
HAL Id: hal-01495741
https://hal.science/hal-01495741

Submitted on 26 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Nanvix Operating System
Pedro Henrique Penna

To cite this version:
Pedro Henrique Penna. The Nanvix Operating System. [Research Report] Pontifical Catholic Uni-
versity of Minas Gerais (PUC Minas). 2017. �hal-01495741�

https://hal.science/hal-01495741
https://hal.archives-ouvertes.fr


The Nanvix Operating System

Pedro H. Penna

March 26, 2017

1 Introduction

Nanvix is an operating system created by Pedro H. Penna for educational pur-
poses. It was designed from scratch to be small and simple, and yet modern
and fully featured, so that it could help enthusiasts in operating systems, to
learn about kernel hacking. The first release of Nanvix came out in early 2011,
and since then the system has undergone through several changes. This paper
details the internals of Nanvix 1.2. All previous and future releases are available
at github.com/ppenna/nanvix, under the GPLv3 license.

In this section, we present an overview of Nanvix, starting with the system
architecture, then presenting the system services, and finally discussing the
required hardware to run the system. In later sections, we present a more
detailed description of Nanvix.

1.1 System Architecture

The architecture of Nanvix is outlined in Figure 1. It presents a similar structure
to Unix System V, and it has been intentionally designed to be so due to two
main reasons. First, some successful operating systems, such as Aix, Linux and
Solaris, are based on this architecture. Second, System V has earned Dennis
Ritchie and Kenneth Thompson the 1983 Turing Award. These points indicate
that System V is a well-structured system, thus serving as a good baseline design
for a new educational operating system, such as Nanvix.

Nanvix is structured in two layers. The kernel, the bottom layer, seats on top
of the hardware and runs in privileged mode, with full access to all resources.
Its job is to extended the underlying hardware so that: (i) a more pleasant
interface, which is easier to program, is exported to the higher layer; and (ii)
resources can be shared among users, fairly and concurrently. The userland, the
top layer, is where user software run in unprivileged mode, with limited access
to the hardware, and the place where the user itself interacts with the system.

The kernel presents a monolithic architecture, and it is structured in four
subsystems: the hardware abstraction layer; the memory management system;
the process management system; and the file system. The hardware abstraction
layer interacts directly with the hardware and exports to the other subsystems a
set of well defined low-level routines, such as those for dealing with IO devices,
context switching and interrupt handling. Its job is to isolate, as much as
possible, all the hardware intricacies, so that the kernel can be easily ported to
other compatible platforms, by simply replacing the hardware abstraction layer.
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Figure 1: Nanvix architecture.

The memory management subsystem provides a flat virtual memory abstrac-
tion to the system. It does so by having two modules working together: the
swapping and virtual memory modules. The swapping module deals with pag-
ing, keeping in memory those pages that are more frequently used and swapping
out to disk those that are not. The virtual memory system, on the other hand,
relies on the paging module to manage higher-level abstractions called mem-
ory regions, and thus enable advanced features such as shared memory regions,
on-demand loading, lazy coping and memory pinning.

The process management system handles creation, termination, scheduling,
synchronization and communication of processes. Processes are single thread
entities and are created on demand, either by the system itself or the user.
Scheduling is based on preemption and happens in userland whenever a process
runs out of quantum or blocks awaiting for a resource. In kernel land, on
the other hand, processes run in nonpreemptive mode and scheduling occurs
only when a processes voluntarily relinquishes the processor. Additionally, the
process management subsystem exports several routines that allow processes to
synchronize their activities and communicate with one another.

The file system provides a uniform interface for dealing with resources. It
extends the device driver interface and creates on top of it the file abstraction.
Files can be accessed through a unique pathname, and may be shared among
several processes transparently. The Nanvix file system is compatible with the
one present in the Minix 1 operating system, it adopts an hierarchical inode
structure, and supports mounting points and disk block caching.
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The userland relies on the system calls exported by the kernel. User li-
braries wrap around some of these calls to provide interfaces that are even more
friendly to programmers. Nanvix offers great support to the Standard C Li-
brary and much of the current development effort is focused on enhancing it.
User programs are, ultimately, the way in which the user itself interacts with
the system. Nanvix is shipped out with the Tiny Shell (tsh) and the Nanvix
Utilities (nanvix-util), which heavily resemble traditional Unix utilities.

1.2 System Services

The main job of the kernel is to extend the underlying hardware and offer the
userland a set of services that are easier to deal with, than those provided by the
bare machine. These services are indeed exported as system calls, which user
applications invoke just as normal functions and procedures. Nanvix implements
45 system calls, being the majority of them derived from the Posix 1 specification
[2]. The most relevant system calls that are present in Nanvix are listed in Table
1 and briefly discussed in the paragraphs that follow. For further information
about all system calls in Nanvix, refer to the system man pages.

Files are high-level abstractions created for modeling resources, being pri-
marily designed and used to provide a natural way to manipulate disks. One
program that wants to manipulate a file shall first open it by calling open().
Then, it may call read() and/or write() to read and/or write data to the
file. If the file supports random access, the read/write file offset may be moved
through the lseek() system call. Finally, when the program is done with that
file, it may explicitly close it by calling close(), and have its contents flushed
to the underlying device.

The file system is organized hierarchically, in a tree-like structure, and files
are uniquely identified by their pathnames. A program may refer to a file either
by using an absolute pathname, which starts in the root directory; or by using
a relative pathname to the current working directory of the program. Programs
may change their current working directory by invoking chdir(). Alternatively,
users can create links to files by calling link(), and then refer to the linked file
by referring to the link (Figure 2). Links and files may be destroyed through
the unlink() system call.

Every file has a owner user and a 9-bit flag assigned to it. These flags state
what are the read, write and execution permissions for the file, for the owner
user, the owner’s group users and all others. If a program wants to perform any
of these operations it must have enough permissions to do so. The file ownership
and permissions may be changed through the chown() and chmod() system calls,
respectively, and users can query these information by calling stat().

/

bin

tshecho

home

(a) Before.

/

sh

bin

tshecho

home

(b) After.

Figure 2: link() system call.
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Table 1: Most relevant system calls that are present in Nanvix.

Category System Call Description

File System

chdir Changes the current working directory
close Closes a file descriptor
chmod Changes the file permissions
chown Changes the file ownership
ioctl Device control
link Creates a new link to a file
lseek Moves the read/write file offset
open Opens a file descriptor
read Reads from a file
stat Gets the status of a file
unlink Removes a file
write Writes to a file

Process
Management

execve Executes a program
exit Terminates the current process
fork Creates a new process
getpid Gets the process ID
kill Sends a signal to a process
pause Suspends the process until a signal is received
pipe Creates an interprocess communication channel
signal Signal management

Processes are abstraction of running programs and play a central role in
Nanvix. Programs may create new processes by calling fork(), which creates
an exact copy of the current running process. The primal process is called the
parent and the new process is called child, and they have the same code, vari-
ables, opened files, and execution flow, differing only differ in their ID number.
Processes may query about their ID by calling getpid() and may change their
core through the execve() system call. When the process is done, it invokes
exit() to relinquish all resources that it was using.

Processes may synchronize their activities using two approaches: through
signals or synchronization primitives. In the former, the intend recipient process
A first registers a callback function that will handle some specific signal, by
calling signal(). If the process has nothing more to do than waiting for a
signal to arrive, it may invoke pause() to block until such event happens. Later,
another process may send a signal to A by calling kill(), therefore triggering
the handler function in A. In the second approach, two processes may open
a pipe, a dedicate communication channel, and effectively exchange data with
one another. A process in one end of the pipe writes data to it, and in the
other end a second processes reads data from the pipe, with all the required
producer-consumer synchronization being transparently handled by the kernel.

1.3 Hardware Requirements

Nanvix has been primarily designed to target the x86 architecture. Nevertheless,
thanks to the hardware abstraction layer, it may be easily ported to other
platforms. Still, the new platform shall meet some requirements to enable this
smooth transition.
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First, paging shall be somehow supported, since the memory management
subsystem relies on this feature to enable virtual memory. Additionally, the
hardware shall provide a protection mechanism that would point out whether a
page fault has been caused due to a missing page or to a permission violation.
Nanvix uses this information to easy the creation of new processes through the
copy-on-write and demand paging techniques.

Second, the hardware shall support interrupts. Nanvix is a preemptive sys-
tem, and the hardware shall provide some clock device that generates interrupts
at regular time intervals. The scheduler completely relies on this feature, and
the system would not even boot without it. Additionally, the hardware should
also offer a mechanism to enable and disable interrupts. The kernel uses this
mechanism to achieve exclusion on critical regions, and thus avoid race condi-
tions in kernel land (chaos).

2 Process Management

In this section, we take a closer look in the process management subsystem.
We start by first presenting the process structure itself; then highlighting how
process scheduling and switching happens; and finally discussing the most im-
portant mechanisms exported by this subsystem.

2.1 The Process Structure

A process is an abstraction of a running program. It depicts the memory core,
opened files, execution flow, access permissions, current state and every other
relevant information about a program. Table 2 outlines the (simplified) struc-
ture of a process in Nanvix. The information about all processes is kept in a
kernel table, named the process table, and it is globally visible to all subsystems.

Table 2: Simplified structure of a process in Nanvix.

Category Field Description

Context Switch
Information

kesp Kernel Stack pointer
kstack Kernel Stack
intlvl Interrupt Level

File System
Information

pwd Current Working Directory
ofiles Opened Files
tty Output Terminal Device

General
Information

status Exit status
pid, gid, uid Process, group and user IDs

Memory
Information

pregs Code, data, stack and heap segment regions
pgdir Page directory

Scheduling
Information

state Current state
counter Remaining quantum
nice Priority adjustment
priority Priority

Signal
Information

received Received signals
handler Signal handlers

Timing
Information

utime User CPU Time
ktime Kernel CPU Time
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Figure 3: States of a process in Nanvix.

The process management subsystem maintains the process table: whenever
a new process is created, a new entry is added to it; and when a process ter-
minates, the corresponding entry is erased. However, it is worthy to point that
each subsystem is in charge of maintaining their own fields in the process struc-
ture. For instance, the memory management subsystem is the one that fills up
information regarding the segment regions and page directory, whereas the file
system keeps track of the current working directory and opened files fields.

A process is created whenever a user launches a program or the system itself
spawns a new daemon. After that, the new process goes through a complex
lifetime before it terminates, as it is shown in Figure 3. Initially this new
processes is ready to execute (state 1), and it is eventually selected to run by
the scheduler. At this moment, the process resumes back its execution in kernel
land (state 2) and jumps to userland (state 3). There, the process performs
some computation, and it may either get preempted if it runs out of quantum
time (state 4), or block waiting for a resource (state 5). Either way, the process
later resumes its work, and loops back on these states. When the process finally
gets its job done, or it somehow crashes, it terminates and becomes a zombie
process (state 6). A zombie process awaits to gets all resources assigned to it to
be taken away by the kernel, and then it is turned in a dead process (state 7).

2.2 Process Scheduling and Switching

Several processes may be active in the system, but only one can be running at a
time1. The scheduler chooses which process to run next whenever the running
process gets preempted or blocks. In user mode, that happens when the running
process runs out of quantum and gets preempted by the kernel, or else when it
issues a system call. In kernel mode on the other hand, scheduling occurs only
when the running process voluntarily relinquishes the processor and goes wait
for a resource to be released.

1Nanvix does not support multiprocessor systems, thus processes are indeed not running
in parallel.
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Figure 4: Scheduler queues.

The scheduler (Figure 4) uses a priority based criteria to choose the next
process to run, with processes with higher priorities being scheduled to run
before those with lower priorities2. Processes with equal priorities are chained
in a queue and are selected in a round-robin fashion.

The priority of a process changes over the time and it is given by the sum of
three numbers: base priority, dynamic priority and nice value. The base priority
is assigned by the kernel itself and changes as the process sleeps and wakes up
from resource queues, and leaves the kernel or enters it. The dynamic priority
is increased by the scheduler as the process waits longer in the ready queue.
Finally, the nice value is adjusted by the users, exporting them a mechanism to
control which processes are more priority over others.

Once the scheduler chooses which process to run next, the process man-
agement subsystem performs the context switching operation. It first pushes
the contents of all machine registers in the kernel stack. Then, it instructs the
memory management unit hardware to switch to the address space of the se-
lected process. Finally, the state of the machine registers are restored from the
kernel stack of the selected process. The context switching operation is machine
dependent and it is actually carried on by the hardware abstraction layer.

2.3 Process Creation and Termination

In Nanvix, processes are created through the fork() system call. This call
instructs the process management subsystem to create a new process that is an
exact copy of the calling process. The primal process is called parent and the new
process is called child, and they have the same code, stack and data segments,
opened files and execution flow, differing only differ in their ID number. The
fork() system call is a complex and expensive operation, and in order to get
it done the process management subsystem heavily interacts with the memory
management system and the file system.

2Nanvix adopts the Unix’s priority system, in which lower values mean higher priorities.
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To create a process, the kernel first looks for an empty slot in the process
table, to store there the information about the process. Then, an address space
for the process is created: page tables are initialized, the kernel code and data
segments are attached to the process’ core, and a kernel stack for the process
is created. After that, the kernel duplicates every memory region of the parent
process and attaches them to the address space of the child process. In this
operation, underlying pages are not actually copied, but they are rather linked
and copied on demand. This technique, called copy-on-write, greatly speeds up
the fork() system call, and it is covered in Section 3.3. Then, when the address
space of the new process is built, file descriptors for all opened files are cloned,
and every other information is handcrafted. Finally, the process management
system marks the child process as new, so that the scheduler can properly
handles this situation, and places it in the ready queue for later execution.

The process then performs some computation and undergoes through a com-
plex lifetime, which we depict in Section 2.1. When the process finally finishes
its job it invokes the exit() system call to terminate. This call orders the pro-
cess management subsystem to actually kill the process and release all resources
that are assigned to it.

To do so, several steps are involved. First, the kernel masks out signals
and closes all files that are still opened. After that, all child processes of the
process that is about to terminate are assigned to a special process, called init3.
This ensures that no process becomes orphan, and thus become unreachable by
signals (see Section 2.4). Then, the kernel detaches all memory regions from
the dying process and marks it as a zombie. At this moment, the dying process
still has an address space and a slot in the process table, and the kernel has
no way to wipe off these information. Therefore the dying process hands out
this task to the parent process, and sends a death of child (SIGCHLD) to it.
This signal cannot be blocked or ignored, and it is eventually handled by the
corresponding parent process. When that happens, the parent process destroys
the address space of its zombie child process, and marks the corresponding slot
in the process table as not used.

2.4 Process Synchronization and Communication

In Nanvix, processes may cooperate to one another to accomplish a common
goal. To enable this, the kernel provides three synchronization primitives, so
that processes can work together without messing up each other’s job: sleep(),
wakeup() and wait().

When running in kernel land, processes often need to acquire and later re-
lease resources, such as slots in the system’s tables and some temporary memory.
The sleep() and wakeup() routines are used in these situations to avoid race
conditions in kernel land. The former puts the calling process to wait in a chain;
whereas the later causes all processes that are sleeping in a chain of processes
to be moved to the ready-to-execute scheduling queue. These routines support
two different sleeping states: one that is interrupitible by the receipt of signals,
and another that is not. Thanks to this mechanism, users can interact with
foreground processes, such as those that read/write to the terminal.

In userland, processes may coordinate their activities by calling the wait()

3init is a daemon process whose job is to spawn the logging processes.
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system call. This call causes a process to block until one of its child process
terminates. When such event happens, the parent process is awaken and the
exit status of the terminated child is made available to it. This information can
be later parsed by the parent process, so that it can known why exactly its child
process has terminated and properly handle the situation.

These three mechanisms enable processes to synchronize their activities and
friendly work together towards a common goal. Notwithstanding, processes also
have to somehow be able to communicate with one another to exchange valuable
information about their work progress. Nanvix offers two main mechanisms to
do that: signals and pipes.

Signals are short messages that processes can send/receive asynchronously.
They are mainly used to notify about the occurrence of interesting events, such
as that a process has to be killed, a remote terminal has hangup and a breakpoint
has been reached. The process management subsystem exports two system calls
to deal with signals: signal() and kill(). The former allows a process to
actually control how signals shall be handled. A process can either choose to
ignore a signal, and not be notified at all about it, or else handle a signal, by
registering a callback function that will do the job. The kill() system call on
the other hand, allows a process to raise a signal, either to another process or
to itself. Additionally to these system calls, the kernel also provides a system
call, named pause(), which allows a process to wait for the receipt of a signal.
Signals are implemented by having the kernel to instrument the user stack,
when a signal is send. The kernel carefully inserts hooks to the registered signal
handler in the stack, and when the process leaves the kernel, it transparently
executes the signal handler function (Figure 5).

Signals are useful for exchanging small amount of information. However,
if processes want to carry on more verbose conversations, they can use pipes
instead. A pipe is a virtual file that serves as a dedicated communication channel
between two processes. At one end of the pipe, a writer process puts data on the
pipe, and at the other end a reader process takes data out from it. Processes can
open pipes through the pipe() system call, and after that they can read/write
data to it by using the read() and write() system calls, as they would normally
do. In all these operations, data transfers take place entirely in memory, with
the kernel borrowing a page frame from the kernel page pool and pinning it
in memory. Additionally, the kernel handles the required producer-consumer
synchronization with the help of the sleep() and wakeup() routines.

user stack
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user context
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user stack
frame

user context
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user stack
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signal handler
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frame
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time
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Figure 5: Signal stack.
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3 Memory Management

In this section, we detail the internals of the memory management subsystem.
We first present the memory layout of a process in Nanvix, then we introduce
the memory region abstraction, and finally we detail the virtual memory and
paging systems.

3.1 Memory Layout

The virtual memory layout of typical process in Nanvix is presented in Figure 6.
The overall address space is divided in two great portions: one that is owned by
the kernel and is shared among all processes; and a second one that is private
and belongs to the process itself. The kernel is the only one that has full access
to the address space of a process. While running in user mode, if a process
touches any kernel memory, a protection fault is raised. This way, the kernel
can isolate and protect itself against malicious software, thus increasing the
system’s security and reliability.

The kernel address space is carefully handcrafted so that it looks as trans-
parent as possible to user processes. The kernel code and data segments are
placed to two different locations: identity mapped at the bottom of the mem-
ory, and virtually linked just after the user memory. Some operations performed
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Figure 6: Virtual memory layout of a process in Nanvix.
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by the kernel, like physical memory copy and context switching, require the vir-
tual memory system to be shutdown momentarily. Placing the kernel code and
data segments at the bottom of the memory, enables physical address access;
whereas positioning the whole kernel just after user memory ensures that future
enhancements on the kernel will not affect the user memory layout.

The kernel buffers, kernel page pool and init ramdisk are accessed exclusively
through virtual addresses. The kernel buffer area provides the file system with
some temporary memory to hold disk data. The kernel page pool feeds the
kernel memory allocator with some memory that will indeed be used to build
dynamic structures in the kernel, such as page tables. Finally, the init ramdisk
is a static memory area that functions as an in-memory file system and stores
configuration files and (eventually) dynamic loadable drivers, which are all used
during system’s startup.

The user memory portion occupies most of the virtual address space and it
is divided in several regions. The user code and data regions are statically allo-
cated and hold the text and static data segments of the binary file, respectively.
The user stack and heap regions on the other hand, dynamically grow and shrink
with the course of time. The former is used to store temporary variables and it
is managed by the kernel’s memory management subsystem. The heap region
however, holds long-term variables and it is handled by the process itself. User
libraries rely on the brk() system call to request the kernel to attach, or detach,
some memory to the heap.

3.2 Memory Regions

In Section 3.1 we have briefly discussed that the user memory portion of a
process is divided in four regions, namely code, data, stack and heap regions. A
region is a high-level abstraction created by the memory subsystem to easy the
management of user memory and abstract away the underlying technique that
is used to actually enable virtual memory (ie. segmentation or paging). This
abstraction is presented in Figure 7 and briefly discussed bellow.
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Figure 7: Memory region.
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From a design perspective, a memory region is indeed a collection of page
tables4, with some extra metainformation about the region itself. Pointers to
underlying page tables are stored in a table, so that the virtual memory and
paging systems can quickly retrieve low-level information about the pages that
are assigned to a region. The owner and group IDs, and access permissions
fields are used together to determine what processes can read or write to the
memory region. Finally, the flags field indicate the growing direction of the
region, whether or not the region can be swapped out to disk, and whether or
not the region is shared among several processes.

The memory management subsystem maintains memory regions in a global
table, namely the memory regions table, and exports a well defined interface
for dealing with them. The process management subsystem heavily relies on
the routines provided by this interface to implement the brk(), exec(), exit()
and fork() system calls, as it is outlined in Figure 8. The allocreg() allocates
a new memory region, by searching an empty slot in the memory regions table
and properly initializing its fields. It is important to point out however, that
underlying pages are not actually assigned to the memory region in this routine,
but they are rather allocated on-the-fly, using a technique called demand pag-
ing (see Section 3.3). Conversely, freereg() frees a region table by releasing
underlying pages and page tables, and erasing the corresponding entry from the
memory regions table.

The loadreg() routine is used to load a region with some data from a binary
file. This routine invokes raw I/O procedures exported by the file system to
actually find the corresponding inode and perform the read operation. The
growreg() procedure expands (or shrinks) a target region by a certain size, by
allocating/freeing page tables accordingly. The attachreg() and detachreg()

routines attach and detach a memory region to the address space of a process,
respectively. They do so by effectively linking/unlinking underlying page tables
to/from the page directory of a process. Finally, the dupreg() routine creates
an exact copy of a target memory region. To speedup this task, the memory
management subsystem uses a lazy copying technique known as copy-on-write,
which e further discuss in Section 3.3.

3.3 The Virtual Memory and Paging Systems

While the memory management system exports the memory region interface
to other system modules, internally it works with paging and swapping to en-
able virtual memory. The former technique delivers a flat memory abstraction,
whereas the latter effectively enables the physical memory to be virtually ex-
tended.

4The memory region abstraction equally applies to segmentation.
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Figure 9: Two-level paging scheme used in Nanvix.

The paging system relies on a two-level page table that is depicted in Figure
9 and detailed next. Each process has a single page directory, and each entry in
this directory points to a page table. Whenever a virtual address is generated,
the memory management unit (MMU) breaks it in three portions. The upper
portion is used to index the currently active page directory, and thus to find
out the corresponding page table. Then, the middle portion is used to index
the page table, and hence to discover the physical frame where the requested
page is placed. Finally, the third portion is added to the address of the memory
frame to build the ultimate target physical address.

Page directories and page tables of all processes are pinned down in ker-
nel memory, and the paging system carefully bookkeeps the physical addresses
of these structures. This way, the kernel can access any address space from
whatever process is running, handle physical memory copying, and step away
from live locks when performing swapping. Memory frames, on the other hand,
are handled in a different way by the internal memory frame allocator. The
paging system maintains a table, namely the memory frames table, where all
information about in-memory pages are stored. When the system first startups,
it marks all entries in this table as not used. Whenever a page is requested,
the paging system searches this table for an empty slot and allocates the corre-
sponding memory frame. If no slot is available, the swapping system is invoked
to swap out an in-memory page to disk.

Aside from managing page directories and page tables, and dealing with
page allocation, it is worthy to note that the paging system also implements
two fundamental mechanisms: demand paging and copy-on-write. The former
is extensively used in the exec() system call and works as follows. Whenever
an executable file needs to be loaded to memory, the paging system does not
copy any data from disk nor allocate any space in memory at first. Instead,
it marks all corresponding entries in the page table as “not present, demanded
paging”. Later, when an attempt to access an address that falls in such kind of
page is made, a page fault occurs and then the paging system allocates a frame
to that page and loads it in to memory.
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The second mechanism, namely copy-on-write, is heavily employed in the
fork() system call to easy the overall task of creating a new process. In a nut-
shell, this system call creates a child process that is an exact copy of the calling
process by duplicating every opened file descriptor and cloning the memory ad-
dress space of the parent process. The former step can be completed in a handful
of time as it comes down to iterate over the file descriptors table incrementing
the reference count for each opened file. On the other hand, cloning the address
space of a process can be a real time-consuming endeavor, since that involves
copying a massive amount of data. When copy-on-write is enabled however,
such operation is greatly speed up by having the copy operation to happen
on demand, rather than immediately. To enable so, at first, the kernel marks
writable pages of the parent process as “read-only, copy-on-write”. Later, when
a write attempt is made to a marked page, a protection fault is fired and the
kernel performs the actual cloning, marking both pages as writable in the end.

So far, we have detailed the internals of the paging system, which delivers
a flat memory abstraction to the whole system, but now it is time to turn our
attentions to the swapping system. The ultimate goal of this later one is to
keep in memory those pages that are more frequently used, and use some disk
space to store those that are not. This way, it is possible to execute a process
whose memory footprint is larger than the physical memory available. In other
words, the physical memory is virtual extended, enabling the maximum memory
footprint of a process to be bounded by the size of the virtual address space,
rather than the physical one.

To achieve such goal, the swapping system relies on a First-in-First-out
(FiFo) strategy to evict pages to disk. For each in-memory page, the swap-
ping system bookkeeps the timestamp in which that page has been brought into
memory. Whenever the swapper is invoked, the page with the oldest timestamp
is evicted to the swapping area, in disk. The swapping system selects pages
using a local-policy and implements no load control mechanism. On the other
way around, when a page is brought in to memory from the swapping area, a
shadow copy is kept there. This way, if no modifications are done to that page,
no extra I/O operation to write the page back to disk needs to be performed.

4 File System

The file system is certainly the largest and most complex subsystem in Nanvix.
It extends the hardware abstraction layer and exports through the file abstrac-
tion a uniform interface for dealing with bare resources. In this section we take
a closer look in this subsystem. We first present the buffer cache, an internal
module that speedups the performance of the file system, and then we move our
discussion to the file system’s layout, structure and internals.

4.1 The Buffer Cache Module

Most requests that arrive at the file system involve disk I/O operations. If,
in order to handle each of them, the file system would have to issue an I/O
operation, the system’s performance would be awful. Therefore, to get around
this problem, the file system buffers disk blocks in memory and also maintains
a cache of most frequently used buffers there, as shown in Figure 10. In this
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cache, all buffers are hashed in a table according to the number of the disk
block that they currently hold, and buffers that are not in use are linked in a
list structure. This way, any buffer can be quickly retrieved through the hash
table, and the kernel can easily get a free buffer from the list, whenever it needs
one.

The buffer cache module exports a set of routines to other subsystems to
enable them manipulate buffers. To read a buffer from the cache, the bread()

routine is provided. Internally, this routine searches the buffer cache for a
specific block and returns a pointer to it. If the requested block is not in the
buffer cache, its contents are read from disk to some buffer. What buffer will be
be used to handle the request may come from two different sources. If the list
of free buffers is not empty, the kernel claims a buffer from there and uses it in
the operation. However, if this list is empty, a buffer from the cache is evicted
to disk, according to a least-recently used policy, and then it is used to handle
the bread() request.

After retrieving a block buffer from the buffer cache, subsystems may freely
read/write data from/to the buffer. Nevertheless, it is important to point
out that buffers are indeed shared resources, and thus to consistently oper-
ate these structures subsystems should carefully use locking mechanisms. To
handle this situation, the buffer buffer cache module provides the blklock()

and blkunlock() routines, to enable buffers to be locked and unlocked respec-
tively. Finally, when a subsystem is done with a buffer, it calls bwrite() to
release it. If no more processes are using that buffer, its contents are flushed to
the underlying device and then the buffer is marked as “not used”.

As a final remark, it is worthy to note two techniques that are supported
by the buffer cache to further improve the system’s performance. The first
technique, namely delayed write, is outlined in Figure 10 and works as follows.
As we detailed before, not-used buffers are linked in a list of free buffers, so
that the kernel can easily get a buffer whenever it needs one. Note, however,
that buffers that are not being used also appear in the hashing structure. The
buffer cache does so in the hope that those buffers will soon be need, and thus
tries to postpone writing as much as possible. The second technique, known
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as asynchronous read, improves the overall system usage by having read oper-
ations to take place asynchronously, rather than synchronously to the process’
execution flow. To enable this, the buffer cache handles a read operation as it
would normally do, however, instead of scheduling a synchronous read operation
in the disk driver, it schedules an asynchronous one and immediately returns.
The process may then go compute something else, and when the content of the
buffer gets valid, it is notified about this event.

4.2 File System Layout and Structure

Nanvix adopts an hierarchical file system based on inodes, which heavily re-
sembles the original System V file system reported in [1]. Indeed, the Nanvix
file system has been intentionally designed to be somewhat compatible with the
Minix 1 file system, so that existing user-level utilities specifically designed to
manipulate this file system could be used in early development phases5. The
Nanvix file system is outlined in Figure 11 and detailed next.

The Nanvix file system works with 1 KB blocks and it is divided in two
major zones, one that stores meta information about the file system itself and
another one that actually holds user data. The very first block in the meta
information zone stores the bootloader, a very small and special program that
setups all machine dependent features and actually loads the kernel. Following
the boot block, is the superblock, the place where information concerning the
file system’s peculiarities are kept. For instance, it holds how many data blocks
and inodes the file system has, what is the maximum size for a file size and what
is the file system version. After this block, there are the inode-map (imap) and
block-map (bmpap) blocks, which are used for managing disk space; and the
inode blocks, which store all inodes of the file system. Finally, data blocks
hold user data, and are linked to the file system hierarchy through the inode
structure.

In turn, an inode is a low-level abstraction of a file. It stores information
concerning the file’s type, owner, access permissions, current size, time of last
modification, and blocks pointers, as it is shown in Figure 12. Data blocks are
assigned using an hierarchical addressing scheme, where the first seven data
blocks are directly addressed, and next ones are addressed via either double or
triple indirections. The way that blocks pointers are actually used depend on
the type of the file itself. If it is a regular file, then blocks pointers point to data
blocks filled with user data. If the file is a directory, however, block pointers
point to data blocks that store directory entries. Finally, if the file is a special
file, the block pointers hold the minor and major numbers of the referred device.

5Since version 1.1 Nanvix is shipped with its own utilities for sake of portability.
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4.3 File System Internals

So far we have explored the buffer cache module and the file system layout. In
this section, however, we turn our attentions to the file system internals. We first
discuss how disk space is actually managed, then we introduce the interface that
is exported for dealing with inodes, and finally we detail some kernel routines
for manipulating files.

The file system manages disk space with the help of the bmap and imap blocks
(see Section 4.2). These are indeed bitmaps that point out which data blocks and
inodes are currently in use in the file system, respectively. Whenever an inode
or a data block needs to bee allocated, the correspondent bitmap is sequentially
searched for an inode/data block that is available. To speedup the search, the
kernel maintains these bitmaps in memory and from time to time it writes them
back to disk. Additionally, the kernel keeps track of the last allocated bit in each
bitmap and uses bitwise operations to perform the search. This way, the first
free bit in a bitmap can be find slightly fast, if the disk is not heavily fragmented,
and search time is decreased by a factor of n, where n is the width in bits of
the largest machine register. To allocate and free data blocks the kernel exports
two routines, namely block alloc() and block free(); and conversely does
the same for inodes, through the inode alloc() and inode free() routines.

Inodes are low-level abstractions for files, and are used to model regular
files, directories and devices. The most relevant routines for manipulating such
structures are presented in Table 3 and briefly discussed next. Ultimately, inodes
are stored in disk, so that changes in the file system can persist over time.
However, to further improve the file system’s performance, the kernel caches
in memory the most recently used inodes, in a similar way as it does with
disk blocks (see Section 10). To get an inode from the inode cache, the file
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Table 3: Interface for dealing with inodes.

Category Routine Description

Locking
inode lock Locks in inode
inode unlock Unlocks an inode

Inode Cache
inode get Gets an inode
inode put Releases an inode
inode sync Synchronizes the in-core inode table

Traversal
inode name Converts a path name to inode
inode dname Gets inode of the topmost directory of a path

system exports the inode get() routine. If the requested inode is in the cache,
a pointer to it is immediately returned. However, if the inode is not in the
cache, the kernel reads it from the disk, first evicting not-in-use inodes using a
least recently used strategy if needed. Conversely, the inode put() routine is
provided to release an in-memory inode, making available the correspondent slot
in the inode cache. Finally, to sync the in-memory inodes with in-disk inodes,
the file system provides the inode sync() routine. This call iterates over the
cache, writing back to disk every inode that is dirty.

The inode get() routine is handful in situations where the serial number
of the target inode is known in advance. For instance, when mounting a device
or reading/writing data to a file that has been already opened. On the other
hand, if the serial inode number is not known, but its pathname is, one can
use either inode name() or inode dname() routines. The first one retrieves the
inode that matches a given pathname, and the second when gets the inode for
the topmost directory in the pathname. These routines work by having the
pathname to be parsed and the file system hierarchy to be traversed, differing
essentially in their stop criteria.

The last two routines exported by the file system, namely inode lock()

and inode unlock(), are provided for locking purposes. The first one causes
the calling process to block until it acquires exclusive access to a target inode,
and the second routine releases the lock that a process owns over an inode and
wakes up all processes that were awaiting for this event. Having a process to
call inode lock() before using and inode and inode unlock() when it is done
with it enables processes to consistently operate over inodes, thus promoting
the file system’s integrity.

On top of the inode interface, the kernel builds higher-level abstractions and
routines. A table, namely the opened file descriptors table, is used to bookkeep
all files that are opened in the system. Each entry in this table stores a pointer
to the underlying in-memory inode and tracks the current read/write cursor
in the file. The opened file descriptors table is heavily manipulated by the
open() and close() system calls. For reading/writing to a file, the kernel
provides file read() and file write(). These routines take as parameters
a target inode and buffer, and transparently handle a read/write request by
traversing the data-block tree in the inode structure. Conversely, to add and
remove entries from a directory, the file system exports the dir add() and
dir remove() routines.
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