional
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Figure 5. Ellipses and curves in the cases 1.a, 1.b, 1.c and 1.d of Table 1

Figure 6. Ellipses in the cases 2.a, 2.b, 2.c and 2.d of Table 1

feature of providing an exact expression for the constant b in (36). We give details for the case 1.a
of Table 1, and only sketch the difficulties that would arise in the remaining cases.

Proof of Theorem 10 and computation of b in case 1.a. In that case, the index χ equals −1 and
the formula (6) gives

ϕ1(θ2) = ν1(R+)

(
w(0)− w(p)

w(θ2)− w(p)

)
exp

{
1

2iπ

∫
R−

logG(θ)

[
w′(θ)

w(θ)− w(θ2)
− w′(θ)

w(θ)− w(0)

]
dθ

}
.

Recall that w is analytic, one-to-one on GR and further satisfies w(θ2) 6= w(θ), for all θ2 ∈ GR
and θ ∈ R−. As a first result, the integral part (thus also its exponential) is analytic in the
domain GR. A second consequence is that 1

w(θ2)−w(p) has a simple pole at p: ϕ1(θ2) = b+o(1)
θ2−p ,

with

b = ν1(R+)

(
w(0)− w(p)

w′(p)

)
exp

{
1

2iπ

∫
R−

logG(θ)

[
w′(θ)

w(θ)− w(p)
− w′(θ)

w(θ)− w(0)

]
dθ

}
.

Theorem 37.1 of [14] gives the announced asymptotics ν1(x) = e−px(b+ o(1)) as x→∞. �

In the other cases, the singularities are not in GR and we thus need to extend meromorphically
ϕ1 in a larger domain:
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Proposition 11 (Theorem 11 of [21]). The Laplace transform ϕ1 can be meromorphically con-
tinued on the domain C \ [θ+

2 ,∞).

Proposition 11 has already been proved in [21], see Theorem 11 there. Note that the formula (6)
of Theorem 1 provides an alternative, direct, analytic proof, which can be sketched as follows:
the equation (6) is valid a priori only for θ2 in GR. However, considering a Hankel contour similar
to that of Figure 8, surrounding [θ+

2 ,∞), we could write ϕ1 as an integral over the cut [θ+
2 ,∞).

The study of the so-obtained formula would give the singularities p, p′ and θ+
2 as in Table 1, and

would lead to the precise asymptotics (we could even obtain the full asymptotic development)
and the computation of b.

Remark 6. We have already commented on the fact within a single formula, Theorem 1 actually
captures two different expressions, depending on the value of χ in (31). From an asymptotic
viewpoint, Section 4 shows that different cases exist as well, depending on various parameters.
It should be noted that these cases are all different, i.e., δ and χ do not govern the asymptotic
behavior of the boundary measures.

5. Algebraic nature and simplification of the Laplace transforms

In this section we are interested in the following question: in which extent is it possible to
simplify the expressions of the Laplace transforms given in Theorem 1? For instance, is this
possible that these functions be algebraic or even rational?

This is of paramount importance: first, simplified expressions would lead to an easier analysis,
in particular for asymptotic analysis or for taking inverse Laplace transforms; second, under-
standing the parameters (Σ, µ,R) for which the Laplace transforms are rational should reveal
intrinsic structure of the model. In the particular case of the identity covariance matrix Σ, some
attempts of simplifications may be found in [19, Chapter 4].

In the literature, this question has received much interest in the discrete setting. One can first
think at the famous Jackson’s networks [29] and their product form solutions. In a closer context,
Latouche and Miyazawa [30], Chen, Boucherie and Goseling [6], obtain geometric necessary and
sufficient conditions for the stationary distribution of random walks in the quarter plane to be
sums of geometric terms. Such criteria can be applied, e.g., to derive an approximation scheme
to error bounds for performance measures of random walks in the quarter plane [7].

In our context of reflected diffusions in the quadrant, analogues of these results are obtained by
Dieker and Moriarty [13]: a simple condition (involving the single angle (37)) for the stationary
density to be a sum of exponential terms is derived. We will discuss the links with our results in
Section 5.1.

Another main reason which can lead to simplified expressions comes from the group of the
model, which is a group of symmetries naturally associated with the model (cf. Section 5.3).
Before being more precise, let us mention that this reason is deeply different than the first one:
the group only depends on the covariance matrix and drift vector, and is therefore independent
of the reflection matrix, while Dieker and Moriarty’s condition also depends on the reflection
angles, see (37). In the discrete setting, this group was shown to have a decisive influence on
the D-finiteness (a function is D-finite if it satisfies a linear differential equation with polynomial
coefficients on Q) of the generating functions, see [18, 4]. For reflected Brownian motion in the
quadrant with orthogonal reflections, it is shown in [22] that the Laplace transform is algebraic
(note, any algebraic function is D-finite) if and only if the group is finite. We present a structural
result in Section 5.2.

In Section 5.3 we prove a criterion for the algebraicity of the Laplace transform, peculiar to
the finite group case. Namely, we show that ϕ1 is algebraic if and only if a certain norm is equal
to 1, which in turn can be reformulated as a condition on a single angle, this way obtaining a
result very close to Dieker and Moriarty’s condition.

Finally, we focus in Section 5.4 on the case of orthogonal reflections, and derive a new proof
of the main result of [22], as a consequence of Theorem 1.
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5.1. Dieker and Moriarty’s criterion. For the sake of completeness, let us mention the fol-
lowing result:

Theorem 12 (Theorem 1 in [13]). The stationary density is a sum of exponentials if and only
if

ε+ δ − π
β

∈ −N = −{0, 1, 2, . . .}, (37)

with ε and δ in (0, π) and

tan ε =
sinβ

r21
r11

√
σ11
σ22

+ cosβ
, tan δ =

sinβ

r12
r22

√
σ22
σ11

+ cosβ
. (38)

Notice that this is not the exact statement of [13, Theorem 1], as in Dieker and Moriarty’s
paper, the Brownian motion is assumed to have an identity covariance matrix and evolves in
a wedge with an arbitrary opening angle, whereas we consider Brownian motion with arbitrary
covariance matrix but in the quarter plane. A simple linear transform, which is made explicit
in Appendix A, makes both statements equivalent. The expression (38) of the angles ε and δ
follows from this transformation.

5.2. Structural form of the Laplace transforms and finite group. By finite group models,
we mean that β

π ∈ Q, where β is defined in (20), see Section 5.3 for more details on the group. In
this case, and in this case only, the functionW in (23) is algebraic (as the generalized Chebyshev
polynomial (22) is, see Remark 4), yielding the following structural result:

Proposition 13. If βπ ∈ Q, the Laplace transform ϕ1 of Theorem 1 is the product of an algebraic
function by the exponential of a D-finite function.

Proof. This easily follows from the fact that the Cauchy integral of a D-finite function is D-finite,
see, e.g., [35]. �

However, it is not true in general that the exponential of a D-finite function is still D-finite.

5.3. An algebraicity criterion for finite group models. This section is inspired by [18,
Chapter 4], and is independent of the rest of the paper. We present purely algebraic manipula-
tions, thanks to which we can study rational and algebraic solutions of the functional equation
(7). This question is directly related to Dieker and Moriarty’s condition (37), as the Laplace
transform of sums of exponential terms is obviously rational.

Theorem 14. Assume that β
π ∈ Q. If the functional equation (7) admits algebraic solutions

(and in particular rational solutions), then necessarily
ε+ δ − π

β
∈ Z +

π

β
Z. (39)

Before proving Theorem 14, let us do some comments, in particular a comparison with [13].
Our criterion involves the same angle as [13, Theorem 1], namely ε+δ−π

β . However our condition
is less restrictive (−N is included in Z + π

βZ), as we allow not only rational but also algebraic
solutions. On the other hand, notice that we are not able to characterize the parameters (Σ, µ,R)
for which our algebraic solutions are rational, nor to say whether the Laplace transform ϕ1 is
one of these algebraic solutions. Finally, our proof does not reveal if Theorem 14 still holds in
the case β

π /∈ Q (although our condition (39) does not need β
π to be rational). Theorem 14 should

rather be considered as a structural result on the solutions of the functional equation.
To prove Theorem 14, we shall combine two points of view on the functional equation (7).

Firstly, following [18, Chapter 4], we shall perform computations in the quotient ring (below, γ
is the kernel (8))

C(θ1, θ2)/γ(θ1, θ2), (40)
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which contains all functions of the form f(θ1) + g(θ1)θ2, with rational f and g. Secondly, we will
also work on a uniformization (or parametrization) of the kernel:

S = {(θ1, θ2) ∈ (C ∪ {∞})2 : γ(θ1, θ2) = 0} = {(θ1(s), θ2(s)) : s ∈ C ∪ {∞}}, (41)

where 
θ1(s) =

θ+
1 + θ−1

2
+
θ+

1 − θ
−
1

4

(
s+

1

s

)
,

θ2(s) =
θ+

2 + θ−2
2

+
θ+

2 − θ
−
2

4

(
s

eiβ
+
eiβ

s

)
.

(42)

Equations (41) and (42) are easily verified, by evaluating the kernel at (θ1(s), θ2(s)) and using
the values of the branch points (10) and β in (20); see also [22, Section 5].

In this context, the group of the model is the dihedral group 〈ξ, η〉 acting on the Riemann
sphere C ∪ {∞}, where

ξ(s) =
1

s
, η(s) =

e2iβ

s
, δ(s) = ηξ(s) = e2iβs. (43)

It is finite if and only if δ in (43) has finite order, i.e., if and only if βπ ∈ Q.
Finally, we define s0 such that (θ1(s0), θ2(s0)) = (0, 0); the equations in (42) give

s0 = −
θ+

1 + θ−1 + 2i
√
−θ+

1 θ
−
1

θ+
1 − θ

−
1

= −
θ+

2 + θ−2 − 2i
√
−θ+

2 θ
−
2

θ+
2 − θ

−
2

eiβ. (44)

Proof of Theorem 14. We shall mainly work on the Riemann sphere S introduced in (41), and
we use the following notation: any function f of the complex variable θ1 can be lifted on S, by
setting

f̃(s) = f(θ1(s)).

Most of the time we will lighten the notation, writing f(s) instead.
The starting point is to translate the boundary condition (18) to S:

ϕ1(δs) = G(s)ϕ1(s), (45)

where δ is as in (43), and by definition (17) of G one has

G(s) =
γ1(s)/γ2(s)

γ1(ηs)/γ2(ηs)
.

Assuming that the group has order 2n (δn = 1, with δ = ηξ) and iterating n times (45), we get

ϕ1(s) = ϕ1(δns) = G(s) ·G(δs) · · ·G(δn−1s) · ϕ1(s).

As an obvious consequence, for a solution in the quotient ring (40) to exist, it is necessary for
the following quantity to equal 1:

N(G) := G(s) ·G(δs) · · ·G(δn−1s) =
γ1(s) · γ1(δs) · · · γ1(δn−1s) · γ2(ηs) · γ2(δηs) · · · γ2(δn−1ηs)

γ2(s) · γ2(δs) · · · γ2(δn−1s) · γ1(ηs) · γ1(δηs) · · · γ1(δn−1ηs)
.

(46)
(Our notation N(G) comes from the fact that (46) is interpreted as a norm, see [18, Chapter 4].)
The key point is that by Lemma 15 (whose proof is technical, and can be found below), N(G) = 1
if and only if the condition on the angles (39) holds. Condition (39) is therefore necessary for
the existence of solutions in the quotient ring (40), and a fortiori for rational solutions of (7).

Conversely, let us assume that N(G) = 1. We shall prove the existence of algebraic solutions
of the functional equation (7). Unfortunately, this does not exclude a priori the existence of
non-algebraic solutions, and thus this does not characterize the algebraic nature of ϕ1 (clearly
there is not uniqueness of the solutions to the fundamental functional equation). Introduce

F = 1 +G+G ·G(δ) + · · ·+G ·G(δ) · · ·G(δn−2). (47)
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It is easily seen that G can be factorized as

G =
F

F (δ)
. (48)

In particular, (48) offers a solution to the factorization problem of Remark 3, solution which is
peculiar to the case N(G) = 1.

Equation (48) enables us to reformulate (45) as (ϕ1 ·F )(δ) = ϕ1 ·F . Such a function invariant
by δ must be a function of sn, and we deduce that the solutions of (45) in the quotient ring have
the form H(sn)/F (s), for an arbitrary function H and F as in (47). �

Lemma 15. The norm N(G) in (46) equals 1 if and only if the geometric condition (39) holds.

Proof. We start from the expression (46) of the norm. With (8) one has γ1(θ) = r11θ1 +r21θ2 and
γ2(θ) = r12θ1 + r22θ2. By convenience and also by homogeneity of N(G) we shall equivalently
write, with obvious notations,

γ1(θ) = θ1 + ρ1θ2, γ2(θ) = θ1 + ρ2θ2.

For some fixed value of ρ ∈ R (not necessarily positive), consider now the equation

θ1(s) + ρ · θ2(s) = 0, (49)

where θ1 and θ2 are the coordinates of the parametrization (42). Due to the particular form of
θ1 and θ2, Equation (49) has two solutions. One of them is s0 (and in particular is independent
of ρ), where by definition s0 is the unique value s ∈ C such that θ1(s) = θ2(s) = 0, see (44). We
call the other root s(ρ). Notice that |s0| = |s(ρ)| = 1. Going back to the variable θ, s(ρ1) (resp.
s(ρ2)) corresponds on Figure 7 to the point θ∗ (resp. θ∗∗).

The norm N(G) in (46) can thus be rewritten as

N(G) =
(s− s(ρ1)) · (s− δ−1s(ρ1)) · · · (s− δ−(n−1)s(ρ1)) · (s− ηs(ρ2)) · · · (s− ηδ−(n−1)s(ρ2))

(s− s(ρ2)) · (s− δ−1s(ρ2)) · · · (s− δ−(n−1)s(ρ2)) · (s− ηs(ρ1)) · · · (s− ηδ−(n−1)s(ρ1))

=
(s− s(ρ1)) · (s− δs(ρ1)) · · · (s− δn−1s(ρ1)) · (s− ηs(ρ2)) · (s− δηs(ρ2)) · · · (s− δn−1ηs(ρ2))

(s− s(ρ2)) · (s− δs(ρ2)) · · · (s− δn−1s(ρ2)) · (s− ηs(ρ1)) · (s− δηs(ρ1)) · · · (s− δn−1ηs(ρ1))
.

(50)

Using the root-coefficient relationships in (49), we obtain

s(ρ) =
1

s0

(θ+
1 − θ

−
1 ) + (θ+

2 − θ
−
2 )ρeiβ

(θ+
1 − θ

−
1 ) + (θ+

2 − θ
−
2 )ρe−iβ

= ei(2ω(ρ)−arg s0),

with β as in (20) and

tanω(ρ) =
(θ+

2 − θ
−
2 )ρ sinβ

(θ+
1 − θ

−
1 ) + (θ+

2 − θ
−
2 )ρ cosβ

.

Note that it follows from (10) that

θ+
1 − θ

−
1

θ+
2 − θ

−
2

=

√
σ22

σ11
.

In particular, tanω(ρ) can be rewritten as

tanω(ρ) =
sinβ

1
ρ

√
σ22
σ11

+ cosβ
(51)

and we easily obtain, with δ and ε as in (56),

ω(ρ2) = δ, ω(ρ1) = β − ε. (52)
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Figure 7. The ellipse {(θ1, θ2) ∈ R2 : γ(θ1, θ2) = 0} (left) becomes a circle
(right) on S after uniformization (42)

In the norm N(G) in (50), the arguments of the zeros of the numerator (resp. denominator)
are at F(ρ1) ∪ G(ρ2) (resp. F(ρ2) ∪ G(ρ1)), where

F(ρ) = {2ω(ρ)− arg s0, 2ω(ρ)− arg s0 + 2β, . . . , 2ω(ρ)− arg s0 + 2(n− 1)β}
= 2ω(ρ)− arg s0 + 2β × {0, . . . , n− 1}
= 2ω(ρ)− arg s0 + 2βZ

and

G(ρ) = {−(2ω(ρ)− arg s0) + 2β,−(2ω(ρ)− arg s0) + 4β, . . . ,−(2ω(ρ)− arg s0) + 2nβ}
= −(2ω(ρ)− arg s0) + 2β × {1, . . . , n}
= −(2ω(ρ)− arg s0) + 2βZ.

(We can replace {0, . . . , n− 1} and {1, . . . , n} by Z, because the group is finite and of order 2n
if and only if β = kπ/n, for some integer k relatively prime with n.)

The zeros of F(ρ1) ∪ G(ρ2) compensate with those of F(ρ2) ∪ G(ρ1) if and only if the family
F(ρ1) is canceled by F(ρ2), and G(ρ1) by G(ρ2). Observing that eiF(ρ1) = eiF(ρ2) (resp. eiG(ρ1) =

eiG(ρ2)) if and only if 2ω(ρ1)− 2ω(ρ2) ∈ 2π
n Z, we conclude by (52), writing that π

n ∈ Z+ π
βZ. �

Remark 7. It is not possible to have ω(ρ1) = ω(ρ2), since with (51) this would imply ρ1 = ρ2

and thus the two reflection vectors would be parallel, which is excluded by our assumptions (2).

5.4. Orthogonal reflections. Here we consider the case of orthogonal reflections, which is
equivalent for the reflection matrix R in (1) to be the identity matrix; see also Figure 1. By
developing the theory of Tutte’s invariants (introduced by Tutte in [36] for the enumeration of
properly colored triangulations, and used in [2] for the enumeration of quadrant walks) for the
Brownian motion, we proved in [22] the following result:

Theorem 16 (Theorem 1 in [22]). Let R be the identity matrix in (1). The Laplace transform
ϕ1 is equal to

ϕ1(θ2) =
−µ1w

′(0)

w(θ2)− w(0)
θ2. (53)

In this section we derive a new proof of this result, as a consequence of Theorem 1. More
generally, the proof below would work for any parameters (Σ, µ,R) such that G(θ2) = F (θ2)

F (θ2)
(cf.

Remark 3), yielding a rational expression of ϕ1(θ2) in terms of w(θ2) and θ2.
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Figure 8. Integration contour used in the proof of Theorem 16

Proof. Let us first notice that the index χ = 0. Indeed, since G(θ2) = θ2
θ2
, we have argG(θ2) =

−2 arg θ2 > 0 for θ2 ∈ R, and thus ∆ > 0, see the proof of Lemma 9.
Starting from the formula (35), we have for some constant C

ϕ1(θ2) = C exp

{
1

2iπ

∫
R−

(log θ − log θ)
W ′(θ)

W (θ)−W (θ2)
dθ

}
= C exp

{
1

2iπ

∫
R

log θ
W ′(θ)

W (θ)−W (θ2)
dθ

}
.

To compute the above integral, we first integrate on the contour represented on Figure 8. The
residue theorem gives

1

2iπ

{∫
RR

+

∫
CR

+

∫
Cε

+

∫ iε

−R+iε
+

∫ −R−iε
−iε

}
log θ

W ′(θ)

W (θ)−W (θ2)
dθ = log θ2 − log q. (54)

It is easy to see that

lim
R→∞

1

2iπ

∫
RR

log θ
W ′(θ)

W (θ)−W (θ2)
dθ =

1

2iπ

∫
R

log θ
W ′(θ)

W (θ)−W (θ2)
dθ

and that in the limits when ε → 0 and R → ∞, the contributions on Cε and CR both converge
to 0, because W is analytic at 0 and ∞, respectively.

Furthermore,

lim
ε→0

lim
R→∞

1

2iπ

{∫ iε

−R+iε
+

∫ −R−iε
−iε

}
log θ

W ′(θ)

W (θ)−W (θ2)
dθ

= lim
ε→0

1

2iπ

∫ 0

−∞
(log(t+ iε)− log(t− iε)) W ′(θ)

W (θ)−W (θ2)
dθ

=
1

2iπ

∫ 0

−∞
2iπ

W ′(θ)

W (θ)−W (θ2)
dθ

= log
W (0)−W (θ2)

W (∞)−W (θ2)

= log
w(θ2)− w(0)

w(q)− w(0)
.
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Above we have used the dominated convergence and the fact that the principal determination of
the logarithm gives us limε→0(log(t+ iε)− log(t− iε)) = 2iπ. Letting R → ∞ and then ε → 0
in (54), we have, for some constants C and C ′,

ϕ1(θ2) = C exp

{
1

2iπ

∫
R

log θ
W ′(θ)

W (θ)−W (θ2)
dθ

}
= C ′

θ2

w(θ2)− w(0)
.

Since by Lemma 2 one has ϕ1(0) = −µ1, this eventually gives the right constant in (53). �

Appendix A. Equivalence between Brownian motion in wedges and Brownian
motion in the quarter plane

We use the notation of Section 1. Up to an isomorphism, studying Brownian motion in the
quarter plane with arbitrary covariance matrix Σ is equivalent to studying Brownian motion in a
cone of angle β = arccos− σ12√

σ11σ22
, with covariance identity. In this short section we relate the key

parameters (angles of the reflection vectors and drift) before and after the linear transformation.
Let us define the linear transforms

T =

( 1
sinβ cotβ

0 1

)( 1√
σ11

0

0 1√
σ22

)
, T−1 =

(√
σ11 0
0

√
σ22

)(
sinβ −cosβ

0 1

)
. (55)

Figure 9. The linear transformation T in (55) from the quadrant to the wedge
of opening angle β

Obviously the reflected Brownian motion associated to (Σ, µ,R) becomes a Brownian motion
(with covariance identity) in a wedge of angle β and with parameters (Id, Tµ, TR). The new
angles of reflection are δ and ε (cf. Figure 9), such that

tan δ =
sinβ

a+ cosβ
, cos δ =

a+ cosβ√
a2 + 2a cosβ + 1

, sin δ =
sinβ√

a2 + 2a cosβ + 1
,

tan ε =
sinβ

b+ cosβ
, cos ε =

b+ cosβ√
b2 + 2b cosβ + 1

, sin ε =
sinβ√

b2 + 2b cosβ + 1
,

(56)

where a = r12
r22

√
σ22
σ11

and b = r21
r11

√
σ11
σ22

. The new drift is µ̃ = Tµ, where

µ̃1 =
µ1√
σ11

1

sinβ
+

µ2√
σ22

cotβ and µ̃2 =
µ2√
σ22

.

Thanks to (10) and (44), we have tan arg s0 = µ̃2

µ̃1
, see Figure 7.
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